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Abstract. Session types, types for structuring communication between endpoints in
concurrent systems, are recently being integrated into mainstream programming languages.
In practice, a very important notion for dealing with such types is that of subtyping,
since it allows for typing larger classes of systems, where a program has not precisely the
expected behavior but a similar one. Unfortunately, recent work has shown that subtyping
for session types in an asynchronous setting is undecidable. To cope with this negative
result, the only approaches we are aware of either restrict the syntax of session types or
limit communication (by considering forms of bounded asynchrony). Both approaches
are too restrictive in practice, hence we proceed differently by presenting an algorithm
for checking subtyping which is sound, but not complete (in some cases it terminates
without returning a decisive verdict). The algorithm is based on a tree representation
of the coinductive definition of asynchronous subtyping; this tree could be infinite, and
the algorithm checks for the presence of finite witnesses of infinite successful subtrees.
Furthermore, we provide a tool that implements our algorithm. We use this tool to test
our algorithm on many examples that cannot be managed with the previous approaches,
and to provide an empirical evaluation of the time and space cost of the algorithm.
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Figure 1: Hospital Service example. M is the (refined) session type of the client, MC is a
supertype of the client M , and MS is the session type of the server.

1. Introduction

Session types are behavioural types that specify the structure of communication between
the endpoints of a system or the processes of a concurrent program. In recent years,
session types have been integrated into several mainstream programming languages (see,
e.g., [3, 25,32,35–37,40]) where they specify the pattern of interactions that each endpoint
must follow, i.e., a communication protocol. The notion of duality is at the core of theories
based on session types, where it guarantees that each send (resp. receive) action is matched
by a corresponding receive (resp. send) action, and thus rules out deadlocks and orphan
messages. A two-party communication protocol specified as a pair of session types is
“correct” (deadlock free, etc) when these types are dual of each other. Unfortunately, in
practice, duality is a too strict prerequisite, since it does not provide programmers with
the flexibility necessary to build practical implementations of a given protocol. A natural
solution for relaxing this rigid constraint is to adopt a notion of (session) subtyping which
lets programmers implement refinements of the specification (given as a session type). In
particular, an endpoint implemented as program P2 with type M2 can always be safely
replaced by another program P1 with type M1 whenever M1 is a subtype of M2 (written
M14M2 in this paper).

The two main known notions of subtyping for session types differ in the type of
communication they support: either synchronous (rendez-vous) or asynchronous (over
unbounded FIFO channels). Synchronous session subtyping checks, by means of a so-called
subtyping simulation game, that the subtype implements fewer internal choices (sends), and
more external choices (receives), than its supertype. Hence checking whether two types are
related can be done efficiently (quadratic time wrt. the size of the types [29]). Synchronous
session subtyping is of limited interest in modern programming languages such as Go and
Rust, which provide asynchronous communication over channels. Indeed, in an asynchronous
setting, the programmer needs to be able to make the best of the flexibility given by non-
blocking send actions. This is precisely what the asynchronous session subtyping offers:
it widens the synchronous subtyping relation by allowing the subtype to anticipate send
(output) actions, when this does not affect its communication partner, i.e., it will notably
execute all required receive (input) actions later.

We illustrate the salient points of the asynchronous session subtyping with Figures 1
and 2, which depict the hypothetical session types of the client and server endpoints of a
Hospital Service, represented as communicating machines — an equivalent formalism [5, 14],
see Figure 3. Let us consider Figure 1 first. Machine MS (right) is a server which can deal
with two types of requests: it can receive either a message nd (next patient data) or a
message pr (patient report). After receiving a message of either type, the server replies with
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Figure 2: Refined Hospital Service client. MR is an asynchronous subtype of MC , i.e., a
refined session type of the Hospital Service client.

ok or ko, indicating whether the evaluation of received data was successful or not, then it
returns to its starting state. Machine MC (middle) represents the type of the client. It is
the dual of the server MS (written MS), as required in standard two-party session types
without subtyping. A programmer may want to implement a slightly improved program
which behaves as Machine M (left). This version starts by sending nd , then keeps sending
patient reports (pr) until the previously sent data are deemed satisfactory (it receives ok).
In fact, machine M is a synchronous subtype of machine MC , because of the covariance of
outputs, i.e., M is a subtype of MC , hence it can send fewer messages. Note that M can
receive the same messages as MC . Machine MR in Figure 2 is another refinement of Machine
MC , but MR is not a synchronous subtype of MC . Instead, MR is an asynchronous subtype
of MC . Indeed, MR is able to receive the same set of messages as MC , each of the sent
messages are also allowed by MC , and the system consisting of the parallel composition of
machines MR and MS communicating via unbounded FIFO channels is free from deadlocks
and orphan messages. We will use this example (MR4MC) in the rest of the paper to
illustrate our theory. Figure 3 gives the session types corresponding to the machines in
Figures 1 and 2, where & indicates an external choice and ⊕ indicates an internal choice.

Recently, we have proven that checking whether two types are in the asynchronous
subtyping relation is, unfortunately, undecidable [7, 8, 30]. In order to mitigate this negative
result, some theoretical algorithms have been proposed for restricted subclasses of session
types. These restrictions can be divided into two main categories: syntactical restrictions,
i.e., allowing only one type of non-unary branching (internal or external choice), or adding
bounds on the number of pending messages in FIFO communication channels. Both types
of restrictions are problematic in practice. Syntactic restrictions disallow protocols featuring
both types of internal/external choices, e.g., the machines MC and MS in Figure 1 contain
(non-unary) external and internal choices. On the other hand, applying a bound to the
subtyping relation is generally difficult because (i) it is generally undecidable whether such a
bound exists, (ii) the channel bounds used in the implementation (if any) might not be known
at compile time, and (iii) very simple systems, such as the one consisting of the parallel
composition of machines MR and MS discussed above, require unbounded communication
channels.

The main contribution of this paper is to give a sound algorithm for checking asynchro-
nous session subtyping that does not impose syntactical restrictions nor bounds as done in
previous works.

Overview of our approach. Our approach will allow to algorithmically check the sub-
typing between session types like MR and MC . In a nutshell, our algorithm proceeds as
follows. We play the classical subtyping simulation game with the subtype and supertype
candidates. The game terminates when we encounter a failure, meaning that the two types
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are not in the subtyping relation, or when we detect a repetitive behaviour in the game. In
the latter case, we check whether this repetitive behaviour (which can always be found)
satisfies sufficient conditions that guarantee that the subtyping simulation game will never
encounter failures. If the conditions are satisfied the algorithm concludes that the two types
are in the subtyping relation, otherwise no final verdict is returned.

More precisely, session subtyping is defined following a coinductive approach (Definition
2.6) that formalises a check on the types that can be intuitively seen as a game. At each
step of the game, the candidate subtype proposes a challenge (either an input or an output
action to be executed) and the candidate supertype is expected to reply by performing a
corresponding action. The game ends in two possible ways: either both types terminate
by reaching their end state (success) or the candidate supertype is unable to reply to the
challenge (failure). In case of failure, the two types are not in the subtyping relation,
otherwise they are. This game is the so-called subtyping simulation game, and we formally
represent it as a simulation tree (Definition 3.2). Hence two types are in the subtying relation
if and only if their simulation tree does not reach a failure (Theorem 3.4).

Recall that asynchronous session subtyping allows the subtype to anticipate output
actions wrt. the supertype. Hence, during the subtyping simulation game, a supertype can
reply to an output challenge by considering outputs that are not immediately available,
but are guarded by inputs. These inputs cannot be forgotten during the game, because
they could be necessary to reply to subsequent input challenges. Thus, they are recorded
in so-called input trees (Definition 2.2). Due to outputs inside loops, we can accumulate
an unbounded amount of inputs, thus generating input trees of unbounded depth. For this
reason, it is generally not possible to algorithmically compute the entire simulation tree. To
overcome this problem, we propose a termination condition that intuitively says that the
computation of the simulation tree can be stopped when we reach a point in the game that
precisely corresponds to a previous point, or differs simply because “more” inputs have been
accumulated (Theorem 3.8).

Using this termination condition, we compute a finite prefix of the simulation tree.
Given this finite tree, our algorithm proceeds as follows: (i) it extracts special subtrees,
called candidate subtrees, from the tree (Definition 3.6), and then (ii) checks whether all
these subtrees satisfy certain properties guaranteeing that, even if we have stopped the
game, it would certainly continue without reaching a failure. This is guaranteed if we
have stopped the computation of the simulation tree by reaching an already considered
point, because subsequent continuations of the game will continue repeating the exact same
steps. In contrast, if we have stopped with “more” inputs, we must have the guarantee that
all possible continuations of the simulation game cannot be negatively affected by these
additional input accumulations. We formalise a sufficient condition on candidate subtrees
(that are named witness trees when they satisfy such a condition, see Definition 3.16) that
provides such a guarantee.

Concretely we use input tree equations (a sort of context-free tree grammar, see Defini-
tion 3.11) to finitely represent both the possible inputs of the candidate subtype and the
inputs that can be accumulated by the candidate supertype. We then define a compatibility
relation on input tree equations, see Definition 3.12. In a witness tree we impose that the
input tree equations of the inputs accumulated by the candidate supertype are compatible
with those of the candidate subtype. This implies that the candidate supertype will be
always ready to reply to all possible input challenges of the candidate subtype, simply by
considering already accumulated inputs (see our main Theorem 3.19). If all the candidate
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M = µx.!nd ;µy.&{?ok ; x, ?ko; !pr ; y}
MR = µx.!nd ; &{?ok ; x, ?ko; !pr ; x}
MC = µx.⊕ {!nd ; &{?ok ; x, ?ko; x}, !pr ; &{?ok ; x, ?ko; x}}
MS = µx.& {?nd ;⊕{!ok ; x, !ko; x}, ?pr ;⊕{!ok ; x, !ko; x}}

Figure 3: Session types corresponding to the machines in Figures 1 and 2.

subtrees satisfy our sufficient conditions we can conclude that the two initial session types
are in the subtyping relation, otherwise the algorithm replies with “I don’t know” meaning
that it is not possible to conclude with a final verdict.

1.1. Structure of the paper. The remainder of the paper is structured as follows. § 2
reports some preliminary definitions, namely the formalisation of session types as communi-
cating machines and the definition of asynchronous session subtyping. Our approach for a
sound algorithmic characterisation of asynchronous session subtyping is presented in § 3.
We also discuss in § 4 a full implementation of our algorithm; this has been used to test our
approach on many examples that cannot be managed with the previous approaches, and to
provide an empirical evaluation of the time and space cost of the algorithm. Finally, the
paper includes a discussion about related work in § 5 and some concluding remarks in § 6.

This article is a full version of [6], with improved presentation, refined definitions,
detailed proofs and additional examples. Moreover, this version presents an empirical
evaluation of our algorithm: we tested the implementation of our algorithm on automatically
generated session types, see § 4. We have also given an expanded discussion of related work
and possible extensions that can be addressed in the future, see § 5 and § 6.

2. Communicating Machines and Asynchronous Subtyping

In this section, we recall the definition of two-party communicating machines, that commu-
nicate over unbounded FIFO channels (§ 2.1), and define asynchronous subtyping for session
types [11,12], which we adapt to communicating machines, following [8] (§ 2.2).

2.1. Communicating Machines. Let A be a (finite) alphabet, ranged over by a, b, etc. We
let ω, ω′, etc. range over words in A∗. The set of send (resp. receive) actions is Act ! = {!}×A,
(resp. Act? = {?} × A). The set of actions is Act = Act ! ∪Act?, ranged over by `, where a
send action !a puts message a on an (unbounded) buffer, while a receive action ?a represents

the consumption of a from a buffer. We define dir(!a)
def
= ! and dir(?a)

def
= ? and let ψ and ϕ

range over Act∗. We write · for the concatenation operator on words and we write ε for the
empty word (overloaded for A and A∗).

In this work, we only consider communicating machines which correspond to (two-party)
session types. Hence, we focus on deterministic (communicating) finite-state machines,
without mixed states (i.e., states that can fire both send and receive actions) as in [14,15].

Definition 2.1 (Communicating Machine). A communicating machine M is a tuple (Q, q0, δ)
where Q is the (finite) set of states, q0 ∈ Q is the initial state, and δ ∈ Q × Act × Q is a
transition relation. We further require that ∀q, q′, q′′ ∈ Q. ∀`, `′ ∈ Act :

(1) (q, `, q′), (q, `′, q′′) ∈ δ implies dir(`) = dir(`′), and
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(2) (q, `, q′), (q, `, q′′) ∈ δ implies q′ = q′′.

We write q
`−→ q′ for (q, `, q′) ∈ δ, omit unnecessary labels, and write −→∗ for the reflexive

transitive closure of −→.

Condition (1) requires all states to be directed, while Condition (2) enforces determinism,
i.e., all actions outgoing from a given state are pairwise distinct.

Given M = (Q, q0, δ), we say that q ∈ Q is final, written q 9, iff ∀q′ ∈ Q. ∀` ∈
Act . (q, `, q′) /∈ δ. A state q ∈ Q is sending (resp. receiving) iff q is not final and ∀q′ ∈
Q. ∀` ∈ Act . (q, `, q′) ∈ δ. dir(`) = ! (resp. dir(`) = ?). We write δ(q, `) for q′ iff (q, `, q′) ∈ δ.

We write q0
`1···`k−−−−→ qk iff there are q1, . . . , qk−1 ∈ Q such that qi−1

`i−→ qi for 1 ≤ i ≤ k.
Given a list of messages ω = a1 · · · ak (k ≥ 0), we write ?ω for the list ?a1 · · ·?ak and !ω for

!a1 · · ·!ak. We write q
!−→∗ q′ iff ∃ω ∈ A. q !ω−→ q′ and q

?−→∗ q′ iff ∃ω ∈ A. q ?ω−→ q′ (note that ω
may be empty, in which case q = q′). Given ψ ∈ Act∗ we define snd(ψ) and rcv(ψ):

snd(ψ) =


a · snd(ψ′) if ψ =!a · ψ′

snd(ψ′) if ψ =?a · ψ′

ε if ψ = ε

rcv(ψ) =


a · rcv(ψ′) if ψ =?a · ψ′

rcv(ψ′) if ψ =!a · ψ′

ε if ψ = ε

That is snd(ψ) (resp. rcv(ψ)) extracts the messages in send (resp. receive) actions from a
sequence ψ.

2.2. Asynchronous Session Subtyping.

2.2.1. Input trees and contexts. We define some structures and functions which we use to
formalise the subtyping relation. In particular, we use syntactic constructs used to record
the input actions that have been anticipated by a candidate supertype, e.g., machine M2 in
Definition 2.6, as well as the local states it may reach. First, input trees (Definition 2.2)
record input actions in a standard tree structure.

Definition 2.2 (Input Tree). An input tree is a term of the grammar:

T ::= q | 〈ai : Ti〉i∈I
In the sequel, we use TQ to denote the input trees over states q ∈ Q. An input context

is an input tree with “holes” in the place of sub-terms.

Definition 2.3 (Input Context). An input context is a term of A ::= [ ]j | 〈ai : Ai〉i∈I ,
where all indices j, denoted by I(A), are distinct and are associated to holes.

For input trees and contexts of the form 〈ai : Ti〉i∈I and 〈ai : Ai〉i∈I , we assume that
I 6= ∅, ∀i 6= j ∈ I. ai 6= aj , and that the order of the sub-terms is irrelevant. When convenient,
we use set-builder notation to construct input trees or contexts, e.g., 〈ai : Ti | i ∈ I〉.

Given an input context A and an input context Ai for each i in I(A), we write A[Ai]i∈I(A)
for the input context obtained by replacing each hole [ ]i in A by the input context Ai. We

write A[Ti]
i∈I(A) for the input tree where holes are replaced by input trees.
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2.2.2. Auxiliary functions. In the rest of the paper we use the following auxiliary functions
on communicating machines. Given a machine M = (Q, q0, δ) and a state q ∈ Q, we define:

• cycle(?, q) ⇐⇒ ∃ω ∈ A∗, ω′ ∈ A+, q′ ∈ Q. q ?ω−→ q′
?ω′−−→ q′ (with ? ∈ {!, ?}),

• in(q) = {a | ∃q′.q ?a−→ q′} and out(q) = {a | ∃q′.q !a−→ q′},
• let the partial function inTree(·) be defined as:

inTree(q) =


⊥ if cycle(?, q)

q if in(q) = ∅
〈ai : inTree(δ(q, ?ai))〉i∈I if in(q) = {ai | i ∈ I} 6= ∅

Predicate cycle(?, q) says that, from q, we can reach a cycle with only sends (resp. receives),
depending on whether ? =! or ? =?. The function in(q) (resp. out(q)) returns the messages
that can be received (resp. sent) from q. When defined, inTree(q) returns the tree containing
all sequences of messages which can be received from q until a final or sending state is
reached. Intuitively, inTree(q) is undefined when cycle(?, q) as it would return an infinite
tree.

Example 2.4. Given MC (Figure 1), we have the following:

in(q1) = ∅ in(q2) = {ok , ko}
out(q1) = {nd , pr} out(q2) = ∅
inTree(q1) = q1 inTree(q2) = 〈ok : q1, ko : q1〉

Example 2.5. Consider the following machine M1:

p0 p1 p2 p3
!b !c ?d

!a

From state p0 we can reach state p1 with an output. The latter can loop into itself. Hence,
we have both cycle(!, p0) and cycle(!, p1).

2.2.3. Asynchronous subtyping. We present our definition of asynchronous subtyping (fol-
lowing the orphan-message-free version from [12]). Our definition is a simple adaptation1

of [8, Definition 2.4] (given on syntactical session types) to the setting of communicating
machines.

Definition 2.6 (Asynchronous Subtyping). Let Mi = (Qi, q0i , δi) for i ∈ {1, 2}. R is an
asynchronous subtyping relation on Q1 × TQ2 such that (p, T ) ∈ R implies:

(1) if p9 then T = q such that q 9;
(2) if p is a receiving state then

(a) if T = q then q is a receiving state and

∀q′ ∈ Q2 s.t. q
?a−→ q′. ∃p′ ∈ Q1 s.t. p

?a−→ p′ ∧ (p′, q′) ∈ R;

(b) if T = 〈ai : Ti〉i∈I then ∀i ∈ I. ∃p′ ∈ Q1 s.t. p
?ai−−→ p′ ∧ (p′, Ti) ∈ R;

(3) if p is a sending state then

1In definitions for syntactical session types, e.g., [33], input contexts are used to accumulate inputs that
precede anticipated outputs; here, having no specific syntax for inputs, we use input trees instead.
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(a) if T = q and q is a sending state, then

∀p′ ∈ Q1 s.t. p
!a−→ p′. ∃q′ ∈ Q2 s.t. q

!a−→ q′ ∧ (p′, q′) ∈ R;
(b) otherwise, if T = A[qi]

i∈I then ¬cycle(!, p) and ∀i∈ I.inTree(qi) =Ai[qi,h]h∈Hi and

∀p′∈Q1 s.t. p
!a−→ p′.

∀i∈I.∀h∈Hi. ∃q′i,h∈Q2 s.t. qi,h
!a−→ q′i,h ∧ (p′,A[Ai[q′i,h]h∈Hi ]i∈I) ∈ R.

M1 is an asynchronous subtype of M2, written M14M2, if there is an asynchronous subtyping
relation R such that (q01 , q02) ∈ R.

The relation M14M2 checks that M1 is a subtype of M2 by executing M1 and simulating
its execution with M2. M1 may fire send actions earlier than M2, in which case M2 is allowed
to fire these actions even if it needs to fire some receive actions first. These receive actions are
accumulated in an input context and are expected to be subsequently matched by M1. Due
to the presence of such an input context, the states reached by M2 during the computation
are represented as input trees. The definition first differentiates the type of state p:

Final: Case (1) says that if M1 is in a final state, then M2 is in a final state with an empty
input context.

Receiving: Case (2) says that if M1 is in a receiving state, then either (2a) the input
context is empty (T = q) and M1 must be able to receive all messages that M2 can receive;
or, (2b) M1 must be able to consume all the messages at the root of the input tree.

Sending: Case (3) applies when M1 is in a sending state, there are two sub-cases.
Case (3a) says that if the input context is empty (T = q) and q is also a sending state,
then M2 must be able to send all messages that M1 can send. If this sub-case above does
not apply (i.e., the input context is not empty or q is not a sending state), then the one
below must hold.
Case (3b) enforces correct output anticipation, i.e., M2 must be able to send every a
that M1 can send after some receive actions recorded in each Ai[qi,h]h∈Hi . Note that
whichever receiving path M2 chooses, it must be able to send all possible output actions
!a of M1, i.e., !a should be available at the end of each receiving path. Moreover, given
that there are accumulated inputs, we require that cycle(!, p) does not hold, guaranteeing
that subtyping preserves orphan-message freedom, i.e., such accumulated receive actions
will be eventually executed.

Observe that Case (2) enforces a form of contra-variance for receive actions, while Case (3)
enforces a form of covariance for send actions.

Example 2.7. Consider MC and MR from Figures 1 and 2, we have MR4MC (see § 3). A
fragment of the relation R from Definition 2.6 is given in Figure 4. Considering the identifier
(bottom left) of each node in Figure 4, we have:

• Case (1) of Definition 2.6 does not apply to any configuration in this example (there is no
final node in these machines).
• Case (2a) applies to node n1, i.e., q24 q2 (note that q2 are receiving states in both

machines).
• Case (2b) applies to nodes n5, n9, and n13; where q2 of machine MR is a receiving state

and the input context is not empty.
• Case (3a) applies to nodes n0, n2, and n3, where the input context is empty and both

states are sending states.
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• Case (3b) applies to nodes n4, n6, n7, n8, n10, n11, n12, n14, n15, and n16. Observe that
this case does not require the input context to be non-empty (e.g., n4), and that the
condition ¬cycle(!, p) holds for all states p in MR since there is no send-only cycle in this
machine.

Example 2.8. For the two machines below, we have M1 64M2 and M2 64M1:

M1:
p1 p2 p3

!b ?c

!a

M2:
q1 q2 q3

?c !b

!a

For the M1 64M2 case consider the initial configuration (p1, q1). Since p1 is a sending
state, but q1 is a receiving state, Case (3b) appears to be the only applicable case of
Definition 2.6. However, we have cycle(!, p1) hence (p1, q1) /∈ R, for every asynchronous
subtyping relation R.

For the M2 64M1 case, consider the initial configuration (q1, p1). Since q1 is a receiving
state, only Case 2 would be applicable. However, the input context is empty and p1 is a
sending state, therefore neither Case (2a) nor Case (2b) apply hence (q1, p1) /∈ R, for every
asynchronous subtyping relation R.

3. A Sound Algorithm for Asynchronous Subtyping

Our subtyping algorithm takes two machines M1 and M2 then produces three possible
outputs: true, false, or unknown, which respectively indicate that M14M2, M1 64M2, or
that the algorithm was unable to prove either of these two results. The algorithm consists
of three stages. (1) It builds the simulation tree of M1 and M2 (see Definition 3.2) that
represents sequences of checks between M1 and M2, corresponding to the checks in the
definition of asynchronous subtyping. Simulation trees may be infinite, but the construction
terminates whenever: either it reaches a node that cannot be expanded, it visits a node
whose label has been seen along the path from the root, or it expands a node whose ancestors
validate a termination condition that we formalise in Theorem 3.8. The resulting tree
satisfies one of the following conditions: (i) it contains a leaf that could not be expanded
because the node represents an unsuccessful check between M1 and M2 (in which case the
algorithm returns false), (ii) all leaves are successful final configurations, see Condition (1)
of Definition 2.6, in which case the algorithm replies true, or (iii) for each leaf n it is possible
to identify a corresponding ancestor anc(n). In this last case the tree and the identified
ancestors are passed onto the next stage. (2) The algorithm divides the finite tree into
several subtrees rooted at those ancestors that do not have other ancestors above them (see
the strategy that we outline on page 16). (3) The final stage analyses whether each subtree
is of one of the two following kinds. (i) All the leaves in the subtree have the same label as
their ancestors: in this case all checks required to verify subtyping have been performed.
(ii) The subtree is a witness subtree (see Definition 3.16), meaning that all the checks that
may be considered in any extension of the finite subtree are guaranteed to be successful as
well. If all the identified subtrees are of one of these two kinds, the algorithm replies true.
Otherwise, it replies unknown.
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3.1. Generating Asynchronous Simulation Trees. We first define labelled trees, of
which our simulation trees are instances; then, we give the operational rules for generating a
simulation tree from a pair of communicating machines.

Definition 3.1 (Labelled Tree). A labelled tree is a tree2 (N,n0, ↪−→,L,Σ,Γ), consisting of
nodes N , root n0 ∈ N , edges ↪−→ ⊆ N × Σ×N , and node labelling function L : N 7−−→ Γ.

Hereafter, we write n
σ
↪−→ n′ when (n, σ, n′) ∈↪−→ and write n1

σ1···σk
↪−−−−→ nk+1 when there

are n1, . . . , nk+1, such that ni
σi
↪−→ ni+1 for all 1 ≤ i ≤ k. We write n ↪−→ n′ when n

σ
↪−→ n′ for

some σ and the label is not relevant. As usual, we write ↪−→∗ for the reflexive and transitive
closure of ↪−→, and ↪−→+ for its transitive closure. Moreover, we reason up-to tree isomorphism,
i.e., two labelled trees are equivalent if there exists a bijective node renaming that preserves
both node labelling and labelled transitions.

We can then define simulation trees, labelled trees representing all possible configurations
reachable by the simulation checked by asynchronous session subtyping.

Definition 3.2 (Simulation Tree). Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two
communicating machines. The simulation tree of M1 and M2, written simtree(M1,M2), is a
labelled tree (N,n0, ↪−→,L,Act , P × TQ). The labels (p, T ) ∈ (P × TQ) are denoted also with
p4T . In order to define ↪−→ and L, we first consider an Act-labelled relation on (P × TQ),

with elements denoted with p4T
`
↪−→ p′4T ′, defined as the minimal relation satisfying the

following rules:

p
?a−→ p′ q

?a−→ q′ in(p) ⊇ in(q)

p4 q
?a
↪−→ p′4 q′

(In)
p

!a−→ p′ q
!a−→ q′ out(p) ⊆ out(q)

p4 q
!a
↪−→ p′4 q′

(Out)

p
?ak−−→ p′ k ∈ I in(p) ⊇ {ai | i ∈ I }

p4〈ai : Ti〉i∈I
?ak
↪−−→ p′4Tk

(InCtx)

p
!a−→ p′ ¬cycle(!, p)

∀j ∈ J.
(
inTree(qj)=Aj [qj,h]h∈Hj ∧ ∀h ∈ Hj .(out(p) ⊆ out(qj,h) ∧ qj,h

!a−→ q′j,h)
)

p4A[qj ]
j∈J !a

↪−→ p′4A[Aj [q′j,h]h∈Hj ]j∈J
(OutAcc)

We now define ↪−→ and L as the transition relation and the labelling function s.t. L(n0) =
p04 q0 and, for each n ∈ N with L(n) = p4T , the following holds:

• if p4T
`
↪−→ p′4T ′ then there exists a unique n′ s.t. n

`
↪−→ n′ with L(n′) = p′4T ′;

• if n
`
↪−→ n′ with L(n′) = p′4T ′ then p4T

`
↪−→ p′4T ′.

Notice that such a tree exists (it can be constructed inductively starting from the root n0)
and it is unique (up-to tree isomorphism).

Given machines M1 and M2, Definition 3.2 generates a tree whose nodes are labelled by
terms of the form p4A[qi]

i∈I where p represents the state of M1, A represents the receive
actions accumulated by M2, and each qi represents the state of machine M2 after each path
of accumulated receive actions from the root of A to the ith hole. Note that we overload the

2A tree is a connected directed graph without cycles: ∀n ∈ N. n0 ↪−→∗ n ∧ ∀n, n′ ∈ N. n ↪−→+ n′. n 6= n′.
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Figure 4: Part of the simulation tree (solid edges only) and candidate tree for MR4MC

(Figure 1 and 2). The root is circled in thicker line. The node identities are shown
at the bottom left of each label.

symbol 4 used for asynchronous subtyping (Definition 2.6), however the actual meaning is
always made clear by the context. We comment each rule in detail below.
Rules (In) and (Out) enforce contra-variance of inputs and covariance of outputs, respec-
tively, when no accumulated receive actions are recorded, i.e., A is a single hole. Rule (In)
corresponds to Case (2a) of Definition 2.6, while rule (Out) corresponds to Case (3a).
Rule (InCtx) is applicable when the input tree A is non-empty and the state p (of M1)
is able to perform a receive action corresponding to any message located at the root of
the input tree (contra-variance of receive actions). This rule corresponds to Case (2b) of
Definition 2.6.
Rule (OutAcc) allows M2 to execute some receive actions before matching a send action
executed by M1. This rule corresponds to Case (3b) of Definition 2.6. Intuitively, each send
action outgoing from state p must also be eventually executable from each of the states qj
(in M2) which occur in the input tree A[qj ]

j∈J . The possible combinations of receive actions
executable from each qj before executing !a is recorded in Aj , using inTree(qj). We assume
that the premises of this rule only hold when all invocations of inTree(·) are defined. Each
tree of accumulated receive actions is appended to its respective branch of the input context

A, using the notation A[Aj [q′j,h]h∈Hj ]j∈J . The premise out(p) ⊆ out(qj,h) ∧ qj,h
!a−→ q′j,h

guarantees that each qj,h can perform the send actions available from p (covariance of
send actions). The additional premise ¬cycle(!, p) corresponds to that of Case (3b) of
Definition 2.6.

Example 3.3. Figure 4 gives a graphical view of the initial part of the simulation tree
simtree(MR,MC). Consider the solid edges only for now, they correspond to the ↪−→-relation.
Observe that all branches of the simulation tree are infinite; some traverse nodes with
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infinitely many different labels, due to the unbounded growth of the input trees (e.g., the one
repeatedly performing transitions !nd ·?ko·!pr); while others traverse nodes with finitely many
distinct labels (e.g., the one performing first transitions !nd ·?ko·!pr and then repeatedly
performing !nd ·?ok).

We adapt the terminology of [26] and say that a node n of simtree(M1,M2) is a leaf
if it has no successors. A leaf n is successful iff L(n) = p4 q, with p and q final; all other
leaves are unsuccessful. A branch (a full path through the tree) is successful iff it is infinite
or finishes with a successful leaf; otherwise it is unsuccessful. Using this terminology, we
relate asynchronous subtyping (Definition 2.6) with simulation trees (Definition 3.2) in
Theorem 3.4.

Theorem 3.4. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines.
All branches in simtree(M1,M2) are successful if and only if M14M2.

Proof. We start from the if part. Consider two communicating machines M1 = (P, p0, δ1)
and M2 = (Q, q0, δ2) such that M14M2. By definition of M14M2, we have that there
exists an asynchronous subtyping R such that (p0, q0) ∈ R. Consider now simtree(M1,M2) =
(N,n0, ↪−→,L,Act , P × TQ), having a root labelled with p04 q0. We have that also other
nodes n ∈ N are such that L(n) = p4T implies (p, T ) ∈ R. This is easily proved by
induction on the length of the sequence of transitions n0 ↪−→+ n, observing that the rules
for the construction of the simulation tree check on p and T the same properties checked
by the definition of asynchronous session subtyping, and generate new transitions to nodes
labelled with p′4T ′ corresponding to the pairs (p′, T ′) that are required to be in R. This
guarantees that, for every n in the simulation tree, either L(n) = p4 q with p9 and q 9
(i.e., p and q are final) implying that the branch to n is successful, or there exists n′ such
that n ↪−→ n′. This guarantees that in simtree(M1,M2) there exists no unsuccessful branch.

We now move to the only if part. Consider two communicating machines M1 = (P, p0, δ1)
and M2 = (Q, q0, δ2) and their simulation tree simtree(M1,M2) = (N,n0, ↪−→,L,Act , P ×TQ).
Consider now the relation R ⊆ P ×TQ such that (p, T ) ∈ R if and only if there exists n ∈ N
s.t. L(n) = p4T . With similar arguments as in the above case, we prove that R is an
asynchronous subtyping relation. Hence, given that L(n0) = p04 q0, we have (p0, q0) ∈ R,
hence also M14M2.

3.2. A Simulation Tree-Based Algorithm. A consequence of the undecidability of asyn-
chronous session subtyping [7,8,30] is that checking whether all branches in simtree(M1,M2)
are successful is undecidable. The problem follows from the presence of infinite branches
that cannot be algorithmically identified. Our approach is to characterise finite subtrees
(called witness subtrees) such that all the branches that traverse these finite subtrees are
guaranteed to be infinite.

The presentation of our algorithm is in three parts. In Part (1), we give the definition
of the kind of finite subtree (of a simulation tree) we are interested in (called candidate
subtrees). In Part (2), we give an algorithm to extract candidate subtrees from a simulation
tree simtree(M1,M2). In Part (3) we show how to check whether a candidate subtree (which
is finite) is a witness of infinite branches (hence successful) in the simulation tree.
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3.2.1. Part 1. Characterising finite and candidate sub-trees. We define the candidate subtrees
of a simulation tree, which are finite subtrees accompanied by an ancestor function mapping
each boundary node n to a node located on the path from the root of the tree to n.

Definition 3.5 (Finite Subtree). A finite subtree (r,B) of a labelled tree S = (N,n0, ↪−→,
L,Σ,Γ), with r being the subtree root and B ⊆ N the finite set of its leaves (boundary
nodes), is the subgraph of S such that:

(1) ∀n∈B. r ↪−→∗ n;
(2) ∀n∈B. 6 ∃n′∈B. n ↪−→+ n′; and
(3) ∀n ∈ N. r ↪−→∗ n =⇒ ∃n′ ∈ B. n ↪−→∗ n′ ∨ n′ ↪−→∗ n.

We use nodes(S, r,B) = {n ∈ N | ∃n′ ∈ B. r ↪−→∗ n ↪−→∗ n′} to denote the (finite) set of
nodes of the finite subtree (r,B). Notice that r ∈ nodes(S, r,B) and B ⊆ nodes(S, r,B).

Condition (1) requires that each boundary node can be reached from the root of the subtree.
Condition (2) guarantees that the boundary nodes are not connected, i.e., they are on
different paths from the root. Condition (3) enforces that each branch of the tree passing
through the root r contains a boundary node.

Definition 3.6 (Candidate Subtree). Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two
communicating machines with simtree(M1,M2) = (N,n0, ↪−→,L,Act , P × TQ).
A candidate subtree of simtree(M1,M2) is a finite subtree (r,B) paired with a function
anc : B 7−−→ nodes(simtree(M1,M2), r, B)\B such that, for all n ∈ B, we have: anc(n) ↪−→+ n
and there are p,A,A′, I, J, {qj | j ∈ J} and {qi | i ∈ I} such that

L(n) = p4A[qi]
i∈I ∧ L(anc(n)) = p4A′[qj ]j∈J ∧ {qi | i ∈ I} ⊆ {qj | j ∈ J}

A candidate subtree is a finite subtree accompanied by a total function on its boundary
nodes. The purpose of function anc is to map each boundary node n to a “similar” ancestor
n′ such that: n′ is a node (different from n) on the path from the root r to n (recall that we
have r /∈ B) such that the labels of n′ and n share the same state p of M1, and the states of
M2 (that populate the holes in the leaves of the input context of the boundary node) are a
subset of those considered for the ancestor. Given a candidate subtree, we write img(anc)
for the set {n | ∃n′ ∈ B. anc(n′) = n}, i.e., img(anc) is the set of ancestors in the candidate
subtree.

Example 3.7. Figure 4 depicts a finite subtree of simtree(MR,MC). We can distinguish
several distinct candidate subtrees in Figure 4. For instance one subtree is rooted at n0,
and its boundary nodes are {n2, n6, n11, n14, n16}; another subtree is rooted at n8 and its
boundary nodes are {n11, n14, n16} (boundary nodes are highlighted with a double border).
In each subtree, the anc function is represented by the dashed edges from its boundary nodes
to their respective ancestors.

3.2.2. Part 2. Identifying candidate subtrees. We now describe how to generate a finite
subtree of the simulation tree, from which we extract candidate subtrees. Since simulation
trees are potentially infinite, we need to identify termination conditions (i.e., conditions on
nodes that become the boundary of the generated finite subtree).



14 M. BRAVETTI, M. CARBONE, J. LANGE, N. YOSHIDA, AND G. ZAVATTARO

We first need to define the auxiliary function extract(A, ω), which checks the presence
of a sequence of messages ω in an input context A, and extracts the residual input context.

extract(A, ω) =


A if ω = ε

extract(Ai, ω′) if ω = ai · ω′,A = 〈aj : Aj〉j∈J , and i ∈ J
⊥ otherwise

Our termination condition is formalised in Theorem 3.8 below. This result follows from
an argument based on the finiteness of the states of M1 and of the sets of states from M2

(which populate the holes of the input contexts in the labels of the nodes in the simulation
tree). We write minHeight(A) for the smallest heighti(A), with i ∈ I(A), where heighti(A)
is the length of the path from the root of the input context A to the ith hole.

Theorem 3.8. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines
with simtree(M1,M2) = (N,n0, ↪−→,L,Act , P × TQ).
For each infinite path n0 ↪−→ n1 ↪−→ n2 · · · ↪−→ nl ↪−→ · · · there exist i < j < k, with

L(ni) = p4Ai[qh]h∈Hi L(nj) = p4Aj [q′h]h∈Hj L(nk) = p4Ak[q′′h]h∈Hk

such that {q′h | h ∈ Hj} ⊆ {qh | h ∈ Hi} and {q′′h | h ∈ Hk} ⊆ {qh | h ∈ Hi};

and, for ni
ψ
↪−→ nj:

(i) rcv(ψ) = ω1 · ω2 with ω1 s.t. ∃t, z. extract(Ai, ω1) = [ ]t ∧ extract(Ak, ω1) = [ ]z, or
(ii) minHeight(extract(Ai, rcv(ψ))) ≤ minHeight(extract(Ak, rcv(ψ))).

Proof. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines with
simtree(M1,M2) = (N,n0, ↪−→,L,Act , P ×TQ), and let n0 ↪−→ n1 ↪−→ n2 · · · ↪−→ nl ↪−→ · · · be an
infinite path in the simulation tree. For each ni, let Si be the pair (pi, Ri), with pi ∈ P and
Ri ⊆ Q, such that L(ni) = pi4Ai[qj ]j∈Ji and Ri = {qj | j ∈ Ji}. Notice that there are at

most |P | × 2|Q| distinct pairs (pi, Ri), in which pi is an element taken from the finite set P ,
and Ri is a subset of the finite set Q. This guarantees the existence of infinite pairs of nodes
(ni1 , ni′1), (ni2 , ni′2), . . . , (nij , ni′j ), . . . taken from the above infinite path, such that, for all j:

• Sij = Si′j and

• ij < i′j < ij+1 and

• i′j − ij ≤ |P | × 2|Q|.

The above follows from the possibility to repeatedly select, by following from left to right the
infinite sequence n0 ↪−→ n1 ↪−→ n2 · · · ↪−→ nl ↪−→ · · · , the first occurring pair (nk, nl), with k < l,

such that Sk = Sl. Being the first pair of this type that occurs, we have that l−k ≤ |P |×2|Q|.
For the above infinite list of pairs (ni1 , ni′1), (ni2 , ni′2), . . . , (nij , ni′j ), . . . let ψj be such

that nij
ψj
↪−→ ni′j . All these infinitely many sequences of actions ψj have bounded length

(smaller than |P | × 2|Q|), hence infinitely many of them will coincide (this is because there
are only boundedly many distinct actions that are admitted). Let α be such a sequence of

actions that is considered for infinitely many paths nij
α
↪−→ ni′j . Moreover, being the possible

distinct (pi, Qi) finite, there exists one pair (p,Q) such that infinitely many of these paths

nij
α
↪−→ ni′j will be such that Sij = Si′j = (p,Q).
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Summarising, we have proved the existence of (nv1 , nv′1), (nv2 , nv′2), . . . , (nvj , nv′j ), . . . ,

with vj < v′j < vj+1 for all j, for which there exist (p,Q) and α such that, for all j, nvj
α
↪−→ nv′j

and Svj = Sv′j = (p,Q).

We now consider ω = rcv(α). We have that the input actions in ω, executed in each

path nvj
α
↪−→ nv′j , will be matched by the input context Aj of L(nvj ) = p4Aj [qj ]h∈H . There

are two possibilities:

(1) either ω is included in a path root-hole of Aj (hence extract(Aj , ω) is defined),
(2) or there exists a path root-hole which corresponds to a prefix of ω (in this case we have

that ω = ω1 · ω2 with extract(Aj , ω1) = [ ]tj ).

At least one of the two cases occurs infinitely often, i.e., there exist infinitely many indices

j, such that for all paths nvj
α
↪−→ nv′j item 1 holds, or there exist infinitely many indices j,

such that for all paths nvj
α
↪−→ nv′j item 2 holds. In the first case, we have that there exist at

least two indices j1 and j2 such that minHeight(extract(Aj1 , ω)) ≤ minHeight(extract(Aj2 , ω))
(in fact, minHeight() returns a non negative value, hence such values cannot infinitely
decrease). In the second case, we have that there exist at least two indices j1 and j2 such
that extract(Aj1 , ω1) = [ ]tj1 and extract(Aj2 , ω1) = [ ]tj2 for the same ω1 prefix of ω (in fact,

ω has only finitely many prefixes).
We can conclude that the thesis holds by considering i = vj1 , j = v′j1 and k = vj2 .

Intuitively, the theorem above says that for each infinite branch in the simulation tree,
we can find special nodes ni, nj and nk such that the set of states in Aj (resp. Ak) is
included in that of Ai and the receive actions in the path from ni to nj are such that: either
(i) only a precise prefix of such actions will be taken from the receive actions accumulated
in ni and nk or (ii) all of them will be taken from the receive actions in which case nk must
have accumulated more receive actions than ni. Case (i) deals with infinite branches with
only finite labels (hence finite accumulation) while case (ii) considers those cases in which
there is unbounded accumulation along the infinite branch.

As an example of this latter case, consider the simulation tree depicted in Figure 4.
Let ni = n8, nj = n12 and nk = n16. These nodes are along the same path, moreover we

have L(ni) = q14Ai[qh]h∈Hi , L(nj) = q14Aj [q′h]h∈Hj , L(nk) = q14Ak[q′′h]h∈Hk with {qh |
h ∈ Hi} = {q′h | h ∈ Hj} = {q′′h | h ∈ Hk} = {q2} and 0 = minHeight(extract(Ai, ?ko)) ≤
minHeight(extract(Ak, ?ko)) = 2. Notice that the path in the simulation tree from n8 to n16
can be infinitely repeated with the effect of increasing the height of the input context.

Based on Theorem 3.8, the following algorithm generates a finite subtree of simtree(M1,M2):

Starting from the root, compute the branches3 of simtree(M1,M2) stopping
when one of the following types of node is encountered: a leaf, a node n with
a label already seen along the path from the root to n, or a node nk (with
the corresponding node ni) as those described by the above Theorem 3.8.

Example 3.9. Consider the finite subtree in Figure 4. It is precisely the finite subtree
identified as described above: we stop generating the simulation tree at nodes n2, n6, n11,
and n14 (because their labels have been already seen at the corresponding ancestors n0,
n4, n8, and n12) and n16 (because of the ancestors n8 and n12 such that n8, n12 and n16
correspond to the nodes ni, nj and nk of Theorem 3.8).

3The order nodes are generated is not important (our implementation uses a DFS approach, cf. §4).
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When the computed finite subtree contains an unsuccessful leaf, we can immediately conclude
that the considered communicating machines are not related. Otherwise, we extract smaller
finite subtrees (from the subtree) that are potential candidates to be subsequently checked.

We define the anc function as follows: for boundary nodes n with an ancestor
n′ such that L(n) = L(n′) we define anc(n) = n′; for boundary nodes nk
with the corresponding node ni as those described by Theorem 3.8, we define
anc(nk) = ni. The extraction of the finite subtrees is done by characterising
their roots (and taking as boundary their reachable boundary nodes): let
P = {n ∈ img(anc) | ∃n′. anc(n′) = n∧L(n) 6= L(n′)}, the set of such roots
is R = {n ∈ P | 6 ∃n′ ∈ P. n′ ↪−→+ n}.

Intuitively, to extract subtrees, we restrict our attention to the set P of ancestors with a
label different from their corresponding boundary node (corresponding to branches that can
generate unbounded accumulation). We then consider the forest of subtrees rooted in nodes
in P without an ancestor in P . Notice that for successful leaves we do not define anc; hence,
only extracted subtrees without successful nodes have a completely defined anc function.
These are candidate subtrees that will be checked as described in the next step.

Example 3.10. Consider the finite subtree in Figure 4. Following the strategy above we ex-
tract from it the candidate subtree rooted at n8 (white nodes), with boundary {n11, n14, n16}.
Note that each ancestor node above n8 has a label identical to its boundary node.

3.2.3. Part 3. Checking whether the candidate subtrees are witnesses of infinite branches.
The final step of our algorithm consists in verifying a property on the identified candidate
subtrees which guarantees that all branches traversing the root of the candidate subtree
are infinite, hence successful. A candidate subtree satisfies this property when it is also a
witness subtree, which is the key notion (Definition 3.16) presented in this third part.

In order for a subtree to be a witness, we require that any behaviour in the simulation
tree going beyond the subtree is the infinite repetition of the behaviour already observed
in the considered finite subtree. This infinite repetition is only possible if whatever receive
actions are accumulated in the input context A (using Rule (OutAcc)) are eventually executed
by the candidate subtype M1 in Rule (InCtx). The compatibility check between the receive
actions that can be accumulated and the receive actions that are eventually executed is done
by first synthesising a finite representation of the possible (repeated) accumulation of the
candidate supertype M2 and the possible (repeated) receive actions of the candidate subtype
M1. We then check whether these representations of the input actions are compatible, wrt.
the v-relation, see Definition 3.12. We define these representations of the input behaviours
as a system of (possibly) mutually recursive equations, which we call a system of input tree
equations.

Intuitively, a system of input tree equations represents a family of trees, that we use
to represent the input behaviour of types. We need to consider families of trees because
types include also output actions that, in case we are concerned with input actions only, can
be seen as internal silent actions, representing nondeterministic choices among alternative
future inputs (i.e. alternative subtrees).

Definition 3.11 (Input Tree Equations). Given a set of variables V , ranged over by X, an
input tree expression is a term of the grammar

E ::= X | 〈ai : Ei〉i∈I | 〈Ei〉i∈I
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The free variables of an input tree expression E are the variables which occur in E. Let TV
be the set of input tree expressions whose free variables are in V.

A system of input tree equations is a tuple G = (V, X0,E) consisting of a set of variables
V, an initial variable X0 ∈ V, and with E consisting of exactly one input tree expression

X
def
= E for each X ∈ V, with E ∈ TV .

Given an input tree expression of the form 〈ai : Ei〉i∈I or 〈Ei〉i∈I , we assume that I 6= ∅,
∀i 6= j ∈ I. ai 6= aj , and that the order of the sub-terms is irrelevant. Whenever convenient,
we use set-builder notation to construct an input tree expression, e.g., 〈Ei | i ∈ I〉. In an
input tree equation, the construct 〈ai : Ei〉i∈I represents the capability of accumulating (or
actually executing) the receive actions on each message ai then behaving as in Ei. The
construct 〈Ei〉i∈I represents a silent choice between the different capabilities Ei.

We now define the notion of compatibility between two systems of input tree equations.
Intuitively, two systems of input tree equations are compatible when all the trees of the
former have less alternatives than the trees of the latter. More precisely, at each input
choice, the alternative branchings of the former are included in those of the latter.

Definition 3.12 (Input Tree Compatibility). Given two systems of input tree equations
G = (V, X0,E) and G′ = (V ′, X ′0,E′), such that V ∩ V ′ = ∅, we say that G is compatible with
G′, written G v G′, if there exists a compatibility relation R ⊆ TV × T ′V . That is a relation
R s.t. (X0, X

′
0) ∈ R and:

(1) if (X,E) ∈ R then (E′, E) ∈ R with X
def
= E′;

(2) if (E,X) ∈ R then (E,E′) ∈ R with X
def
= E′;

(3) if (〈Ei〉i∈I , E) ∈ R then ∀i ∈ I. (Ei, E) ∈ R;
(4) if (E, 〈Ei〉i∈I) ∈ R then ∀i ∈ I. (E,Ei) ∈ R;
(5) if (〈ai : Ei〉i∈I , 〈aj : E′j〉j∈J) ∈ R then I ⊆ J and ∀i ∈ I. (Ei, E

′
i) ∈ R.

We extend the use of v, defined on input tree equations, to terms E ∈ TV and E′ ∈ T ′V ;
namely, we write E v E′ if there exists a compatibility relation R s.t. (E,E′) ∈ R.

Notice that compatibility is formally defined following a coinductive approach that
performs the following checks on G and G′, starting from the initial pair (X0, X

′
0). The first

two items of Definition 3.12 let variables be replaced by their respective definitions. The
next two items explore all the successors of silent choices. The last item guarantees that all
the receive actions of the l.h.s. can be actually matched by receive actions in the r.h.s. The
check of compatibility will be used in Definition 3.16, in order to control that the candidate
supertype always has input branchings included in those of the candidate subtype. More
precisely, we will check that the system of input tree equations, that represents the possible
inputs of the supertype, is compatible with that of the candidate subtype.

Example 3.13. Consider the two systems of input tree equations in Figure 5. We have
G v G′. We enumerate a few pairs which must be in the embedding relation:

Initial variables: (X0, Yn8)
Unfold X0 (Case (1) of Def. 3.12) (〈ok : Xq2,n8 , ko : Xq2,n8〉, Yn8)
Unfold Yn8 (Case (2) of Def. 3.12) (〈ok : Xq2,n8 , ko : Xq2,n8〉, 〈Yn9〉)
Silent-choice (Case (4) of Def. 3.12) (〈ok : Xq2,n8 , ko : Xq2,n8〉, Yn9)
Unfold Yn9 (Case (2) of Def. 3.12) (〈ok : Xq2,n8 , ko : Xq2,n8〉, 〈ok : Yn8 , ko : Yn10〉)
Choice (Case (2) of Def. 3.12) (Xq2,n8 , Yn8) and (Xq2,n8 , Yn10)
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X0
def
= 〈ok : Xq2,n8 , ko : Xq2,n8〉

Xq2,n8

def
= 〈ok : Xq2,n9 , ko : Xq2,n9〉

Xq2,n9

def
= 〈Xq2,n8 , Xq2,n10〉

Xq2,n10

def
= 〈ok : Xq2,n12 , ko : Xq2,n12〉

Xq2,n12

def
= 〈ok : Xq2,n13 , ko : Xq2,n13〉

Xq2,n13

def
= 〈Xq2,n12 , Xq2,n15〉

Xq2,n15

def
= 〈ok : Xq2,n8 , ko : Xq2,n8〉

Yn8

def
= 〈Yn9〉

Yn9

def
= 〈ok : Yn8 , ko : Yn10〉

Yn10

def
= 〈Yn12〉

Yn13

def
= 〈ok : Yn12 , ko : Yn15〉

Yn15

def
= 〈Yn8〉

Xq2,n8

Xq2,n9Xq2,n10

Xq2,n12

Xq2,n13 Xq2,n15

X0
?ko

?ok

?ok?ko
?ko ?ok

?ko
?ok ?ok?ko

Yn8

Yn9

Yn10Yn12

Yn13

Yn15

?ok

?ko?ok

?ko

G G′

Figure 5: Input tree equations for MR4MC (Figures 1 and 2) and their graphical represen-
tations. The starting variables are X0 and Yn8 . Silent choices are diamond-shaped
nodes, other nodes are rectangles.

Before giving the definition of a witness subtree, we introduce a few auxiliary functions
on which it relies. Given a machine M = (Q, q0, δ), a state q ∈ Q, and a word ω ∈ A∗, we
define accTree(q, ω) as follows:

accTree(q, ω) =


q if ω = ε

A[accTree(q′i, ω
′)]i∈I if ω = a · ω′,A[qi]

i∈I = inTree(q),∀i∈I. qi
!a−→ q′i

⊥ otherwise

Function accTree(q, ω) is a key ingredient of the witness subtree definition as it allows for
the construction of the accumulation of receive actions (represented as an input tree) that is
generated from a state q mimicking the sequence of send actions sending the messages in ω.
We illustrate the usage of accTree(q, ω) in Example 3.14 below.

We use the auxiliary function minAcc(k,Q′, ψ) below to ensure that the effect of per-
forming the transitions from an ancestor to a boundary node is that of increasing (possibly
non-strictly) the accumulated receive actions. Here, k represents a known lower bound for
the length of the sequences of receive actions accumulated in an input context A, i.e., a
lower bound for minHeight(A). Assuming that the holes in A contain the states populating
the set of states Q′, the function returns a lower bound for the length of the sequences
of accumulated receive actions after the transitions in ψ have been executed. Formally,
given a natural number k (k ≥ 0), a sequence of action ψ ∈ Act∗, and a set of states
{qj | j ∈ J} ⊆ Q, we define this function as follows:
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minAcc(k, {qj | j ∈ J}, ψ) =

k if ψ = ε

minAcc(k − 1, {qj | j ∈ J}, ψ′) if ψ = ?a · ψ′ ∧ k > 0

minAcc(k+minj∈JminHeight(Aj), {qi,j|j ∈ J, i ∈ Ij}, ψ′)
if ψ = !a · ψ′ ∧
∀j∈J. accTree(qj , a)=Aj [qi,j ]i∈Ij

⊥ otherwise

Example 3.14. Consider the transitions from node n7 to n9 in Figure 4. There are two
send actions !pr and !nd that cannot be directly fired from state q2 which is a receiving
state; the effect is to accumulate receive actions. Such an accumulation is computed by
accTree(q2, pr · nd) = 〈ko : 〈ko : q2, ok : q2〉, ok : 〈ko : q2, ok : q2〉〉. For this sequence of
transitions, the effect on the (minimal) length of the accumulated receive actions can be
computed by minAcc(0, {q2}, !pr ·!nd) = 2; meaning that before executing the sequence of
transitions !pr ·!nd state q2 has not accumulated receive actions in front, while at the end an
input context with minimal depth 2 is generated as accumulation.

We now prove a couple of properties of minAcc(n,Q′, ψ).

Proposition 3.15. If minAcc(k,Q′, ψ) is defined, then the following statements hold:

(1) for each k′ ≥ k we have that k −minAcc(k,Q′, ψ) = k′ −minAcc(k′, Q′, ψ);
(2) if ψ = ψ′ · ψ′′ then minAcc(k,Q′, ψ′ · ψ′′) = minAcc(minAcc(k,Q′, ψ′), Q′′, ψ′′) with

Q′′ =
⋃
q∈Q′{qh | h ∈ H s.t. accTree(q, snd(ψ′)) = A′′[qh]h∈H};

(3) if minAcc(k,Q′′, ψ) is defined for a set of states Q′′ s.t. Q′ ⊆ Q′′ then minAcc(k,Q′′, ψ) ≤
minAcc(k,Q′, ψ).

A direct consequence of (1) is that: minAcc(k′, Q′, ψ)−minAcc(k,Q′, ψ) = k′ − k ≥ 0.

Proof. Item 1 is proved by induction on the length of ψ. If the length of ψ is 0 then
ψ = ε and k − minAcc(k,Q′, ε) = k′ − minAcc(k′, Q′, ε) = 0. In the inductive case we
have two distinct cases: if ψ =?a · ψ′ we have k > 0 and k − minAcc(k,Q′, ?a · ψ′) =
k−minAcc(k−1, Q′, ψ′) and k′ > 0 and k′−minAcc(k′, Q′, ?a·ψ′) = k′−minAcc(k′−1, Q′, ψ′),
and by inductive hypothesis k − 1−minAcc(k − 1, Q′, ψ′) = k′ − 1−minAcc(k′ − 1, Q′, ψ′)
hence also k − minAcc(k − 1, Q′, ψ′) = k′ − minAcc(k′ − 1, Q′, ψ′); if ψ =!a · ψ′ we have
k − minAcc(k,Q′, !a · ψ′) = k − minAcc(k + w,Q′′, ψ′) and k′ − minAcc(k′, Q′, !a · ψ′) =
k′−minAcc(k′+w,Q′′, ψ′) for a set of states Q′′ and a value w, and by inductive hypothesis
k +w −minAcc(k +w,Q′′, ψ′) = k′ +w −minAcc(k′ +w,Q′′, ψ′) hence also k −minAcc(k +
w,Q′′, ψ′) = k′ −minAcc(k′ + w,Q′′, ψ′).

Item 2 is proved by induction on the length of ψ′. In the base case, the thesis di-
rectly follows from minAcc(k,Q′, ε) = k and accTree(q, ε) = q (hence we have Q′′ =
Q′). In the inductive case we have two distinct cases: If ψ′ =?a · ψ′′′ we have (k > 0
because minAcc(k,Q′, ?a · ψ′′′ · ψ′′) is defined) minAcc(minAcc(k,Q′, ?a · ψ′′′), Q′′, ψ′′) =
minAcc(minAcc(k − 1, Q′, ψ′′′), Q′′, ψ′′), but the latter, by applying the inductive hypothesis,
coincides with minAcc(k − 1, Q′, ψ′′′ · ψ′′) = minAcc(k,Q′, ?a · ψ′′′ · ψ′′). If ψ′ =!a · ψ′′′ we
have minAcc(minAcc(k,Q′, !a · ψ′′′), Q′′, ψ′′) = minAcc(minAcc(k + w,Q′′′, ψ′′′), Q′′, ψ′′), for
the set of states Q′′′ obtained by allowing the states in Q′ to anticipate !a and a value w
that depends on Q′ and a (see definition of the minAcc function); the latter, by applying the
inductive hypothesis, coincides with minAcc(k + w,Q′′′, ψ′′′ · ψ′′) (because Q′′ is obtained
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from Q′′′ by allowing the states in Q′′′ to anticipate the send actions in ψ′′′), which is equal
to minAcc(k,Q′, !a · ψ′′′ · ψ′′) as Q′′′ and w depend on Q′ and a as described above.

Item 3 is proved by induction on the length of ψ. The base case is trivial because
minAcc(k,Q′′, ε) = minAcc(k,Q′, ε) = k. In the inductive case we have two distinct cases: If
ψ =?a ·ψ′ we have minAcc(k,Q′′, ?a ·ψ′) = minAcc(k−1, Q′′, ψ′) with the latter, by inductive
hypothesis, that is smaller than or equal to minAcc(k − 1, Q′, ψ′) = minAcc(k,Q′, ?a · ψ′). If
ψ =!a·ψ′ we have minAcc(k,Q′′, !a·ψ′) = minAcc(k+w,Q′′′, ψ′) for a set of statesQ′′′ obtained
from Q′′ by allowing its states to anticipate !a and w the corresponding minimal height. Now,
if we allow the states in the smaller (or equal) set Q′ to anticipate !a, we obtain a smaller (or
equal) set Q′′′′ and a value w′ that cannot be smaller than w, hence we can apply the inductive
hypothesis to obtain the greater or equal value minAcc(k + w,Q′′′′, ψ′), which is smaller or
equal, for item 1 of this Proposition, than minAcc(k+w′, Q′′′′, ψ′) = minAcc(k,Q′, !a ·ψ′).

We finally give the definition of witness subtree.

Definition 3.16 (Witness Subtree). Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two
communicating machines with simtree(M1,M2) = (N,n0, ↪−→,L,Act , P × TQ). A candidate
subtree of simtree(M1,M2) with root r, boundary B, and ancestor function anc, is a witness
if the following holds:

(1) For all n ∈ B, given ψ such that anc(n)
ψ
↪−→ n, we have |rcv(ψ)| > 0.

(2) For all n ∈ img(anc) and n′ ∈ img(anc) ∪B such that n
ψ
↪−→ n′, L(n) = p4A[qi]

i∈I , and
L(n′) = p′4A′[qj ]j∈J , we have that :

(a) ∀i ∈ I . {qh | h ∈ H s.t. accTree(qi, snd(ψ)) = A′′[qh]h∈H} ⊆ {qj | j ∈ J};
(b) if n′ ∈ B then minAcc(minHeight(A), {qi | i ∈ I}, ψ) ≥ minHeight(A).

(3) G v G′ where
(a) G = ({X0}∪ {Xq,n | q ∈ Q,n ∈ nodes(S, r,B)\B}, X0,E) with E defined as follows:

(i) X0
def
= T{Xq,r/q | q ∈ Q}, with L(r) = p4T

(ii) Xq,n
def
=〈Xq,tr(n′) | ∃a.n

?a
↪−→ n′〉 if ∃a.n ?a

↪−→
〈A[Xq′i,tr(n

′)]
i∈I | ∃a.n !a

↪−→ n′ ∧ inTree(q)=A[qi]
i∈I∧ ∀i∈I.qi

!a−→ q′i〉 otherwise

(b) G′ = ({Yn | n ∈ nodes(S, r,B)\B}, Yr,E′) with E′ defined as follows:

Yn
def
=

〈Ytr(n′) | n
!a
↪−→ n′〉 if ∃n′.n !a

↪−→ n′

〈a : Ytr(n′) | n
?a
↪−→ n′〉 if ∃n′.n ?a

↪−→ n′

where tr(n) = n, if n 6∈ B; tr(n) = anc(n), otherwise.

Condition (1) requires the existence of a receive transition between an ancestor and a
boundary node. This implies that if the behaviour beyond the witness subtree is the
repetition of behaviour already observed in the subtree, then there cannot be send-only
cycles.
Condition (2a) requires that the transitions from ancestors to boundary nodes (or to other
ancestors) are such that they include those behaviours that can be computed by the accTree
function. We assume that this condition does not hold if accTree(qi, snd(ψ)) = ⊥ for any
i ∈ I; hence the states qi of M2 in an ancestor are able to mimic all the send actions
performed by M1 along the sequences of transitions in the witness subtree starting from the
considered ancestor.
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Condition (2b) ensures that by repeating transitions from ancestors to boundary nodes, the
accumulation of receive actions is, overall, non-decreasing. In other words, the rate at which
accumulation is taking place is higher than the rate at which the context is reduced by Rule
(InCtx).
Condition (3) checks that the receive actions that can be accumulated by M2(represented
by G) and those that are expected to be actually executed by M1 (represented by G′) are
compatible. In G, there is an equation for the root node and for each pair consisting of a
local state in M2 and a node n in the witness subtree. The equation for the root node is
given in (3(a)i), where we simply transform an input context into an input tree expression.
The other equations are given in (3(a)ii), where we use the partial function inTree(q). Each
equation represents what can be accumulated by starting from node n (focusing on local
state q). In G′, there is an equation for each node n in the witness subtree, as defined in (3b)
There are two types of equations depending on the type of transitions outgoing from node n.
A send transition leads to silent choices, while receive transitions generate corresponding
receive choices.

Example 3.17. We have that the candidate subtree rooted at n8 in Figure 4 satisfies
Definition 4. (1) Each path from an ancestor to a boundary node includes at least one
receive action. (2a) For each sequence of transitions from an ancestor to a boundary node
(or another ancestor) the behaviour of the states of M2, as computed by the accTree function,
has already been observed. (2b) For each sequence of transitions from an ancestor to a
boundary node, the rate at which receive actions are accumulated is higher than or equal to
the rate at which they are removed from the accumulation. (3) The systems of input tree
equations G (3a) and G′ (3b) are given in Figure 5, and are compatible, see Example 3.13.

We now describe how G and G′ (Figure 5) are constructed from the witness tree rooted
at n8 in Figure 4. For G we have the following equations:

• X0
def
= 〈ok : Xq2,n8 , ko : Xq2,n8〉 since the root of the witness tree is n8 and its label is

q14〈ok : q2, ko : q2〉. In Figure 5, we depict this equation as a pair of transitions from
the node labelled by X0 to the node labelled by Xq2,n8

• Xq2,n8

def
= 〈ok : Xq2,n9 , ko : Xq2,n9〉 since n8 has a unique outgoing send transition to n9,

i.e., n′ in Case (3(a)ii) of Definition 3.16, and inTree(q2) = 〈ok : q1, ko : q1〉 with q1
!nd−−→ q2

and q1
!pr−−→ q2 in MC

• Xq2,n9

def
= 〈Xq2,n8 , Xq2,n10〉 since n9 has two receive transitions: one to n11 (a boundary

node whose ancestor is n8, i.e., tr(n11) = n8) and one to n10 (which is not boundary node,
i.e., tr(n10) = n10)

• Xq2,n10

def
= 〈ok : Xq2,n12 , ko : Xq2,n12〉 since n10 has a unique outgoing send transition to

n12, and inTree(q2) = 〈ok : q1, ko : q1〉
• Xq2,n12

def
= 〈ok : Xq2,n13 , ko : Xq2,n13〉 since n12 has a unique outgoing send transition to

n13, and inTree(q2) = 〈ok : q1, ko : q1〉
• Xq2,n13

def
= 〈Xq2,n12 , Xq2,n15〉 since n9 has two receive transitions: one to n14 (a boundary

node whose ancestor is n12) and one to n15 (which is not boundary node)

• Xq2,n15

def
= 〈ok : Xq2,n8 , ko : Xq2,n8〉 since inTree(q2) = 〈ok : q1, ko : q1〉 and n15 has

a unique outgoing send transition to n16, which is a boundary node (n16 ∈ B) whose
ancestor is n8.

We omit the other equations, e.g., Xq1,n8 as they are not reachable from X0.
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For G′ we have the following equations:

• Yn8

def
= 〈Yn9〉 since n8 has a unique send transition to n9, i.e., n′ in Case (3b) of Defini-

tion 3.16, and n9 is not a boundary node

• Yn9

def
= 〈ok : Yn8 , ko : Yn10〉 since n9 has two receive transitions: one to n10 which is not a

boundary node, and one to n11 which is a boundary node whose ancestor is n8

• Yn10

def
= 〈Yn12〉 since n10 has a unique send transition to n12 which is not a boundary node

• Yn12

def
= 〈Yn13〉 since n12 has a unique send transition to n13 which is not a boundary node

• Yn13

def
= 〈ok : Yn12 , ko : Yn15〉 since n13 has two receive transitions: one to n15 which is not

a boundary node, and one to n14 which is a boundary node whose ancestor is n12

• Yn15

def
= 〈Yn8〉 since n15 has a unique send transition to n16, and n16 is a boundary node

whose ancestor is n8.

We now prove the main property of the minAcc(k,Q′, ψ) function, i.e., given information
k and Q′ extracted from an ancestor n in a witness subtree, such a function correctly
computes a lower bound of the length of the input accumulation in a node n′ reachable from
n by executing the sequence of actions ψ.

Proposition 3.18. Consider a witness subtree with ancestor function anc; given two nodes

of the tree, n ∈ img(anc) and n′ s.t. n
ψ
↪−→ n′, with L(n) = p4A[qi]

i∈I and L(n′) =
p′4A′[qj ]j∈J , we have that minAcc(minHeight(A), {qi | i ∈ I}, ψ) ≤ minHeight(A′).

Proof. We prove a more general result proceeding by induction on the length of ψ, i.e., that
minAcc(minHeight(A), {qi | i ∈ I}, ψ) ≤ minHeight(A′) and {qj | j ∈ J} ⊆

⋃
i∈I{qh | h ∈

H s.t. accTree(qi, snd(ψ)) = A′′′[qh]h∈H}.
The base case is trivial because, by definition, minAcc(minHeight(A), {qi | i ∈ I}, ε) =

minHeight(A) and having n = n′ then minHeight(A) = minHeight(A′). Moreover,
⋃
i∈I{qh |

h ∈ H s.t. accTree(qi, ε) = A′′′[qh]h∈H} = {qi | i ∈ I} and having n = n′ then {qi | i ∈ I} =
{qj | j ∈ J}.

In the inductive case we have either ψ = ψ′·?a or ψ = ψ′·!a. In both cases we observe
that, by definition of witness subtree, minAcc(minHeight(A), {qi | i ∈ I}, ψ) is defined as it
is defined for a longer sequence of transitions from n to a boundary node (traversing n′).

We first consider ψ = ψ′·?a. Let n′′ be the node reached after the sequence of tran-
sitions ψ′, and let L(n′′) = p′′4A′′[qw]w∈W . By inductive hypothesis we have that
minAcc(minHeight(A), {qi | i ∈ I}, ψ′) ≤ minHeight(A′′) and, letting Q′′ =

⋃
i∈I{qh |

h ∈ H s.t. accTree(qi, snd(ψ′)) = A′′′[qh]h∈H}, we also have {qw | w ∈ W} ⊆ Q′′. By
Proposition 3.15, item 2, we have that the following holds: minAcc(minHeight(A), {qi |
i ∈ I}, ψ′·?a) = minAcc(minAcc(minHeight(A), {qi | i ∈ I}, ψ′), Q′′, ?a). By definition
of minAcc, we also have that minAcc(minAcc(minHeight(A), {qi | i ∈ I}, ψ′), Q′′, ?a) =
minAcc(minHeight(A), {qi | i ∈ I}, ψ′)− 1. As a direct consequence of the inductive hypoth-
esis we have minAcc(minHeight(A), {qi | i ∈ I}, ψ′) − 1 ≤ minHeight(A′′) − 1, but we have
that minHeight(A′′)− 1 ≤ minHeight(A′), because the effect of an input transition on the
input context is simply that of consuming one initial input branching. We conclude this case
by observing that {qj | j ∈ J} ⊆ {qw | w ∈W} because, as observed above, the effect of an
input transition on the input context is simply that of consuming one initial input branching,
without changing the states populating the leaves of the input tree. On the other hand, the
set of states obtained from the states qi by anticipating the outputs in ψ′·?a coincides with
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the above set Q′′ because only send actions are considered, and snd(ψ′) = snd(ψ′·?a). By
inductive hypothesis, we have {qw | w ∈W} ⊆ Q′′.

We now consider ψ = ψ′·!a. Let n′′ be the node reached after the sequence of
transitions ψ′, and let L(n′′) = p′′4A′′[qw]w∈W . By inductive hypothesis we have that
minAcc(minHeight(A), {qi | i ∈ I}, ψ′) ≤ minHeight(A′′) and, letting Q′′ =

⋃
i∈I{qh | h ∈

H s.t. accTree(qi, ψ
′) = A′′′[qh]h∈H}, we also have {qw | w ∈W} ⊆ Q′′. By Proposition 3.15,

item 2, minAcc(minHeight(A), {qi | i ∈ I}, ψ′·!a) = minAcc(minAcc(minHeight(A), {qi | i ∈
I}, ψ′), Q′′, !a), moreover, by definition of minAcc, we have minAcc(minAcc(minHeight(A), {qi |
i ∈ I}, ψ′), Q′′, !a) = minAcc(minHeight(A), {qi | i ∈ I}, ψ′) + z with z the minimal depth
of the holes in the input tree that are accumulated by the states in Q′′ when they antic-

ipate !a. Having n′′
!a
↪−→ n′, we have that the minimal depth of the input tree in n′, i.e.

minHeight(A′), will increase that of n′′, i.e. minHeight(A′′), depending on new accumulation
generated by the anticipation of !a, hence the increase, i.e. minHeight(A′)−minHeight(A′′),
will be greater than or equal to the minimal depth of the holes in the input tree that
are accumulated by the states in {qw | w ∈ W} when they anticipate !a. Being {qw |
w ∈ W} ⊆ Q′′, we have that such an increase will be also greater than or equal to z, i.e.
minHeight(A′) −minHeight(A′′) ≥ z. As a direct consequence of the inductive hypothesis
we have minAcc(minHeight(A), {qi | i ∈ I}, ψ′) + z ≤ minHeight(A′′) + z ≤ minHeight(A′).
We now consider Q′′′ =

⋃
i∈I{qh | h ∈ H s.t. accTree(qi, ψ

′·!a) = A′′′[qh]h∈H}; we have
that the states in Q′′′ are generated by the states in Q′′ when they anticipate the output
!a. The same holds also for {qj | j ∈ J}, i.e., the states qj are generated by the states in
{qw | w ∈ W} when they anticipate the output !a. Having {qw | w ∈ W} ⊆ Q′′, we also
have {qj | j ∈ J} ⊆ Q′′′.

We conclude by proving our main result; given a simulation tree with a witness subtree
with root r, all the branches in the simulation tree traversing r are infinite (hence successful).

Theorem 3.19. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines
with simtree(M1,M2) = (N,n0, ↪−→,L,Act , P ×TQ). If simtree(M1,M2) has a witness subtree
with root r then for every node n ∈ N such that r ↪−→∗ n there exists n′ such that n ↪−→ n′.

Proof. Let B be the leaves of the witness subtree rooted in r (i.e. the witness subtree is
nodes(S, r,B)). If there exists l ∈ B such that n ↪−→+ l the thesis trivially holds. For all
other nodes n such that r ↪−→∗ n, there exists l ∈ B such that l ↪−→∗ n.

We now prove by induction on the length of l ↪−→∗ n, with L(n) = p4A[qi]
i∈I , that

there exist m,m′ ∈ nodes(S, r,B) \ B, s.t. m ∈ img(anc), m
ψ
↪−→ m′, L(m) = p′4A′[qj ]j∈J ,

L(m′) = p4A′′[qk]k∈K such that:

• {qi | i ∈ I} ⊆
⋃
j∈J{qh | h ∈ H s.t. accTree(qj , snd(ψ)) = A′′′[qh]h∈H};

• A[Xqi,m′ ]
i∈I v Ym′ ;

• minHeight(A) ≥ minAcc(minHeight(A′), {qj | j ∈ J}, ψ).

The base case is when n ∈ B. In this case, let m,m′ = anc(n).
The first item follows from the definition of candidate subtree according to which

{qi | i ∈ I} ⊆ {qj | j ∈ J}.
The second item follows from the following reasoning: we consider X0 v Yr and apply

on such pair the following transformations of the l.h.s. X0 and r.h.s. Yr. We consider the
sequence of transitions from r to n and proceed as follows. For each receive transition
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o
?a
↪−→ o′ we modify the r.h.s. by considering Ytr(o′) and the l.h.s. by consuming the initial

message a and by replacing each variable Xq,o (for any q) with the variable Xq,tr(o′) that,

inside their corresponding definitions, is present because of the transition o
?a
↪−→ o′. For

each send transition o
!a
↪−→ o′ we modify the r.h.s. by considering Ytr(o′) and the l.h.s. by

replacing each variable with the term that, inside their corresponding definitions, is present

because of the transition o
!a
↪−→ o′. Since tr(n) = m′, we obtain A[Xqi,m′ ]

i∈I v Ym′ . Notice
that the relation v actually holds because in the modification of the initial terms X0 and
Yr s.t. X0 v Yr we follow the simulation game formalized in the Definition 3.12 of input

tree compatibility: in the case of input transitions o
?a
↪−→ o′ we consume an initial a in both

terms and resolve some silent choice in the l.h.s; in the case of output transitions o
!a
↪−→ o′ we

resolve the initial silent choice in the r.h.s. while in the l.h.s. we replace variables with their
definition and resolve the initial silent choice in such definitions.

The third item coincides with proving that minHeight(A) ≥ minHeight(A′) because,
having m = m′, the sequence ψ is empty in the expression minAcc(minHeight(A′), {qj |
j ∈ J}, ψ). By definition of witness subtree, we have that minAcc(minHeight(A′), {qj | j ∈
J}, ψ′) ≥ minHeight(A′) for every sequence of transitions ψ′ from m to a boundary node,
hence also to n. By Proposition 3.18, if we consider the sequence of transitions ψ′ from
anc(n) to n, we have that minHeight(A) ≥ minAcc(minHeight(A′), {qj | j ∈ J}, ψ′), from
which we conclude minHeight(A) ≥ minHeight(A′).

We now move to the inductive case. Suppose, by inductive hypothesis, that the above
three properties hold for n s.t. l ↪−→+ n, and consider n ↪−→ n′. We separate the analysis in two

parts, the case in which an output action n
!a
↪−→ n′ is executed, and the opposite case in which

n
?a
↪−→ n′. We have to show that in both cases there exist two nodes m1,m2 ∈ nodes(S, r,B)\B

such that the three properties, defined for n,m,m′, hold also for n′,m1,m2, respectively.

We now consider n
!a
↪−→ n′. In this case we have that p

!a−→ p′, hence also m′
!a
↪−→ m′′.

We first consider the case in which m′′ 6∈ B: in this case we take m1 = m and m2 = m′′.
The first item holds because; by inductive hypothesis we have {qi | i ∈ I} ⊆

⋃
j∈J{qh |

h ∈ H s.t. accTree(qj , snd(ψ)) = A′′′[qh]h∈H}; by Definition 3.16 of witness subtree, item
2a, we have that all the above states qh can anticipate the output action !a because
accTree(qj , snd(ψ′)) is defined for a sequence of actions ψ′, from m to a boundary node,
that contains snd(ψ)·!a as a prefix; and the states in {qi | i ∈ I} are modified by the
transition !a in the same way as the same states that are present also in the superset⋃
j∈J{qh | h ∈ H s.t. accTree(qj , snd(ψ)) = A′′′[qh]h∈H} change considering the longer

sequence snd(ψ)·!a instead of snd(ψ) only.
The second item holds because; by inductive hypothesis we have A[Xqi,m′ ]

i∈I v Ym′ ; the

accumulated input tree in n′ is obtained by replacing each of the variables in A[Xqi,m′ ]
i∈I

with the term that, inside their corresponding definitions, is present because m′
!a
↪−→ m′′ and

because, as observed above, each state qi can anticipate the output action !a; the l.h.s. term
obtained in this way (by simply replacing variables with their definition and resolving initial
silent choices) continue to be in v relation with Ym′ hence also with Ym′′ which is present in

the definition of Ym′ because m′
!a
↪−→ m′′.
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The third item holds because; if we take k = minAcc(minHeight(A′), {qj | j ∈ J}, ψ),
by inductive hypothesis we have minHeight(A) ≥ k; by Proposition 3.15, item 2, we have
that minAcc(minHeight(A′), {qj | j ∈ J}, ψ·!a) = minAcc(k,Q, !a) with Q =

⋃
j∈J{qh | h ∈

H s.t. accTree(qj , snd(ψ)) = A′′′[qh]h∈H} where J is the set of indices of the holes in the
input context in the label of node m; by inductive hypothesis (first item) we have that
{qi | i ∈ I} ⊆ Q where I is the set of indices of the holes in the input context in the label of
node n; by definition of the minAcc function the increment minAcc(k,Q, !a)− k cannot be
strictly greater than the increment of minHeight when the transition !a is executed from n to
n′, because minAcc(k,Q, !a) considers the minimal accumulation generated by the states Q
when anticipating !a and, having {qi | i ∈ I} ⊆ Q, such a minimal accumulation cannot be
greater than the accumulation generated by the states qi present in the leaves of the input
tree of n. From the inductive hypothesis minHeight(A) ≥ k we, thus, have that minHeight
in n′ is greater or equal to minAcc(k,Q, !a).

We now consider the case in which m′′ ∈ B. We have two distinct cases:

(1) anc(m′′) ↪−→∗ m
In this case we take m1 = m2 = anc(m′′). The first item holds because of the same
arguments considered in the corresponding case for m′′ 6∈ B plus the observation that⋃
j∈J{qh | h ∈ H s.t. accTree(qj , snd(ψ)·!a) = A′′′[qh]h∈H} is a subset of the states

in the holes of the input context in m′′ (definition of witness subtree), which is a
subset of the states in the holes of the input context in anc(m′′) (definition of can-
didate subtree). The second item holds for the same argument considered in the
case m′′ 6∈ B (simply replacing Ym′′ with Yanc(m′′)). The third item holds for the
following reasons. By applying the same arguments considered in the corresponding
case for m′′ 6∈ B we obtain that the new minHeight in n′ is greater or equal than
minAcc(minHeight(A′), {qj | j ∈ J}, ψ·!a), where J is the set of indices of the holes in
the input context in the label of node m; hence proving the third item reduces to prove
that minAcc(minHeight(A′), {qj | j ∈ J}, ψ·!a) ≥ minAcc(minHeight(A1), Qw, ψ

′), with
L(m1) = p14A1[qw]w∈W , Qw = {qw | w ∈W} and ψ′ corresponding to the sequence of
transitions from m1 = anc(m′′) to m′′ that traverses m, hence ψ′ = ψ′′ · ψ · !a (for some
ψ′′). This is because minAcc(minHeight(A1), Qw, ψ

′) ≥ minHeight(A1) by definition of
witness subtree. By Proposition 3.15, item 2, we have minAcc(minHeight(A1), Qw, ψ

′′ ·
ψ·!a) = minAcc(minAcc(minHeight(A1), Qw, ψ

′′), Q′′, ψ·!a) with Q′′ =
⋃
q∈Qw

{qh | h ∈
H s.t. accTree(q, snd(ψ′′)) = A1[qh]h∈H}; given that the states {qj | j ∈ J} are generated
starting from the states in Qw by anticipation of the send actions in the sequence
ψ′′ we have that {qj | j ∈ J} ⊆ Q′′; by Proposition 3.15, item 3, we have that
minAcc(minAcc(minHeight(A1), Qw, ψ

′′), Q′′, ψ·!a) ≤
minAcc(minAcc(minHeight(A1), Qw, ψ

′′), {qj | j ∈ J}, ψ·!a); by Proposition 3.18 we have
that minAcc(minHeight(A1), Qw, ψ

′′) ≤ minHeight(A′) and as a consequence of Propo-
sition 3.15, item 1, we have that minAcc(minAcc(minHeight(A1), Qw, ψ

′′), Q′′, ψ·!a) ≤
minAcc(minHeight(A′), Q′′, ψ·!a); finally by Proposition 3.15, item 3, we have
minAcc(minHeight(A′), Q′′, ψ·!a) ≤ minAcc(minHeight(A′), {qj | j ∈ J}, ψ·!a).

(2) m ↪−→+ anc(m′′)
In this case we take m1 = m and m2 = anc(m′′). The first item holds because of the same
arguments considered in the corresponding case for m′′ 6∈ B plus the observation (as done
in the previous case) that

⋃
j∈J{qh | h ∈ H s.t. accTree(qj , snd(ψ)·!a) = A′′′[qh]h∈H} is a

subset of the states in the holes of the input context in m′′ (definition of witness subtree);
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which is a subset of the states in the holes of the input context in anc(m′′) (definition
of candidate subtree); which is subset of

⋃
j∈J{qh | h ∈ H s.t. accTree(qj , snd(ψ′′)) =

A′′′[qh]h∈H} with ψ′′ s.t. m1 = m
ψ′′

↪−→ anc(m′′) = m2. Notice that the latter subset
inclusion holds because the states in the holes of the input context in anc(m′′) = m2 are
generated starting from the states in Qj by anticipation of the send actions in the sequence
ψ′′. The second item holds for the same arguments considered in the case m′′ 6∈ B (simply
replacing Ym′′ with Yanc(m′′)). We proceed by contraposition to show that the third item

also holds. Given L(m) = p′4A′[qj ]j∈J and m
ψ′′

↪−→ anc(m′′), we assume by contrapo-
sition that minHeight applied to n′ is strictly smaller than minAcc(minHeight(A′), {qj |
j ∈ J}, ψ′′). In the following we let x = minAcc(minHeight(A′), {qj | j ∈ J}, ψ′′). By
application of the same arguments as above (case m′′ 6∈ B, third item), we have that
minHeight applied to n′ should be greater than or equal to minAcc(minHeight(A′), {qj |
j ∈ J}, ψ·!a), hence also x > minAcc(minHeight(A′), {qj | j ∈ J}, ψ·!a). But being m
above anc(m′′), we have that ψ′′ is a prefix of ψ; then, by Proposition 3.15, item 2, we have
minAcc(minHeight(A′), {qj | j ∈ J}, ψ·!a) = minAcc(x,Q′′, ψ′′′·!a) with ψ = ψ′′ · ψ′′′ and

Q′′ =
⋃
q∈Qj
{qh | h ∈ H s.t. accTree(q, snd(ψ′′′)) = A′′[qh]h∈H} where Qj = {qj | j ∈ J}.

So far, we have proved that x − minAcc(x,Q′′, ψ′′′·!a) > 0. We now observe that,
by Proposition 3.18, x is smaller than or equal to minHeight applied to anc(m′′), i.e.
assuming L(anc(m′′)) = pw4A2[qw]w∈W and x′ = minHeight(A2), we have x ≤ x′;
by Proposition 3.15, item 2, we have that also x′ − minAcc(x′, Q′′, ψ′′′·!a) > 0, hence
x′ > minAcc(x′, Q′′, ψ′′′·!a). By definition of witness subtree, given that m ∈ img(anc)

and m
ψ′′

↪−→ anc(m′′), Q′′ is a (non-strict) subset of the states {qw | w ∈ W}, hence
by Proposition 3.15, item 3, we obtain minAcc(x′, Q′′, ψ′′′·!a) ≥ minAcc(x′, {qw | w ∈
W}, ψ′′′·!a). By combination of the last two inequations we obtain minHeight(A2) >
minAcc(minHeight(A2), {qw | w ∈W}, ψ′′′·!a) that contradicts the definition of witness
subtree (item 2b).

We now consider n
?a
↪−→ n′. In this case we have that p

?a−→ p′. We have that A cannot
be a single hole, otherwise minHeight(A) = 0, that implies minAcc(minHeight(A′), {qj | j ∈
J}, ψ) = 0, that implies that there exists a sequence of transitions ψ′, extending ψ and
leading to a boundary node, such that minAcc(minHeight(A′), {qj | j ∈ J}, ψ′) is undefined,
contrary to what definition of witness subtree says. Hence A[Xqi,m′ ]

i∈I contains initially an

a, that must be mimicked in the simulation game by Ym′ . This implies that also m′
?a
↪−→ m′′.

We first consider the case in which m′′ 6∈ B: in this case we take m1 = m and m2 = m′′.
The first item trivially holds because the set on the left cannot grow while the set on the
right remains unchanged. The second item trivially holds because by inductive hypothesis
we have A[Xqi,m′ ]

i∈I v Ym′ ; we modify the l.h.s. by consuming the initial inputs, taking
the continuation of a, and replacing the remaining variables Xqi,m′ with Xqi,m′′ ; as r.h.s. we
take Ym′′ . The relation v continue to hold as we follow on step a of the simulation game
formalized in the Definition 3.12 of input tree compatibility, and we resolve some input
choices in the l.h.s. The last item holds because the r.h.s. of the inequality reduce by one,
while the l.h.s. cannot reduce by more than one. We now consider the case in which m′′ ∈ B.
There are two distinct cases: anc(m′′) ↪−→∗ m or m ↪−→+ anc(m′′). These two cases are treated

as already done above for the case n
!a
↪−→ n′, subcase in which m′

!a
↪−→ m′′ and m′′ ∈ B.
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We can finally prove the thesis considering L(n) = p4A[qi]
i∈I .

If p is sending, then m′ can perform all send actions that p can do. Given any of such send
actions !a, by definition of witness subtree we have that accTree(qj , snd(ψ′)) is defined for a
sequence of actions ψ′, from m to a boundary node, that contains ψ·!a as a prefix; hence we
have that all the states

⋃
j∈J{qh | h ∈ H s.t. accTree(qj , snd(ψ)) = A′′′[qh]h∈H} can anticipate

!a. Given that {qi | i ∈ I} ⊆
⋃
j∈J{qh | h ∈ H s.t. accTree(qj , snd(ψ)) = A′′′[qh]h∈H} we

also have that all the states qi can anticipate !a. The possibility to perform the transition

n
!a
↪−→ n′a also requires that p has no infinite loop of send actions, i.e., ¬cycle(!, p). Assume

by contraposition that p has such an infinite loop of send actions. This means that there
exists an infinite sequence of output transitions in the witness subtree that starts from the
node m′ (which is such that L(m′) = p4A′′[qk]k∈K) reaches a boundary node, and then
continues from the ancestor of such boundary node to another boundary node, and so on.
Eventually, an ancestor of a reached boundary node will be in between the last traversed
ancestor and such boundary node (otherwise, we infinitely move strictly upward in the finite
witness subtree, going from boundary nodes to ancestors that are always strictly above the
last traversed ancestor). This contradicts the definition of witness subtree stating that in all
paths from an ancestor anc(o), to a corresponding boundary node o, there is at least one
receiving transition.

If p is receiving, then A cannot be a single hole (see the reasoning above for the case

n
?a
↪−→ n′). Let A = 〈ai : Ai〉i∈I . Having A[Xqi,m′ ]

i∈I v Ym′ , we have that (by definition of

Ym′ and v), for every i ∈ I, there exists a transition m′
?ai
↪−−→ m′i hence also p

?ai−−→ pi. So we

can conclude that we have also n
?ai
↪−−→ ni, for every i ∈ I.

Hence, we can conclude that if the candidate subtrees of simtree(M1,M2) identified
following the strategy explained in Part (2) are also witness subtrees, then we have M14M2.

Remark 3.20. When our algorithm finds a successful leaf, a previously seen label, or a
witness subtree in each branch then the machines are in the subtyping relation. If an
unsuccessful leaf is found (while generating the initial finite subtree as described in Part
(2)), then the machines are not in the subtyping relation. In all other cases, the algorithm is
unable to give a decisive verdict (i.e., the result is unknown). There are two possible causes
for an unknown result: either (i) it is impossible to extract a forest of candidate subtrees
(i.e., there are successful leaves below some ancestor) or (ii) at least one candidate subtree
is not a witness (see Example 3.21).

Example 3.21. Consider the machines M1 and M2 below:

M1:
q1q2 q5

q4q3

?a

!x

?b

!x
!x

!x M2: q1q2 q3

?a

!x

?b
!x

The simulation tree simtree(M1,M2), whose initial part is given in Figure 6, contains infinitely
many nodes with labels of the form: q14〈a : 〈a : 〈a : 〈· · ·〉, b : q3〉, b : q3〉, b : q3〉 (e.g., n6
and n12 in Figure 6). Each of these nodes has two successors, one where ?a is fired (the
machines stay in their larger loops), and one where ?b is fired (the machines move to their
self loops). The machines can always enter this send-only cycle, e.g., between n2 and n3 or
between n13 and n14. Because of these send only paths between ancestors (e.g., n2) and
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Figure 6: Simulation tree of Example 3.21.

leaves (e.g., n3), Condition (1) of Definition 3.16 never applies on the infinite branches of
simtree(M1,M2), hence no witness subtrees can be found. Note however that our approach
successfully identifies a candidate subtree, i.e., the white nodes in Figure 6.

4. Implementation and evaluation

To evaluate the applicability and cost of our algorithm, we have produced a faithful imple-
mentation of it, which is freely available on GitHub [4].
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Implementation. The tool is implemented in Haskell and it mostly follows the structure of
§ 3. (1) It takes two machines M1 and M2 as input for which it builds a simulation tree
following Definition 3.2 in a depth-first search manner, while recording the nodes visited
in different branches to avoid re-computing several times the same subtrees. The function
terminates whenever it expands a node whose label has been seen along the path from the
root; or whenever it expands a node which has two ancestors that validate the termination
condition from Theorem 3.8. The resulting tree is then passed onto the next function. (2)
The next function divides the finite tree into several (finite) subtrees following the strategy
outlined on page 16. (3) A third function analyses each subtree to verify that they validate
conditions (1)-(2b) of Definition 3.16. (4) Finally, for those subtrees that validate the
property checked in (3), the tool builds their systems of input tree equations and checks
whether they validate the compatibility condition from Definition 3.12.

In function (1), if the tool finds a node for which none of the rules of Definition 3.2 apply,
then it says that the two types are not related. If each subtree identified in (2) corresponds to
branches that loop or that lead to a witness tree, then the tool says that the input types are
in the subtyping relation. In all other cases, the result is still unknown, hence the tool checks
for M24M1 (relying on a previous result showing that M14M2 ⇐⇒ M24M1 [7, 30]).
Once this pass terminates, the tool returns true or false, accordingly, otherwise the result is
unknown.

For debugging and illustration purposes, the tool can optionally generate graphical
representations of the simulation and candidate trees, as well as the systems of input tree
equations.

Evaluation. We have run our tool on 174 tests which were either taken from the literature
on asynchronous subtyping [11,30], or handcrafted to test the limits of our approach. All
of these tests terminate under a second. Out of these tests, 92 are negative (the types are
not in the subtyping relation) and our tool gives the expected result (“false”) for all of
them. The other 82 tests are positive (the types are in the subtyping relation) and our
tool gives the expected result (“true”) for all but 8 tests, for which it returns “unknown”.
All of these 8 examples feature complex accumulation patterns, that our theory cannot
recognise. Example 3.21 gives a pair of machines for which our tool returns “unknown” for
both M14M2 and M24M1.

To assess the cost of our approach in terms of computation time and memory consump-
tion, we have automatically generated a series of pairs of communicating machines that are
successfully identified by our algorithm to be in the asynchronous subtyping relation. Our
benchmarks consists in applying our algorithm to check that M14M2 holds, with M1 and
M2 as specified below, where n,m ∈ N>0 are the parameters of our experiments.

M1 :

!a0 !an

{?b0 , . . . , ?bm}

M2 :

{!a0 , . . . , !an}

{?b0 , . . . , ?bm}

Machine M1 sends a sequence of n message ai, after which it expects to receive a message
from the alphabet {b0, . . . , bm}, then returns to its initial state. Machine M2 can choose to
send any message in {a0, . . . , an}, then waits for a message in {b0, . . . , bm} before returning
to its initial state. Observe that for any n and m we have that M14M2 holds. The shape
of these machines allows us to assess how our approach fares in two interesting cases: when
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the sequence of message accumulation grows (i.e., n grows) and when the number of possible
branches grows (i.e., m grows). Accordingly, we ran two series of benchmarks. The plots in
Figure 7 gives the time taken for our tool to terminate and the maximum amount of memory
used during its execution (left and right y axis, respectively) with respect to the parameter
n (left-hand side plot) or m (right-hand side plot). The top plots use linear scales for both
axes, while the bottom plots show the same data but using a logarithm scale for the y axis.

Observe that the left-hand side plot depicts a much steeper curve for computational time
than the one of the right. Indeed, the depth of the finite subtree that needs to be computed
and analysed increases with n (the depth of the finite subtree is 2n + 5 when m = 1).
Accordingly, the depth of the input contexts that need to be recorded increases similarly
(2n+ 1). Each input context node has two children in this case, i.e., 〈b0 : 〈. . .〉, b1 : 〈. . .〉〉.

In contrast, when m increases the depth of the simulation tree is bounded at 11.
Consequently, the sizes of the finite subtrees are stable (depth of 7 when n = 1) but the
number of (identical) candidate subtrees that need to be analysed increases, i.e., the tool
produces m+1 trees when n=1. In this case the maximum depth of input contexts is also
stable (the maximum depth is 3) but their widths increase with m, i.e., we have input context
of the form: 〈b0 : 〈. . .〉, . . . , bm : 〈. . .〉〉. These observations suggest that our algorithm is
better suited to deal with session types that feature few anticipation steps (smaller n), but
performs relatively well with types that contain many branches (larger m).

The left-hand side plots show that the memory consumption follows a similar exponential
growth to the computational time, unsurprisingly. For instance, our tool needs 2GB to check
a pair machines where n = 10 and m = 1, and 8 GB when n = 11 and m = 1. The right-hand
side plots show a much smaller memory footprint when m increases, this is explained by the
fact that the depth of the simulation tree is bounded, only the input context of its nodes are
growing in width. The memory in this case is more reasonable, e.g., our tool needs less than
11MB to check a pair of machines where n = 1 and m = 19. We suspect the several jumps
in the memory usage curve are due to the GHC runtime requesting new areas of memory
from the operating system.

All the benchmarks in this paper were run on an 8-core Intel i7-7700 machine with 16GB
RAM running a 64-bit Linux. The time was measured by taking the difference between
the system clock before and after our tool was invoked. The memory usage refers to the
maximum resident set size as reported by the /usr/bin/time -v command. Each test was
ran 5 times, the plots report the average time (resp. memory) measurements. All our test
data and infrastructure are available on our GitHub repository [4].

5. Related Work

Gay and Hole [17,18] were the first to introduce subtyping for session types. Their definition,
called synchronous subtyping, focuses on the possibility for a subtype to have different sets of
labels in selections and branchings. In that paper, input selection is covariant (the subtype
can have less inputs) while output branching is contravariant (the subtype can have more
outputs). In our formulation of subtyping we have the opposite (branchings are covariant
and selections are contravariant) because we follow a process-oriented interpretation of
session types, while Gay and Hole [17,18] followed a channel-oriented interpretation.

Later, Mostrous et al. [34] extended such notion to asynchronous subtyping, by allowing
for delayed inputs. Chen et al. [11,12] subsequently provided an alternative definition which
prohibits orphan messages and which is the definition we adopted in this work. Recently,
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Figure 7: Benchmarks: m=1 and increasing n (left) and n=1 and increasing m (right). Top
and bottom plot show the same data, but the top plots use linear scales for all
axes, the bottom plots use logarithmic scales for the vertical axes.

asynchronous subtyping was shown to be undecidable by reducing it to an equivalent problem
for Turing machines [30] and queue machines [7].

Our previous work [7, 8, 30] investigated different restrictions to achieve decidability: in
all of our previous approaches, these restrictions are either (i) setting bounds on the number
of pending messages in the FIFO channels, or (ii) restricting the syntax of communicating
machines and session types. Lange and Yoshida [30, § 4] identified two subclasses of (two-
party) communicating machines for which the asynchronous subtyping relation is decidable
via syntactical restrictions: alternating machines and non-branching machines. Alternating
machines were introduced by Gouda et al. [22] and require that each sending transition is
followed by a receiving transition. A consequence of this restriction is that each FIFO queue
may contain at most one pending message, i.e., it enforces a form of 1-bounded asynchrony.
Non-branching machines enforce a syntactical restriction such that each state has at most
one outgoing transition, i.e., given M = (Q, q0, δ), ∀q ∈ Q : |δ(q)| ≤ 1. Bravetti et
al. [7, 8] investigate other decidable fragments of asynchronous subtyping. In contrast with
the present work and those by Lange and Yoshida, they take a direct syntactical approach,
i.e., they work directly on the syntax of (binary) session types rather than communicating
machines. Chronologically, their first article [7] proves the undecidability of asynchronous
session subtyping in a restricted setting in which subtypes are non-branching (see definition
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above) in all output selections and supertypes are non-branching in all their input branchings.
Then, a decidability result is proved for a fragment in which they additionally impose that
the subtype is also non-branching in input branchings (or that the supertype is also non-
branching in output selections). Later, in [8], the same authors consider more fragments,
namely k-bounded asynchronous subtyping (bound on the size of input-anticipations), and
two syntactical restrictions that imposes non-branching only on outputs (resp. inputs). More
formally, following the automata notation, they restrict to machines M s.t. M = (Q, q0, δ),
∀q ∈ Q′ : |δ(q)| ≤ 1 with Q′ coinciding with the set of sending (resp. receiving) states of Q.
All such fragments are shown to be decidable.

The relationship between communicating machines and binary asynchronous session
types has been studied in [9], where a correspondence result between asynchronous session
subtyping and asynchronous machine refinement is established. On the other hand, the
relationship between communicating machines and multiparty asynchronous session types
has been studied in [14, 15]. Communicating machines are Turing-powerful, hence their
properties are generally undecidable [5]. Many variations have been introduced in order to
recover decidability, e.g., using (existential or universal) bounds [19], restricting to different
types of topologies [27,38], or using bag or lossy channels instead of FIFO queues [1,2,10,13].
In this context, existentially bounded communicating machines [19] are one of the most
interesting sub-classes because they include infinite state systems. However, deciding
whether communicating machines are existentially bounded is generally undecidable. Lange
and Yoshida [31] proposed a (decidable) property that soundly characterises existential
boundedness on communicating machines corresponding to session types. This property,
called k-multiparty compatibility (k-mc), also guarantees that the machines validate the
safety property of session types [15,28], i.e., all messages that are sent are eventually received
and no machine can get permanently stuck waiting for a message. This notion of safety is
closely related to asynchronous session subtyping for two-party communicating machines, i.e.,
we have that M14M2 implies that the system M1 |M2 is safe [11, 30]. Because the present
work is restricted to two-party systems, our algorithm cannot be used to verify the safety
of multiparty protocols, e.g., the protocol modelling the double-buffering algorithm [34]
is 2-multiparty compatible but cannot be verified with our subtyping algorithm because
it involves three parties. This algorithm is used in multicore systems [39] and can be
type-checked up-to asynchronous subtyping [34]. An extension of our work to support
multiparty protocols is being considered, see § 6. We note that because the k-mc property
of [31] is based on a bounded analysis, it cannot guarantee the safety of systems that exhibit
an intrinsically unbounded behaviour, like machines MR and MS in Figures 1 and 2.

6. Conclusions and Future Work

We have proposed a sound algorithm for checking asynchronous session subtyping, showing
that it is still possible to decide whether two types are related for many nontrivial examples.
Our algorithm is based on a (potentially infinite) tree representation of the coinductive
definition of asynchronous subtyping; it checks for the presence of finite witnesses of infinite
successful subtrees. We have provided an implementation and applied it to examples that
cannot be recognised by previous approaches.

Although the (worst-case) complexity of our algorithm is rather high (the termination
condition expects to encounter a set of states already encountered, of which there may be
exponentially many), our implementation shows that it actually terminates under a second
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for machines of size comparable to typical communication protocols used in real programs,
e.g., Go programs feature between three and four communication primitives per channel
and whose branching construct feature two branches, on average [16].

As future work, we plan to enrich our algorithm to recognise subtypes featuring more
complex accumulation patterns, e.g., Example 3.21. Moreover, due to the tight correspon-
dence with safety of communicating machines [30], we plan to investigate the possibility of
using our approach to characterise a novel decidable subclass of communicating machines.
It is an interesting open question to extend our algorithm to multiparty communications, as
multiparty session types allow more permutations of actions inside a single CFSM and can
type more practical use cases which involve several participants. Recently precise multiparty
asynchronous subtyping (in the sense of [11, 12, 20]) for the asynchronous multiparty session
π-calculus [23, 24] was proposed in [21]. In another direction of future work we will consider
an algorithm for checking subtyping which is sound, but not complete with respect to [21].
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