Kohei and session types

Vasco Thudichum Vasconcelos

University of Lisbon
ETAPS, March 2013

1989

Mario
Tokoro

LFCS

Laboratory for Foundations of Computer Science
Depariment of Compuler Science - University of Edinburgh

A Calculus of Mobile Processes,
Part |

by

Robin Milner
Joachim Parrow
David Walker

L Hed 'sassenold s[Iqoi JO snjnoeo v

. . ECS-LFCS-89-85

LFCS Report Series ' {also published ss CSR-302-89)
- LFCS , ' - June 1989

Department of Computer Science .

University of Edinburgh ‘ .
The King's Buildings Copyright © 1989, LFCS

IRIA

e
T

UNITE DE RECHERCHE
INRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt
. BP105
=-78153 laChesnay Cedex
France
Tel:(1)39635611

Rapports de Recherche

N° 1154

Programme 1
Programmation, Calcul Symbolique
et Intelligence Artificielle

FUNCTIONS AS PROCESSES

Robin MILNER

Février 1990

g

f ‘L{@(?3:7
- (s 4
45
b
f‘“ﬂ and E{W m e T calewdup e
b Mabmer™ A
Decemtar (990
(. [nlottuc kim

K< lruchins J céch{Z and Sevfs”
E\(cmpl@ ﬂr Swﬁ)j;
ﬂjﬁm) Lk &kmew{?«j @KD/M/P(&D
Tyfer f Aoagos”

H«qb'm/* ~do— 7

A

Aopeonx : Shuctind cngnence | &ehivo | owol lrasilim ules

An Object Calculus for Asynchronous Communication®

Kohei Honda and Mario Tokorof

Department of Computer Science,
Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223,

Japan

Abstract

This paper presents a formal system based on the notion of objects and asynchronous
communication. Built on Milner’s work on 7-calculus, the communication primitive
of the formal system is purely asynchronous, which makes it unique among vari-
ous concurrency formalisms. Computationally this results in a consistent reduction
of Milner’s calculus, while retaining the same expressive power. Seen semantic-
ally asynchronous communication induces a surprisingly different framework where
bisimulation is strictly more general than its synchronous counterpart. This pa-
per shows basic construction of the formal system along with several illustrative
examples.

ECOOP 1991: Geneva, Switzerland

computationaljg
behaviour can

be reduced to
name passing

lambda to pi:“important
suggestions at many stages
of formal development”

1993

On Reduction-Based Process Semantics*

Kohei Honda Nobuko Yoshida

Department of Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract. A formulation of semantic theories for processes which is based on
reduction relation and equational reasoning is studied. The new construction
can induce meaningful theories for processes, both in strong and weak settings.
The resulting theories in many cases coincide with, and sometimes generalise,
observation-based formulation of behavioural equivalence. The basic construction
of reduction-based theories is studied, taking a simple name passing calculus
called v-calculus as an example. Results on other calculi are also briefly discussed.

FSTTCS 1993: Bombay, India

Principal typing schemes in a polyadic m-calculus®

Vasco T. Vasconcelos Kohei Honda
vasco@mt.cs.keio.ac.jp kohei@mt.cs.keio.ac.jp
Department of Computer Science
Keio University
3-14-1 Hivoshi Kohoku-ku Yokohama 223
Japan

Abstract

The present paper introduces a typing system for a version of Milner’s polyadic 7-
calculus, and a typing inference algorithm linear on the size of the input. The central
concept underlying the typing system is the notion of type assignment, where each
free name in a term is assigned a type, the term itself being given multiple name-
type pairs. This observation leads to a clean typing system for Milner’s sorting, and
induces an efficient algorithm to infer the typing of a term. The typing system enjoys
a subject-reduction property and possesses a notion of principal typing scheme. The
algorithm to reconstruct the principal typing scheme of a process, or to detect its
inexistence, is proved correct with respect to the typing system.

CONCUR 1993: Hildesheim, Germany

Combinatory Representation of Mobile Processes *

Kohei Honda f

kohei@mt.cs.keio.ac. jp

Nobuko Yoshida

yoshida@mt.cs.keio.ac. jp

Department of Computer Science, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223, Japan

Abstract

A certain analogue of theory of combinators in the set-
ting of concurrent processes is formulated. The new
combinators are derived from the analysis of the op-
eration called asynchronous name passing, just as the
analysis of logical substitution gave rise to the sequen-
tial combinators. A system with seven atoms and fixed
interaction rules, but with no notion of prefixing, is
introduced, and is shown to be capable of represent-
ing input and output prefixes over arbitrary terms in a
behaviourally correct way, just as SK-combinators are
closed under functional abstraction without having it
as a proper syntactic construct. The basic equational
correspondence between concurrent combinators and a
system of asynchronous mobile processes, as well as the
embedding of the finite part of w-calculus in concur-
rent combinators, is proved. These results will hope-
fully serve as a cornerstone for further investigation of
the theoretical as well as pragmatic possibilities of the

arbitrarily complex applicative behaviour. This ulti-
mately led us to the notion of combinatory algebra as
a semantic foundation of typed and untyped A-calculi.
At the same time, the decomposition of the application-
substitution process into finite dynamics in combinators
has had a profound impact on the execution schemes of
modern functional programming languages. Truly, par-
allel developments in the study of A-calculi and that of
combinators are essential to our current practice of se-
quential programming, both theoretical and pragmatic.

Such parallel developments, however, have not been
known in the world of concurrent processes. Nor, at
least until recently, has one agreed upon the existence of
such an essential operation as 3-reduction in the concur-
rency setting. Yet nowadays we find, especially among
researchers on concurrency, growing interest in one sim-
ple yet powerful primitive, which, when coupled with
basic operators like concurrent composition and name
hiding, can represent quite versatile structures of con-
current computation. The operation is name passing,

POPL 1994: Portland, Oregon, USA

Types for interaction

“structuring constructs for
communication-based
programming which are

born through the
examination of pi-calculus
encoding of various
computational structures”

Se 8uentt‘al"i‘9at’i‘on ab)

o Asa Jnst step, we wish re= e

Sez.uemmé M CommunresTron |

Ut G P | %LU = Prvcinsz 1y)

G- Curpye i Amee o

AGU-3) M = dtohty 3o M,

anch?ng o.

o Next Froblemt Con we reclise .

a_é.[,>:: P & Gyt Q2 | Wereght
| - o

Le E)raf‘cy\?ﬂé/ selectton oc anefod

muvocatnsg ¢
PN s

*

Types for Dyadic Interaction

Kohe1 Honda

koher@mt.cs.keio.ac.)p

Department of Computer Science, Keio University

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract

We formulate a typed formalism for concurrency where types denote freely composable structure of dyadic inter-
action in the symmetric scheme. The resulting calculus is a typed reconstruction of name passing process calculi.
Systems with both the explicit and implicit typing disciplines, where types form a simple hierarchy of types, are
presented, which are proved to be in accordance with each other. A typed variant of bisimilarity is formulated and
it is shown that typed fg-equality has a clean embedding in the bisimilarity. Name reference structure induced by
the simple hierarchy of types is studied, which fully characterises the typable terms in the set of untyped terms.
It turns out that the name reference structure results in the deadlock-free property for a subset of terms with a
certain regular structure, showing behavioural significance of the simple type discipline.

CONCUR 1993: Hildesheim, Germany

An Interaction-based Language and its Typing System™

Kaku Takeuchi Kohei Honda Makoto Kubo
kaku@mt.cs.keio.ac.jp kohei@mt.cs.keio.ac.jp kubo@mt.cs.keio.ac.]jp

Department of Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract

We present a small language £ and its typing system based on the idea of interaction,
one of the important notions in parallel and distributed computing. £ is based on,
apart from such constructs as parallel composition and process creation, three pairs
of communication primitives which use the notion of a session, a semantically atomic
chain of communication actions which can interleave with other such chains freely, for
high-level abstraction of interaction-based computing. Three primitives enable pro-
grammers to elegantly describe complex interactions among processes with a rigorous
type discipline similar to ML [4]. The language is given formal operational semantics
and a type inference system, regarding which we prove that if a program is well-typed
in the typing system, it never causes run-time error due to type inconsistent communi-
cation patterns, offering a new foundation for type discipline in parallel programming
languages.

PARLE 1994: Athens, Greece

“session, a semantically atomic
chain of communication
actions which can interleave

with other such chains freely,
for high-level abstraction of
interaction-based computing.”

LANGUAGE PRIMITIVES AND TYPE DISCIPLINE FOR
STRUCTURED COMMUNICATION-BASED PROGRAMMING

KOHEI HONDA*, VASCO T. VASCONCELOS', AND MAKOTO KUBO?

ABSTRACT. We introduce basic language constructs and a type discipline as a foun-
dation of structured communication-based concurrent programming. The constructs,
which are easily translatable into the summation-less asynchronous m-calculus, allow
programmers to organise programs as a combination of multiple flows of (possibly
unbounded) reciprocal interactions in a simple and elegant way, subsuming the pre-
ceding communication primitives such as method invocation and rendez-vous. The
resulting syntactic structure is exploited by a type discipline a la ML, which offers
a high-level type abstraction of interactive behaviours of programs as well as guar-
anteeing the compatibility of interaction patterns between processes in a well-typed
program. After presenting the formal semantics, the use of language constructs is
illustrated through examples, and the basic syntactic results of the type discipline
are established. Implementation concerns are also addressed.

'ESOP 1998: Lisbon, Portugal

Thank you

