
A Very Gentle Introduction to
Multiparty Session Types ?

Nobuko Yoshida and Lorenzo Gheri

Imperial College London, UK
{n.yoshida,l.gheri}@imperial.ac.uk

Abstract. Multiparty session types (MPST) are a formal specification
and verification framework for message-passing protocols without cen-
tral control: the desired interactions at the scale of the network itself
are specified into a session (called global type). Global types are then
projected onto local types (one for each participant), which describe the
protocol from a local point of view. These local types are used to validate
an application through type-checking, monitoring, and code generation.
Theory of session types guarantees that local conformance of all partic-
ipants induces global conformance of the network to the initial global
type. This paper provides a very gentle introduction of the simplest ver-
sion of multiparty session types for readers who are not familiar with
session types nor process calculi.

Keywords: Multiparty Session Types · Process Calculi · Distributed Systems
· Type Safety · Progress

1 A Gentle Introduction to Multiparty Session Types

Backgrounds. Session types were introduced in a series of papers during the
1990s [8,18,10] in the context of pure concurrent processes and programming.
Session types have since been studied in many contexts over the last decade—see
the surveys of the field [13,4].

A basic observation underlying session types is that a communication-based
application often exhibits a highly structured sequence of interactions involving,
for example, sequencing, choices and recursion, which as a whole form a natural
unit of session. The structure of a session is abstracted as a type through an
intuitive syntax, which is then used for validating programs through associated
language primitives.

Multiparty session types generalise the binary session type theory to the
multiparty case, preventing deadlock and communication errors in more sophis-
ticated communication protocols involving any number (two or more) of partic-
ipants. The central idea is to introduce global types, which describe multiparty

? Work partially supported by EPSRC projects EP/K034413/1, EP/K011715/1,
EP/L00058X/1, EP/N027833/1 and EP/N028201/1.

2 Nobuko Yoshida and Lorenzo Gheri

conversations from a global perspective and provide a means to check protocol
compliance. The theory [12,11] was born by transforming the industry idea de-
veloped during designing a protocol description language, Scribble [17], which
was presented by Kohei Honda in [9] (see the historical background [20]). This
original work was extended in various ways and applied to many different pro-
gramming languages and tools, some of which use Scribble. The reader who is
interested in programming languages can find the tools and papers at Mobility
Reading Group Home Page.

Binary session types. As a first example, consider a scenario where a cus-
tomer tries to conclude a deal with a travel agency. We associate a process with
the customer (Customer) and one with the agency (Agency). The task involves
synchronisation in the communication between the customer and the agency.
Synchronisation is obtained through the exchange of messages.

Specifically, the protocol works as follows.

1. The customer sends an order to the agency, namely the place they desire to
visit in their next travel (let us say Hawaii). On receiving the request, the
agency looks up the price relative to that travel and sends a quote (quote)
back to the customer.

2. When the customer receives the quote, they make a decision (choice): either
to accept or to reject the offer. The customer communicates their decision
to the agency, which is waiting for such a message.

3. In case of acceptance, the agency waits that the customer communicates
their address (address), then sends a confirmation date (date) for the trip
back to the customer and the protocol terminates.

4. In case of rejection, the deal is not made and the protocol immediately
terminates.

The multiparty session types methodology is as follows. First, define a global
type that gives a shared contract of the allowed pattern of message exchanges
in the system. Second, project the global type to each end-point participant to
obtain a local type: an obligation on the message sends and receipts for each
process that together ensure that the pattern of messages are allowed by the
global type. Finally, check that the implementation of each process conforms to
its local type.

In our protocol, from a global perspective, we expect to see the following
pattern of message exchanges, encoded as a global type for the communication:

Customer→ Agency : Hawaii(bool).Agency→ Customer : quote(nat).
Customer→ Agency : {

accept(bool).
Customer→ Agency : address(nat).
Agency→ Customer : date(nat).end,

reject(bool).end
}

(1)

http://mrg.doc.ic.ac.uk/
http://mrg.doc.ic.ac.uk/

A Very Gentle Introduction to Multiparty Session Types 3

The type describes the global pattern of communication between Customer and
Agency using message exchanges, sequencing, and choice. The basic pattern
Customer → Agency :m(S) indicates a message with label m sent from the
Customer to the Agency, together with an element of sort S. The communica-
tion starts with the customer sending the message Hawaii to the agency, then
the agency sends the quote label together with a natural number and at this
point the customer either sends an accept or a reject message. In case of reject ,
the protocol ends (type end); otherwise, the communication continues with the
sequential exchange of an address (from the customer to the agency) and a date
(from the agency to the customer). The operator “.” denotes sequencing, the “,”
separates possible continuations for the protocol.

The global type states what are the valid message sequences allowed in the
system. When we implement Customer and Agency separately, we would like to
check that their composition conforms to the global type. Since there are only
two participants, projecting to each participant is simple. From the perspective
of the Customer, the communication can be described by the type:

!Hawaii(bool).?quote(nat).
((!accept(bool).!address(nat).?date(nat).end)⊕ (!reject(bool).end))

(2)

where !m denotes a message with label m sent to Agency, ?m denotes a message
with label m received from Agency, and ⊕ denotes an internal choice. Thus the
type states that, Customer after sending the message with label Hawaii , waits
for a natural number for the quote and, after receiving it, decides either to send
!accept(bool). !address(nat), wait for a natural number for the date and then
exit, or to send just reject(bool) and exit.

From the viewpoint of Agency, the same global session is described by the
dual type

?Hawaii(bool).!quote(nat).
((?accept(bool).?address(nat).!date(nat).end) & (?reject(bool).end))

(3)

in which & means that a choice is offered externally.

We can now individually check that the implementations of the customer and
the agency conform to these local types.

Multiparty session types. In the case of two parties, the safety can be checked
given the local type (2) since its dual (3) is unique (up to unfolding recursions).
However, for applications involving multiple parties, the global type and its pro-
jection to each participant are essential to provide a shared contract among all
participants.

For example, consider a simple ring protocol, where, after the customer’s
acceptance, the agency needs to forward some details to the hotel, before a direct
communication starts between the hotel and the customer. Namely, Customer
sends a message details to Agency, which forwards the message to Hotel. After
receiving the message, Hotel sends an acknowledgement ok to Customer. We

4 Nobuko Yoshida and Lorenzo Gheri

start by specifying the global type as:

Customer→ Agency : details(nat).Agency→ Hotel : details(nat).
Hotel→ Customer : ok(bool).end

(4)

As before, we want to check each process locally against a local type such that, if
each process conforms to its local type, then the composition satisfies the global
type. The global type in (4) is projected into the three local types:

Customer’s endpoint type: Agency!details(nat).Hotel?ok(bool).end

Agency’s endpoint type: Customer?details(nat).Hotel!details(nat).end

Hotel’s endpoint type: Agency?details(nat).Customer!ok(bool).end

where Agency!details(nat) means “send to Agency a details message,” and Hotel

?ok(bool) means “receive from Hotel an ok message.” Then each process is type-
checked against its own endpoint type. When the three processes are executed,
their interactions automatically follow the stipulated scenario.

If instead we only used three separate binary session types to describe the
message exchanges between Customer and Agency, between Agency and Hotel,
and between Hotel and Customer, respectively, without using a global type,
then we lose essential sequencing information in this interaction scenario. Conse-
quently, we can no longer guarantee deadlock-freedom among these three parties.
Since the three separate binary sessions can be interleaved freely, an implementa-
tion of the Customer that conforms to Hotel?ok(bool).Agency!details(nat).end
becomes typable. This causes the situation that each of the three parties blocks
indefinitely while waiting for a message to be delivered.

In what follows we will start from giving more examples in Section 2, which
will be used as running examples throughout the whole paper. In Section 3 we
will introduce a formal process calculus powerful enough to describe multiparty
communication protocols, such as the ones from above. Finally in Section 4, we
will introduce a type system; we will show how multiparty session types work
by examples and present the key properties of typed processes.

2 Examples, Intuitively

Multiparty session types are aimed at enabling compositional reasoning about
communication among different parties. In this section we present informally
some essential communication protocols that can be handled with this method-
ology.

Let us for example consider the basic protocol from the previous section. This
simple protocol for a travel agency is syntetically displayed by Figure 1a. A more
interesting protocol could be the one shown in Figure 1b. Here the customer is
allowed to try again and again to obtain the new quote, should they not like the
first one. We will see that our calculus (Section 3) is endowed with recursion,
which can model an indefinite number of iterations.

A Very Gentle Introduction to Multiparty Session Types 5

Travel agency

Customer Agency

order

quote

accept

address

date

reject

alt [1]

[2]

(a) A simple protocol

Better Travel agency

Customer Agency

order

quote

accept

address

date

retry

Restart from
the top

reject

alt [1]

[2]

[3]

(b) A better protocol

Fig. 1: Communication protocols for a travel agency

Fig. 2: Multiparty communication protocol

6 Nobuko Yoshida and Lorenzo Gheri

Let us consider a specification in Figure 2, which describes a simple commu-
nication protocol among three parties. Bob is waiting for a message from Alice,
non-deterministically allowing for messages with two different labels (l1 and l2).
Alice sends the message with label l1 and the communication continues with
Bob sending a message message1 to Carol and finally Carol returning a message
answer to Alice, which depends on the previous communication, including the
choice of the label for the original message from Alice to Bob.

In the following sections, we model these protocols by a simple multiparty
session calculus, and give types to processes modelling these protocols.

3 Synchronous Multiparty Session Calculus

This section introduces the syntax and semantics of a synchronous multiparty
session calculus from [7], which simplifies the calculus in [14] by eliminating both
shared channels for session initiations and session channels for communications
inside sessions.

Notation 01 (Base sets). We use the following base sets: values, ranged over
by v, v′, . . .; expressions, ranged over by e, e′, . . .; expression variables, ranged
over by x, y, z . . . ; labels, ranged over by `, `′, . . . ; session participants, ranged
over by p, q, . . .; process variables, ranged over by X,Y, . . . ; processes, ranged
over by P,Q, . . . ; and multiparty sessions, ranged over by M,M′,

Syntax. A value v can be a natural number n, an integer i, or a boolean true /
false. An expression e can be a variable, a value, or a term built from expressions
by applying the operators succ, neg,¬,⊕, or the relation > . An evaluation
context E is an expression with exactly one hole. The operator ⊕ models non-
determinism: e1 ⊕ e2 is an expression that might yield either e1 or e2.

The processes of the synchronous multiparty session calculus are defined by:

P ::= p!`〈e〉.P ||
∑
i∈I

p?`i(xi).Pi || if e then P else P || µX.P || X || 0

The output process p!`〈e〉.Q sends the value of expression e with label ` to
participant p. The sum of input processes (external choice)

∑
i∈I p?`i(xi).Pi is

a process that can accept a value with label `i from participant p, for any i ∈ I.
According to the label `i of the received value, the variable xi is instantiated
with the value in the continuation process Pi. We assume that the set I is always
finite and non-empty.

The conditional process if e then P else Q represents the internal choice be-
tween processes P and Q. Which branch of the conditional process will be taken
depends on the evaluation of the expression e. The process µX.P is a recur-
sive process. We assume that the recursive processes are guarded. For example,
µX.p?`(x).X is a valid process, while µX.X is not. We often omit 0 from the
tail of processes.

A Very Gentle Introduction to Multiparty Session Types 7

We define a multiparty session as a parallel composition of pairs (denoted by
p / P) of participants and processes:

M ::= p / P || M | M

with the intuition that process P plays the role of participant p, and can in-
teract with other processes playing other roles in M. A multiparty session is
well formed if all its participants are different. We consider only well-formed
multiparty sessions.

Example 1. We now show how to encode, in the above calculus, processes re-
specting the protocols informally presented in Figure 1. Note that we picked one
different label for each destination (that can be either Hawaii or France), as well
as for each action (as “accept”, “reject”, . . .).

Let us start with processes in Figure 1a.

P ′Customer = Agency!Hawaii〈true〉.Agency?quote(x).
if (x > 1000)
then Agency!reject〈true〉.0
else Agency!accept〈true〉.Agency!address〈42〉.Agency?date(y).0

P ′Agency = Customer?Hawaii(x).Customer!quote〈5000〉.
(Customer?accept(y).Customer?address(z).

Customer!date〈25122019〉.0
+Customer?reject(y).0)

+ Customer?France(x).Customer!quote〈1000〉.
(Customer?accept(y).Customer?address(z).

Customer!date〈25122019〉.0
+Customer?reject(y).0)

The customer here would ask for Hawaii as a destination, they will receive
a quote that will be too expensive (5000 > 1000) and, thus, they will end up
rejecting the offer (via sending true with label reject).

In what follows instead we will extend the above processes, giving to the
customer the opportunity to retry, as suggested by the diagram in Figure 1b.

8 Nobuko Yoshida and Lorenzo Gheri

succ(n) ↓ (n + 1) neg(i) ↓ (−i) ¬true ↓ false ¬false ↓ true v ↓ v

(i1 > i2) ↓

{
true if i1 > i2,

false otherwise

e1 ↓ v
e1 ⊕ e2 ↓ v

e2 ↓ v
e1 ⊕ e2 ↓ v

e ↓ v E(v) ↓ v′

E(e) ↓ v′

Table 1: Expression evaluation.

PCustomer = Agency!Hawaii〈true〉.Agency?quote(x).
if (x > 1000)

then Agency! retry〈true〉 .Agency!France〈true〉.Agency?quote(y).

if (y > 1000)
then Agency!reject〈true〉.0
else Agency!accept〈true〉.Agency!address〈42〉.Agency?date(z).0

else Agency!accept〈true〉.Agency!address〈42〉.Agency?date(y).0

PAgency = µX. Customer?Hawaii(x).Customer!quote〈5000〉.
(Customer?accept(y).Customer?address(z).

Customer!date〈25122019〉.0
+ Customer?retry(y).X + Customer?reject(y).0)

+ Customer?France(x).Customer!quote〈1000〉.
(Customer?accept(y).Customer?address(z).

Customer!date〈25122019〉.0
+ Customer?retry(y).X + Customer?reject(y).0)

In the example above, we have highlighted the syntactic construct allowing
the customer to retry the purchase and obtain a new quote. In PCustomer the only
occurrence of the label retry is within a deterministic choice (if then else
construct): if the quote is too high, the customer will communicate to the agency
that they would like a different quote for a different destination. More interesting
is how PAgency handles the retry request, namely by recurring on X: the recursive
call is activated each time the agency receives a retry request from the customer.

Operational semantics. The value v of expression e (notation e ↓ v) is com-
puted as expected, see Table 1. The successor operation succ is defined only on
natural numbers, the negation neg is defined on integers, and ¬ is defined only
on boolean values. The internal choice e1⊕ e2 evaluates either to the value of e1
or to the value of e2.

The computational rules of multiparty sessions are given in Table 3. They
are closed with respect to the structural congruence defined in Table 2. In rule
[r-comm], the participant q sends the value v choosing the label `j to participant
p, who offers inputs on all labels `i with i ∈ I. In rules [t-conditional] and
[f-conditional], the participant p chooses to continue as P if the condition e

A Very Gentle Introduction to Multiparty Session Types 9

[s-rec]

µX.P ≡ P{µX.P/X}
[s-multi]

P ≡ Q⇒ p / P | M ≡ p / Q | M

[s-par 1]

p / 0 | M ≡M

[s-par 2]

M | M′ ≡M
′ | M

[s-par 3]

(M | M′) | M′′ ≡M | (M′ | M′′)

Table 2: Structural congruence.

[r-comm]

j ∈ I e ↓ v

p /
∑
i∈I

q?`i(x).Pi | q / p!`j〈e〉.Q | M −→ p / Pj{v/x} | q / Q | M

[t-conditional]

e ↓ true
p / if e then P else Q | M −→ p / P | M

[f-conditional]

e ↓ false
p / if e then P else Q | M −→ p / Q | M

[r-struct]

M
′
1 ≡M1 M1 −→M2 M2 ≡M

′
2

M
′
1 −→M

′
2

Table 3: Reduction rules.

evaluates to true and as Q if e evaluates to false. Rule [r-struct] states that the
reduction relation is closed with respect to structural congruence. We use −→∗
with the standard meaning.

We adopt some standard conventions regarding the syntax of processes and
sessions. Namely, we will use

∏
i∈I pi/Pi as short for p1/P1 | . . . | pn/Pn, where

I = {1, . . . , n}. We will sometimes use infix notation for external choice process.
For example, instead of

∑
i∈{1,2} p?`i(x).Pi, we will write p?`1(x).P1+p?`2(x).P2.

Example 2. We now show the operational semantics in action. Consider the fol-
lowing multiparty session with three participants, Alice, Bob and Carol :

M = Alice / PAlice | Bob / PBob | Carol / PCarol

where

PAlice = Bob!`1〈50〉.Carol?`3(x).0
PBob = Alice?`1(x).Carol!`2〈100〉.0 + Alice?`4(x).Carol!`2〈2〉.0
PCarol = Bob?`2(x).Alice!`3〈succ(x)〉.0

This mulitiparty session reduces to

Alice / 0 | Bob / 0 | Carol / 0

10 Nobuko Yoshida and Lorenzo Gheri

after three communications occur. First, Alice sends to Bob natural number
50 with the label `1. Bob is able to receive values with labels `1 and `4. Next,
the only possible communication is between Bob and Carol. So, Carol receives
natural number 100 from Bob. The value 100 is substituted in the continuation
process. Finally, since succ(100) ↓ 101, Carol sends 101 to Alice. We can then
reduce the session to, for example, Alice / 0, but not further.

Exercise 1. Prove the following:

1. Customer/P ′Customer | Agency/P ′Agency reduces to Customer/0 | Agency/0;
2. Customer/PCustomer | Agency/PAgency reduces to Customer/0 | Agency/0.

From the end of Example 2, we can see that a session M always has at least
one participant, since we do not have neutral element for the parallel composi-
tion. In Section 4, we will introduce a type system ensuring that if a well-typed
multiparty session has only one participant, then the corresponding process is 0
— hence, the participant’s process has no inputs/outputs to perform.

The most crucial property is that when a multiparty session contains com-
munications that will never be executed.

Definition 1. A multiparty session M is stuck if M 6≡ p / 0 and there is no
multiparty session M′ such that M −→ M′. A multiparty session M gets stuck,
notation stuck(M) , if it reduces to a stuck multiparty session.

The multiparty session M in Example 2 does not get stuck. A similar multiparty
session, where instead of PAlice we take P ′Alice = Bob!`1〈50〉.Carol?`5(x).0, gets
stuck because of label mismatch.

4 Type System

This section introduces a type system for the calculus presented in Section 3 (the
formulation is based on [7]). We formalise types and projections (Section 4.1),
the subtyping relation (Section 4.2), and the typing rules and their properties
(Section 4.3). All stated results in this paper are proved in [7].

4.1 Types and Projections

Global types provide global conversation scenarios of multiparty sessions, with a
bird’s eye view describing the message exchanges between pairs of participants.

Definition 2 (Sorts and global types). Sorts, ranged over by S, are defined
as:

S ::= nat || int || bool

Global types, ranged over by G, are terms generated by the following grammar:

G ::= end || µt.G || t || p→ q : {`i(Si).Gi}i∈I
We require that p 6= q, I 6= ∅, and `i 6= `j whenever i 6= j, for all i, j ∈ I.
We postulate that recursion is guarded. Unless otherwise noted, global types are
closed: a recursion variable t only occurs bounded by µt. . . .

A Very Gentle Introduction to Multiparty Session Types 11

In Definition 2, the type p → q : {`i(Si).Gi}i∈I formalises a protocol where
participant p must send to q one message with label `i and a value of type Si

as payload, for some i ∈ I; then, depending on which `i was sent by p, the
protocol continues as Gi. Value types are restricted to sorts, that can be natural
(nat), integer (int) and boolean (bool). The type end represents a terminated
protocol. Recursive protocol is modelled as µt.G, where recursion variable t is
bound and guarded in G — e.g., µt.p → q : `(nat).t is a valid global type,
whereas µt.t is not. We take the equi-recursive viewpoint, i.e. we identify µt.G
and G{µt.G/t}.

We define the set of participants of a global type G, by structural induction
on G, as follows:

pt{µt.G} = pt{G} pt{end} = pt{t} = ∅

pt{p→ q : {`i(Si).Gi}i∈I} = {p, q} ∪ pt{Gi} (i ∈ I)

We will often write p∈G instead of p ∈ pt{G}.
A local session type describes the behaviour of a single participant in a mul-

tiparty session.

Definition 3 (Local Session Types). The grammar of session types, ranged
over by T, is:

T ::= end || &i∈Ip?`i(Si).Ti || ⊕i∈Iq!`i(Si).Ti || µt.T || t

We require that `i 6= `j whenever i 6= j, for all i, j ∈ I. We postulate that
recursion is always guarded. Unless otherwise noted, session types are closed.

Note that, according to the previous definition, labels in a type need to be
pairwise different. For example, p?`(int).end&p?`(nat).end is not a type.

The session type end says that no further communication is possible and the
protocol is completed. The external choice or branching type &i∈Ip?`i(Si).Ti

requires to wait to receive a value of sort Si (for some i ∈ I) from the partic-
ipant p, via a message with label `i; if the received message has label `i, the
protocol will continue as prescribed by Ti. The internal choice or selection type
⊕i∈Iq!`i(Si).Ti says that the participant implementing the type must choose a
labelled message to send to q; if the participant chooses the message `i, for some
i ∈ I, it must include in the message to q a payload value of sort Si, and continue
as prescribed by Ti. Recursion is modelled by the session type µt.T. We adopt
the following conventions: we do not write branch/selection symbols in case of
a singleton choice, we do not write unnecessary parentheses, and we often omit
trailing ends.

The set pt{T} of participants of a session type T is defined inductively as
follows

pt{&i∈Ip?`i(Si).Ti} = pt{⊕i∈Ip!`i(Si).Ti} = {p} ∪
⋃

i∈I pt{Ti}

pt{µt.T} = pt{T} pt{t} = pt{end} = ∅.

12 Nobuko Yoshida and Lorenzo Gheri

In what follows we introduce the concept of projection of a global type onto
a participant, didactically into two steps: first we give the simpler version of
the projection from [11,12], then we extend it with the merging operation. The
second definition will extend the domain of the projection as a partial function
on global types, i.e., the second version of the projection will be well-defined in
a wider range of global types.

Definition 4. The projection (no-merging version) of a global type onto a par-
ticipant r is defined by recursion on G:

• end�r = end; [proj-end]

• t�r = t; [proj-var]

• (µt.G)�r = µt.(G�r) if r ∈ pt{G}; [proj-rec-1]

• (µt.G)�r = end if r /∈ pt{G}; [proj-rec-2]

• p→ r : {`i(Si).Gi}i∈I�r = &i∈Ip?`i(Si).Gi�r; [proj-in]

• r→ q : {`i(Si).Gi}i∈I�r = ⊕i∈Iq!`i(Si).Gi�r; [proj-out]

• p→ q : {`i(Si).Gi}i∈I�r = Gi0�r where i0 ∈ I, [proj-cont’]

if r 6∈{p, q} and, for all i, j ∈ I, Gi�r = Gj�r;

• undefined otherwise.

We describe the clauses of Definition 4:

[proj-end,proj-var] give the behaviour of projections on end and type variables;

[proj-rec-1,proj-rec-2] give the behaviour of projections on recursive types;
in particular [proj-rec-2] is needed: if we applied only [proj-rec-1] to any
recursive type, we will obtain (µt.p→ q : `(nat).t)�r = µt.t, namely we will
allow for unguarded occurrences of t, which we do not accept as valid;

[proj-in] (resp. [proj-out]) states that a global type G starting with a commu-
nication from p to r (resp. from r to q) projects onto an external (resp. in-
ternal) choice &i∈Ip?`i(Si).Gi�r (resp. ⊕i∈Iq!`i(Si).Gi�r), provided that the
continuations of &i∈Ip?`i(Si).Gi�r (resp. ⊕i∈Iq!`i(Si).Gi�r) are also projec-
tions of the corresponding global type continuations Gi�r.

[proj-cont’] states that if G starts with a communication between p and q, and
we are projecting G onto a third participant r, then we need to make sure
that continuation is the same on all branches; just below we will see how
this restriction can be relaxed.

Example 3. We now show an example of some projections of global types. Con-
sider the global type (where p, q and r are pairwise distinct):

G = p→ q : {`1(nat).G1, `2(bool).G1} where G1 = q→ r : {`3(int), `4(nat)}

A Very Gentle Introduction to Multiparty Session Types 13

We have:

G�p = q!`1(nat).(G1�p) ⊕ q!`2(bool).(G1�p)
= q!`1(nat).end ⊕ q!`2(bool).end

G�q = p?`1(nat).(G1�q) & p?`2(bool).(G1�q)
= p?`1(nat).

(
r!`3(int)⊕ r!`4(nat)

)
& p?`2(bool).

(
r!`3(int)⊕ r!`4(nat)

)
G�r = G1�r =

(
q?`3(int)&q?`4(nat)

)
Note that G�r is well defined only because the continuation of the communication
after the exchange p→ q is equal, namely G1, in both branches.

In the following Definition 5, we give a more permissive definition of projec-
tion, that handles also cases in which the continuation is not the same in all
branches, but the types are somehow “compatible”, namely they can be merged.
Our definition follows [7], which extends [11,12], along the lines of [19] and [2].
i.e., it uses a merging operator

d
.

Definition 5. The projection of a global type onto a participant r is defined by
recursion on G:

• end�r = end; [proj-end]

• t�r = t; [proj-var]

• (µt).G�r = µt.(G�r) if r ∈ pt{G}; [proj-rec-1]

• (µt).G�r = end if r /∈ pt{G}; [proj-rec-2]

• p→ r : {`i(Si).Gi}i∈I�r = &i∈Ip?`i(Si).Gi�r; [proj-in]

• r→ q : {`i(Si).Gi}i∈I�r = ⊕i∈Iq!`i(Si).Gi�r; [proj-out]

• p→ q : {`i(Si).Gi}i∈I�r =
d

i∈I(Gi�r) if r 6∈{p, q}; [proj-cont]

• undefined otherwise.

Above,
d

is the merging operator, that is a partial operation over session types
defined as:

T1

d
T2 =



T1 if T1 = T2 [mrg-id]

T3 if ∃I, J :

 T1 = &i∈Ip
′?`i(Si).Ti and

T2 = &j∈Jp
′?`j(Sj).Tj and

T3 = &k∈I∪Jp
′?`k(Sk).Tk

[mrg-bra]

undefined otherwise.

Proposition 1. The merging operation is associative, i.e.: T u (T′ u T′′) =
(T u T′) u T′′.

By Definition 5, merging a type with itself results in itself (rule [mrg-id]).
Moreover, Definition 5 allows to combine different external choices (rule [mrg-bra])
if and only if common labels have identical sorts and identical continuations, as
formalised in Proposition 2 below and illustrated in Examples 4 to 6 .

14 Nobuko Yoshida and Lorenzo Gheri

Proposition 2. For two types T′ = &i∈Ip
′?`i(Si).Ti and T′′ = &j∈Jp

′′?`j(Sj).Tj,
we have that T′ u T′′ is defined if and only if p′ = p′′ and, whenever `i = `j
(for some i ∈ I and j ∈ J), Si = Sj and Ti = Tj.

Example 4. We now give some small examples that illustrate the definition of
the merging operator (here, i 6= j implies `i 6= `j):

q!`(nat) u q!`(nat) = q!`(nat)

p!`(nat) u q!`(nat) undefined: outputs to different participants

q!`3(nat) u q!`4(nat) undefined: outputs with different labels(
q?`3(int)&q?`5(nat)

)
u
(
q?`4(int)&q?`5(nat)

)
= q?`3(int)&q?`4(int)&q?`5(nat)

q?`3(nat) u q?`3(nat).q?`3(nat)
undefined: same prefixes, but different continuations

q?`(nat) u q?`(int) undefined: the payload sorts do not match

Now we understand better how clause [proj-cont] works: it states that if
G starts with a communication between p and q, and we are projecting G
onto a third participant r, then we need to (1) skip the initial communica-
tion, (2) project all the continuations onto r, and (3) merge the resulting session
types, using the merging operator u.

As a result, clause [proj-cont] of Definition 5 allows participant r to receive
different messages (from a same participant p′) in different branches of a global
type, as shown in Example 5 below.

Example 5. We demonstrate interesting points of Definition 5. First, we show
some projections of global types. Consider the global type:

G = p→ q : {`1(nat).G1, `2(bool).G2} where

G1 = q→ r : {`3(int), `5(nat)}
G2 = q→ r : {`4(int), `5(nat)}
r 6= p

We have:

G�p = q!`1(nat).(G1�p) ⊕ q!`2(bool).(G2�p)
= q!`1(nat).end ⊕ q!`2(bool).end

G�q = p?`1(nat).(G1�q) & p?`2(bool).(G2�q)
= p?`1(nat).

(
r!`3(int)⊕ r!`5(nat)

)
& p?`2(bool).

(
r!`4(int)⊕ r!`5(nat)

)
G�r = G1�r u G2�r =

(
q?`3(int)&q?`5(nat)

)
u
(
q?`4(int)&q?`5(nat)

)
= q?`3(int)&q?`4(int)&q?`5(nat)

Note that in G, q could output different messages towards r, depending on
whether p sends `1 or `2 to q; therefore, in G�r, the possible inputs of r in
G1 and G2 are merged into a larger external choice that supports all possible
outputs of q.

A Very Gentle Introduction to Multiparty Session Types 15

Importantly, by Definition 5, there exist global types that cannot be pro-
jected onto all their participants. This is because G might describe meaningless
protocols, that cause the merging operation u in clause [proj-cont] to be unde-
fined, as shown in Example 6 below.

Example 6. We show two global types that cannot be projected according to the
Definition 5. Consider the global type G = p → q : {`1(nat).G1 , `2(bool).G2},
with G1 = r→ q : `3(nat) and G2 = r→ q : `4(nat). Then,

G�p = q!`1(nat)⊕ q!`2(bool)

G�q = p?`1(nat).r?`3(nat) & p?`2(bool).r?`4(nat)

G�r = q!`3(nat) u q!`4(nat) (undefined if `3 6= `4)

Intuitively, when `3 6= `4, G�r is undefined because in G, depending on whether
p and q exchange `1 or `2, r is supposed to send either `3 or `4 to q; however,
r is not privy to the interactions between p and q, and thus, G provides an
invalid specification for r. Instead, if `3 = `4, then by Definition 5 we have
G�r = q!`3(nat) u q!`3(nat) = q!`3(nat).

Now, consider the global type G′ = p→ q : {`1(nat).G′1 , `2(bool).G′2}, with
G′1 = q→ r : `3(nat) and G′2 = q→ r : `3(nat).q→ r : `3(nat). Then,

G′�p = q!`1(nat)⊕ q!`2(bool)

G′�q = p?`1(nat).r!`3(nat) & p?`2(bool).r!`3(nat).r!`3(nat)

G′�r = q?`3(nat) u q?`3(nat).q?`3(nat) (undefined)

Here, G′�r is undefined because in G′, depending on whether p and q exchange
`1 or `2, r is supposed to receive either one or two messages `3 from q; however,
as in the previous example, r is not aware of the interactions between p and q,
and thus, G provides an invalid specification for r. This example could be fixed,
e.g., by replacing `3 with `′ 6= `3 in G′2, or by letting G′1 = G′2: both fixes would
make G′�r defined, similarly to Example 5.

4.2 Subtyping

The subtyping relation 6 is used to augment the flexibility of the type system
(introduced in Section 4.3): by determining when a type T is “smaller” than T′,
it allows to use a process typed by the former whenever a process typed by the
latter is required.

Definition 6 (Subsorting and subtyping). Subsorting ≤: is the least re-
flexive binary relation such that nat ≤: int.

Subtyping 6 is the largest relation between session types coinductively defined
by the following rules:

[sub-end] end 6 end

[sub-in]

∀i ∈ I : S′i ≤: Si Ti 6 T′i

&i∈I∪Jp?`i(Si).Ti 6 &i∈Ip?`i(S
′
i).T

′
i

===================================

[sub-out]

∀i ∈ I : Si ≤: S′i Ti 6 T′i

⊕i∈Ip!`i(Si).Ti 6 ⊕i∈I∪Jp!`i(S
′
i).T

′
i

==================================

16 Nobuko Yoshida and Lorenzo Gheri

Intuitively, the session subtyping 6 in Definition 6 says that T is smaller than
T′ when T is “less liberal” than T′ — i.e., when T allows for less internal choices,
and demands to handle more external choices.1 A peculiarity of the relation is
that, apart from a pair of inactive session types, only inputs and outputs from/to
a same participant can be related (with additional conditions to be satisfied).
Note that the double line in the subtyping rules indicates that the rules are
interpreted coinductively [15, Chapter 21]

[sub-end] says that end is only subtype of itself.
[sub-in] relates external choices from the same participant p: the subtype must

support all the choices of the supertype, and for each common message
label, the continuations must be related, too; note that the carried sorts
are contravariant: e.g., if the supertype requires to receive a message `i(nat)
(for some i ∈ I), then the subtype can support `i(int) or `i(nat), since
nat ≤: int and nat ≤: nat.

[sub-out] relates internal choices towards the same participant p: the subtype
must offer a subset of the choices of the supertype, and for each common
message label, the continuations must be related, too; note that the carried
sorts are covariant: e.g., if the supertype allows to send a message `i(int)
(for some i ∈ I), then the subtype can allow to send `i(int) or `i(nat), since
int ≤: int and nat ≤: int.

Lemma 1. The subtyping relation 6 is reflexive and transitive.

4.3 Type system

We now introduce a type system for the multiparty session calculus presented
in Section 3. We distinguish three kinds of typing judgments:

Γ ` e : S Γ ` P : T `M : G

where Γ is the typing environment :

Γ ::= ∅ || Γ, x : S || Γ,X : T

i.e., a mapping that associates expression variables with sorts, and process vari-
ables with session types.

We say that a multiparty session M is well typed if there is a global type G
such that `M : G. If a multiparty session is well typed, we will sometimes write
just `M.

The typing rules for expressions are given in Table 4, and are self-explanatory.
The typing rules for processes and multiparty sessions are content of Table 5:

1 Readers familiar with the theory of session types might notice that our subtyping re-
lation is inverted w.r.t. the original binary session subtyping, introduced in the works
of [6,3]. In such works, smaller types have less internal choices, and more external
choices: this is because they formalise a “channel-oriented” notion of subtyping,
while we adopt a “process-oriented” view. For a thorough analysis and comparison
of the two approaches, see [5].

A Very Gentle Introduction to Multiparty Session Types 17

Γ ` n : nat Γ ` i : int Γ ` true : bool Γ ` false : bool Γ, x : S ` x : S

Γ ` e : nat

Γ ` succ(e) : nat

Γ ` e : int

Γ ` neg(e) : int

Γ ` e : bool

Γ ` ¬e : bool

Γ ` e1 : S Γ ` e2 : S

Γ ` e1 ⊕ e2 : S

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 > e2 : bool

Γ ` e : S S ≤: S′

Γ ` e : S′

Table 4: Typing rules for expressions.

[t-sub] is the subsumption rule: a process with type T is also typed by the
supertype T′;

[t-0] says that a terminated process implements the terminated session type;
[t-rec] types a recursive process µX.P with T if P can be typed as T, too, by

extending the typing environment with the assumption that X has type T;
[t-var] uses the typing environment assumption that process X has type T;
[t-input-choice] types a summation of input prefixes as a branching type. It

requires that each input prefix targets the same participant q, and that, for
all i ∈ I, each continuation process Pi is typed by the continuation type Ti,
having the bound variable xi in the typing environment with sort Si. Note
that the rule implicitly requires the process labels `i to be pairwise distinct
(as per Definition 3);

[t-out] types an output prefix with a singleton selection type, provided that the
expression in the message payload has the correct sort S, and the process
continuation matches the type continuation;

[t-choice] types a conditional process with T if its sub-processes can be typed
by T and expression e is boolean.

[t-sess] types multiparty sessions, by associating typed processes to participants.
It requires that the processes being composed in parallel can play as par-
ticipants of a global communication protocol: hence, their types must be
projections of a single global type G. The condition pt{G} ⊆ {pi | i ∈ I} al-
lows to also type sessions containing p/0: this is needed to assure invariance
of typing.

Example 7. We show that the multiparty session M from Example 2 is well
typed. Consider the following global type:

G = Alice→ Bob :
{`1(nat).Bob→ Carol : `2(nat).Carol→ Alice : `3(nat).end,
`4(nat).Bob→ Carol : `2(nat).Carol→ Alice : `3(nat).end}.

We show that participants Alice, Bob and Carol respect the prescribed protocol
G, by showing that they participate in a well-typed multiparty session. Applying

18 Nobuko Yoshida and Lorenzo Gheri

[t-sub]

Γ ` P : T T 6 T′

Γ ` P : T′

[t-0]

Γ ` 0 : end

[t-rec]

Γ,X : T ` P : T

Γ ` µX.P : T

[t-var]

Γ,X : T ` X : T

[t-input-choice]

∀i ∈ I Γ, xi : Si ` Pi : Ti

Γ `
∑
i∈I

q?`i(xi).Pi : &i∈Iq?`i(Si).Ti

[t-out]

Γ ` e : S Γ ` P : T

Γ ` q!`〈e〉.P : q!`(S).T

[t-choice]

Γ ` e : bool Γ ` P1 : T Γ ` P2 : T

Γ ` if e then P1 else P2 : T

[t-sess]

∀i ∈ I ` Pi : G�pi pt{G} ⊆ {pi | i ∈ I}

`
∏
i∈I

pi / Pi : G

Table 5: Typing rules for processes and sessions.

rules from Table 5, we derive

` PAlice : TAlice ` PBob : TBob ` PCarol : TCarol

where:

TAlice = Bob!`1(nat).Carol?`3(nat).end
TBob = Alice?`1(nat).Carol!`2(nat).end & Alice?`4(nat).Carol!`2(nat).end
TCarol = Bob?`2(nat).Alice!`3(nat).end

Now, let:

T′Alice = Bob!`1(nat).Carol?`3(nat).end ⊕ Bob!`4(nat).Carol?`3(nat).end

Since it holds that TAlice 6 T′Alice, and the projections of G to the participants
are

G�Alice = T′Alice G�Bob = TBob G�Carol = TCarol

we conclude:

` Alice / PAlice | Bob / PBob | Carol / PCarol : G.

Example 8. Let us consider processes PCustomer and PAgency from Example 1. As
a suitable global type for the session

Customer / PCustomer | Agency / PAgency

we pick the following.

G = µt. Customer→ Agency : {Hawaii(bool).G1,France(bool).G1}
where
G1 = Agency→ Customer : { quote(nat).Customer→ Agency : {

accept(bool).Customer→ Agency : address(nat).
Agency→ Customer : date(nat).end,

retry(bool).t,
reject(bool).end }}

A Very Gentle Introduction to Multiparty Session Types 19

Observe the recursive behaviour over t. Now, let us project G onto its par-
ticipant Agency (there is no need to merge types here, namely we can use Defi-
nition 4):

G�Agency = µt. (Customer?Hawaii(bool).G1�Agency
⊕ Customer?France(bool).G1�Agency)

and
G1�Agency = Customer!quote(nat).(

(Customer?accept(bool).Customer?address(nat).
Customer!date(nat).end)

& (Customer?retry(bool).t)
& (Customer?reject(bool).end))

Also this projection presents a recursive behaviour as expected. The reader
will now be able to derive:

` Customer / PCustomer | Agency / PAgency : G.

Exercise 2. This exercise is intended to guide the reader to obtain the final result
(using the same notation as in Example 1 and Example 8):

` Customer / PCustomer | Agency / PAgency : G

Let us proceed step by step following Example 7.

1. Given the global type G and its projection G�Agency, derive G�Customer.
2. Then derive ` PCustomer : G�Customer and ` PAgency : G�Agency.

Hint 1. The reader might want to use the identification of µt.G and G{µt.G/t}
(this holds both for global and session types), namely the possibility to unfold
any recursive construct for types.

Hint 2. In order to prove points 2. and 3. the reader might want to pro-
ceed in two steps: first, finding appropriate session types TCustomer and TAgency

for processes PCustomer and PAgency respectively, and second, proving TCustomer 6
G�Customer and TAgency 6 G�Agency.

Exercise 3. Prove that: ` Customer / P ′Customer | Agency / P ′Agency : G.

The proposed type system for multiparty sessions enjoys two fundamental
properties: typed sessions only reduce to typed sessions (subject reduction), and
typed sessions never get stuck. The remaining of this section is devoted to the
proof of these properties.

In order to state subject reduction, we need to formalise how global types
are modified when multiparty sessions reduce and evolve.

Definition 7 (Global types consumption and reduction). The consump-

tion of the communication p
`−→ q for the global type G (notation G \ p `−→ q) is

20 Nobuko Yoshida and Lorenzo Gheri

the global type coinductively defined as follows:(
p→ q : {`i(Si).Gi}i∈I

)
\ p `−→ q = Gk if ∃k ∈ I : ` = `k(

r→ s : {`i(Si).Gi}i∈I
)
\ p `−→ q = r→ s : {`i(Si).Gi \ p

`−→ q}i∈I

if

{
{r, s} ∩ {p, q} = ∅
∀i∈I : {p, q}⊆Gi

The reduction of global types is the smallest pre-order relation closed under the

rule: G =⇒ G \ p `−→ q

Example 9. We show that a projection of a global type before the consumption
might require to support more external choices than the projection after the
consumption. Take G, its subterm G1, from Example 5, and their types denoted
as G and G1, respectively. Also take the projection:

G�r = q?`3(int)&q?`4(int)&q?`5(nat)

and recall the explanation on how G�r above merges all the possible inputs that
r might receive from q, depending on whether p first sends `1 or `2 to q. We
have:

G \ p `1−→ q = G1 = q→ r : {`3(int), `5(nat)}

(G \ p `1−→ q)�r = G1�r = q?`3(int)&q?`5(nat)

and we obtain G�r 6 (G \ p `1−→ q)�r. The reason is that, after the transition
from G to G1, there is no possibility for q to send `4 to r, hence r does not need
to support such a message in its projection.

Note that a process that plays the role of r in G, and is therefore typed by
G�r, has to support the input of `4 from q, by rule [t-input-choice] in Table 5.
After the transition from G to G1, the same process is also typed by G1�r, by
rule [t-sub] — but will never receive a message `4 from q.

We can now prove subject reduction.

Theorem 1 (Subject Reduction). Let ` M : G. For all M′, if M −→ M′,
then `M′ : G′ for some G′ such that G =⇒ G′.

Theorem 2 (Progress). If ` M : G, then either M ≡ p / 0 or there is M′

such that M −→M′.

As a consequence of subject reduction and progress, we get the safety prop-
erty stating that a typed multiparty session will never get stuck.

Theorem 3 (Type Safety). If `M : G, then it does not hold stuck(M) .

Proof. Direct consequence of Theorem 1, Theorem 2, and Definition 1.

Finally the reader wishes to learn more about the full asynchronous multi-
party session types (which includes channel passing, asynchrony (FIFO queues),
shared names and parameterised recursion) can proceed to [1]. The article [16]
also discusses type soundness of various MPST calculi.

A Very Gentle Introduction to Multiparty Session Types 21

References

1. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle introduc-
tion to multiparty asynchronous session types. In: SFM. LNCS, vol. 9104, pp.
146–178. Springer (2015)

2. Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multi-
party session types. Logical Methods in Computer Science 8(4) (2012).
https://doi.org/10.2168/LMCS-8(4:6)2012

3. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2/3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

4. Gay, S., Ravera, A. (eds.): Behavioural Types: from Theory to Tools. River Pub-
lishers (2017)

5. Gay, S.J.: Subtyping supports safe session substitution. In: A List of Successes That
Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His
60th Birthday. LNCS, vol. 9600, pp. 95–108. Springer International Publishing
(2016). https://doi.org/10.1007/978-3-319-30936-1 5

6. Gay, S.J., Hole, M.: Types and subtypes for client-server interactions. In: ESOP.
pp. 74–90 (1999). https://doi.org/10.1007/3-540-49099-X 6

7. Ghilezan, S., Jaksic, S., Pantovic, J., Scalas, A., Yoshida, N.: Precise subtyping
for synchronous multiparty sessions. J. Log. Algebr. Meth. Program. 104, 127–173
(2019). https://doi.org/10.1016/j.jlamp.2018.12.002

8. Honda, K.: Types for dyadic interaction. In: CONCUR’93. pp. 509–523 (1993)
9. Honda, K., Mukhamedov, A., Brown, G., Chen, T.C., Yoshida, N.: Scribbling in-

teractions with a formal foundation. In: ICDCIT. LNCS, vol. 6536, pp. 55–75.
Springer (2011). https://doi.org/10.1007/978-3-642-19056-8 4

10. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: ESOP. LNCS, vol. 1381,
pp. 22–138. Springer (1998). https://doi.org/10.1007/BFb0053567

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL. pp. 273–284. ACM Press (2008). https://doi.org/10.1145/1328438.1328472

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. Jour-
nal of ACM 63, 1–67 (2016)

13. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.M.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv. 49(1)
(2016). https://doi.org/10.1145/2873052

14. Kouzapas, D., Yoshida, N.: Globally governed session semantics.
In: CONCUR. LNCS, vol. 8052, pp. 395–409. Springer (2013).
https://doi.org/10.1145/1328438.1328472

15. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
16. Scalas, A., Yoshida, N.: Less is more: Multiparty session types revisited. ACM

Program. Lang. POPL (2019). https://doi.org/10.1145/3290343
17. Scribble home page, http://www.scribble.org
18. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and

its Typing System. In: PARLE’94. LNCS, vol. 817, pp. 398–413 (1994).
https://doi.org/10.1007/3-540-58184-7 118

19. Yoshida, N., Deniélou, P., Bejleri, A., Hu, R.: Parameterised multiparty ses-
sion types. In: FOSSACS. LNCS, vol. 6014, pp. 128–145. Springer (2010).
https://doi.org/10.1007/978-3-642-12032-9 10

20. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In: TGC.
LNCS, vol. 8358, pp. 22–41. Springer (2013)

https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2873052
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/3290343
http://www.scribble.org
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-642-12032-9_10

	A Very Gentle Introduction toMultiparty Session Types

