
A Static Verification Framework for Message Passing in Go using
Behavioural Types

Julien Lange
University of Kent
j.s.lange@kent.ac.uk

Nicholas Ng
Imperial College London
nickng@imperial.ac.uk

Bernardo Toninho
Imperial College London
b.toninho@imperial.ac.uk

Nobuko Yoshida
Imperial College London
n.yoshida@imperial.ac.uk

ABSTRACT
The Go programming language has been heavily adopted in indus-
try as a language that efficiently combines systems programming
with concurrency. Go’s concurrency primitives, inspired by process
calculi such as CCS and CSP, feature channel-based communication
and lightweight threads, providing a distinct means of structuring
concurrent software. Despite its popularity, the Go programming
ecosystem offers little to no support for guaranteeing the correct-
ness of message-passing concurrent programs.

This work proposes a practical verification framework for mes-
sage passing concurrency in Go by developing a robust static anal-
ysis that infers an abstract model of a program’s communication
behaviour in the form of a behavioural type, a powerful process
calculi typing discipline. We make use of our analysis to deploy a
model and termination checking based verification of the inferred
behavioural type that is suitable for a range of safety and liveness
properties of Go programs, providing several improvements over
existing approaches. We evaluate our framework and its implemen-
tation on publicly available real-world Go code.

CCS CONCEPTS
• Theory of computation→ Verification bymodel checking;
Type theory; Process calculi; • Software and its engineering→
Model checking; Automated static analysis; Software verifica-
tion; Concurrent programming languages;
ACM Reference Format:
Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2018. A
Static Verification Framework for Message Passing in Go using Behavioural
Types. In ICSE ’18: ICSE ’18: 40th International Conference on Software En-
gineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3180155.3180157

1 INTRODUCTION
Modern programming languages have evolved with the ever in-
creasing need for highly available, interactive software services,
providing programmers with frameworks that facilitate the devel-
opment of such intricate communicating systems. Amongst these
languages, the Go programming language created at Google in
2007 targets the development of concurrent software systems by
integrating channel-based concurrency and lightweight threads as
distinctive language features, greatly inspired by advances in formal
languages for concurrency theory known as process calculi [43]. Go

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ICSE ’18: ICSE ’18:
40th International Conference on Software Engineering , May 27-June 3, 2018, Gothenburg,
Sweden, https://doi.org/10.1145/3180155.3180157.

enables programmers to write statically-typed concurrent software,
and has been used successfully in a range of industrial settings such
as Uber [45] and Dropbox’s infrastructure [15], the Docker [14]
software container platform, the Kubernetes [27] cluster manager,
among others [9, 41].

However, beyond its simple static type system, Go provides fairly
few assurances on the correctness of concurrent code. At compile
time, Go only enforces that messages exchanged via communication
channels adhere to the declared channel payload types, providing
no way of detecting common concurrency errors such as deadlocks
or undelivered messages. At runtime, Go offers only a toy global
deadlock detector. This is in sharp contrast with the rich body of
work on process calculi-based verification, where a plethora of type-
based and logic-based techniques enable reasoning about safety
and liveness properties of interactive systems.

Given the foundations of Go’s message-passing concurrency
in process calculi, our work aims to bridge the divide between
the foundations and programming practices by applying modern
process calculi based verification techniques to real-world Go con-
current programming. Concretely, we propose a static verification
framework for concurrency and message-passing communication
using concurrent behavioural types [24], which have been developed
extensively in concurrency theory since the early 90s.

To achieve this, we crucially address the substantial concep-
tual gap that exists between a formal mathematical language (a
process calculus) and a general purpose programming language
with concurrency features. Our approach analyses general Go sour-
ce code and distills from programs behavioural types that serve
as a faithful model of its message-passing concurrent behaviour.
Our behavioural types consist of a simplified form of concurrent
processes which are reminiscent of Concurrent Communicating
Systems (CCS) [34] or Communicating Sequential Processes (CSP)
[22] (which inspired the design of the Go language). Given such a
formally grounded model, we may then apply a range of process cal-
culi oriented verification techniques to Go. Specifically, we convert
Go source code into a static single assignment (SSA) form which
provides a fine-grained view of the concurrency primitives used in
programs in a quasi-functional form [2], enabling our behavioural
type inference. We then employ model checking and termination-
checking techniques to automatically verify safety and liveness
properties such as deadlock-freedom and communication safety.

A significant advantage of our approach over previous works [30,
36, 40] is that our inference procedure covers a much larger part of
the Go language allowing for the automatic extraction of an accu-
rate model of a program’s concurrency-related features, resulting in
a more precise analysis with reduced numbers of false alarms and
undetected errors. Our integration with a general purpose model
checker also enables us to modularly verify arbitrary safety and

https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/3180155.3180157

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida

1 func prod(ch chan int) {

2 for i := 0; i < 5; i++ {

3 ch <- i // Send i to ch

4 }

5 close(ch) // No further values accepted at ch

6 }

7 func cons(ch1 , ch2 chan int) {

8 for {

9 select {

10 case x := <-ch1: print(x) // Either input from ch1

11 case x := <-ch2: print(x) // or input from ch2

12 }

13 }

14 }

15 func main() {

16 ch1 , ch2 := make(chan int), make(chan int)

17 go prod(ch1)

18 go prod(ch2)

19 cons(ch1 ,
::
ch1)

20 }

Figure 1: Partially deadlocked Producer-Consumer in Go.

liveness properties, over the more single-minded nature of previ-
ously proposed techniques, as well as take advantage of advances
in model checking to provide better performance scaling.

Concurrent Programming in Go. We provide an overview of
the Go programming language with an emphasis on the challenges
of concurrent programming and how our verification framework
can check for common concurrency errors in programs.

Go is a language with message-passing concurrency features
and lightweight threads (known as goroutines). The key feature
of Go’s concurrency primitives is the predominance of channel-
based communication over shared memory based communication
amongst threads. In Go, a channel consists of a (typed) buffer that
can be used by an arbitrary number of threads for read and write
operations. Channels are synchronous by default (i.e. blocking on
reads and writes) but can be made asynchronous by specifying a
buffer size during channel creation. Asynchronous channels provide
non-blocking sends while the buffer is not full.

We introduce the Go programming language with the program
in Figure 1 which implements a producer/consumer concurrent pat-
tern with two producers and one consumer thread, communicating
over a pair of synchronous channels. The producer code (lines 1-6)
is written as a function that takes as a parameter a channel ch that
can carry payloads of type int. A producer merely sends an integer
value over the given communication channel ch (written ch <- i
in Go, where i is the value to be sent) a predetermined number of
times (encoded as a for loop) and then closes the channel, signalling
that no further values are to be sent.

The consumer code (lines 7-14) is specified as a function taking
two channels ch1 and ch2 (one per producer). The cons function
consists of a common Go idiom known as a for-select loop: a po-
tentially infinite loop (the parameterless for on line 8) containing
a selective communication construct (line 9). The behaviour of
select is such that the consumer waits for an input on either ch1
or ch2 (inputs in Go are written <-ch). Whenever communication
is available, the appropriate case is selected. The consumer prints
the received integer from either producer. Despite the channels
being closed by the producers, the consumer’s inputs still succeed.

Go
Source
code

Inference
Go SSA

Behavioural
types

Model
Checker

mCRL2 [10]

Termination
Checker

KITTeL [17]

Figure 2: The Godel Checker [31] workflow.

Finally, the program entry point (main in lines 15-20) sets up the
producers and consumer by creating the two synchronous channels
ch1 and ch2 (line 16), spawning two producers in parallel (achieved
by the go prefix to the function calls, which creates a goroutine
that runs in parallel with the main program executing the prod
function) and then running the cons function.

Common concurrency errors in Go. We describe common
errors in channel-based Go programming, as well as limitations of
Go’s built-in runtime detector:
Channel safety errors: Once a channel is closed, receive actions
always succeed (receiving messages in-flight or a default value for
the payload type), but all send and close actions performed on the
channel raise a runtime error. Hence, channels should be closed at
most once and no message should be sent on closed channels.
Global deadlocks: The Go runtime contains a global deadlock
detector that signals a runtime error when all goroutines in a pro-
gram are stuck (i.e. deadlocked). However it is often the case that
when certain libraries are imported (such as the commonly used
net library for networking) the global deadlock detector is silently
disabled [5], i.e. all global deadlocks are just ignored.
Partial deadlocks: It is often the case that a program’s commu-
nication cannot progress despite some of its goroutines not being
stuck. This is known as a partial deadlock or as a failure of live-
ness. For instance, the cons function above is being executed with
the wrong channels (ch1 twice instead of ch1 and ch2), due to a
programmer error. Running the program results in a system that
is not live, since the second producer is not interacting with the
consumer – the outputs are never matched with their respective
inputs. Since only a subset of the goroutines are stuck, these errors
cannot be detected by the Go runtime.

A static verification framework for Go. This paper proposes
a static analysis toolchain dubbed Godel Checker [31], which can
automatically detect safety and liveness errors in real-world Go
programs. The workflow is presented in Figure 2, consisting of three
layers: given a Go program we first perform (1) behavioural type
inference (detailed in § 3) that extracts a behavioural type model
for the program (§ 2). In this stage, we use the SSA (static single
assignment) package from the Go project and apply a control flow
analysis to obtain behavioural types. We then apply (2) a model
checking tool, mCRL2 [10], to the extracted behavioural types (§ 4).
This enables us to check types with a finite state-space (i.e. finite
control) for the absence of global deadlocks, as well as several Go
specific safety properties (including channel safety). Finally, to
pinpoint potentially problematic loops and accurately detect partial
deadlocks, we augment our approach with a termination analysis
for loops in the original Go source code using a term-rewriting

A Static Verification Framework for Message Passing in Go using Behavioural Types ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

based tool, KITTeL [17] (§ 5). We show benchmarks for (publicly
available) Go programs and compare with existing tools (§ 6).

2 BEHAVIOURAL TYPES FOR GO
This section introduces behavioural types [24] for concurrent Go
(which are infered as an abstract model of Go – see § 3) and their
relationship with Go programs, following our previous work in [30].

Behavioural types are a typing discipline in which types express
the possible actions of a program in a fine-grained way [24]. When
applied to communication and concurrency, behavioural types act
as an abstract specification of all communication actions that may
be performed in a program. Moreover, behavioural types are an
executable specification. They have a natural operational meaning
and evolve throughout program execution.

The syntax of types is given below, it extends the types defined
in [30] with general sequencing. The types abstract away data
elements, singling out the concurrency specific features such as
spawning of threads (i.e. goroutines), creation of communication
channels, send and receive actions, and selective communication.

α B u | u | τ T B {ti (ỹi) = Ti }i ∈I in S
T , S B α ;T | T ; S | T ⊕ S | N{αi ;Ti }i ∈I | (T | S) | 0

| (newn a);T | closeu;T | t⟨ũ⟩ | ⌊a⌋nk | a
⋆

Communication is specified with the α prefix, where α can be u,
denoting a send on channelu,u, denoting the dual receive action on
channelu and τ , denoting a silent internal step (u is either a constant
channel or a variable). T ; S models the sequential composition of
T and S . The construct closeu signals that channel u is to be
closed. We represent conditional branching with theT ⊕S construct,
denoting a non-deterministic internal choice betweenT and S . Thus,
our type level analogue of conditional branching does not depend
on data but rather simulates the ability to take either branch of a
conditional through a non-deterministic step.

We model Go’s selective communication with N{αi ;Ti }i ∈I . The
construct waits for the availability of one of the αi communication
actions. When some action α j becomes available, it is executed and
the communication evolves to behaviour Tj (discarding the other
options). When more than one communication action is available,
one is chosen non-deterministically. Since τ actions are always
available to fire, we can use a τ action in a select construct to
model timeouts or default behaviours when no other actions are
available. The parallel composition construct T | S denotes the
parallel execution ofT and S ; the construct 0 denotes no behaviour.

Channels in Go are synchronous buffers by default, but may also
be created with a bound, achieving asynchronous communication.
Send actions are non-blocking until the number of messages in
the buffer reaches the bound and, dually, receive actions on empty
buffers are blocking until a message is available. (newn a);T denotes
the creation of a channel a (with a bound n) which can be used
locally in T . If the bound n is set to 0, then a is a synchronous
channel. We often write (newa);T for (new0 a);T and assume that
the scope of a extends as far to the right as possible.

Construct t⟨ũ⟩ denotes a function call with parameter ũ. We
often identify a list ũ with its underlying set and write x ∈ ũ if x is a
element of ũ. We use the following two runtime constructs to define
the semantics of types in § 4: ⌊a⌋nk represents a communication

channel at a (where n is the maximum capacity of the queue and k
is the current number of messages in it) and a⋆ represents a closed
channel a.

The type of a program, sometimes written {ti(ỹi) = Ti }i ∈I in S ,
is a set of (potentially mutually recursive) definitions Ti with a
distinguished program entry point S . Recursive definitions can be
parameterised by communication channels and represent the gor-
outines that are executed in the program. For each type definition
ti(ỹi) = Ti we assume that the free names of Ti are included in ỹi .

Example 2.1 (Type for Consumer-Producer and their Properties).
The behavioural type for the program of Figure 1 is given below.{
prod(ch) = ch;prod⟨ch ⟩ ⊕ close ch
cons(ch1, ch2) = N{ch1; cons⟨ch1, ch2⟩, ch2; cons⟨ch1, ch2⟩ }
main() = (new ch1, ch2); (prod⟨ch1⟩ | prod⟨ch2⟩ | cons⟨ch1, ch1⟩)

}
in main⟨⟩

Definition prod(ch) specifies the type for the Producer function,
while cons(ch1, ch2) stands for the type of the Consumer function,
and main⟨⟩ is the type of the program entry point (i.e. the main
function). Notice how the imperative control structures are trans-
formed into recursive definitions and the data elements are erased.
For instance, the type prod specifies the behaviour of performing
an internal choice (denoted by the ⊕ construct) between sending
on ch and recursing or closing the channel ch and terminating.

Given that behavioural types act as a form of executable specifi-
cations, it is natural to consider properties of types in terms of their
executions, as well as their relationship with program properties.

2.1 Behavioural Properties of Types
The property of global deadlock-freedom (GDF) entails that if
a communication action is available to fire, the type can always
make progress, meaning that a type as a whole is never globally
stuck. For instance, the type main in Example 2.1 satisfies GDF
since the communication actions in subcomponents prod⟨ch1⟩
and cons⟨ch1, ch1⟩ can always make progress, despite the fact that
actions in prod⟨ch2⟩ are always stuck.

The property of liveness, also known as partial deadlock free-
dom, is strictly stronger than GDF, given that every live type is also
GDF. It states that all communications that can become enabled
in a type can always eventually fire. For instance, replacing the
call to cons⟨ch1, ch1⟩ with cons⟨ch1, ch2⟩ makes the type main⟨⟩
in Example 2.1 satisfy liveness. We note that in the presence of
internal choice (i.e. conditional branching), liveness requires that
communication actions in both branches must eventually succeed,
but when facing external choice (i.e. the select construct), only
branches that can be selected are required to eventually succeed.
For instance, the following single-producer variant of main⟨⟩ also
satisfies liveness even though the ch2 branch in the select construct
can never be taken: (new ch1, ch2); (prod⟨ch1⟩ | cons⟨ch1, ch2⟩).

In § 4, we formally define the above properties, as well as other
properties that are verified in our work, in the modal µ-calculus.

2.2 Relationship between Types and Programs
In our analysis, a conditional is abstracted as a non-deterministic
choice between the two alternative behaviours present in the then

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida

1 func main() {

2 ch := make(chan int) // Create channel

3 go sendFn(ch) // Run as goroutine

4 x := recvVal(ch) // Ordinary func call

5 for i := 0; i < x; i++ {

6 print(i)

7 }

8 close(ch) // Close channel ch

9 }

10 func sendFn(c chan int) {

11 c <- 42 // Send on channel c

12 }

13 func recvVal(c chan int) int {

14 return <-c // Receive from channel c

15 }

Listing 1: A simple concurrent program in Go.

and else branches. This coarse abstraction introduces a subtle in-
teraction between non-terminating program behaviour and data-
dependent communication wrt. liveness [30, § 5] (we note that this
issue does not affect GDF or Channel Safety). For instance, consider
the following Go program:

1 func send(n int , c chan int) {

2 if n%2 == 0 { // Conditional (send if n is even)

3 c <- n // Send to channel c

4 }

5 send(n, c)

6 }

7 func recv(c chan int) {

8 for { // Infinite loop

9 x := <-c // Receive from channel c

10 }

11 }

12 func main() {

13 c := make(chan int)

14 go send(3, c)

15 go recv(c)

16 }

The type for the function send (lines 1-6) is send(c) = c ; send⟨c⟩ ⊕
send⟨c⟩. Similarly, the type for recv (line 9) is recv(c) = c ; recv⟨c⟩.
The type for the program above is deemed live since the then
branch of the conditional in send can always eventually be reached
through recursion, ensuring that the inputs in recv are matched.
However, in the program the then branch of the conditional can
never be reached and so the inputs in recv cannot succeed.

This example is symptomatic of a mismatch between type and
program liveness in the presence of infinite executions that flow
through a conditional. Note that it is not the case that the simple
existence of non-termination makes the liveness analysis unsound
[30, § 5]. For instance, for the example in § 1, type liveness implies
program liveness, despite the presence of non-termination, since
there is no communication contingent on a data-dependent test.

In § 5, we address this issue by deploying a lightweight termina-
tion analysis of iterative behaviour in our framework.

3 BEHAVIOURAL TYPE INFERENCE
We detail one of the main contributions of our work: the devel-
opment and formalisation of a procedure that infers, whenever
possible, behavioural types from Go source code. The inference
consists of two key steps: (1) the conversion of Go source code to

package main

t 0 = make chan i n t 0
go sendFn (t 0)
t 1 = r e c vVa l (t 0)
jump 3

0

t 5 = phi [0 : 0 , 1 : t 3] # i
t 6 = t 5 < t 1
i f t 6 goto 1 e l s e 2

3

t 2 = p r i n t (t 5)
t 3 = t 5 + 1
jump 3

1
t 4 = c l o s e (t 0)
r e t u r n

2

for.loop for.done

func main()
entry

return

send c <− 42
r e t u r n

0

func sendFn(c)
entry

return

t 0 = <−c
r e t u r n t 0

0

func recvVal(c)
entry

return

Block of instructions
n

Function boundary

Package boundary

Figure 3: SSA IR built from Listing 1.

a static single assignment (SSA) intermediate representation (IR),
using the ssa package from the Go standard library; and (2) the
extraction of the communication structure as behavioural types
from SSA blocks.

3.1 From Go source code to SSA IR
The ssa package [4] represents source code in SSA form and pro-
vides a high-level API for manipulating Go source code progra-
matically. Go programs are organised as packages which consist
of package variables and functions (also definable within bodies of
functions). Each function is transformed into a list of blocks of SSA
instructions, with one block marked as the function entry point.

Figure 3 gives a graphical view of the SSA representation of the
program in Listing 1. Each of the three Go functions main(), sendFn
(), and recvVal() becomes a set of blocks (graphically, a dotted
box represents the scope of the function). The last instruction of a
block is always a control flow instruction (i f , jump, or r e t u r n)
connecting the block to its successors (if any). The successor relation
is shown in the graph via edges connecting blocks within a function.
There are also entry and return arrows for function entry and exit
respectively, implicit from the SSA IR. Table 1 summarises the
instructions of interest to our inference.

Communication instructions. Go’s channel-based communi-
cation constructs are actual primitive language constructs. Thus, the
key operations such as channel creation make(chan T), cf. line 2
from Listing 1, sending and receiving values over channels, ch
<- value and <-ch respectively (lines 11 and 14), spawning of

goroutines (go sendFn() in line 3), and closing channels, i.e. close
operation (line 8), are all explicit in the SSA IR. As a result, identi-
fying the channel operations that match with the corresponding
behavioural types is straightforward.

Select instructions. Non-deterministic selective communica-
tion (select) also appears explicitly in the SSA representation but
requires a more intricate representation. We illustrate the struc-
ture of the SSA representation of the select block from Listing 2 in

A Static Verification Framework for Message Passing in Go using Behavioural Types ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Key SSA instructions used by our type inference.

make chan T S Create channel of type T and size S
l o c a l chan T Declare channel of type T
ch <− v Send v to channel ch
<−ch Receive from channel ch
s e l e c t b [<− t0 , t1 <−v] Non-deterministic select
c l o s e (ch) Close channel ch

jump 1 Enter block 1
i f t 0 goto 1 e l s e 2 If t0 then enter block 1 else block 2
r e t u r n Exit function

F () Call function F
go F () Spawn F as goroutine

∗ t 0 = t 1 Store t1 into address t0
phi [Blk i : vi] i∈InEdges Select vi if predecessor block is Blki

Figure 4. Listing 2 shows a simple function myselect(c)which con-
sists of a select construct featuring three cases: the first is guarded
by a receive action on channel c, the second is guarded by a timeout,
and the last is the default case (executed if none of the other cases
are ready to be executed). The SSA IR of myselect(c) consists
of 6 blocks. Block 0 is the entry point of the function, containing
the SSA instruction for select. Note that the instruction s e l e c t
nonblocking [<−c , <− t 0] contains only two cases. The de-
fault case is identified by the keyword nonblocking; if a select
does not specify a default case its SSA representation becomes
s e l e c t blocking [<−c , <− t 0] . We note that timeouts are
implemented in Go as channels (e.g., t0) that receive a message
after a predetermined time. This message is placed into the channel
by the runtime and not by a user-level send. The statement t 2 =
e x t r a c t t 1 #0 determines the index of the case which will

be executed and stores it in t2. Block 0 ends with an if-then-else
construct, which is the first of an if-then-else chain identifying
which case of the select is to be executed depending on the value of
t2. Blocks 2 and 4 represent the bodies of the first two cases, respec-
tively. Block 5 contains the body of the default case (the default case
is always the last block of the chain); if a select statement does not
specify a default case, then this block contains a “panic” instruction
which cannot be executed in normal circumstances. Finally, block
1 represents the code that follows the select statement.

Phi instructions. Another key SSA instruction is phi [Blk i :
vi] i ∈InEdges which is used to select between two or more variables
when merging the control flow into one SSA block. An example
of such an instruction is given in block 3 of Figure 3 where the
instruction is used to select the value of variable t5 (the index of
the for loop) depending on whether the predecessor of block 3 is
block 0 or block 1. The former corresponds to the initialisation step
of the loop (in which case the index is 0), the latter corresponds to
an execution of the body of the loop.

Conventions. Given an SSA statement s , e.g., t 0 = make
chan i n t 0 , the left-hand-side (LHS) is the part of the statement
on the left of the = symbol (the variable t0). The key features of
the SSA representation are that, within the scope of a function,
all the LHS of the statements in the blocks of that function are

1 func myselect(c chan int) {

2 select {

3 case msg := <-c:

4 print("received: ", msg)

5 case <-time.After(time.Second):

6 print("timeout: ready in 1s")

7 default:
8 print("default: always ready")

9 }

10 }

Listing 2: A select statement in Go.

t 0 = t ime . A f t e r (3 : t ime . Durat ion)
t 1 = s e l e c t nonblocking [<−c , <− t 0]
t 2 = e x t r a c t t 1 #0 / / ca se index
t 3 = t 2 == 0
i f t 3 goto 2 e l s e 3

0

t 4 = t 2 == 1
i f t 4 goto 4 e l s e 5

3

/ / r e c e i v e
(. . .)
jump 1

2

/ / t imeout
(. . .)
jump 1

4

/ / d e f a u l t
(. . .)
jump 1

5

/ / cont .
(. . .)
r e t u r n

1

func myselect(c)

return

entry

Figure 4: Simplified SSA IR built from Listing 2.

pairwise distinct. Also, the static typing information is available
for each statement. In addition, variables declared at the package
level are initialised in a special init() function. Variables that are
accessed by anonymous functions appear in the header of the SSA
representation of that function as free variables.

3.2 Extracting type definition bodies
In Step (2) we soundly approximate, whenever possible, the commu-
nication behaviour of Go programs with the type language. First,
for each SSA block n in each function fun(x̃), we generate a type
signature of the form funn(ỹ, t̃ , ṽ) where:
ỹ is a subsequence of x̃ where each y in ỹ is a channel parameter
t̃ is a list of channel variables that appear in the LHS of the

statements in the predecessors of block n and do not appear
in the LHS in block n

ṽ is a list of global channel variables (declared outside of function
fun, e.g., package level variables).

We store all signatures in an environment ∆ and write ∆(fun,n)
for the signature of block n in function fun.

3.2.1 Core procedure: genFunction. We present the core al-
gorithm, the genFunction procedure, which generates a type ab-
straction from an SSA block. The procedure takes five parameters:
fun, the name of the function being considered; n, the identifier of
the block; k , the line number within block n; ρ, the type we have
constructed thus far; and Γ, a context which maps each channel
variable name to its representative.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida

function genFunction(fun, n, k, ρ, Γ)
switch s← statement at line k do

case t =make chan T S do
genFunction(fun, n, k+1, ρ ; (newS t), Γ[t 7→ t])

case t = l o c a l chan T do
genFunction(fun, n, k+1, ρ, Γ[t 7→ ⊥])

case t <−v or <− t or t '=<− t do
genFunction(fun, n, k+1, ρ ;mkPrefixΓ(s), Γ)

case c l o s e (t) do
genFunction(fun, n, k+1, ρ ; close Γ(t), Γ)

case r e t u r n do return ρ ; 0
case jump i do return ρ ;mkJumpΓ(fun, i)
case i f _ goto i e l s e j do

return ρ ; (mkJumpΓ(fun, i) ⊕ mkJumpΓ(fun, j))

case s e l e c t b [д1, . . . , дj] do
ρc ← mkJumpΓ(fun, n+1)
for i in [1, . . . , j] do

ρi ← mkPrefixΓ(дi)
ρ′i ← mkJumpΓ(fun, n+2∗i)

if b = nonblocking then
ρd ← mkJumpΓ(fun, n+1+2∗j)
return N{ρi ; ρ′i ; ρc }i∈{1, . . ., j } ∪ {τ ; ρd ; ρc }

else return N{ρi ; ρ′i ; ρc }i∈{1, . . ., j }
case F (x̃) or t =F (x̃) do

if t is a channel then abort
else genFunction(fun, n, k+1, ρ ;mkCallΓ(F, x̃), Γ)

case go F (x̃) do
ρ′← genFunction(fun, n, k+1, ◦, Γ)
return ρ ; (mkCallΓ(F, x̃) | ρ′)

case ∗ t 0 = t 1 or t 0 = ∗ t 1 do
if t 1 is a channel then

genFunction(fun, n, k+1, ρ, Γ[t0 7→ Γ(t1)])
else genFunction(fun, n, k+1, ρ, Γ)

case phi [Blk i :vi] i∈InEdges do
if ∃i ∈ InEdges : vi is a channel then abort
else genFunction(fun, n, k+1, ρ, Γ)

otherwise do genFunction(fun, n, k+1, ρ, Γ)

Algorithm 1: Pseudo-code of genFunction

The context Γ is crucial in our development as Go allows channels
to be aliased (i.e., several variables may contain a reference to
the same channel) and channel variables to be overwritten, e.g., a
channel variable may refer to different channels at different point of
the execution of a program, or may be declared and only initialised
at a later point. We keep track of aliased channels by assigning
a unique representative to each newly created channel. We write
Γ[t 7→ t′] for the context Γ where the mapping from t is updated
to t′. We assume that Γ[t 7→ t′] is undefined if t ∈ dom(Γ) and
Γ(t) , ⊥ in order to disallow channel overwriting.

Algorithm for genFunction. Our algorithm relies on auxiliary
(partial) functions for the translations from statements to types:

mkPrefixΓ(s) send/receive actions and select guards
mkJumpΓ(fun, j) jump statements
mkCallΓ(fun, x̃) function calls

Each function uses context Γ to generate communication actions
and type definition calls, respectively.

Algorithm 1 gives the implementation of genFunction which
iterates over the lines of block n in function fun and makes a case
analysis depending on the structure of the statement s found at
line k . The procedure returns a behavioural type or aborts when-
ever an invocation to auxiliary functions is undefined or when the
algorithm reaches an “abort” statement, since in these cases we
cannot guarantee a sound approximation of program behaviour. In
particular, the algorithm aborts if a channel variable is overwritten
(a new channel is assigned to it).
Channel creation/declaration. If s is a channel creation state-
ment, variable t becomes the representative name for this channel
and we update the environment with Γ[t 7→ t]. The SSA repre-
sentation guarantees that t is unique in function fun. We create
the corresponding new channel type construct and recursively call
genFunction over the next line. If s is a channel declaration state-
ment, we update the environment with Γ[t 7→ ⊥]. Note that t can
only be used after it is initialised.
Send/receive. If s is a send or receive statement, we translate it to
a type construct with a call to mkPrefixΓ(s), defined below:

mkPrefixΓ(s) =


u if s = t <−v and Γ(t) = u

u if s ∈ {<− t , t '= <− t } and Γ(t) = u

τ if s = <− t and t is a timeout channel

Timeout channels are dedicated channels created at compile time
to encode timeouts, they are never added in the context Γ.
Close is mapped to its respective type primitive, via context lookup.
Return.We return the type built so far appended with the termi-
nation construct.
Jump. We translate a jump statement into a type function call
through the auxiliary function defined below, which uses the glob-
ally available signature environment (∆).

mkJumpΓ(fun, j) =


funj⟨ỹ, Γ(t̃), ṽ⟩ if ∆(fun, j) = funj(ỹ, t̃ , ṽ)

and ∀t ∈ t̃ : Γ(t) , ⊥
⊥ otherwise

mkJumpΓ(fun, j) models a jump to another block within the same
enclosing function hence there is no need to rename the parameters
nor the “global” variables from the function signature (since they
are fixed within the scope of the function). Instead, the internally
declared variables are replaced by their representatives using Γ.
The function mkJumpΓ(fun, j) is undefined if any of the t̃ argu-
ments maps to an uninitialised channel in order to guarantee that
these cannot be overwritten in the definition of fun. The ỹ and ṽ
arguments are assumed to be initialised by the parent function.
Conditional constructs are also translated straightforwardly using
⊕ and type definition call.
Select. If s is a s e l e c t construct then s is followed by a chain of
blocks linked by if-then-else statements, which encode the branch-
ing structure of the select, as explained in § 3.1. The jump to the
continuation of the select statement is stored in ρc , while the guard
and body of each case is stored into ρi and ρ ′i , respectively. If the
select statement contains a default case (b = nonblocking), we
additionally translate the last block of the chain into a type function
call. The guard and body of each case is then appended with the

A Static Verification Framework for Message Passing in Go using Behavioural Types ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

function genBody(fun, n)
funn(ỹ, t̃, ṽ) ← ∆(fun, n)
Γ← [x 7→ x]x∈ỹ, t̃,ṽ
return genFunction(fun, n, 0, ◦, Γ)

function genEquations()
return {∆(fun, n) = genBody(fun, n) | (fun, n) ∈ dom(∆)}
in main0 ⟨⟩

Algorithm 2: Pseudo-code of the overall algorithm.

type function call corresponding to the continuation and all the
components are packaged into an external choice construct.
Function calls. If s is a function call, we create a corresponding
type definition call using the auxiliary function mkCallΓ(fun, x̃),
which defined as follows:

mkCallΓ(fun, x̃) =


fun0⟨Γ(x̃), ṽ⟩ if ∆(fun, 0) = fun0(ỹ, ṽ)

and ∀x ∈ x̃ : Γ(x) , ⊥
⊥ otherwise

Note that the arguments are replaced by their representatives ac-
cording to Γ and the function is undefined if any of them refers to
an uninitialised channel.
Goroutines. If s spawns a new goroutine, we proceed similarly to
the function call case but place the call in parallel with its continu-
ation, which is computed through a call to genFunction, starting
with an empty behavioural type (denoted by ◦).
Aliasing. If s stores a channel variable into another, we update the
context with Γ[t0 7→ Γ(t1)] (which is undefined if Γ(t0) , ⊥).
Phi. If s is a phi statement, we proceed only if it does not overwrite
channels – we discuss how to lift this restriction in § 5.

We skip all other statements as they do not pertain to communi-
cation or concurrency.

3.2.2 Top-level procedure: genEquations. Finally, we generate
the body of type definitions using the genFunction procedure and
thus obtain a set of recursive equations as required. Algorithm 2
gives the overall generation process. We iterate over each type
signature (and therefore each SSA block) to generate a type im-
plementation starting with a context Γ which is initialised to the
identity function for each of the parameters. The algorithm returns
a set of (possibly mutually recursive) type definitions, whose entry
point is the program entry point, e.g.,main0⟨⟩.

Example 3.1. Consider the Go program from Listing 1 and its
SSA representation in Figure 3. The set of type definitions infered
from this example is given below.

main0() = (new t0); (sendFn0⟨t0⟩ | recvVal0⟨t0⟩;main3⟨t0⟩)
main1(t0) = main3⟨t0⟩
main2(t0) = close t0; 0
main3(t0) = main1⟨t0⟩ ⊕main2⟨t0⟩
sendFn0(c) = c; 0
recvVal0(c) = c; 0

Note that the spawning of the goroutine sendFn(ch) becomes a
parallel composition of the main thread with sendFn0⟨t0⟩.

Example 3.2. Consider the Go program from Listing 2 and its
SSA representation in Figure 4. Its inferred type definitions are

a;T
a
−→ T a;T

a
−→ T τ ;T

τ
−→ T

closea;T
cloa
−−−−→ T ⌊a⌋nk

cloa
−−−−→ a⋆ a⋆

a⋆
−−→ a⋆

i ∈ {1, 2}

T1 ⊕ T2
τ
−→ Ti

α j ;Tj
α j
−−→ Tj j ∈ I

N{αi ;Ti }i ∈I
α j
−−→ Tj

T
α
−→ T ′

T | S
α
−→ T ′ | S

T
α
−→ T ′

T ; S
α
−→ T ′; S

0; S
τ
−→ S

α ∈ {a,a⋆,a•} T
α
−→ T ′ S

β
−→ S ′ β ∈ {•a,a}

T | S
τa
−−→ T ′ | S ′

T ≡α T ′ T
α
−→ T ′′

T ′
α
−→ T ′′

T {ã/x̃}
α
−→ T ′ t(x̃) = T

t⟨ã⟩
α
−→ T ′

T
cloa
−−−−→ T ′ S

cloa
−−−−→ S ′

T | S
τ
−→ T ′ | S ′

k < n

⌊a⌋nk

•a
−−→ ⌊a⌋nk+1

k ≥ 1

⌊a⌋nk
a•
−−→ ⌊a⌋nk−1

Figure 5: Semantics of types.

given below.

myselect0(c)=N
{
c;myselect2⟨c⟩;myselect1⟨c⟩,
τ ;myselect4⟨c⟩;myselect1⟨c⟩,
τ ;myselect5⟨c⟩;myselect1⟨c⟩

}
myselecti(c)= 0 for i ∈ {1, 2, 4, 5}
myselect3(c)= myselect4⟨c⟩ ⊕myselect5⟨c⟩

The type’s entry point is myselect0(c) and myselect3(t0) is un-
used. Note how each branch of the select consists of the sequential
composition of a guard, a type function call corresponding to the
body of the branch, and a call to the continuationmyselect1⟨t0⟩.

4 MODEL CHECKING BEHAVIOURAL TYPES
We present our model checking based analysis of the finite control
fragment of behavioural types. We proceed in three steps: (1) we
generate a (finite) labelled transition system (LTS) for the types
from a set of operational semantics rules; (2) we define properties of
the states of the LTS in terms of the immediate actions behavioural
types can take; and (3) we give safety and liveness properties ex-
pressed in the modal µ-calculus [28].

The notion of finite control has several definitions in the litera-
ture [8, 11] but is generally understood to refer to having finitely
many reachable states (possibly up-to some equivalence relation).
Here we adopt the definition of finite control used by the mCRL2
toolchain [10]: types cannot feature parallel composition or channel
creation operators under recursion, which is a sufficient condition
to guarantee a finite state space. For instance, types of the form
t(x̃) = t⟨x̃⟩ | T or t(x) = (newa); t⟨a⟩ are not finite control as the
former generates infinitely many instances of type t(x̃) while the
latter generates infinitely many channels.

Semantics of types. Before proceeding to Step (1), i.e., the
generation of a labelled transition system (LTS) from behavioural
types, we introduce the semantics of types. The semantics follows

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida

0;T ≡ T T | S ≡ S | T T | (T ′ | S) ≡ (T | T ′) | S
T | 0 ≡ T T ≡α T ′ ⇒ T ≡ T ′

(newn a); (newm b);T ≡ (newm b); (newn a);T
(newn a); 0 ≡ 0 (newn a);a⋆ ≡ 0 (newn a); ⌊a⌋nk ≡ 0

T | (newn a)S ≡ (newn a)(T | S) (a < fn(T))

Figure 6: Structural congruence for types.

standard definitions from CCS and CSP, accounting for the con-
structs that are specific to the Go programming language. The
labels, ranged over by α and β , have the form:

α , β B a | a | τ | τa | cloa | cloa | a
⋆ | •a | a•

and their meaning is given in Table 2.
We assume types are in normal form, with all channel creations

at the outermost top level. In a finite control setting we can always
soundly rewrite types to satisfy this normal form using the equiva-
lences defined in Figure 6. Thus, a program’s type is always of the
form:

{ti (ỹi) = Ti }i ∈I in (newn0 a0) . . . (newnk ak); t0⟨⟩

where the several Ti contain no channel creations. We also make
use of the following transition which initialises all the channels
accordingly and write A for the set of all initialised channels:

{ti (ỹi) = Ti }i ∈I in (newn0 a0) . . . (newnk ak); t0⟨⟩
τ
−→ {ti (ỹi) = Ti }i ∈I in (t0⟨⟩ | ⌊a0⌋

n0
0 | . . . | ⌊ak ⌋

nk
0)

We give the semantic rules for behavioural types in Figure 5,
adapted from [30], where T

α
−→ T ′ denotes that T reduces to T ′

by producing α , according to the rules in Figure 5. In the first
line, the rules respectively model send, receive and silent actions.
In the second line, the rules respectively model close actions, the
closure of channel a and a closed buffer sending default values.
In the third line, the rules respectively model a silent transition
representing an internal choice and an external choice. The fourth
line gives the standard rules for parallel and general sequencing.
The rule in the fifth line models the synchronisation between a
type or buffer firing a send-like action (i.e., a send action, a closed
buffer, or a non-empty asynchronous buffer) and a receive action or
a non-full buffer. The sixth line gives standard rules to deal with α-
equivalence and unfolding of definition calls. In the seventh line, the
rules respectively model the synchronisation of a type and a buffer
a to effectively close a, and the action of adding (resp. removing) an
element in (resp. from) a buffer, where n is the capacity of the queue
and k is the number of messages currently stored in the queue. We
have omitted symmetric rules for parallel and synchronisations.

In Step (1), given a finite control type in normal form, we con-
struct a finite labelled transition system which represents all possi-
ble executions of t0⟨⟩, i.e., the entry point type under all the name
restrictions. The LTS of t0⟨⟩ is a tuple T = (S, t0⟨⟩,−→,A) such that
S is a set of states implicitly labelled by behavioural type terms
(we often identify labels and states), t0⟨⟩ ∈ S is the initial state,
A ⊆ {τ } ∪ {τa | a ∈ A} is the set of labels, and −→⊆ S × A × S is
the transition relation T

α
−→ T ′ where the label α can be either a

silent move, i.e., τ , or a synchronisation over a channel, e.g., τa .

Table 2: (Predicate) labels

a / a send / receive on channel a
τa synchronisation over a
τ silent action
cloa / cloa request to close a / closing a
a⋆ channel a is closed
•a / a• push / pop on buffer a
õ waiting to synchronise over the actions in õ

a;T ↓a closea;T ↓cloa
a;T ↓a a⋆ ↓a⋆

∀i ∈ {1, . . . ,n} : αi ↓oi
N{αi ;T }i ∈{1, ...,n } ↓{o1 ...on }

T ↓o

T ;T ′ ↓o

T ↓a T ′ ↓a or T ′ ↓a⋆
T | T ′ ↓τa

T {ã/x̃} ↓o t(x̃) = T

t⟨ã⟩ ↓o
T ↓a αi ↓a

T | N{αi ; Si }i ∈I ↓τa

T ↓a or T ↓a⋆ αi ↓a

T | N{αi ; Si }i ∈I ↓τa
k < n

⌊a⌋nk ↓•a

k ≥ 1
⌊a⌋nk ↓a•

T ↓a T ′ ↓•a

T | T ′ ↓τa

T ↓a• αi ↓a

T | N{αi ; Si }i ∈I ↓τa

T ↓o

T | T ′ ↓o

T ↓o a < fn(o)

(newn a);T ↓o

T ↓o T ≡ T ′

T ↓o

Figure 7: Barb predicates for types.

Properties of behavioural type states. In Step (2), we define
predicates over the state labels of the LTS defined above. This
allows us to analyse what actions a given state (or type) can fire
immediately. Concretely, we define a family of predicates of the
form T ↓o or T ↓õ which holds if T is ready to fire action o or one
of the actions in õ, with o,oi ∈ {a,a,τa , cloa,a

⋆,• a,a•}. Table 2
explains the meaning of each label and Figure 7 gives the defining
rules of the predicates T ↓o and T ↓õ . Essentially, T ↓o if T is
immediately ready to fire actiono (witho , τ) andT ↓õ ifT contains
an external choice which does not feature a branch guarded by τ (i.e.,
τ < õ). We have, e.g., ¬(τ ;T ↓o) for any o and ¬(N{τ ;T1, a;T2} ↓õ)
for any õ, which is an important subtlety for defining accurate
safety and liveness properties.

Liveness and safety properties. In Step (3), we encode live-
ness and channel properties (including those discussed in § 2.1) in
the µ-calculus [28] extended with the atomic propositions on state
labels defined in Step (2).

A µ-calculus formula ϕ is interpreted on a pointed LTS, i.e., an
LTS with a starting state T , we write T |=T ϕ if T satisfies ϕ in
the LTS T . Namely, formula ⊤ holds for every T (while ⊥ never
holds). The construct [α]ϕ is amodal operator that is satisfied if, for
each α-derivativeT ′ ofT (i.e.T ′ is reachable fromT by performing
action α), the formula ϕ holds in T ′. The dual modality is ⟨α⟩ϕ
which holds if there is an α-derivative T ′ of T such that ϕ holds
in T ′. Construct νx.ϕ (resp. µx.ϕ) is the standard greatest (resp.
smallest) fixpoint operator (binding x in ϕ). The atomic proposition
↓o (resp. ↓õ) holds iffT ↓o (resp.T ↓õ). Given a set of actionsA ⊆ A,
we write [A]ϕ for

∧
α ∈A[α]ϕ and ⟨A⟩ϕ for

∨
α ∈A⟨α⟩ϕ.

A Static Verification Framework for Message Passing in Go using Behavioural Types ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Ψ (ϕ)
def
= νx. (ϕ ∧ [A]x) [Always]

Φ (ϕ)
def
= µy. (ϕ ∨ ⟨A⟩y) [Eventually]

ψt
def
= ⟨A⟩⊤ [No terminal]

ψc
def
= µy. [A]y [No cycle]

ψд
def
=

∧
a∈A (↓a ∨ ↓a =⇒ ⟨A⟩⊤) [No global deadlock]

ψla
def
=

∧
a∈A (↓a ∨ ↓a =⇒ Φ (⟨τa⟩⊤)) [Liveness (a)]

ψlb
def
=

∧
ã∈P(A) (↓ã =⇒ Φ (⟨{τa | a ∈ ã}⟩⊤)) [Liveness (b)]

ψs
def
=

∧
a∈A (↓a⋆ =⇒ ¬(↓a ∨ ↓cloa)) [Channel safety]

ψe
def
=

∧
a∈A (↓a• =⇒ Φ (⟨τa⟩⊤)) [Eventual reception]

Figure 8: µ-calculus formulae.

We now describe several properties which can be verified using
the model checker mCRL2 [10]. Below we refer to the formulae
given in Figure 8. Given a µ-calculus formula ϕ, formula Ψ (ϕ) holds
if ϕ holds for all reachable states, while formula Φ (ϕ) holds if ϕ
holds in some reachable state. Formula Ψ (ψt) holds if no terminal
state is reachable in T , i.e., the behavioural types only exhibit
infinite executions; dually formulaψc holds if there are no cycles
in T , this property is useful as it implies that liveness of types
corresponds with liveness of programs (cf. § 2.2). Formula Ψ

(
ψд

)
models the global deadlock-freedom property discussed in § 2.1,
i.e., the formula holds if for each state T in T if T is ready to
execute a send or receive action, then T has a successor. Formula
Ψ
(
ψla ∧ψlb

)
models the liveness property (cf. § 2.1). It holds if

for all state T in T (i) if T is ready to send/receive on a, there is
always eventually a synchronisation on a (cf.ψla), and (ii) ifT has a
select construct, which does not contain a τ -branch, there is always
eventually a synchronisation over one of the channels guarding
the construct (cf.ψlb). Formula Ψ (ψs) models the channel safety
property, i.e., no send nor close action is executed on a channel
that is already closed. Formula Ψ (ψe) models eventual reception,
which guarantees that when a channel is not empty, the head of its
buffer can eventually be consumed.

5 IMPLEMENTATION
We present the Godel Checker toolchain of Figure 2 which consists
of two core components: an inference tool and a type verifier.

Inference tool. The type inference tool implements the core
algorithms described in § 3, with additional adjustments to support
analysis of real world Go programs, which we discuss below.
Uninitialised channels: Uninitialised channels (or nil channels)
can be used in Go, but they always block on communication. To
model this behaviour, we prefix any communication on an unini-
tialised channel with a (new a) construct (with a fresh).
Composite data structures: Our tool supports channels that are
stored in structs by flattening such constructs into several chan-
nels. We only support structures that store finitely many channels
(e.g., arrays or linked-list of channels are not supported).
Uniform representation of functions: A uniform representation
of callable objects is used as an abstraction when obtaining the type
signature of an SSA block. This allows us to support return values

and closures by uniformly converting return values and closure
binding as additional function parameters.
Channels in phi instructions: We support SSA instructions to
merge control flow (phi) when they refer to channels by adding a
parameter to the type definition of its enclosing block and modify-
ing function calls accordingly.

Type verifier. The type verifier transforms the inferred be-
havioural types into an LTS and properties into µ-calculus formulae
following the methodology in § 4 for the mCRL2model checker, and
also into input for the KiTTeL termination analyser.
Model checking: Once a behavioural type has been inferred from
Go source code, we translate it straightforwardly to the mCRL2
language [19]. Before generating the µ-calculus formulae described
in § 4, we analyse the model so to build the smallest formulae
possible. Finally, we run the mCRL2 model checker for each formula
and return the result to the user.
Termination checking: To address the mismatch between types
and programs detailed in § 2.2 we deploy a termination analysis of
loops, using the KITTeL termination analyser [16]. The tool targets
C programs and is based on integer term rewriting. The choice of
this particular analyser amounts to the syntax of Go being close to
C, its usability and performance.

The analysis takes advantage of the inference procedure of § 3
to collect the locations and parameters of loops in a given pro-
gram, which are then checked for termination. Our analysis checks
that the loop parameters are enough to make each loop eventually
terminate, regardless of the non-loop code within the loop itself.
This enables us to pinpoint program locations where liveness of
types may not entail the analogue property in the program – if
the termination analysis identifies the program as terminating, the
liveness properties on types and programs coincide [30, § 5].

The analysis generates all loops in the original Go program as a
set of C functions, ignoring all other Go statements. Each C function
(and thus, each loop) is then individually checked for termination.
Since loops can be nested, our analysis takes this into account by
replicating the nesting in the generated C functions. For instance,
for the following code snippet,
1 func f(n int) {

2 for i := 0; i < n; i++ {

3 for j := 0; j < 10; j++ { ... }

4 }

5 }

our tool generates a single C function f containing the two loops.
Statically unknown values in loop parameters (e.g. the parameter n
of function f above) are generated as parameters of the respective C
functions. This forces the termination checker to verify termination
for all possible values of the unknown parameter. Such values can
appear due to usages of function arguments, values contained in
dynamic data structures or communicated data.

Our analysis relies on the following: loops in Go programs gen-
erate types with conditional branching combined with recursion;
most programs use traditional imperative control flow features su-
ch as for loops, for-range loops (i.e. loops over a fixed finite data
structure) and for-select loops (i.e. an infinite loop with a select
that can break the loop – the Consumer function of Figure 1) instead
of recursion; we assume that loop indices are not modified in loop
bodies and that no goto-like constructs are used in a loop.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida

Table 3: Go programs verified by our framework and comparison with existing static deadlock detection tools.

Godel Checker dingo-hunter [36] gopherlyzer [40] GoInfer/Gong [30]
Programs LoC # states ψд ψl ψs ψe Infer Live Live+CS Term Live Time DF Time Live CS Time

1 mismatch [36] 29 53 × × ✓ ✓ 620.7 996.8 996.7 ✓ × 639.4 × 3956.4 × ✓ 616.8
2 fixed [36] 27 16 ✓ ✓ ✓ ✓ 624.4 996.5 996.3 ✓ ✓ 603.1 ✓ 3166.3 ✓ ✓ 601.0
3 fanin [36, 39] 41 39 ✓ ✓ ✓ ✓ 631.1 996.2 996.2 ✓ ✓ 608.9 ✓ 19.8 ✓ ✓ 696.7
4 sieve [30, 36] 43 ∞ n/a - - - n/a n/a - n/a - ✓ ✓ 778.3
5 philo [40] 41 65 × × ✓ ✓ 6.1 996.5 996.6 ✓ × 34.2 × 27.0 × ✓ 16.8
6 dinephil3 [13, 33] 55 3838 ✓ ✓ ✓ ✓ 645.2 996.4 996.3 ✓ n/a - n/a - ✓ ✓ 13.2 min
7 starvephil3 47 3151 × × ✓ ✓ 628.2 996.5 996.5 ✓ n/a - n/a - × ✓ 3.5 min
8 sel [40] 22 103 × × ✓ ✓ 4.2 996.7 996.6 ✓ × 15.3 × 13.0 × ✓ 50.5
9 selFixed [40] 22 20 ✓ ✓ ✓ ✓ 4.0 996.3 996.4 ✓ ✓ 14.9 ✓ 3168.3 ✓ ✓ 13.1
10 jobsched [30] 43 43 ✓ ✓ ✓ ✓ 632.7 996.7 1996.1 ✓ n/a - ✓ 4753.6 ✓ ✓ 635.2
11 forselect [30] 42 26 ✓ ✓ ✓ ✓ 623.3 996.4 996.3 ✓ ✓ 611.8 n/a - ✓ ✓ 618.6
12 cond-recur [30] 37 12 ✓ ✓ ✓ ✓ 4.0 996.2 996.2 ✓ ✓ 9.4 n/a - ✓ ✓ 14.7
13 concsys [42] 118 15 × × ✓ ✓ 549.7 996.5 996.4 ✓ n/a - × 5278.6 × ✓ 521.3
14 alt-bit [30, 35] 70 112 ✓ ✓ ✓ ✓ 634.4 996.3 996.3 ✓ n/a - n/a - ✓ ✓ 916.8
15 prod-cons 28 106 ✓ × ✓ ✓ 4.1 996.4 1996.2 ✓ × 10.1 × 30.1 × ✓ 21.8
16 nonlive 16 8 ✓ ✓ ✓ ✓ 630.1 996.6 996.5 timeout ⊗ 613.6 n/a - ⊗ ✓ 613.8
17 double-close 15 17 ✓ ✓ × ✓ 3.5 996.6 1996.6 ✓ ⊠ 8.7 ⊠ 11.8 ✓ × 9.1
18 stuckmsg 8 4 ✓ ✓ ✓ × 3.5 996.6 996.6 ✓ n/a - n/a - ✓ ✓ 7.6
19 dinephil5 61 ∼1M ✓ ✓ ✓ ✓ 626.5 41.2 sec 41.4 sec ✓ n/a - n/a - timeout >48 hrs
20 prod3-cons3 40 57493 ✓ ✓ ✓ ✓ 465.1 40.9 sec 40.9 sec ✓ n/a - n/a - timeout >48 hrs
21 async-prod-cons 33 164897 ✓ ✓ ✓ ✓ 4.3 47.7 sec 89.4 sec ✓ n/a - n/a - timeout >48 hrs
22 astranet [26] ∼18k 1160 ✓ ✓ ✓ ✓ 2512.5 70.4 sec 75.0 sec ✓ n/a - n/a - n/a -

Column 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
CS: Channel Safe, Term: Termination check, DF: Deadlock-free, timeout: Termination check timeout (likely does not terminate),⊠: False Alarm, ⊗: Undetected liveness error.

Since the analysis only takes into account loop parameters, a
loop that indefinitely blocks (e.g. due to communication) may be
identified as terminating. However, if our analysis identifies the in-
ferred types as live and the termination check validates the program,
both termination and program liveness are guaranteed.

6 EVALUATION
Table 3 lists several benchmarks of our tool against other static
deadlock detection tools for Go (a detailed comparison of these
tools is given in § 7). The benchmarks were run with go1.8.3 on
an 8-core Intel i7-3770 machine with 16GB RAM on a 64-bit Linux.
The model checker we used was mCRL2 v201707.1.

The results for Godel Checker are shown in columns 4–12. Col-
umn 4 shows the number of states in the input LTS as a measure-
ment of the relative complexity of each program (proportional to the
number of concurrency-related operations rather than the number
of lines of code). Columns 5–8 shows the core formulae of Figure 8
in § 4, i.e. no global deadlock (ψд), liveness (ψl), channel safety (ψs)
and eventual reception (ψe). A ✓ mark means that the considered
tool reports that the property holds. For example, in the case of
Godel Checker, a ✓ mark under columnψд means that the formula
Ψ
(
ψд

)
evaluates to true. In the case of GoInfer/Gong a ✓ mark

under column Live means that the tool reports the program to be
live, as defined in [30]. A × mark indicates that the considered tool
reports that the property in question does not hold. Columns 9–12
list the running time of Godel Checker, where Column 10 lists the
inference time, Columns 10 and 11 are the model checking times
for liveness, and both liveness and channel safety, respectively. The
total run time can be obtained by adding Column 9 to Column 10 or
11. Unless otherwise stated, all times are in milliseconds. Column
12 (Term) shows the result of the termination check, which proves
the termination of loops in the given program, or times out after

15s. A program that times out is conservatively assumed not to
terminate.

Columns 13–14 pertain to the dingo-hunter tool from [36].
The time includes both communicating finite state machine extrac-
tion and their analysis, but does not include building the global
graph and only checks for liveness. Columns 15–16 pertain to the
gopherlyzer tool [40], which only checks for global deadlock-
freedom (most programs had to be manually adjusted in order to be
accepted by this tool – see § 7 for the severe practical limitations of
the tool). Columns 17–19 refer to the GoInfer/Gong tool from [30].
The times include both type inference and analysis stages, which
only accounts for liveness and channel safety checks. Most pro-
grams in Table 3 are taken either from other papers on the static
verification of Go programs [30, 36, 40] or from publicly available
source code. Programs 7, and 15–22 are benchmarks introduced
by this work. Programs that are unsupported by a tool are marked
with n/a. Table 3 includes all the benchmarks from previous works,
except for 3 non-finite control examples from [30] which our tool
cannot analyse (i.e., like sieve) and htcat from [36] which is man-
ually transformed to be supported by dingo-hunter.

Programs 1–7 are typical concurrent programs from the litera-
ture. The sieve program is not finite control (it spawns an infinite
number of threads), thus it can only be analysed by GoInfer/Gong.
Program 6 is a (three) dining philosophers program where the first
fork can be released, while Program 7 is the traditional deadlock-
ing version (Program 19 is as Program 6 but with 5 philosophers).
dingo-hunter does not support Programs 6, 7, and 19 due to dy-
namically spawned goroutines, while gopherlyzer does not sup-
port them due to a nested select statement. GoInfer/Gong analyses
them correctly, but is much slower than Godel Checker.

Programs 8–12 consist of idiomatic Go patterns which are all
handled correctly and quickly by our tool. Program 13 is a publicly

A Static Verification Framework for Message Passing in Go using Behavioural Types ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

available program which is not live. Program 14 is an implemen-
tation of the alternating bit protocol. Program 15 is the Producer-
Consumer example from § 1, which is not live. All tools were able to
verify this simple program. Program 16 demonstrates the mismatch
between type and program liveness, where the type is live but due
to an erroneous loop the program does not terminate and causes a
partial deadlock. The termination check identifies this as possibly
non-terminating, while GoInfer/Gong incorrectly identifies it as
live. Program 17 closes a channel twice which flags a violation of
channel safety in Godel Checker and GoInfer/Gong. Interestingly,
dingo-hunter detects a deadlock (a false alarm) due to its repre-
sentation of channel closure as a message exchange, but not due to
the double close. gopherlyzer also detects a deadlock incorrectly
due to the same reason. Program 18 is a program that violates the
eventual reception property by sending an asynchronous message
that is never received – none of the earlier tools can detect this.

Programs 19–22 demonstrate the scalability of our approach.
Program 22 is a concurrent data stream multiplexer, for handling
multiple independent data streams in a single TCP connection. It
consists of 16k lines of code of which only a small portion relate
to concurrency (which is the case with common concurrent Go
applications). The program is not natively finite control since it
spawns request handlers as goroutines in a loop. Noting that request
handlers do not interact with each other, we modified the program
to handle requests sequentially and enable our analysis.

We note that while the execution time for small programs is
slightly higher than the other tools (but still under 2 seconds),
Godel Checker is a more general tool since it can verify arbitrary
properties expressible in the µ-calculus and our precise inference
allows us to reduce both the false alarms and, crucially, undetected
liveness errors. The verification times also suffer from the initiali-
sation of mCRL2 (the tool uses 3 binaries). In small programs the
running times are generally dominated by this fact, which is the
reason why the times are quite similar. This is amortised in pro-
grams with large state spaces (cf. second part of Table 3), where the
efficiency of mCRL2 produces gains of several orders of magnitude
over gopherlyzer and GoInfer/Gong while performing more de-
tailed analyses. We note that a significant portion of the inference
time is due to the translation into SSA by the ssa package.

Limitations.As explained in § 3, our inference does not support
channel variable overwriting, i.e., we only support immutable chan-
nel variables. In addition, it does not support channels in dynamic
data structures – such as arrays, slices (variable sized arrays) and
dictionaries – or recursively defined data structures (e.g. linked
lists). However, our tool ensures that such data structures do not
contain channels and can be safely ignored, signalling an error oth-
erwise. We also require channel buffer sizes to be statically known.
While the inference is agnostic to the finite control limitation of
the model checking tool, if a type is inferred successfully, it must
be finite control in order for our type verifier to produce an output.
We note that these limitations are also present in the other tools
mentioned in this section (GoInfer/Gong supports infinite state
systems by performing a bounded verification).

7 RELATEDWORK AND CONCLUSION
Applying programanalyses to real-world software. The error-
prone nature of concurrent software has led to a plethora of works
on automated verification of concurrency via program analysis.
However, these works mostly target lock-based concurrency (such
as those based on Java Pathfinder [3, 21, 38, 44] or abstract inter-
pretation [29]) and so are of a fundamentally different nature than
our work targetting message-based concurrency in Go.
Verification of Go programs. Despite the young age of Go, it
has received some attention from the research community. The
work of [36] is to the best of our knowledge the first to tackle static
verification of Go programs. Their work uses multiparty session
types [23] and their connection to communicating automata [12, 32]
to check for liveness in Go by extracting communicating finite state
machines from source code. However, their work cannot support
dynamic spawning of goroutines (requiring all goroutines to be
executing before any communication takes place) nor asynchrony.
This severely limits the applicability of their work. Their analysis
also does not cover many features of Go which results in crashes in
the analysis, such as phi instructions and uninitialised channels.

Using a form of regular expressions with a fork construct, the
work of [40] captures thread spawning in synchronous Go programs.
Their analysis is extremely limited: it does not support asynchrony,
closing channels nor selective communication with non-trivial case
bodies. Moreover, their work uses the guru tool to manually obtain
aliasing information in order to identify channels, and assumes that
all functions can be inlined. As a result, their tool fails to analyse
programs that cannot be trivially inlined — e.g. programs with
aliased channel or repeated usages of the same function — ruling
out most useful programs.

Our previous work [30] infers behavioural types from Go code
which are checked for liveness and safety properties using a tech-
nique akin to bounded symbolic execution. The GoInfer/Gong tool
explicitly executes the type LTS which has scalability issues with
large state spaces (see § 6) and is specialised for liveness and chan-
nel safety, whereas our tool can check for a much wider range of
properties of interest (in general we can verify any property that
can be represented as a µ-calculus formula). The type inference
of [30] (which was not formalised until this work) did not have full
support for closures nor general sequencing, needed to accurately
represent most imperative programming patterns.
Behavioural types. There is a vast body of work on behavioural
types for concurrency (see [1, 24] for general surveys). The main
contrast between our work and most of those in [1, 24] is that
we use behavioural types as a component in a larger analysis that
can automatically check for a range of safety and liveness prop-
erties, instead of focusing solely on forms of deadlock-freedom.
The work [7] proposes a framework combining a behavioural type
analysis with model checking. Their work uses the π -calculus as a
source language and extracts CCS-like behavioural types based on
[25], which can then be checked for properties written as an LTL
formula. The main limitation of their work is the requirement of
explicit type annotations in processes. Moreover, it is not clear how
to represent our notions of global and partial deadlock-freedom
(as well as channel safety) as a general LTL formula. LTL formulas
can use “always” and “eventually” modalities to describe reachable

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida

states, but cannot mention specific communication actions which
requires non-obvious encodings. Note that most previous works
[7, 24] are developed in the context of process calculi and are not
applicable to a general purpose language.

Concluding remarks. We have presented a static verification
framework for channel-based concurrency in Go which we have
implemented in the Godel Checker tool. As shown in § 6, our in-
ference procedure allows us to accurately cover a broader class
of Go programs without the need for annotations or significant
user input. By integrating our approach with a general purpose
model checker, we are able to modularly verify arbitrary safety and
liveness properties. Compared to other existing tools, our approach
provides significantly better performance for larger programs, veri-
fying more properties and with better outcomes in terms of both
false alarms and, crucially, undetected liveness errors.

Given the general nature of our inference procedure, our frame-
work is not necessarily limited to mCRL2, nor model checking tech-
niques in general. For future work we plan to use other process
calculi verification techniques such as [37], as well as other model
checkers for concurrency such as [18]. Also, the general idea for our
inference can in principle be applied to other concurrency-centric
languages that rely on some form of SSA-like intermediate represen-
tation. We plan to apply our techniques to the Erlang language via
the Core Erlang [6] intermediate representation. We also plan to ad-
dress the OpenCL 2.0 heterogeneous programming framework [20]
which provides pipe objects (akin to Go channels) that are used for
inter-kernel communications and are prone to deadlocks.

ACKNOWLEDGMENTS
The work is partially supported by the EPSRC (grants EP/K034413/1,
EP/K011715/1, EP/L00058X/1, EP/N027833/1, and EP/N028201/1)

REFERENCES
[1] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna,

Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu,
Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,
Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and
Nobuko Yoshida. 2017. Behavioral Types in Programming Languages. Foundations
and Trends in Programming Languages, Vol. 3(2-3). Now Publishers Inc. 95–230
pages.

[2] Andrew W. Appel. 1998. SSA is Functional Programming. SIGPLAN Notices 33, 4
(1998), 17–20. https://doi.org/10.1145/278283.278285

[3] Cyrille Artho, Masami Hagiya, Richard Potter, Yoshinori Tanabe, FranzWeitl, and
Mitsuharu Yamamoto. 2013. Software model checking for distributed systems
with selector-based, non-blocking communication. In ASE. 169–179.

[4] The Go Authors. 2013. package ssa. http://golang.org/x/tools/go/ssa. (2013).
http://golang.org/x/tools/go/ssa.

[5] Brad Fitzpatrick. 2015. go 1.5.1 linux/amd64 deadlock detection failed. (9 2015).
https://github.com/golang/go/issues/12734.

[6] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-
Olof Nyström, Mikael Pettersson, and Robert Virding. 2000. Core Erlang 1.0
language specification. Information Technology Department, Uppsala University,
Tech. Rep (2000).

[7] Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. 2002. Types as models: model
checking message-passing programs. In POPL. 45–57.

[8] Witold Charatonik, Andrew D. Gordon, and Jean-Marc Talbot. 2002. Finite-
Control Mobile Ambients. In ESOP. 295–313. https://doi.org/10.1007/
3-540-45927-8_21

[9] CoreOS 2017. CoreOS. https://coreos.com/. (June 2017). https://coreos.com/.
[10] Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers, Erik P.

de Vink, Wieger Wesselink, and Tim A. C. Willemse. 2013. An Overview of
the mCRL2 Toolset and Its Recent Advances. Springer Berlin Heidelberg, Berlin,
Heidelberg, 199–213. https://doi.org/10.1007/978-3-642-36742-7_15

[11] MadsDam. 1996. Model CheckingMobile Processes. Information and Computation
129, 1 (1996), 35–51. https://doi.org/10.1006/inco.1996.0072

[12] Pierre-Malo Deniélou and Nobuko Yoshida. 2012. Multiparty Session Types Meet
Communicating Automata. In ESOP (LNCS), Vol. 7211. Springer, 194–213.

[13] E. W. Dijkstra. 1965. Cooperating sequential process. Programming Languages
(1965), 43–112.

[14] Docker 2017. Docker. https://www.docker.com/. (June 2017).
[15] 2014. Open Sourcing our Go Libraries. https://blogs.dropbox.com/tech/2014/07/

open-sourcing-our-go-libraries/. (July 2014).
[16] Stephan Falke, Deepak Kapur, and Carsten Sinz. 2011. Termination Analysis of

C Programs Using Compiler Intermediate Languages. In RTA. 41–50.
[17] Stephan Falke, Deepak Kapur, and Carsten Sinz. 2012. Termination Analysis

of Imperative Programs Using Bitvector Arithmetic. Springer Berlin Heidelberg,
Berlin, Heidelberg, 261–277.

[18] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W.
Roscoe. 2014. FDR3 — A Modern Refinement Checker for CSP. In Tools and
Algorithms for the Construction and Analysis of Systems (Lecture Notes in Computer
Science), Vol. 8413. 187–201.

[19] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and Anal-
ysis of Communicating Systems. MIT Press. https://mitpress.mit.edu/books/
modeling-and-analysis-communicating-systems

[20] Khronos OpenCL Working Group. 2015. The OpenCL Specification Version 2.0.
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf. (2015).

[21] Klaus Havelund and Thomas Pressburger. 2000. Model Checking JAVA Programs
using JAVA PathFinder. STTT 2, 4 (2000), 366–381.

[22] Tony Hoare. 1985. Communicating Sequential Processes. Prentice Hall.
[23] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asyn-

chronous Session Types. In POPL’08. ACM, 273–284. A full version in JACM:
63(1-9):1–67, 2016.

[24] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone,
Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio
Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of Session
Types and Behavioural Contracts. ACM Comput. Surv. 49, 1, Article 3 (April 2016),
36 pages.

[25] Atsushi Igarashi and Naoki Kobayashi. 2004. A generic type system for the
Pi-calculus. Theor. Comput. Sci. 311, 1-3 (2004), 121–163.

[26] Ilya Biin. 2017. AstraNet. (August 2017). https://github.com/zenhotels/astranet.
[27] K8S 2017. Kubernetes: Production-Grade Container Orchestration. https://

kubernetes.io/. (June 2017). https://kubernetes.io/.
[28] Dexter Kozen. 1983. Results on the Propositional mu-Calculus. Theor. Comput.

Sci. 27 (1983), 333–354. https://doi.org/10.1016/0304-3975(82)90125-6
[29] Daniel Kroening, Daniel Poetzl, Peter Schrammel, and BjörnWachter. 2016. Sound

static deadlock analysis for C/Pthreads. In ASE. 379–390.
[30] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2017. Fencing

off Go: Liveness and Safety for Channel-based Programming. In POPL 2017. ACM,
748–761.

[31] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2017. Godel
Checker. (2017). http://mrg.doc.ic.ac.uk/tools/godel-checker/.

[32] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. 2015. From Communicating
Machines to Graphical Choreographies. In POPL. ACM, 221–232.

[33] Jeff Magee and Jeff Kramer. 1999. Concurrency: State Models & Java Programs.
John Wiley & Sons, Inc., New York, NY, USA.

[34] Robin Milner. 1980. A Calculus of Communicating Systems. Lecture Notes in
Computer Science, Vol. 92. Springer.

[35] Robin Milner. 1989. Communication and Concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

[36] Nicholas Ng and Nobuko Yoshida. 2016. Static deadlock detection for concurrent
go by global session graph synthesis. In CC. 174–184.

[37] Luca Padovani. 2014. Deadlock and Lock Freedom in the Linear π -Calculus. In
CSL-LICS’14, Thomas A. Henzinger and Dale Miller (Eds.). ACM Press, 72:1–72:10.
https://doi.org/10.1145/2603088.2603116

[38] Corina S. Pasareanu, Willem Visser, David H. Bushnell, Jaco Geldenhuys, Peter C.
Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: integrating symbolic
execution with model checking for Java bytecode analysis. Autom. Softw. Eng.
20, 3 (2013), 391–425.

[39] Sameer Ajmani. 2014. Go Concurrency Patterns: Pipelines and cancellation.
(2014). https://blog.golang.org/pipelines.

[40] Kai Stadtmüller, Martin Sulzmann, and Peter Thiemann. 2016. Static Trace-Based
Deadlock Analysis for Synchronous Mini-Go. In APLAS. 116–136.

[41] Nick Stenning. 2017. Building a new router for GOV.UK. https://gdstechnology.
blog.gov.uk/2013/12/05/building-a-new-router-for-gov-uk/. (June 2017). https:
//gdstechnology.blog.gov.uk/2013/12/05/building-a-new-router-for-gov-uk/.

[42] Stillwater Supercomputing. 2017. Collection of Golang concurrency patterns.
(June 2017). https://github.com/stillwater-sc/concurrency.

[43] The Go Authors. 2017. Effective Go. (June 2017). https://golang.org/doc/effective_
go.html.

[44] Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon Park. 2000.
Model Checking Programs. In The Fifteenth IEEE International Conference on
Automated Software Engineering, ASE 2000. 3–12.

[45] Kai Wei. 2016. How we built Uber engineering’s highest query per second service
using Go. https://eng.uber.com/go-geofence/. (2016).

https://doi.org/10.1145/278283.278285
http://golang.org/x/tools/go/ssa
http://golang.org/x/tools/go/ssa
https://github.com/golang/go/issues/12734
https://doi.org/10.1007/3-540-45927-8_21
https://doi.org/10.1007/3-540-45927-8_21
https://coreos.com/
https://coreos.com/
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1006/inco.1996.0072
https://www.docker.com/
https://blogs.dropbox.com/tech/2014/07/open-sourcing-our-go-libraries/
https://blogs.dropbox.com/tech/2014/07/open-sourcing-our-go-libraries/
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://github.com/zenhotels/astranet
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://doi.org/10.1016/0304-3975(82)90125-6
http://mrg.doc.ic.ac.uk/tools/godel-checker/
https://doi.org/10.1145/2603088.2603116
https://blog.golang.org/pipelines
https://gdstechnology.blog.gov.uk/2013/12/05/building-a-new-router-for-gov-uk/
https://gdstechnology.blog.gov.uk/2013/12/05/building-a-new-router-for-gov-uk/
https://gdstechnology.blog.gov.uk/2013/12/05/building-a-new-router-for-gov-uk/
https://gdstechnology.blog.gov.uk/2013/12/05/building-a-new-router-for-gov-uk/
https://github.com/stillwater-sc/concurrency
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://eng.uber.com/go-geofence/

	Abstract
	1 Introduction
	2 Behavioural Types for Go
	2.1 Behavioural Properties of Types
	2.2 Relationship between Types and Programs

	3 Behavioural Type Inference
	3.1 From Go source code to SSA IR
	3.2 Extracting type definition bodies

	4 Model Checking Behavioural Types
	5 Implementation
	6 Evaluation
	7 Related Work and Conclusion
	Acknowledgments
	References

