A Session Type Provider

Compile-Time APl Generation of Distributed Protocols with Refinements in F#

Rumyana Neykova Raymond Hu Nobuko Yoshida Fahd Abdeljallal

Imperial College
London

Part One
Type Providers

Type Providers

Problem: Languages do not integrate information
- We need to bring information into the language

'
PLDI’16
Types from data: Making structured data first-class citizens in F#

Tomas Petricek Gustavo Guerra Don Syme

University of Cambridge Microsoft Corporation, London

gustavo@codebeside.org

Microsoft Research, Cambridge

tomas@tomasp.net dsyme@microsoft.com

Abstract

Most modern applications interact with external services and
access data in structured formats such as XML, JSON and
CSV. Static type systems do not understand such formats,
often making data access more cumbersome. Should we give
up and leave the messy world of external data to dynamic
typing and runtime checks? Of course, not!

We present F# Data, a library that integrates external
structured data into F#. As most real-world data does not

let doc = Http.Request("http://api.owm.org/?q=NYC")
match JsonValue.Parse(doc) with
| Record(root) —
match Map.find "main" root with
| Record(main) —
match Map.find "temp" main with
| Number(num) — printfn "Lovely %f!" num
| _ — failwith "Incorrect format"
| _ — failwith "Incorrect format"
| _ — failwith "Incorrect format"

come with an exglicit schema, we develoa a shaae inference

g / \
| s N
d . B
3 R
[
i \
H
4
‘ l

HAPHAVEYOU DONE

Y

let doc = Http.Request("http://api.owm.org/?q=NYC")
match JsonValue.Parse(doc) with
| Record(root) —
match Map.find "main" root with
| Record(main) —
match Map.find "temp" main with
| Number(num) — printfn "Lovely %f!" num
| _ — failwith "Incorrect format"
| _ — failwith "Incorrect format"
| _ — failwith "Incorrect format"

type W = JsonProvider("http://api.owm.org/7q=NYC")
printfn "Lovely %f!" (W.GetSample().Main.Temp)

z all data is typed

@ On-demand generation

@ autocompletion

@ background type-checking

WorldBank Type Providers

|

let data = WorldBank.GetDataContext()

data:]
J» Countries
M Regicons
B Servicelocation
® _GetCountries
@ _GetCountry *

@ _CetRegion

® _CetRegions

| " IDE/PROGRAM i

oF

A generalisation to distributed protocols requires

o a notion of schema for structured interactions between services

o an understanding of how to extract the localised behaviour for
each services

Part Two
Session T'ypes

&

Multiparty Asynchronous Session Types

Kohei Honda

Queen Mary, University of London
kohei@dcs.qmul.ac.uk

Abstract

Communication is becoming one of the central elements in soft-
ware development. As a potential typed foundation for structured
communication-centred programming, session types have been
studied over the last decade for a wide range of process calculi and
programming languages, focussing on binary (two-party) sessions.
This work extends the foregoing theories of binary session types
to multiparty, asynchronous sessions, which often arise in practical
communication-centred applications. Presented as a typed calculus
for mobile processes, the theory introduces a new notion of types in
which interactions involving multiple peers are directly abstracted
as a global scenario. Global types retain a friendly type syntax of
binary session types while capturing complex causal chains of mul-
tiparty asynchronous interactions. A global type plays the role of a
shared agreement among communication peers, and is used as a ba-

cre ~AfF afRatant trrma Ahanl-ine theannah (46 meatantinn Anta snAdivridaaal

Nobuko Yoshida

Imperial College London
yoshida@doc.ic.ac.uk

Marco Carbone

Queen Mary, University of London
carbonem @dcs.gmul.ac.uk

vices (Carbone et al. 2006, 2007; WS-CDL; Sparkes 2006; Honda
et al. 2007a). A basic observation underlying session types is that
a communication-centred application often exhibits a highly struc-
tured sequence of interactions involving, for example, branching
and recursion, which as a whole form a natural unit of conversa-
tion, or session. The structure of a conversation is abstracted as a
type through an intuitive syntax, which is then used as a basis of
validating programs through an associated type discipline.

As an example, the following session type describes a simple
business protocol between Buyer and Seller from Buyer’s view-
point: Buyer sends the title of a book (a string), Seller sends a quote
(an integer). If Buyer is satisfied by the quote, then sends his ad-
dress (a string) and Seller sends back the delivery date (a date);
otherwise it quits the conversation.

quit : end} (D

Istring; Zint; {0k :!string; ?date; end,

Session Types @ Scribble

Global Type

- Protocol Validation
Projection
(int) from C to S;
Local Type Local Type Local Type (bOOl) from S to C;
A
Type ? Type f Type
Checking Checking Checking

- - Program Verification
Program Program Program
Alice Bob Carol runB ¢ = let (x, c’) =

receilve ¢ 1n send true c’f &I

A system of well-behaved processes is free from
deadlocks, orphan messages and reception errors

10

Data Type providers bring information into the
language as strongly tooled, strongly typed

Session Type providers bring communication into
the language as strongly tooled, strongly typed

11

Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
S.

Session Type Provider

12

Our Solution: Session Type Providers

type Prot

let s =

BiDiv(x:int, y:1nt) from C to S;
Res(z:float) from S to C;

= STP<“”Prot.scr”, C>
new Prot().Init()

S.
i i D m Statel Statel.send(S Role, Div label, int x, int y)

Constraints: y!=0

Session Type Provider

13

Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
s.send(S, Div, 6, 3)

Session Type Provider

14

Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
s.send(S, Div, 6, 3)

¢fD m State3 Statel.receive(S Role, Res label, Buf<float> f)

Session Type Provider

15

Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()

¥

s.send(S, Div, 6, 3)

i .receive(S, Res, V)

Session Type Provider

16

Our Solution: Session Type Providers

BiDiv(x:int, y:1nt) from S to C;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
S .

Session Type Provider

17

Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<“Prot.scr”, C>
let s = new Prot().Init()
s.send(S, Div, 6, “hello”) © Wrong payload

Session Type Provider

18

Our Solution: Session Type Providers

BiDiv(x:int, y:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, A> @ Wrong protocol

Session Type Provider

19

Session Type providers bring communication into
the language as strongly tooled, strongly typed

BUT WAIT!

THERE'S MORE!

Calculator Re

global protocol C role

choice at C {

Div(x:1nt, y:int) from C to S;

Res(z:float) from C to S;
do Calc(C, S);
} or {

Add (x:1nt, y:int) from C to S;

Res(z:int) from S to C;

do Calc(C, S);

} or

Sgrt(x:float) from C to S;
Res (y:flod from S to C;
do Calc (C,
} or
Bye () fro
Bye () from

21

Scribble with refinements

global protocol Calc (role S,

choice at C {
Div(x:1nt, vy:
Res(z:float)
do Calc (C,
} or {
Add (x:1int,
Res (z:1nt)
do Calc (C,
} or {
Sgrt(x:float)
Res (y:float)
do Calc (C,
} or {
Bye ()
Bye ()
}

}

from C
from S

22

S) s

&
from S to C;
S) ;

S);

role C) {

from C to S;Q@y!=0
&

int)
from C to S;

14

int) from C to S;

14

from C to S;@x>0
from S to C; T

to S;
to C;

INnteract]

Part Three
A Session Type Provider

23

What do you get from a session type provider?

Secsion Types Cafety

= A statically well-typed endpoint program will never perform a
non-compliant 1/O action w.r.t. the source protocol.

Dpe Providere Ucability

@ compile-time generation
@ background type checking & auto-completion
= a platform for tool integration (e.g. protocol validation)

Interaction refinements ,Qe/iabi/ity

@ runtime enforcement of constraint
= implicitly send values that can be inferred (safe by construction)
@ do not send values that can be locally inferred

24

A Session Type Provider (Architecture)

{
| (
1

|

|
)

il Model Checker |

f SMT Solver ﬂ

The type provider framework is used for tool integration

25

‘

r T r r T F T r .
Model Propertie CFSM F# Type Code
. 4 N . 4 N 7 I N y

S
-

26

‘l =

r r T F r .
Properties CFSM F# Type Code
. 4 b 4 N 4 r

A:C1(x:int T~ B:Cl2(y:int)@y>x

l(x:1nt) from A to C;
2(y:1int) from B to C; Qy>X c.a1(x:int)

B:Cl2(y:int)@y>X~ _ __-C:A21(x:int)

202

'C:B?2(y:1int)

T B=Cl2(y:int)@y>x ;
T~ FA:C!'T(x:1nt)

-~
-~
-~
-~

Bounded model checking as a validation methodology [FASE’16]
Safety Properties:

@ reception-error freedom

@ Orphan-message freedom

=z deadlock freedom

27

|r T T r N
i CFSM F# Type Code
4 . 4w 4

r

SMT Solver

>[- Q/0

Refinement satisfiability

Refinement progress

28

r . | Al T F T F .
Model | Properties §j CFSM F# Type Code
- il e | 4k 4k -

Refinement satisfiability
check if the conjunction of all formulas is satisfiable
e.g.(and Gy (+x1))(<y4)(>x 3))

TPt sint): from 2 _to B [dx>3

chelca at: B olo-0] Lrren B nes An Q
or {3(y:int) from B to A; @y>x+l and y<4} /
St N N N NG N N

execution paths are reachable |

L (e from A to B; @x>3
choice at B {2() from B -to A:}
or {3(y:1int) from B to A; (@y>x+1 and y>4}

29

r . | T F T F .
Model | Properties §j CFSM F# Type Code
- il e | 4k 4k -

Refinement satisfiability

» check if the conjunction of all formulas is satisfiable
e.g.(and Gy (+x 1))(<y4)(>x 3))

1(x:1int) from A to B; @x>3
choice at B {2() from B to A;} 0
or {3(y:int) from B to A; Qy>x+1l and y<4} /

VY V. W Ve VA

1(x:int) from A to B; @x>3
choice at B {2() from B to A;}
or {3(y:int) from B to A; (@y>x+1 and y>4}

30

r ir Al T T r .
Model | Properties §j CFSM F# Type Code
. ! . 4 N 4 r

Refinement progress
check if formula is satisfiable for all preceding solutions
e.g. (forall ((X Int)(y Int))(—> (> X 3)(or (< X y)(> X y))))

IPtxranr From A to B i-dx>3
Zpernt i from- A £o By
cho;cemathB__Bx__from?B*to%A;:@x>_h.

. Ensures that at any output point in the protocol
‘% implementations there will be always some }
chg values for which the formula holds |

sty Eryom 2o to B [@x>3

2(y:1int) from A to B; Qy<=3 :7?

choice at B {3() from B to A; @x>=y} .
or {4 (y:int) from B to-A; @x<y}

31

v -1
Model
A 4

| | r I T r 1
roperties | CFSM F# Type Code
——d| - 4 . 4 »

Refinement progress

» check if formula is satisfiable for all preceding solutions
e.g.(forall ((x Int)(y Int))(=> (> x 3)(or (K X y)(> X Yy))))

1 (x:1nt) from A to B; @x>3

2(y:1int) from A to B;
choice at B {3() from B to A; (@x>y} e

or {4() from B to A; @x<y}

1 (x:1nt) from A to B; @x>3

2(y:1int) from A to B;

choice at B {3() from B to A; @x>=y}
or {4() from B to A; @x<y}

l1(x:int) from A to B; @x>3

2(y:1int) from A to B; Qy<=3

choice at B {3() from B to A; (@x>y}
or {4() from B to A; @x<y}

32

o

r Tr | r T .
Model Properties { F# Type Code
. 4 n N 4 r

L

(x:T1) from A to B; (y:T2) from B to C; (z:T3) from C to A;

Global Type

Projection

Local Type Local Type Local Type

£ [1€

BlT;{ C?T A?T: CI'T B?T, AlT;
O—O—D G—0O—0 O0—0—0
33

r T r .
Model Properties
. 4 N y

global protocol Calc(role S, role C) {

choice at C {
Div(x:1nt, y:int) from C to S;
Res(z:float) from C to S;
do Calc(C, S);
} or {
Bye () from C to S;
Bye () from S to C;

}

34

@y !=0

C?Div

r T r Tr N
Model Properties CFSM
. 4 N 4 n v

C?Div (ink,int)

C!'Res (float)

riti method.
@ —— send methoo
@ — receivemethod

‘

r T r r N
Model Properties CFSM
. 4 u 4 n v

C?Div(int,int)

C!'Res (float)

type State2 =
member send: C*Res*float— Statel

type State3 =
member send: C*Bye— State4

type State4 =
member finish: unit— End

r T r Tr N
Model Properties CFSM
. 4 N 4 n v

global protocol Calc(role S, role C) {
choice at C {
Div(x:int, y:1int) from C to S; @y!'=0

Res (z:float) from C to S; @z=x/y Server as S
do Addeer (C, S);
} or { :
Bye () from C to S; Clientas C
Bye () from S to C;
}
/ Rec
Div
——————————— >
Res
2 1
Bye N
Bye

37

r T r
Model Properties
. 4

C?Div(int,int)

‘
A

C!'Res (float)

r h
CFSM
X 4

type Statel =
member branch: unit— ChoiceS1

type Div = interface ChoiceS1
member receive: int*int— State2

type Bye = interface ChoiceS1
member receive: — State3

type State2 =

member send: C*Res*fleat— Statel

~

type State3 =
member send: C*Bye— State4

type State4 =
member finish: unit— End

‘

r T r r T r
Model Properties CFSM F# Type
. 4 u 4 . 4 & y

1)
C?Bye

C?Div

let rec calcServer (c:Calc.Statel) =

match c.branch() with
| :? Calc.Bye as bye->

| :? Calc.Div as div ->

calcServer cl
e

r T r r T r
Model Properties CFSM F# Type
. 4 . 4 N y

1)
C?Bye

C?Div

‘
A

let rec calcServer (c:Calc.Statel) =
let x, y = new Buf<int>(),new Buf<int>()
match c.branch() with
| :? Calc.Bye as bye->
bye.receive(C)
.send(C, Bye).finish()

| :? Calc.Div as div ->
let ¢l = div.receive(C, x, V)
.send(C, Res, x.Val/y.Val)

calcServer cl

‘

r T r r T r
Model Properties CFSM F# Type
. 4 u 4 . 4 & y

send | | @ quotations
: | @ splicing

! constraints as lambda functions ! |
: ! serialise payload ! :

| i manage and use TCP sockets ! ;

41

‘

r T r r T F .
Model Propertie CFSM F# Type
. 4 N . 4 N y

S
-
type Prot = STP<“Prot.scr”, C> .Net IL CODE
let s = new Prot().Init() D
s.send(S, Div, 6, 3) emit
Compiler

*AST of

l TType declarations iHow to compile this code? Tgenerated code

Session Type Provider

42

N N

r T r r T F r .
Model Properties CFSM F# Type Code
. 4 n 4k 4 N 4 r

| A statically well-typed STP-endpoint program]

perform a non-compliant IO action ..t the source protocol. |

Compile-time performance

‘ ping—bong

T

Example (role) #LoC| #States| #Types| Gen (ms)
2-Buyer (B1) [13] 16 7 7 280
3-Buyer (B1) [5] 16 7 7 310
Fibonacci (S) [14] 17 5 7 300
Travel Agency (A) [24] | 26 6 10 278
SMTP () [14] 165 | 18 29 902
HTTP () [3] 140 |6 21 750
SAP-Negotiation (C) [18]| 40 5 9 347
Supplier Info (Q) [24] 86 5 25 1582
SH (P) 30 | 12 15 440

B Type and Code Generation (no refinements)
EXA Protocol checking (no refinements)

B8 Type and Code Generation (with refinements)
E23 Protocol checking (with refinements)

44

Run-time performance

1.8
1.6

0.7

ping—pong—no—refinemehts pihg—pong—refinements '

0.6

1.4}
0.5/
1.2
, 1.0 0.4 X
Q
“ 0.8 0.3

0.6
0.4
0.2}
0.0

0.2

0.1

X XIIIXRX XX XN

2 3 4 0.07°9 2 3 4 5
iterations (thousands) iterations (hundreds)

o Runtime overhead due to:

o branching, runtime checks, serialisation
o The performance overhead of the library stays in 5%-7% range
o The performance overhead of run-time checks is up to 10%-12%

.
45

Future work and Resources

Framework Summary
@ [ype-driven development of distributed protocols

@ Support for refinements on message interactions
@ ...ask me for more supported features

Future Work
a Static verification of refinements

= Partial model checking
@ Support for erased type providers (event-driven branching)

Resources:
@ Session type provider: https://session-type-provider.github.io
a Scribble: http://scribble.doc.ic.ac.uk/

= MRG: mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Thank youl!

MAY THE F0RGE BE WITH YOU

g 9

47

| Answers |

48
48

parse-> analyce -> prefty print

Check the tool for more features:

@ documentation on the fly = recompilation on protocol change
@ non-blocking receive @ online vs offline mode
= explicit connections @ support by any .Net language

49

49

