
Stay Safe under Panic: Affine Rust Programming
with Multiparty Session Types
Nicolas Lagaillardie #

Department of Computing, Imperial College London, London, SW7 2AZ, United Kingdom

Rumyana Neykova #

Department of Computer Science, Brunel University London, London, UB8 3PH, United Kingdom

Nobuko Yoshida #

Department of Computing, Imperial College London, London, SW7 2AZ, United Kingdom

Abstract
Communicating systems comprise diverse software components across networks. To ensure their
robustness, modern programming languages such as Rust provide both strongly typed channels,
whose usage is guaranteed to be affine (at most once), and cancellation operations over binary
channels. For coordinating components to correctly communicate and synchronize with each
other, we use the structuring mechanism from multiparty session types, extending it with affine
communication channels and implicit/explicit cancellation mechanisms. This new typing discipline,
affine multiparty session types (AMPST), ensures cancellation termination of multiple, independently
running components and guarantees that communication will not get stuck due to error or abrupt
termination. Guided by AMPST, we implemented an automated generation tool (MultiCrusty) of
Rust APIs associated with cancellation termination algorithms, by which the Rust compiler auto-
detects unsafe programs. Our evaluation shows that MultiCrusty provides an efficient mechanism
for communication, synchronization and propagation of the notifications of cancellation for arbitrary
processes. We have implemented several usecases, including popular application protocols (OAuth,
SMTP), and protocols with exception handling patterns (circuit breaker, distributed logging).

2012 ACM Subject Classification Software and its engineering → Software usability; Software and
its engineering → Concurrent programming languages; Theory of computation → Process calculi

Keywords and phrases Rust language, affine multiparty session types, failures, cancellation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.1

Funding The work is supported by EPSRC EP/T006544/1, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/1, EP/N028201/1, EP/T014709/1 and EP/V000462/1, and NC-
SS/EPSRC VeTSS.

Acknowledgements We thank the ECOOP reviewers for their insightful comments and suggestions,
and (alphabetical order) Zak Cutner, Wen Kokke, Roland Kuhn, Dimitris Mostrous and Martin
Vassor for discussions.

1 Introduction
The advantage of message-passing concurrency is well-understood: it allows cheap horizontal
scalability at a time when technology providers have to adapt and scale their tools and
applications to various devices and platforms. In recent years, the software industry has
seen a shift towards languages with native message-passing primitives (e.g., Go, Elixir and
Rust). Rust, for example, has been named the most loved programming language in the
annual Stack Overflow survey for five consecutive years (2016-20) [47]. It has been used for
the implementation of large-scale concurrent applications such as the Firefox browser, and
Rust libraries are part of the Windows Runtime and Linux kernel. Rust’s rise in popularity
is due to its efficiency and memory safety. Rust’s dedication to safety, however, does not
yet extend to communication safety. Message-passing based software is as liable to errors as

© Nicolas Lagaillardie, Rumyana Neykova and Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

ECOOP 2022.
Editors: Editors; Article No. 1; pp. 1:1–1:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:n.lagaillardie19@imperial.ac.uk
mailto:rumyana.neykova@brunel.ac.uk
mailto:n.yoshida@imperial.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

other concurrent programming techniques [49] and communication programming with Rust
built-in message-passing abstractions can lead to a plethora of communication errors [27].

Much academic research has been done to develop rigorous theoretical frameworks for the
verification of message-passing programs. One such framework is multiparty session types
(MPST) [18] – a type-based discipline that ensures concurrent and distributed systems are
safe by design. It guarantees that processes following a predefined communication protocol
(also called a multiparty session) are free from communication errors and deadlocks. Rust
may seem a particularly appealing language for the practical embedding of session types with
its message-passing abstractions and affine type system. The core theory of session types,
however, has serious shortcomings as its safety is guaranteed under the assumption that a
session should run until its completion without any failure. Adapting MPST in the presence
of failure and realising it in Rust are closely intertwined, and raise two major challenges:

Challenge 1: Affine multiparty session types (AMPST). There is an inherent
conflict between the affinity of Rust and the linearity of session types. The type system of
MPST guarantees a linear usage of channels, i.e., communication channels in a session must
be used exactly once. As noted in [27], in a distributed system, it is a common behaviour
that a channel or the whole session can be cancelled prematurely – for example, a node can
suddenly get disconnected, and the channels associated with that node will be dropped. A
naive implementation of MPST cancellation, however, will lead to incorrect error notification
propagation, orphan messages, and stuck processes. The current theory of MPST does not
capture affinity, hence cannot guarantee deadlock-freedom and liveness between multiple
components in a realistic distributed system. Classic multiparty session type systems [18]
do not prevent any errors related to session cancellation. An affine multiparty session type
system should (1) prevent infinitely cascading errors, and (2) ensure deadlock-freedom and
liveness in the presence of session cancellations for arbitrary processes. Although there
are a few works on affine session types, they are either binary [36, 13] or modelling a very
limited cancellation over a single communication action, and a general cancellation is not
supported [16] (see § 6.2, and [30]).

Challenge 2: Realising an affine multiparty channel over binary channels. The
extension of binary session types to multiparty is usually not trivial. The theory assumes
multiparty channels, while channels, in practice, are binary. To preserve the global order
specified by a global protocol, also called the order of interactions, when implementing a
multiparty protocol over binary channels, existing works [19, 37, 42, 6] use code generation
from a global protocol to local APIs, requiring type-casts at runtime on the underlying
channels, compromising the type safety of the host type system. Implementing MPST with
failure becomes especially challenging given that cancellation messages should be correctly
propagated across multiple binary channels.

In this work, we overcome the above two challenges by presenting a new affine multiparty
session types framework for Rust (AMPST). We present a shallow embedding of the theory
into Rust by developing a library for safe communication, MultiCrusty. The library utilises
a new communication data structure, affine meshed channels, which stores multiple binary
channels without compromising type safety. A macro operation for exception handling safely
propagates failure across all in-scope channels. We leverage an existing binary session types
library, Rust’s macros facilities, and optional types to ensure that communication programs
written with MultiCrusty are correct-by-construction.

Our implementation brings three insightful contributions: (1) multiparty communication
safety can be realised by the native Rust type system (without external validation tools); (2)
top-down and bottom-up approaches can co-exist; (3) Rust’s destructor mechanism can be



N. Lagaillardie, R. Neykova and N. Yoshida 1:3

Top-down approach

Global types 
in Scribble

Local types\CFSM

project

Bottom-up approach

CFSM are 
(in)compatible

CFSM

Rust types

Programs written with MultiCrusty API

generate rewrite

Type checking

k-MC check

(a) MultiCrusty Workflow (top-down)

Client Authenticator Server

alt
RequestVid

RequestVid
SendVid

SendVid

Close
Close

(b) Video streaming service usecase

Figure 1 Programming with multiparty session types
utilised to propagate session cancellation. All other works generate not only the types but
also the communication primitives for multiparty channels which are protocol-specific. The
crucial idea underpinning the novelty of our implementation is that one can pre-generate the
possible communication actions without having the global protocol; and then use the types
to limit the set of permitted actions. Without this realisation neither (1), nor (2) is possible.
Paper Summary and Contributions:

§ 2 outlines the gains of programming with affine meshed channels by introducing our running
example, a Video streaming service, and its Rust implementation using MultiCrusty.

§ 3 establishes the metatheory of AMPST. We present a core multiparty session π-calculus
with session delegation and recursion, together with new constructs for exception handling,
and affine selection and branching (from Rust optional types). The calculus enjoys session-
fidelity (Theorem 3.14), deadlock-freedom (Theorem 3.16), liveness (Theorem 3.17), and
a novel cancellation termination property (Theorem 3.22).

§ 4 describes the main challenges of embedding AMPST in Rust, and the design and implement-
ation of MultiCrusty, a library for safe multiparty communication Rust programming.

§ 5 evaluates the execution and compilation overhead of MultiCrusty. Microbenchmarks
show negligible overhead when compared with the built-in unsafe Rust channels, provided
by crossbeam-channel, and up to two-fold runtime improvement to a binary session
types library on protocols with high-degree of synchronisation. We have implemented,
using MultiCrusty, examples from the literature, and application protocols (see [30]).
Additionally, § 6 discusses related works and § 7 concludes. The proofs of our theorems

are included in [30]. Our library is available in this public library: https://github.com/
NicolasLagaillardie/mpst_rust_github/. An ECOOP artifact is also available.

2 Overview: affine multiparty session types (AMPST) in Rust
Framework overview: AMPST in Rust Figure 1a depicts the overall design of MultiCrusty.
Our design combines the top-down [18] and bottom-up [31] methodologies of multiparty
session types in a single framework. Our bottom-up approach is discussed in details in [30].

The top-down approach enables correctness-by-construction and requires that a developer
specifies a global type (hereafter a global protocol) describing the communication behaviour of
the program. We utilise the Scribble toolchain [45] for writing and verifying global protocols.
The toolchain projects local types for each role in a protocol. We have augmented the
toolchain to further generate those local types into Rust types, i.e., types that stipulate the
behaviour of communication channels.

Our Rust API (MultiCrusty API) integrates both approaches, as illustrated in Figure 1a.
Developers can choose to either (1) write the global protocol and have the Rust types

ECOOP 2022

https://github.com/NicolasLagaillardie/mpst_rust_github/
https://github.com/NicolasLagaillardie/mpst_rust_github/


1:4 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

1 // generates at compile-time communication primitives for 3-party affine meshed channels
2 gen_mpst!(MeshedChannelsThree, A, C, S);

1 fn client(
2 s: RecC<i32>,
3 i: i32
4 ) -> R {
5 if (i<MAX) {
6 let s = choose_c!(s,
7 ChoiceA::Video, ChoiceS::

Video)
8 let n = get_video(i);
9 let s = s.send(n)?;

10 let (_,s) = s.recv()?;
11 client(s, i+1)
12 } else {
13 let s = choose_c!(s,
14 ChoiceA::Close, ChoiceS::

Close);
15 s.close()
16 }
17 }

(a) role C

1 fn auth(s: RecA<i32>)
2 -> R {
3 offer_mpst!(
4 s, {
5 ChoiceA::Video(s)
6 => {
7 let (x,s) = s.recv()?;
8 let s = s.send(x)?;
9 let (x,s) = s.recv()?;

10 let s = s.send(x)?;
11 auth(s)
12 },
13 ChoiceA::Close(s)
14 => {
15 s.close()
16 } }
17 )
18 }

(b) role A

1 fn server(s: RecS<i32>)
2 -> R {
3 offer_mpst!(
4 s, {
5 ChoiceS::Video(s)
6 => {
7 let v = attempt!{{
8 let (x, s) = s.recv()?;
9 let f = get_file(x);

10 read_video_file(f)
11 } catch (e) {
12 cancel(s);
13 panic!("Err: {:?}", e)
14 } }()?;
15 let s = s.send(x)?;
16 server(s)}
17 ChoiceS::Close(s)
18 => {s.close()
19 } } ) }

(c) role S

a!close

a!ReqVideo

a?ResVideo
c?close

s!close

c?ReqVideo s!ReqVideo

s?ResV
ideo

c!ResVideo

a?close

a?ReqVideo

a!ResVideo

Figure 2 Rust implementations and respective CFSMs of role C (a), role A (b) and role S (c)

generated, or (2) write the Rust types manually and check that the types are compatible.
Note that both approaches rely on concurrent programs written with MultiCrusty API, and
both approaches rely on the Rust compiler to type check the concurrent programs against their
respective types. Overall, the framework guarantees that well-typed concurrent programs
implemented using MultiCrusty API with Scribble-generated types or k-MC-compatible
types, will be free from deadlocks, reception errors, and protocol deviations.

The main primitives of MultiCrusty API are summarised in Table 1. Next, we briefly
explain them through an example. A more detailed explanation is provided in § 4.

2.1 Example: Video streaming service
The Video streaming service is a usecase that can take full advantage of affine multiparty
session types and demonstrate the need for multiparty channels with cancellation. Each
streaming application connects to servers, and possibly other devices, to access services and
follows a specific protocol. To present our design, we use a simplified version of the protocol,
omitting the authentication part, illustrated in the diagram of Figure 1b. The diagram
should be read from top to bottom. The protocol involves three services – an Authenticator
(role A) service, a Server (role S) and a Client (role C). The protocol starts with a choice on
the Client to either request a video or end the session. The first branch is, a priori, the main
service provided, i.e., request for a video. The Client cannot directly request videos from
the Server and has to go through the Authenticator instead. On the diagram, the choice is
denoted as the frame alt and the choices are separated by the horizontal dotted line. The
protocol is recursive, and the Client can request new videos as many times as needed. This
recursive behaviour is represented by the arrow going back on the Client side in Figure 1b.
To end the session, the Client first sends a Close message to the Authenticator, which then
subsequently sends a Close message to the Server.

Affine meshed channels and multiparty session programming with MultiCrusty
The implementations in MultiCrusty of the three roles are given in Figure 2. They closely



N. Lagaillardie, R. Neykova and N. Yoshida 1:5

follow the behaviour that is prescribed by the protocol. The global protocol does not explicitly
specify cancellation. However, in a distributed setting, timeout or failure can happen at
any time: a request from a CDN network or cloud storage to the server might be a timeout
or the result message might be lost. Our implementation accounts for failure by providing
communication primitives for two different types of session cancellation, called implicit and
explicit: either we run a block of code and upon any error at any point, we go to the catch
branch, or we explicitly test each step.

The implementation of the three concurrent programs starts by generating all com-
munication primitives for affine channels between three roles. This is done by the macro
gen_mpst!(MeshedChannelsThree, A, C, S), see line 2 in Figure 2. The macro gen_mpst!
takes two kinds of arguments: the name of the data structure for affine meshed channels,
MeshedChannelsThree, and the name for each role, A, C and S. MeshedChannelsThree is a
string literal that must be supplied by the developer, any name can be chosen. In our
case, gen_mpst! will generate a data structure called MeshedChannelsThree that can be used
for communication between three participants. In our example, three roles are provided, but
the macro can handle any number of roles. Then, using the Rust procedural macro system, it
generates communication primitives for programming between affine meshed channels. This
generation is done at compile time. For instance, the primitive s.send(p) sends a payload p
on an affine meshed channel s. Note that we do not have to explicitly specify the destination
channel, this is determined from the type: the stack specifies which binary channel can
be used, regardless of the type of those binary channels. See Figure 6 for an example of
MeshedChannels.

To explain affine meshed channels and all MultiCrusty communication primitives, we
focus on the implementation for role A given in Figure 2b. The implementations of the
other roles are similar. First, line 1 declares an auth(s) function that is parametric on an
affine meshed channel s of type RecA<i32>, the result type of the function is irrelevant to our
explanation, hence we have simply denoted it by R. The type RecA<i32>, an alias for the full
type described in Figure 6, specifies the operations allowed on s. As mentioned previously,
this type can be either written by the developer or generated by Scribble. We defer the
explanation of the (generated) types to § 4, i.e., the full Rust type is given in Figure 6. For
clarity, here we only give a high-level view of the behaviour for each channel by representing
its respective local session types as a communicating finite state machine (CFSM [4]), where
! (resp. ?) denotes sending (resp. receiving). The CFSMs for each role (channel) can be
seen in Figure 2. For example, c!ResVideo means that role A is receiving from the role C a
message labelled as Video, while s!ReqVideo says that role A sends a message to role S.

The thread for role A uses an affine meshed channel s to implement the given CFSM
behaviour. In essence, the meshed channel is implemented as an indexed tuple of binary
channels – one binary channel for each pair of interacting processes, i.e., a binary channel
for role A and role S and a binary channel for role A and role C .

The implementation starts by realising a choice: role C broadcasts its choice, which can
either be to request a video at line 7 or to close the connection at line 14 (Figure 2a). Role
C broadcasts the choice to every other role. This choice is received by role A, which will
either receive a Video or a Close label. This behaviour is implemented by the MultiCrusty
macro offer_mpst! (line 3), which is applied to a multiparty channel s and a sum type, either
ChoiceA::Video or ChoiceA::Close here. The behaviour of each branch in the protocol is
implemented as an anonymous function. For example, the code in lines 5 – 12 supplies such a
function that implements the behaviour when role C sends a Video label, while lines 13 – 16
handle the Close request. At each step, the channel s is rebound to a new meshed channel

ECOOP 2022



1:6 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

Table 1 Primitives provided by MultiCrusty. s is an affine meshed channel; p is a payload of a
given type; I is a subset of all roles in the protocol but the current role; K is a subset of all branches;

Primitives Description

let s = s.send(p)?;
Sends a payload p on a channel s and assigns the continuation
of the session (a new meshed channel) to a new variable s.

let (p, s) = s.recv()?;
Receives a payload p on channel s and assigns the continuation
of the session to a new variable s.

s.close() Closes the channel s and returns a unit type.

attempt! {{ ... } catch(e) { ... }}
Attempts to run the first block of code and, upon error, catches
the error in the variable e and runs the second block of code.

offer_mpst!(s, { enumi :: variantk(e) => {...}k∈K } )
Role i receives a message label on channel s, and,
depending on the label value which should match
one of the variants variantk of enumi, runs the related block of code.

choose!(s, {enumi :: variantk}i∈I )
Sends the chosen label, which corresponds to variantk,
to all other roles.

s returned by the respective communication primitive. For example, the communication
primitive recv() at line 7 is for receiving a value on the binary channel between role A and
role C that is stored in the meshed channel s. Note that this is the only primitive available
for that type at that point. This communication primitive, if everything goes right, returns
a tuple containing the received value and the new meshed channel to be used for subsequent
communications which are bound resp. to the variable x and s. An error is returned instead
of the tuple if the reception of the value fails. Similarly, send(x) in line 8 sends the value x
to the process that implements the role S and rebinds the new meshed channel to s. Finally,
because the protocol is recursive, line 11 calls the recursive function auth(s).

Alternatively, the anonymous function for branch Close calls the primitive close() which
safely and cleanly closes all binary channels stored inside the affine meshed channel s. This
last primitive ensures that the type of all the binary channels of s is Close End: the only
primitive implemented for such meshed channels is close(). Forgetting either s.close() or
auth(s) at the end of their respective branch will throw an error during compilation because
the output type of the auth(s) function will be the wrong one. All communication functions
used in the example (i.e., s.recv(), s.send(), s.close(), offer_mpst!) are generated for all
roles and all possible interactions through the macro gen_mpst!, see line 2.

The types of the affine meshed channels, as well as the generic types in the declaration
of the MultiCrusty communication functions, enable compile-time detection of protocol
violations. Examples of protocol violations include swapping lines 10 and 9, using another
communication primitive or using the wrong payload type. The Rust type system, on the
other hand, ensures that all affine channels are used at most once. For example, using channel
s twice (without rebinding) will be detected by the compiler. All the errors mentioned above
will be reported as compile-time errors. In the case that an unexpected runtime error occurs,
all roles are guaranteed to terminate safely. This is ensured by two mechanisms – explicit
session cancellation (that can be triggered by the user) and implicit session cancellation (that
is embedded in the MultiCrusty primitives and the channel destructors).
Implicit and explicit cancellations The processes of role A and role S illustrate resp.
implicit and explicit cancellations. The primitive cancel(s) drops the affine meshed channel
s, and its binary channels, making it inaccessible to other participants. This is convenient
when an error related to the computation aspects of the program occurs. For example,
In Figure 2c the session is cancelled in line 12 after an error occurs as a result of reading
a corrupted video. We have used the attempt!{ { ... } catch(e) { ... } } macro (Rust
version of a try-catch block) in lines 7 to 14 to catch the error message, and explicitly cancel
the session. The macro tries to go through the attempt-block of code, and upon any error in
this block, stops the process and calls the catch(e)-block with the error message e. Line 13
executes a panic!, which allows a program to terminate immediately and provide feedback to



N. Lagaillardie, R. Neykova and N. Yoshida 1:7

the caller of the program. Forgetting to call cancel(s) before panic! will result in the same
outcome as when both cancel(s) and panic! drop s. Forgetting both will throw an error
because the output type will not match the one of fn server(s), unless replaced with an
Ok(()). In any cases, an error will be thrown on other threads linked to other roles because
role S’s sessions are inaccessible in the catch(e)-block.

Alternatively, we explain implicit cancellation as implemented by role A in Figure 2b.
The construct let x = f()?, as seen in line 7, is Rust’s monadic bind notation for programs
and functions that may return errors: their usual output type is Result<T, Error> where
T is the expected type if everything goes right and Error is the error type returned. For
any program and function returning such type, the users have to unwrap it. The two usual
ways of doing so are by using the ?-operator, or by pattern matching on the result using
match. In our case, if recv() succeeds, the ?-operator unpacks the result and returns the
tuple containing the received payload and the continuation. If recv() fails, the ?-operator
short-circuits, skips the rest of the statements, and returns the error. We use this mechanism
to catch any session cancellation. In the case that a recv() (or send()) does not succeed,
the implementation of the underlying communication primitive will cancel the channel and
broadcast the cancellation to all other binary channels that are part of the session.

Finally, we look at the implementation of role C to demonstrate the final mechanism of
session cancellation. For this purpose, we have to comment out lines 9 – 11 in Figure 2a
or replace them with a panic! as to simulate a wrongly implemented role C . With such
modification, this function will still compile despite the protocol not being fully implemented
(since the last received action from role A is missing, the meshed channel s will be dropped
prematurely). Even in this case, MultiCrusty ensures that all processes will terminate safely,
i.e., all parties are notified that an affine channel has been dropped. Prematurely dropping a
channel can happen due to incorrectly implemented behaviour (as we demonstrated above),
or by unhandled user error, for example, the function get_video() in line 8 can invoke a
panic! because there is no video associated with the index i. Safe session termination is
realised by customising the native destructor Drop in Rust, as proposed for binary meshed
channels by [27]. When an affine meshed channel goes out of scope, the channel destructor is
called, the session is cancelled, dropping every channel value used in the session, and only
then is the memory deallocated.

Memory management should not pose a problem in our case. Our library uses only the
safe fragment of Rust. This ensures that variables that are out of scope are automatically
collected. We utilise this mechanism to ensure that closed and cancelled channels are collected
in the same way. Hence, memory leaks are ruled out.

In short, a session can be cancelled for three reasons: (1) an error affecting the computation
aspects of the program, as in Figure 2c; (2) an error during communication, e.g., a timeout
on a channel, as in Figure 2b; or (3) a premature drop of the affine meshed channel due to
incorrect implementation, as in Figure 2a. Our mechanisms for session cancellation cover all
the above cases. In this way, our framework provides affine multiparty session compliance by
ensuring that (1) if all results are returned without failure, the processes follow the given
Scribble global protocol (Theorem 3.14) or (2) once a cancellation happens, all processes in
the same session terminate with an error (Theorem 3.22). We have proven the above results
by formalising affine meshed channels in an extension of a multiparty π-calculus.

3 Affine multiparty session processes for Rust programming
3.1 Affine multiparty session processes
Our calculus (AMPST) is an extension of a full multiparty session π-calculus [44] which
includes session delegation (channel passing) and session recursion. We shade additions

ECOOP 2022



1:8 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

to [44] in this colour .

▶ Definition 3.1. The affine multiparty session π-calculus (AMPST) is defined as
follows:

c, d ::= x
∣∣ s[p] † ::= ∅

∣∣ ? (variable, channel with role p, error, flag)

P , Q ::= 0
∣∣ P | Q

∣∣ (νs) P (inaction, composition, restriction)
? c[q]⊕m⟨d⟩.P

∣∣ ? c[q]
∑

i∈I mi(xi).Pi (affine selection, branching I ̸= ∅)

c[q]⊕m⟨d⟩.P
∣∣ c[q]

∑
i∈I mi(xi).Pi (selection, branching I ̸= ∅)

def D in P
∣∣ X ⟨̃c⟩ (process definition, process call)

try P catch Q
∣∣ cancel(c).P

∣∣ s (catch, cancel, kill)

D ::= X(x̃) = P (declaration of process variable X)

A set P denotes participants: P = {p, q, r, . . . }, and A is a set of alphabets. A channel
c can be either a variable or a channel with role s[p], i.e., a multiparty communication
endpoint whose user plays role p in the session s. c̃ denotes a vector c1c2 . . . cn (n ≥ 1) and
similarly for x̃ and s̃.

The two processes with ? model the option ?-operator in Rust. Process ? c[q]⊕m⟨d⟩.P

performs an affine selection (internal choice) towards role q, using the channel c: if the
message label m with the payload channel d is successfully sent, then the execution continues
as P ; otherwise (if the receiver has failed or timeout), it triggers an exception. The affine
branching (external choice) ? c[q]

∑
i∈I mi(xi).Pi uses channel c to wait for a message

from role q: if a message label mk with payload d is received (for some k ∈ I), then the
execution continues as P k, with xk replaced by d; if not received, it triggers an exception.
Note that message labels mi are pairwise distinct and their order is irrelevant, and variable
xi is bound with scope P i.

The following two failure handling processes follow the program behaviour of Figure 2c.
The try-catch process, try P catch Q, consists of a try process P which is ready to
communicate with parallel composed one; and a catch process Q which becomes active when
a cancellation or an error happens. The cancel process, cancel(c).P , cancels other processes
whose communication channel is c. The kill s kills all processes with session s and is
generated only at runtime from affine or cancel processes.

The other syntax is from [44]. The inaction 0 represents a terminated process (and
is often omitted). The parallel composition P | Q represents two processes that can
execute concurrently, and potentially communicate. The session restriction (νs) P declares
a new session s with a scope limited to process P . The linear selection and the linear
branching can be understood as their affine versions but without failure handling. Process
definition, def X(x̃) = P in Q and process call X ⟨̃c⟩ model recursion: the call invokes X

by expanding it into P , and replacing its formal parameters with the actual ones.
Linear or affine branching and selection are denoted as either † c[q]

∑
i∈I mi(xi).Pi

and † c[q]⊕m⟨d⟩.P . We use fv(P ) / fc(P ) and dpv(P ) / fpv(P ) to denote free vari-
ables/channels and bound/free process variables of P . We call a process P such that
fv(P ) = fpv(P ) = ∅ closed. A set of subjects of P , written sbj(P ), is defined as: sbj(0) = ∅;
sbj(P | Q) = sbj(P ) ∪ sbj(Q); sbj((νs) P ) = sbj(P ) \ {s[pi]}i∈I ; sbj

(
† c[q]

∑
i∈I mi(xi).Pi

)
=

sbj(† c[q]⊕m⟨d⟩.P ) = {c}; sbj(def X(x̃) = P in Q) = sbj(Q)∪sbj(P )\{x̃} with sbj(X⟨c̃⟩) =
sbj(P{c̃/x̃}); sbj(try P catch Q) = sbj(P ); and sbj(cancel(c).P ) = {c}.

The set of subjects is the key definition which enables us to define the typing system for
the try-catch process with recursive behaviours.



N. Lagaillardie, R. Neykova and N. Yoshida 1:9

[R-Com] E1[† s[p][q]
∑

i∈I
mi(xi).Pi] | E2[† s[q][p]⊕mk⟨s′[r]⟩.Q] → Pk

{
s′[r]/xk

}
| Q if k ∈I

[C-?Sel] ? s[p][q]⊕m⟨s′[r]⟩.P → s[p][q]⊕m⟨s′[r]⟩.P | s 

[T?Sel] try ? s[p][q]⊕m⟨s′[r]⟩.P catch Q → Q | s 

[C-Sel] s[p][q]⊕m⟨s′[r]⟩.P | s → P | s | s′ 

[C-?Br] ? s[p][q]
∑

i∈I
mi(xi).Pi → s[p][q]

∑
i∈I

mi(xi).Pi | s 

[T?Br] try ? s[p][q]
∑

i∈I
mi(xi).Pi catch Q → Q | s 

[C-Br] s[p][q]
∑

i∈I
mi(xi).Pi | s → (νs′) (Pk

{
s′[r]/xk

}
| s′ ) | s s′ ̸∈ fc(Pk) , k ∈ I

[R-Can] E[cancel(s[p]).Q] → s | Q [C-Cat] try P catch Q | s → Q | s ∃r. s[r] = sbj(P )

[R-Def] def X(x1, . . . , xn) = P in (X⟨s1[p1], . . . , sn[pn]⟩ | Q)

→ def X(x1, .., xn) = P in (P {s1[p1]/x1} · ·{sn[pn]/xn} | Q)

[R-Ctx] P → P ′ implies C[P ] → C[P ′] [R-Struct] P ≡ P ′ → Q′ ≡ Q implies P → Q

Figure 3 AMPST π-calculus reduction between closed processes (we high-
light the new rules from [44])

▶ Example 3.2 (Subjects of processes). Assume R1 = def X(x) = x[q]⊕m⟨d⟩.0 in X⟨c⟩
which repeats the action at c and emits a message d with label repeatedly interacting with
the dual input (but reduction with this process only happens if there is a corresponding
input at c, i.e., on-demand). We calculate sbj(R1) as:

sbj(def X(x) = x[q]⊕m⟨d⟩.0 in X⟨c⟩) = sbj(X⟨c⟩) ∪ sbj(def X⟨x⟩ = x[q]⊕m⟨d⟩.0)
= sbj(X⟨c⟩) = sbj((x[q]⊕m⟨d⟩.0){c/x}) = {c}

Another example is: sbj(try x[q]⊕m⟨d⟩.0 catch cancel(x[q]).0) = sbj(x[q]⊕m⟨d⟩.0) = {x}.
▶ Remark 3.3 (Syntax and semantics). AMPST extends MPST incorporating some design
choices from [36], aiming to distil the implementation essence of MultiCrusty. The design
of our try-catch process follows the binary affine session types in [36], but models more
cancellations for arbitrary processes with affine branchings/selections and cancel processes
non-deterministically (whose semantics follow the implementation behaviours, see § 4.4). We
list the essential differences from [36]. (1) (Nondeterministic failures) The kill process is a
runtime syntax and generated only during reductions unlike [36]. Our calculus also allows
nondeterministic failures caused by either (1) affine selection/branching or (2) try-catch
processes. See [30] for examples. (2) (Recursion parameterised by linear names) One of the
novelties of our formalism which is not found in [36] is a combination of session recursions,
affinity, and interleaved sessions, i.e., the def agents (linearly parameterised recursions), which
are the most technical part when designing the typing system with try-catch processes. The
combination of all features is absent from [36, 13, 16]: see § 6 for more detailed comparisons.

▶ Definition 3.4 (Semantics). A try-catch context E is: E ::= try E catch P
∣∣ [ ] and

a reduction context C is: C ::= (νs)C
∣∣ def D in C

∣∣ C | P
∣∣ P | C

∣∣ [ ]. Reduction
→ is inductively defined in Figure 3, which uses the structural congruence ≡ which is
defined by s | s ≡ s and (νs) s ≡ 0 together with other rules in [44].

▶ Remark 3.5 (Nested try-catches and E ). The context E is only used for defining the
reductions at the top parallel composed processes, not used nested exception handling like
[13, 16]. Our (typable) try-catch processes allow any form of processes such as recursions,

ECOOP 2022



1:10 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

parallel, session delegations, and restriction/scope opened processes under a guarded process:
R = try s[p][r]⊕m1 .(νs′) (s[p][r]⊕m3⟨s′[r]⟩.0 | try s′[q][r]⊕m2 .0 catch cancel(s′[q]).0)

catch cancel(s[p]).0
See [30] for more typable processes with nested try-catch blocks.
We explain each rule highlighting the new rules.

Communication Rule [R-Com] is the main communication rule between an affine/linear
selection and an affine/linear branching. Linear selections/branching are placed in the
try position but can interact with affine counterparts. Once they interact, processes are
spawned from try-blocks (notice that E1, E2 are erased after the communication), and
start communicating on parallel with other parallel composed processes. Note that the
context E is discarded after the successful communication.

Error-Cancellation Rules [C-?Sel] and [C-?Br] model the situations that an error handling
occurs at the affine selection/branching. This might be the case if its counterpart has
failed (hence [R-Com] does not happen) or timeout. It then triggers the kill process at
s. Rules [T?Sel] and [T?Br] model the case that the affine selection/branching are placed
inside the try-block and triggered by the error. In this case, it will go to the catch-block,
generating a kill process.

Cancelling Processes Rule [C-Sel] cancels the selection prefix s, additionally generating the
kill process at the delegated channel for all the session processes at s′ to be cancelled.
Rule [C-Br] cancels only one of the branches – this is sufficient since all branches contain
the same channels except xi (ensured by rule [T-&] in Figure 4). After the cancellation, it
additionally instantiates a fresh name s′[r] to xk into Pk. The generated kill process at
s′ kills prefixes at s′[r] in Pk{s′[r]/xk}.

Cancellation from Other Parties Rule [R-Can] is a cancellation and generates a kill process.
Note that the try-catch context E is thrown away. Rule [C-Cat] is prompted to move to
Q by kill s . The side condition sbj(P ) ensures that P is a prefix at s (up to ≡ for a
recursive process). All mimic the behaviour of the programs in Figure 2c.

Other Rules Rules [R-Def], [R-Ctx], and [R-Struct] are standard from [44]. In Figure 3, the two
new rules are for garbage collections of kill processes.

▶ Example 3.6 (Syntax and reductions). A process might be completed, or cancelled in many
ways, and also interacts non-deterministically. We demonstrate the reduction rules using
the running example with a minor modification. We use a nested try-catch block, and for
simplicity we use shorter label names, and we use a constant, i.e., d, as a message payload.

Assume the process for role S is P = ? s[p][q](Q+close(x).0) where
Q = video(x). try ? s[p][q]req(x).try ? s[p][r]⊕res⟨d⟩.0 catch cancel(s[p]).0 catch cancel(s[p]).0
The following shows a possible reduction.

P | s[q][p]⊕video⟨d⟩.s[q][p]⊕req⟨d⟩.s[q][p]res(x).0 (1)

[R-Com] → try (? s[p][q]req(x).try (? s[p][r]⊕res⟨d⟩.0) catch cancel(s[p]).0)
catch cancel(s[p]).0 (2)

| s[q][p]⊕req⟨d⟩.s[q][p]res(x).0 (3)
[R-Com] → try ? s[p][r]⊕res⟨d⟩.0 catch cancel(s[p]).0 | s[q][p]res(x).0 (4)

[T?Sel] → cancel(s[p]).0 | s | s[q][p]res(x).0 (5)
[R-Can] →s | s | 0 | s[q][p]res(x).0 (6)

[C-Br] →s | s | 0 | 0 ≡ s (7)

E6[P6] for Equation (1) is P6 = ? s[p][q]req(x).try ... catch cancel(s[p]).0 and E9[P9]
for Equation (4) is P9 = ? s[p][r]⊕res⟨d⟩.0 both because of rule [C-Cat].



N. Lagaillardie, R. Neykova and N. Yoshida 1:11

Initially we reduce using the communication rule for the branching and selection. Next,
we apply [R-Com] demonstrating how the affine branching reduces under try. Then we apply
[T?Sel] assuming an error (or a timeout) occurs during the selection of res. This generates
a kill process s and spawns the process in the catch-block. Cancel spawns a kill process
s and hence reduces to s | 0, following rule [R-Can] with E = [ ]. Finally, applying [R-Can]

cancels the linear selection. To conclude, we garbage collect all kill processes. Given that
our initial parallel composition has name restrictions (νs) at the top level, (νs) s ≡ 0.

3.2 Affine multiparty session typing system
Global and local types The advantage of affine session frameworks is that no change of
the syntax of types from the original system is required. We follow [44] which is the most
widely used syntax in the literature. A global type, written G, G′, . . . , describes the whole
conversation scenario of a multiparty session as a type signature, and a local type, written by
S, S′, . . . , represents a local protocol for each participant. The syntax of types is given as:

▶ Definition 3.7 (Global types). The syntax of a global type G is:
G ::= p→q: {mi(Si).Gi}i∈I

∣∣ µt.G
∣∣ t

∣∣ end with p ̸=q, I ̸=∅, and ∀i∈I : fv(Si) = ∅
The syntax of local types is:

S, T ::= p&i∈Imi(Si).S′
i

∣∣ p⊕i∈Imi(Si).S′
i

∣∣ end
∣∣ µt.S

∣∣ t with I ̸=∅, and mi pairwise distinct.

Types must be closed, and recursion variables to be guarded.

m ∈ A corresponds to the usual message labels in the session type theory. Global branching
type p→q: {mi(Si).Gi}i∈I states that participant p can send a message with one of the mi

labels and a message payload type Si to the participant q and that interaction described in
Gi follows. We require p ̸= q to prevent self-sent messages and mi ̸= mk for all i ̸= k ∈ J .
Recursive types µt.G are for recursive protocols, assuming those type variables (t, t′, . . . )
are guarded in the standard way, i.e., they only occur under branching. Type end represents
session termination (often omitted). We write p ∈ roles(G) (or simply p∈G) iff, for some
q, either p→q or q→p occurs in G. The function id(G) gives the participants of G.

For local types, the branching type p&i∈Imi(Si).S′
i specifies the reception of a message

from p with a label among the mi and a payload Si. The selection type p⊕i∈Imi(Si).S′
i is its

dual – its opposite operation. The remaining type constructors are as for global types. We
say a type is guarded if it is neither a recursive type nor a type variable.

The relation between global and local types is formalised by projection [8, 18]. The
projection of G onto p is written G↾p and the standard subtyping relation, ⩽. See [30].

We define typing contexts which are used to define properties of type-level behaviours.

▶ Definition 3.8 (Typing contexts). Θ denotes a partial mapping from process variables to
n-tuples of types, and Γ denotes a partial mapping from channels to types, defined as:

Θ ::= ∅
∣∣ Θ, X:S1, . . . , Sn Γ ::= ∅

∣∣ Γ, c:S

The composition Γ1, Γ2 is defined iff dom(Γ1) ∩ dom(Γ2) = ∅. We write s ̸∈ Γ iff
∀p : s[p] ̸∈ dom(Γ) (i.e., session s does not occur in Γ).We write dom(Γ) = {s}
iff ∀c ∈ dom(Γ) there is p such that c = s[p] (i.e., Γ only contains session s); and
Γ ⩽ Γ′ iff dom(Γ) = dom(Γ′) and ∀c ∈ dom(Γ): Γ(c) ⩽ Γ′(c). We write Γ → Γ′ with
Γ = Γ0, s[p]:q⊕i∈Imi(Si).S′

i, s[q]:p&j∈Jmj(Tj).T ′
j and Γ′ = Γ0, s[p]:S′

i, s[q]:T ′
j where types

are defined modulo unfolding recursive types. We write Γ →∗ Γ′ for a transitive and reflexive
closure of →; and Γ → if there exists Γ′ such that Γ → Γ′.

ECOOP 2022



1:12 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

Θ(X) = S1, . . . , Sn

Θ ⊢ X :S1, . . . , Sn
[T-X]

S ⩽ S′

c:S ⊢ c:S′ [T-sub] ∀i ∈ 1..n ci :Si ⊢ ci :end
end(c1 :S1, . . . , cn :Sn)

[T-end]
end(Γ)

Θ · Γ ⊢ 0
[T-0]

Γ1 ⊢ c:q&i∈Imi(Si).S′
i ∀i∈I Θ · Γ, yi :Si, c:S′

i ⊢ Pi

Θ · Γ, Γ1 ⊢ † c[q]
∑

i∈I
mi(yi).Pi

[T-&] Θ · Γ1 ⊢ P1 Θ · Γ2 ⊢ P2

Θ · Γ1, Γ2 ⊢ P1 | P2
[T-|]

Γ1 ⊢ c:q⊕m(S).S′ Γ2 ⊢ c′ :S Θ · Γ, c:S′ ⊢ P

Θ · Γ, Γ1, Γ2 ⊢ † c[q]⊕m⟨c′⟩.P
[T-⊕]

Θ · Γ ⊢ P sbj(P ) = {c} Θ · Γ ⊢ Q

Θ · Γ ⊢ try P catch Q
[ T-try ]

end(Γ) 0 ≤ n

Θ · Γ, s[p1]:S1, . . . , s[pn]:Sn ⊢ s 
[ T-kill ]

Θ · Γ ⊢ Q

Θ · Γ, c:S ⊢ cancel(c).Q
[ T-cancel ]

Θ, X:S1, . . . , Sn · x1 :S1, . . . , xn :Sn ⊢ P Θ, X:S1, . . . , Sn · Γ ⊢ Q

Θ · Γ ⊢ def X(x1 :S1, . . . , xn :Sn) = P in Q
[T-def]

Θ ⊢ X :S1, . . . , Sn end(Γ0) ∀i ∈ 1..n Γi ⊢ ci :Si

Θ · Γ0, Γ1, . . . , Γn ⊢ X⟨c1, . . . , cn⟩
[T-call]

Γ′ = {s[p]:Sp}p∈I s ̸∈ Γ safe(Γ′) Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs:Γ′) P
[T-ν]

Γ′ = {s[p]:G↾p}p∈roles(G) or end(Γ′) s ̸∈ Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs:Γ′) P
[ T-init ]

Figure 4 Multiparty session typing rules. We highlight the new rules from [44].

Next, we define typing context properties defined by its reduction.
We say Γ is safe, written safe(Γ), if φ(Γ) for some safety property φ. Similarly, for

deadlock-freedom (df(Γ)) and liveness plus (live+(Γ)). See [30] for the definitions. The reader
can refer to [44] for more explanations of the typing context properties.

▶ Definition 3.9 (Typing judgement). The typing judgement for processes has the form:
Θ · Γ ⊢ P (with Θ/Γ omitted when empty) (8)

and are defined by the typing rules in Figure 4 with the judgements for process variables
and channels. For convenience, we type-annotate channels bound by process definitions and
restrictions. Note that end(Γ) denotes that Γ only contains type end.

We explain each rule highlighting the new rules from [44].
(Affine) Branching/Selection [T-&] and [T-⊕] are the standard rules for branching and se-

lection, which can also type affine branching and selection. Note that the premise Γ
in Θ · Γ, yi :Si, c:S′

i ⊢ Pi in [T-&] ensures that selecting one branch in the reduction rule
defined by [C-Br] is sufficient for ensuring type soundness.

Try-Catch and Cancellation [T-try] is typing a try process: we ensure P has a unique subject
and catch block process Q has the same session typing (similar with branching). [T-cancel]

generates a kill process at its declared session.
Kill process [T-kill] types a kill process that appears during reductions: the cancellation of

s[p] is broadcasting the cancellation to all processes which belong to session s.
Recursions [T-def] and [T-call] are identical to those of [44].
Restriction Processes are initially typed projecting a global type by [T-init], while running

processes are typed by [T-ν] (see the proof of Theorem 3.12).



N. Lagaillardie, R. Neykova and N. Yoshida 1:13

▶ Example 3.10 (Typing AMPST processes). To demonstrate the typing rules we type
the inner try process from the reduction example. Let Q = try R catch cancel(s[p]).0
where R = ? s[p][r]⊕res⟨d⟩.0 and d is of type S1 = end. We show that Γ ⊢ Q where
Γ = d:S1, s[p]:S2 with S2 = r⊕res(S1).end.

s[p]:S2 ⊢ s[p]:S2 d:S1 ⊢ d:S1

. . .

s[p]:end ⊢ 0
[T-0]

Γ ⊢ ? s[p][r]⊕res⟨d⟩.0
[T-⊕]

sbj(R) = {s[p]}

. . .
d:S1 ⊢ 0

[T-0]

Γ ⊢ cancel(s[p]).0
[T-cancel]

Γ ⊢ Q
[T-try]

3.3 Properties of affine multiparty session types
This subsection proves the main properties of AMPST processes. We first prove basic
properties such as Subject Congruence and Reduction Theorems, then prove important
properties, session fidelity, deadlock-freedom and liveness. The highlight is cancellation
termination, which guarantees that once an exceptional behaviour is triggered, all parties in
a single session can terminate as nil processes.

Unlike linear-logic based typing systems [36], we do not assume that the typing system is
closed modulo ≡. Instead, we prove closedness of ≡ for tricky cases, e.g., kill and try-catches.

▶ Theorem 3.11 (Subject Congruence). If Θ · Γ ⊢ Q and Q≡P , then we have Θ · Γ ⊢ P .

By Theorem 3.11, AMPST processes satisfy type soundness.

▶ Theorem 3.12 (Subject Reduction). Suppose Θ · Γ ⊢ P and Γ safe. Then, P → P ′ implies
there exists Γ′ such that Γ′ is safe and Γ →∗ Γ′ and Θ · Γ′ ⊢ P ′.

A single agent in a multiparty session s is a participant playing a single role p in s. We
use the definition from [44] except the highlighted part, which now includes affine processes.

▶ Definition 3.13 (A unique role process). Assume ∅ · Γ ⊢ P . We say that P :

1. has guarded definitions iff in each subterm of the form
def X(x1 :S1, . . . , xn :Sn) = Q in P ′, for all i ∈ 1..n, Si ̸⩽ end implies that a
call Y ⟨. . . , xi, . . .⟩ can only occur in Q as subterm of † xi[q]

∑
j∈J mj(yj).Pj or

† xi[q]⊕m⟨c⟩.P ′′ (i.e., after using xi for selection/branching);
2. only plays role p in s, by Γ, iff: i) P has guarded definitions; ii) fv(P ) = ∅;

iii) Γ = Γ0, s[p]:S with S ̸⩽ end and end(Γ0); iv) in all subterms (νs′ :Γ′) P ′ of P ,
we have Γ′ = s′[p′]:end (for some p′).

We say “P only plays role p in s” iff ∃Γ : ∅·Γ⊢P , and item 2 holds.

Note that by definition, a unique role process in s includes s .
Session fidelity is an important property to ensure liveness and deadlock-freedom, as

well as termination. We extend that in [44] by taking a kill process into account. A set of
unique role processes of a single multiparty session, together with kill processes always make
progress if a typing context has progress, satisfying a protocol compliance.

Below we write Q if Q contains only a parallel composition of kill processes.

▶ Theorem 3.14 (Session Fidelity). Assume ∅·Γ ⊢P , where Γ is safe, P ≡
∣∣
p∈I

Pp | Q , and
Γ =

⋃
p∈I Γp ∪ Γ0 such that, for each Pp, we have ∅· Γp ⊢Pp; and ∅· Γ0 ⊢ Q . Assume that

each Pp is either Pp ≡ 0, or only plays p in s, by Γp. Then, Γ→ implies ∃Γ′, P ′ such that
Γ → Γ′, P →∗ P ′ and ∅·Γ′ ⊢ P ′, with Γ′ safe, P ′ ≡

∣∣
p∈I

P ′
p | Q′ , and Γ′ =

⋃
p∈I Γ′

p ∪ Γ′
0

such that, for each P ′
p, we have ∅· Γ′

p ⊢P ′
p, and each P ′

p is either 0, or only plays p in s, by
Γ′

p; and ∅· Γ′
0 ⊢ Q′ .

ECOOP 2022



1:14 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

By the above theorem, we can prove deadlock-freedom and liveness for a single session
multiparty session in the presence of affine processes.

▶ Definition 3.15 (Deadlock-freedom and liveness).

1. P is deadlock-free iff P →∗ P ′ ̸ → implies P ′ ≡0.
2. P is live iff P →∗ P ′ ≡C[Q] implies: i) if Q = c[q]⊕m⟨s′[r]⟩.Q′ (for some m, s′, r, Q′),

then ∃C′: P ′ →∗ C′[Q′]; and ii) if Q = c[q]
∑

i∈I mi(xi).Q′
i (for some mi, xi, Q′

i), then
∃C′, k ∈I, s′, r: P ′ →∗C′[Q′

k{s′[r]/xk}].

Note that liveness is defined for linear selection or linear branching processes which
appear at the top level, i.e., under the reduction context C , not under try-catch construct,
cancel nor affine branching and selection processes.

▶ Theorem 3.16 (Deadlock-freedom). Assume ∅ · Γ ⊢ P , with Γ safe, P ≡
∣∣
p∈I

Pp, each
Pp either Pp ≡ 0, or only playing role p in s. Then, df(Γ) implies that (νs̃:Γ) P with
{s̃} = dom(Γ) is deadlock-free.

As discussed in [44, Definition 5.11], we require live+(Γ) for proving liveness.

▶ Theorem 3.17 (Liveness). Assume ∅ · Γ ⊢ P , with Γ safe, P ≡
∣∣
p∈I

Pp, each Pp either
Pp ≡ 0, or only playing role p in s. Then, live+(Γ) implies that P is live.

Now we consider a user-written Rust program with one session as an initial program.

▶ Definition 3.18 (Initial program). We say ⊢ Q is an initial program if

1. Q ≡ (νs̃:Γ)
∣∣
p∈G

Pp with {s̃} = dom(Γ);
2. Pp only plays p in s;
3. in each subterm of the form, def X(x̃) = Q in P ′, (1) Q is of the form try Q′ catch P ′′;

and (2) P ′′ does not contain any (free or bound) process call.
4. Γ = {s[p]:G↾p}p∈G, Γ′ for some G and end(Γ′);
5. ⊢ Q is derived using [T-init] instead of [T-ν]; and without [T-kill].

Condition (3) ensures that once a process moves to the catch-block, then it ensures finite
computation; (4,5) state that the initial program starts conforming to a global protocol.
▶ Remark 3.19 (Initial processes). Condition (3) does not limit the expressiveness since the
try-block can include infinite computations; and conditions (4,5) imply that an initial program
typed by condition (1) has started. Notice that running (runtime) processes generated from
the initial program are typed using [T-ν] and [T-kill]; hence the proof of the subject reduction
holds with Lemma 3.20 below.

Before proving the main theorems, we state that a set of local types projected from a
well-formed global type satisfy the safety property.

▶ Lemma 3.20 ([44, Lemma 5.9]). Let Γ = {s[p]:G↾p}p∈roles(G). Then safe(Γ), df(Γ) and
live+(Γ).

Now we state the two main theorems of this paper: deadlock-freedom, liveness and
cancellation termination. The cancellation termination theorem states that once a kill signal
is produced by cancellation or affine processes (due to a timeout or an error), then all
processes are enabled to terminate. We start from deadlock-freedom.

▶ Corollary 3.21 (Deadlock-freedom and liveness for an initial program). Suppose ⊢ Q is an
initial program. Then for all P such that Q→∗ P , P is deadlock-free and live.



N. Lagaillardie, R. Neykova and N. Yoshida 1:15

▶ Theorem 3.22 (Cancellation Termination). Suppose ⊢ Q is an initial program. If Q→∗

C[s ] = P ′, then we have P ′ →∗ 0.

▶ Corollary 3.23 (Cancellation Termination of Affine and Cancel Processes). Suppose ⊢ Q is
an initial program.

1. If Q→∗C[cancel(s[p]).Q′] = P ′, then we have P ′ →∗ 0.
2. If Q→∗ C[E[? s[p][q]

∑
i∈I mi(xi).Pi]] = P ′ or Q→∗ C[E[? s[p][q]⊕m⟨s′[r]⟩.P ]] = P ′, then

we have P ′ →∗ 0.

▶ Remark 3.24 (Termination theorem). The cancellation termination theorem means that
there always exists a path which leads to 0; and an initial program might not terminate even
if it contains a process with s . This differs from the total termination, i.e., all paths are
finite – a program will definitely stop as 0. However, if we apply fair traversal sets, i.e., fair
scheduling, from [44, Definition 5.5], applying to processes in C[s ], we can prove the total
termination. Since these extensions require an introduction of labelled transition systems for
processes, we leave it as future work.

4 Design and implementation of MultiCrusty

4.1 Challenges for the implementation of MultiCrusty
The three main challenges underpinning the implementation of AMPST in Rust are related
to multiparty communications and ensuring correctness for affine channels.

(Challenge 1) Realising a multiparty channel by binary channels. AMPST
relies on a multiparty channel – a channel that can communicate with several roles. In
Rust, communication channels are peer-to-peer, e.g., they are binary [27]. To overcome this
limitation, we extend an encoding of MPST into binary channels [42]. In this encoding,
a multiparty channel can be represented as an indexed tuple of one-shot binary channels
used in a sequence depending on the ordering specified by the type. This design ensures
reception error safety by construction. Since each pair of binary channels is dual, then no
communication mismatch can occur. We piggyback on this result by introducing meshed
channels, which reuse an existing library of binary session types in Rust [27] with built-in
duality guarantees. We explain the implementation of meshed channels in § 4.2. See [30] for
usecases that demonstrate how to use MultiCrusty for programming distributed protocols.

(Challenge 2) Deadlock-freedom, liveness and termination. Duality is unfor-
tunately insufficient to guarantee deadlock-freedom. The naive decomposition of binary
channels leads to hard to detect deadlock errors [42]. To ensure liveness properties and correct
termination of cancellation behaviour, we integrate MultiCrusty with two state-of-the-art
verification toolchains – Scribble [24] and k-MC [32], that ensures meshed channel types are
correct. The former generates correct meshed channel types in Rust, while the latter verifies
a set of existing meshed channel types. In both cases, well-typed processes implemented
using well-typed meshed channels are free from deadlocks, orphan messages and reception
errors. We display the Rust types for our running example in § 4.3.

(Challenge 3) Affinity with try-catch and optional types. Rust does not have
a native try-catch construct, but macros and optional types. We use them to design and
implement a try-catch block and affine selection and branching. Channels can be implicitly
or explicitly cancelled, and all processes are guaranteed to terminate gracefully in the event
of a cancellation, avoiding endless cascading errors. We discuss our design choices in § 4.4.

ECOOP 2022



1:16 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

1 pub struct MeshedChannels< S1: Session, S2: Session, R: Role, N: Role> {
2 pub session1: S1, pub session2: S, pub stack: R, pub name: N }

Figure 5 Generated MeshedChannles structure.

4.2 Meshed Channels in MultiCrusty
A multiparty channel in MultiCrusty is realised as an affine meshed channel (hereafter
meshed channel), which has three ingredients: (1) a list of separate binary channels (one
binary channel for each pair of participants); (2) a stack that imposes the ordering between
the binary channels; and (3) the name of the role, whose behaviour is implemented by the
meshed channel. For example, a meshed channel for a 3-party protocol can be generated using
the macro gen_mpst!(MeshedChannels, A, C, S): the name of the structure (MeshedChannels),
and the three roles involved in the communication (A, C, S). Figure 5 shows the generated
structure.

The generated structure, MeshedChannels, holds four fields. The first two fields, session1
and session2, are of type Session which is a binary session type. Therefore, these fields store
binary channels. Session in Rust is a trait and a trait is similar to an interface. The Session
trait can be instantiated to three generic (binary session) types: an End type; a Recv<T, S> or
a Send<T, S> type, with their respective payload of type T and their continuation of a binary
session type S. This has important implications for the design and safety of our system.
Since all pairs of binary channels are created and distributed across meshed channels at the
start of the protocol, the binary type Session enforces that each pair of binary channels
are dual. For example, the binary channel for role S inside the meshed channels for role
A; and the binary channel for role A inside the meshed channels for role S are dual. This
design ensures that, without using any external tools, our system is communication safe, no
reception error can occur. This is insufficient to guarantee deadlock-freedom, which is why
we utilise Scribble or bounded model checking, i.e., k-MC, as an additional verification step.

The rest of the fields of the struct MeshedChannels are stack-like structures, stack and
name, which represent respectively the order of the interactions (in what order the binary
channels should be used) and the associated role. For instance, the behaviour where role
A has to communicate first with role S, then with role C and then the session ends, can
be specified using a stack of type RoleS<RoleC<RoleEnd>>. Note that all stack types such as
RoleS and RoleC are generated singleton types. Role names are codified as RoleX<RoleEnd>
where X is the actual name of the participant. For instance, role A is realised as the singleton
type RoleA<RoleEnd>. We chose this design for its readability and its ease of implementation:
one can guess at a glance the current state of a participant.

The code generation macro gen_mpst! produces meshed channels for any finite number of
communicating processes. For example, in the case of a protocol with four roles, the macro
gen_mpst! will generate a meshed channel with five fields – one field for the binary session
between each pair of participants (which is 3 fields in total), one field for the stack and one
field for the name of the role that is being implemented.

4.3 Types for affine meshed channels
Meshed channel types – MeshedChannels – correspond to local session types. They describe
the behaviour of each meshed channel and specify which communication primitives are
permitted on a meshed channel. To better illustrate meshed channel types, we explain the
type RecA<N> for role A (Authenticator) from Figure 2b. The types are displayed in Figure 6.
The types of the meshed channels for the other roles, i.e., C and S are available in [30].

Following the protocol, the first action on A is an external choice. Role A should receive
a choice from role C of either Video or Close. External choice is realised in MultiCrusty as
an enum with a variant for each branch, where each variant is parameterised on the meshed



N. Lagaillardie, R. Neykova and N. Yoshida 1:17

1 // Declare the name of the role
2 type NameA = RoleA<RoleEnd>;
3
4 // Binary session types for A and C
5 type AtoCVideo<N> = Recv<N, Send<N, Recv<ChoiceA<N>, End>>
6
7 // Binary session types for A and S
8 type AtoSVideo<N> = Send<N, Recv<N, End>>;
9

10 // Declare usage order of binary channels inside a meshed channel
11 type StackAInit = RoleC<RoleEnd>; // for the initial meshed channel
12 type StackAVideo = RoleC<RoleS<RoleS<RoleC<RoleEnd>>>>; // for branch Video
13
14 // Declare the type of the meshed channel
15 type RecA<N> = MeshedChannels<Recv<ChoiceA<N>, End>, End, StackAInit, NameA>;
16
17 // Declare an enum with variants corresponding to the different branches, \ie Video and End
18 enum ChoiceA<N> {
19 Video(MeshedChannels<AtoCVideo<N>, AtoSVideo<N>, StackAVideo, NameA>),
20 Close(MeshedChannels<End, End, RoleEnd, NameA>)
21 }
22

Figure 6 Local Rust types for role A (Authenticator) from Figure 2b

channel that will be used for that branch. The enum type ChoiceA<N> in line 18 precisely
specifies this behaviour – two variants with their respective meshed channels. The branch
Close is trivial since no communication apart from closing all channels is expected in this
branch. Hence, the binary channels for S and A, and C and A are all End. The type of the
meshed channel for the branch Video in line 19 is more elaborate. MeshedChannels<AtoCVideo
<N>, AtoSVideo<N>, StackAVideo, NameA> specifies that the type of the binary channel for C
and A is AtoCVideo<N>, the type of the binary channel for role S and role A is AtoSVideo<N>,
the stack of the meshed channel is StackAVideo. The declaration RoleC<RoleS<RoleS<RoleC
<RoleEnd>>>> specifies the order in which binary channels must the used – first the binary
channel with C , then with role S, then with S again, and finally with C . The last argument
specifies that this is a meshed channel for role A.

The meshed channel types can be written either by the developers and verified using an
external tool, k-MC, or generated from a global protocol written in Scribble.
4.4 Exception and cancellation
Exception handling Rust does not have exceptions. Instead, it has the type Result<T
, E> for recoverable errors and the panic! macro that stops execution when the program
encounters an unrecoverable error. Result<T, E> is a variant type with two constructors:
Ok(T) and Err(E) where T and E are generic type parameters.

We leverage two mechanisms to implement the semantics presented in § 3, both of which
rely on the Result variant type: (1) the ? operator and (2) the attempt!-catch macro. The
? is syntactic sugar for error message propagation. More specifically, each communication
primitive is wrapped inside a Result type. For example, the return type of recv() is Result
<(T, S), Box<dyn Error>>. The call recv() on the multiparty channel s triggers the attempt
of the reception of a tuple containing a payload of type T and a continuation of type S.

If a peer tries to read a cancelled endpoint then an error message is returned. Therefore,
if an error occurs during receive due to, for example, the cancellation of the other end of
the channel, the ? operator stops the recv() function and returns an Err value to the calling
code. Then, the user can decide to handle the error or panic! and terminate the program.

Similarly, the attempt!-catch block is syntactic sugar that allows exception handling over
multiple communication actions. For instance, the attempt! M catch N reduces to its failing
clause N if an error occurs in any of the statements in M. The interested users can try the
online Rust playground that demonstrates the implementation of attempt!-catch using the
and_then combinator [41]. The attempt! M catch N corresponds to the try-catch in § 3.

ECOOP 2022



1:18 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

The implementation follows the behaviour formalised by the reduction rules in § 3. In
particular, it ensures that whenever an error happens, a session is cancelled (s ). We utilise
Rust drop mechanism. When a value in Rust goes out of scope, Rust automatically drops
it by calling its destructor: the Drop method. A variable that cannot be cloned, such as
a session s, is out scope when used in a function and not returned, such as when used in
the close() and cancel() functions. We have customised this method by implementing the
Drop trait, which explicitly calls cancel(). If an error occurs, and the meshed channel is
not explicitly cancelled, the meshed channel is implicitly cancelled from its destructor. In
the case of a panic!, the session s will be dropped, alongside all variables within the same
function, when panic! is called. Similarly to the theory, cancel(s) is not mandatory and can
be placed arbitrarily within the process. Calling cancel(s) is mostly used for expressiveness
and mock tests purposes, when a failure, without panic!, needs to be simulated.
Session Cancellation We discuss all cases involving session cancellation below:

1. Implicit vs explicit cancellation Receiving on or closing disconnected sessions returns
an error. As a result of the error, the multiparty channel s is cancelled by our underlying
library, and all binary channels associated with s are disconnected. We call this an
implicit cancellation. This behaviour implements rules [C-?Sel] and [C-?Br]. Alternatively,
the user can also cancel the session explicitly.

2. Raising an exception An error occurs (1) as a result of a communication over a
closed/cancelled channel, (2) as a result of a timeout on a channel, or (3) in case of
an error in the user code. For example the function get_video() can return an error.
Then the user can decide to (1) cancel(s) the session, (2) silently drop the session, or
(3) proceed with the protocol. Even if the user does not explicitly call the cancel(s)
primitive, Rust runtime ensures that the meshed channel is always cancelled in the end.

3. Double cancellation If a peer tries to cancel a session s that is already cancelled
from another endpoint, then the cancellation is ignored. Note that in our semantics this
behaviour is modelled using the structural congruence rules, namely s | s ≡ s .

4. Cancel propagation When a session is cancelled, no communication action can be used
subsequently on that channel. The action cancel(s) cancels all binary channels that are
a part of the meshed channel, which precisely simulates the kill process s . When a peer
attempts to receive on a channel, if either side of the channel is cancelled, the operation
returns an error, and the session in scope is dropped. This is exactly the behaviour for the
channels from the crossbeam-channel library, and we inherit and extend this behaviour
to our library. Since our receive happens on a binary channel, our extension ensures that
all other binary channels that are in scope, and the ones that are in the stack, are also
closed. Since these channels are closed, when other peers try to read from them, they
will also encounter an error, and will subsequently close their channels.

5 Evaluations: benchmarks, expressiveness and case studies
We evaluate MultiCrusty in terms of run-time performance (§ 5.1), compilation time
(§ 5.1) and applications (§ 5.2, see [30]). Through this section, we demonstrate the
applicability of MultiCrusty and compare its performance with programs written in binary
sessions and untyped implementations (Bare) using crossbeam-channel. The purpose of the
microbenchmarks is to demonstrate the best and worst-case scenarios for the implementation:
we have not considered performance as a primary consideration in the current implementation.
The results show that rewriting multirole protocols from binary channels to affine meshed
channels can have a performance gain in addition to the safety guarantees provided by MPST.



N. Lagaillardie, R. Neykova and N. Yoshida 1:19

name ping-pong ring full-mesh

diagram A1 A2

pong

ping

A1 A2

pong

ping

A3

pong

ping

An

pong

ping
A

B

pingpong

C

ping
pong

ping
pong

Figure 7 Protocols for Microbenchmarks

In summary, MultiCrusty has only a negligible overhead when compared to the built-
in unsafe Rust channels, provided by crossbeam-channel, and up to two-fold runtime
improvement to binary sessions in protocols with high-degree of synchronisation. The source
files of the benchmarks and a script to reproduce the results are included in the artifact.
5.1 Performance
The goal of the microbenchmarks is two-fold. On one hand, it provides assurance
that MultiCrusty does not incur significant overhead when compared to alternative libraries.
The source of the runtime overhead of MultiCrusty can be attributed to: (1) the additional
data structures that are generated (see § 4.2); and (2) checks for cancellation (as outlined in
§ 4.4). We also evaluate the efficiency of MultiCrusty when implementing multiparty (as
opposed to binary) protocols. Multiparty protocols specify interaction dependencies between
multiple threads. It is well-understood that a naive decomposition of multiparty protocol to
a binary one (without preserving interaction dependencies) not only causes race conditions
and wrong results but also deadlocks [42]. One may mitigate this problem by utilising a
synchronisation mechanism, which is an off-the-shelf alternative to meshed channels. We
compare the performance of MultiCrusty and meshed channels to a binary-channels-only
implementation that uses thread-synchronisation.

We compare implementations, written using (1) MultiCrusty API (MPST) without
cancellation; (2) MultiCrusty API with cancellation (AMPST); (3) binary channels, follow-
ing [27] (BC); and (4) a Bare-Rust implementation (Bare) using untyped channels as provided
by the corresponding transport library crossbeam-channel. As a reminder, MultiCrusty
uses [27]’s channels (which are binary only and technically non-meshed), and [27]’s channels
use crossbeam-channel for actually sending and receiving payloads: the scaffolding of
all programs differs only in the final communication primitives used. In addition, the BC
implementations synchronise between threads when messages must be received in order.

Figure 7 shows simple visualisation, displayed for illustrative purpose, of the three
examples that we benchmark. Figure 8 reports the results on runtime performance, i.e., the
time to complete a protocol by the implemented endpoints in Rust, and compilation time,
i.e., the time to compile the implementations for all roles. We stress tested the library up to
20 participants but only show the results up to 10 participants for readability.

Setup: Our machine configurations are AMD OpteronTM Processor 6282 SE @ 1.30 GHz
with 32 cores/64 threads, 128 GB of RAM and 100 GB of HDD with Ubuntu 20.04, and with
the latest version available for Rustup (1.24.3) and the Rust cargo compiler (1.56.0). We use
criterion [26], a popular benchmark framework in Rust. We repeat each benchmark 10000
times and report the average execution time with a fairly narrow confidence interval of 95%.
Ping-pong benchmark measures the execution time for completing a recursive protocol
between two roles repeatedly increasing the number of executions for request-response unit
messages. Figure 8a displays the running time w.r.t. the number of iterations. This protocol
is binary, and this benchmark measures the pure overhead of MPST implementation. MPST
directly reuses the BC library, adding the structure MeshedChannels on top of it. Since
both implementations need the same number of threads, the benchmark compares only the

ECOOP 2022



1:20 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

100 200 300 400 500
# iterations

0

3

6

9

12

15

18

21

24

T
im

e
(m

s)
MPST Binary Crossbeam AMPST

0 250 500
# iterations

0

8

16

24

T
im

e
(m

s)

(a)

2 4 6 8 10
# roles

0

30

60

(b)

2 4 6 8 10
# roles

0

60

120

180

(c)

2 4 6 8 10
# roles

35

37

39

T
im

e
(s

)

(d)

2 4 6 8 10
# roles

35

45

55

(e)

Figure 8 Execution time (ms) for Ping-pong (a), Ring (b), Mesh (c) and compile time (s) for
Ring (d), Mesh (e)
overhead of MeshedChannels. Both MPST and AMPST have a linear performance increase
compared to BC and Bare. MPST is about 2.5 times slower than BC and about 6.5 times
slower than Bare for 500 iterations.
Ring protocol, as seen in Figure 7, specifies N roles, connected in a ring, sending one message
in a sequence. This example is sequential and stress tests the usage of numerous binary
channels in an MultiCrusty implementation. Figure 8b displays the running time w.r.t.
the number of participants. We measure the time to complete 100 rounds of a message
for an increasing number of roles. This benchmark demonstrates a worst-case scenario
for MultiCrusty since the MPST implementation requires N*N binary channels, hence N*N
interactions at most, meanwhile the other implementations only need 2*N binary channels.
MultiCrusty is increasingly slower than the other implementations following a quadratic
curve. All the implementations are running at the same speed for 2 participants; MPST
becomes almost 2 times slower than BC for 10 participants and almost 3.25 times slower for
20 participants. AMPST implementation has a negligible overhead compared to MPST.
Full-mesh benchmark measures the execution time for completing a recursive protocol
between N roles mutually exchanging the same message together: for every iteration, each
participant sends and receives once with every other participant. For simplicity, we show the
pattern in Figure 7 for three roles only. Figure 8c displays the running time w.r.t. the number
of participants. This is a best-case scenario protocol for MultiCrusty since the protocol
requires a lot of explicit synchronisation if implemented as a composition of binary protocols.
The slowdown of BC is explained by the difference of implementation and the management
of threads: the MultiCrusty needs only one thread for each participant, meanwhile for the
binary case, two threads per pair of interactions are required to ensure that the message
causalities are preserved. All implementations have similar running time for 2 participants
but MPST is about 2.3 times faster than BC, and about 11 times slower than Bare for 10
participants. The figure only displays the results for up to 10 participants, since this is
sufficient to show the overhead trend. In practice, we measured for up to 20 participants.
For reference, at 20 participants, MPST is about 12 times slower than Bare and about 3.75
times faster than BC. As expected, AMPST has almost the same running time as MPST.
Results summary on execution time Overall, MultiCrusty is faster than the BC
implementation when there are numerous interactions and participants, thanks to the
encapsulation of each participant as a thread; the worst-case scenario for MultiCrusty is
for protocols with many participants but no causalities between them which results in a
slowdown when compared with BC. AMPST adds a negligible running time due to the simple
checking of the status of the binary channels.
Results summary on compilation time We also compare the compilation time of the
three protocols using cargo build. The results are presented in Figures 8d and 8e. As



N. Lagaillardie, R. Neykova and N. Yoshida 1:21

expected, the more participants there are, the higher is the compilation time for MPST,
with up to 40% increase for the full-mesh protocol and only 11% for the ring protocol. We
omit the graph for the ping-pong protocol since the number of iterations does not affect
compilation time and the number of generated types, hence the compilation stays constant
at 36.4s (MPST), 36.6s (AMPST), 36.1s (BC) and 36.3s (Bare).

The compilation time of BC and Bare are very close thanks to Rust’s features, a mechanism
to express conditional compilation and optional dependencies. This allows compiling only
specific parts of libraries, instead of the whole libraries, depending on the needs of each file.
For BC and Bare, we only compile MultiCrusty’s default features, meanwhile for MPST and
AMPST, we also compile the macros features, which include heavy blocks of code and new
dependencies for the creation of the new roles, meshed channels and associated functions.

5.2 Expressiveness
We demonstrate the expressiveness and applicability of MultiCrusty by implementing
protocols for a range of applications. We also draw the examples from the session types
literature, well-established application protocols (OAuth, SMTP), and distributed protocols
(logging, circuit breaker). Protocols with more than 5 participants are not considered since
having one global protocol with more participants can quickly become intractable in terms
of protocol logic and is considered bad practice. The global protocols and patterns in the
literature that have many participants are parameterised [6], participants can be grouped in
kinds having the same type. Thereby, this will avoid a combinatorial explosion.

Table 2 displays the examples and related metrics. In particular, we report compilation
time (Check./Comp./Rel.), execution time (Exec. Time), the number of lines of code (LoC)
for implementing all roles in MultiCrusty, the lines of code generated from Scribble (Gen
Types) and the total lines of code (All); the two following columns indicate whether the
protocol involves three participants or more (MP), and if the protocol is recursive (Rec).

We report three compilation times corresponding to the different compilation options in
Rust – cargo check which only type checks the code without producing binaries, cargo
build which compiles the code with binaries and cargo build –release which, in addition,
optimises the compiled artifact. Each recursive protocol is built/checked 100 times, and we
display the average in the table. All protocols are type-checked within 27 seconds, while the
basic compilations range between 36s and 41s and the optimised compilations vary between
80s and 97s. Those results represent the longest time we can expect for the respective
build/check: Rust compilation is iterative, therefore, the usual compilation time should
be shorter. A 30 seconds pause is short enough to not break the flow [52] of the mental
headspace focused on the current task. Building the binaries takes longer, because of two
heavy libraries used by MultiCrusty (tokio [48] and hyper [46]). The execution time of
the protocols is measured by implementing only the communication aspects of the protocol,
and orthogonal computation-related aspects are omitted. The execution time is the time to
complete all protocol interactions, and even for larger protocols, it is negligible.

Table 2 does not contain protocols with more than 5 distinct participants because, in
our experience, whenever more participants are needed, the protocol is parameterised [6].
We leave such extension for future investigation.

6 Related work
A vast amount of session types implementations based on theories exist, as detailed in the
recent surveys on language implementations [1] and tools [14]. We discuss closely related
works, focusing on (1) session types implementations in Rust (§ 6.1); (2) MPST top-down
implementations (including other programming languages) (§ 6.2). For related work about

ECOOP 2022



1:22 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

Table 2 Selected examples from the literature
Example (Endpoint) Check./Comp./Rel./Exec. Time LoC Impl. Gen Types/All MP Rec
Three buyers [25] 26.7s / 37.1s / 81.3s / 568 µs 143 37 / 180 ✓ ✓

Calculator [19] 26.5s / 36.9s / 81.3s / 467 µs 136 32 / 168 ✗ ✗

Travel agency [21] 26.5s / 37.6s / 84.8s / 8 ms 200 47 / 247 ✗ ✓

Simple voting [19] 26.3s / 36.7s / 82.4s / 396 µs 207 61 / 268 ✗ ✗

Online wallet [39] 26.4s / 37.8s / 84.4s / 759 µs 231 76 / 307 ✗ ✓

Fibonacci [19] 26.6s / 36.7s / 80.9s / 9 ms 141 23 / 164 ✗ ✓

Video Streaming service (§ 2) 26.3s / 37.4s / 83.0s / 11 ms 104 39 / 143 ✓ ✓

oAuth2 [39] 26.4s / 37.5s / 83.2s / 12 ms 215 61 / 276 ✓ ✓

Distributed logging ([30]) 26.5s / 36.8s / 82.6s / 5 ms 252 59 / 311 ✗ ✓

Circuit breaker ([30]) 26.5s / 38.5s / 87.0s / 18 ms 375 142 / 517 ✓ ✓

SMTP [12] 26.4s / 41.1s / 97.3s / 5 ms 571 143 / 714 ✗ ✓

Affine types and exceptions/error handling in session types, see [30].
6.1 Session types implementations in Rust
Binary session types (BST) have been implemented in Rust by [24], [27] and [7], whereas, to
our best knowledge, [9] is the only implementation of multiparty session types in Rust.

[24] implemented binary session types, following [17], while [27] based their library on
the EGV calculus by [13] (See [30]). Both verify at compile-time that the behaviours of two
endpoint processes are dual, i.e., the processes are compatible. The latter library allows to
write and check session typed communications, and supports exception handling constructs.
Rust originally did not support recursive types so [24] had to use de Bruijn indices to
encode recursive session types, while [27] uses Rust’s native recursive types but only handles
failure for recv() actions: according to [27], this is generally the case with asynchronous
implementations. This is because once an endpoint has received several messages, it makes
sense to cancel them at the receiver rather than the sender. In fact, raising an exception on
a send operation in an asynchronous calculus actually breaks confluence.

The library by [24] relies on an older version of Rust, hence we build MultiCrusty on top
of [27]. Notice that we formalised AMPST guaranteeing the MPST properties of MultiCrusty
(such as deadlock-freedom, liveness and cancellation termination), which are not present in [27].
In addition, our benchmarks confirmed that, in protocols where most of the participants
mutually communicate, MultiCrusty is up to two times faster than [27].

[7] introduces their library, Ferrite, that implements BST in Rust, adopting intuitionistic
logic-based typing [5]. The library ensures linear typing of channels, and includes a recently
shared name extension by [2], but cannot statically handle prematurely dropped channel
endpoints. Since Ferrite lacks an additional causal analysis for ensuring deadlock-freedom
by [3], deadlock-freedom and liveness among more than two participants are not guaranteed,
unlike MultiCrusty. Ferrite also lacks documentation and tests, making it hard to use.

[11] presents an implementation of a library for programming typestates in Rust. The
library ensures that Rust programs follow a typestate specification. The tool, however, has
several limitations. Differently than other works on typestates (e.g., typestates in Java [28]),
[11] implements and verifies only binary non-recursive protocols, without a static guarantee
that all branches are exhaustively implemented.

Note that all the above implementations are limited to binary and no formalism is
proposed in their papers (see Table 3).

[9] implements MPST using async and await primitives. Their main focus is a performance
analysis of asynchronous message reordering and comparisons of their asynchronous subtyping
algorithm with existing tools, including the k-MC tool [32]. Their algorithm is a sound
approximation of the (undecidable) asynchronous subtyping relation [15], by which their
tool enables to check whether an unoptimised (projected from a global type) CFSM and its



N. Lagaillardie, R. Neykova and N. Yoshida 1:23

optimised CFSM are under the subtyping relation or not. The main disadvantage of [9] is
that their library depends on external tools for checking not only deadlock-freedom, but also
communication-safety. Differently, MultiCrusty can guarantee dual compatibility (inherited
from [27]) in a multiparty protocol, based on our meshed channels implementation.

Unlike MultiCrusty, neither failure handling nor cancellation termination is implemented
or formalised in any of the above-mentioned works.

6.2 Multiparty session types implementations in other languages
We compare implementations of (top-down) MPST, ordered by date of publication, in Table 3,
focusing on statically typed languages: we exclude MPST implementations by runtime
monitoring such as Erlang [38] and Python [10].

The table is composed as follows, row by row:
Languages lists the programming languages introduced or used.
Mainstream language states if the language is broadly used among developers or not.
MPST top-down characterises the framework: Multiparty session types (MPST) or binary

session types (BST). If the implementation allows the user to write MPST global types, it
is called a top-down approach.

Linearity checking describes whether the linear usage of channels is not checked, checked at
compile-time (static) or checked at runtime (dynamic).

Exhaustive choices check indicates whether the implementation can statically enforce the
correct handling of potential input types. ✗ denotes implementations that do not support
pattern-matching to carry out choices (branching) using switch statements on enum types.

Formalism defines the theoretical foundations of the implementations, such as (1) the end
point calculus (the π-calculus (noted as π-cal.) or FJ [22]); (2) the (global) types formalism
without any endpoint calculi (no typing system is given, and no subject reduction theorem
is proved); or (3) no formalism is given (no theory is developed).

Communication safety outlines the presence or the absence of session type-soundness demon-
stration. Four languages, marked as △, provide the type safety only at type level. ✗•

means that the theoretical formalism does not provide linear types, therefore only type
safety of base values is proved.

Deadlock-freedom is a property guaranteeing that all components are progressing or ul-
timately terminate (which correspond to deadlock-freedom in MPST). Four languages
marked by △ proved deadlock-freedom only at the type level. ✓• implies the absence of
a formal link with the local configurations reduced from the projection of a global type. 1

Liveness is a property which ensure that all actions are eventually communicated with other
parties (unless killed by an exception in the case of AMPST).

Cancellation termination: once a cancellation happens at one of the participants in a multi-
party protocol, the cancellation is propagated correctly, and all processes can terminate.
The Rust implementations in the first column of Table 3 are included for reference.
Most of the MPST implementations [20, 42, 37, 6, 35, 54] follow the methodology given

by [19], which generates Java communicating APIs from Scribble [53, 45]. They exploit
the equivalence between local session types and finite state machines to generate session
types APIs for mainstream programming languages. [19, 20, 42, 37, 6] are not completely
static: they check linearity dynamically. MultiCrusty can check linearity using the built-in

1 [16] did not prove that any typing context reduced from a projection of a well-formed global type
satisfies a safety property (a statement corresponding to Lemma 3.20). Hence, deadlock-freedom is not
provided for processes initially typed by a given global type. Note that their typing contexts contain
new elements not found in those defined in [20], which weakens the link with the top-down approach.

ECOOP 2022



1:24 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

Table 3 MPST top-down implementations
[27, 24, 7] [40] [19, 20] [29] [42] [37] [6] [23] [35] [54] [16] [51] [9] MultiCrusty

Language Rust MPI-C Java Java Scala F# Go OCaml Typescript F* EnsembleS Scala Rust Rust
Mainstream

language ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

MPST
Top-Down ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linearity
check static ✗ dynamic ✗ dynamic dynamic dynamic static static static static dynamic static static

Exhaustive
choices check ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Formalism ✗ ✗ types FJ π-cal. ✗ types π-cal. types types π-cal. π-cal. types π-cal.
Communication

safety ✗ ✗ △ ✓ ✓ ✗ △ ✗• △ △ ✓ ✓ △ ✓

Deadlock
freedom ✗ ✗ △ ✗ ✓ ✗ △ ✗ △ △ ✓• ✓ △ ✓

Liveness ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Cancellation
termination ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

affinity type checking from Rust. [40, 37, 6] do not enforce exhaustive handling of input
types; and [19, 20, 29] rely on runtime checks to correctly handle branching.

[35, 54] provide static checking using the call-back style API generation. MultiCrusty
uses a decomposition of AMPST to BST; in [42], MPST in Scala is implemented combining
binary channels on the top of the existing BST library from [43]. Unlike MultiCrusty, [42]
lacks static linearity check and uses a continuation-passing style translation from MPST into
linear types. [29] implements static type-checking of communication protocols by linking Java
classes and their respective typestate definitions generated from Scribble. Objects declaring
a typestate should be used linearly, but a linear usage of channels is not statically enforced.

All above implementations generate multiparty APIs from protocols. To our know-
ledge, [23] is the only type-level embedding of classic multiparty channels in a mainstream
language, OCaml. However, the library heavily relies on OCaml-specific parametric poly-
morphism for variant types to ensure type-safety. Their formalism lacks linear types and
deadlock-freedom is not formalised nor proved. In addition, this implementation uses a non-
trivial, complicated encoding of polymorphic variant types and lenses, while MultiCrusty
uses the built-in affine type system in Rust.

The work most closely related to ours is [16] which implements handling of dynamic
environments by MPST with explicit connections from [20], where actors can dynamically
connect and disconnect. It relies on the actor-like research language, Ensemble; and generates
endpoint code from Scribble. Their core calculus includes a syntax of the try L catch M

construction where M is evaluated if L raises an exception. The type system follows [50], and
is not as expressive as the previous paper on binary exception handling [13] that extends
the richer type system of GV [34, 33]. Due to this limitation of their base typing system,
and since their main focus is adaptation, there are several differences from AMPST, listed
below: (1) they do not model general failure of multiple (interleaved) session endpoints (such
as failures of selection and branching constructs as shown in rules [C-Sel], [C-Br]); (2) their
try-catch scope (handler) is limited to a single action unlike AMPST and [13] where its scope
can be an arbitrary process P , participants and session endpoints ([R-Cat]); (3) they do not
model any Rust specific ?-options where an arbitrary process P can self-fail ([T-try], [C-?Sel]);
and (4) their kill process is weaker than ours (it is point-to-point, it does not broadcast the
failure notification to the same session).

As a consequence, their progress result ([13, Theorem 18]) is weaker than our theorems
since their configuration can be stuck with an exception process that contains raise, while
our termination theorem (Theorem 3.22) guarantees that there always exists a path such
that the process will move or terminate as 0, cleaning up all intermediate processes which
interact non-deterministically. More precisely, in [13, Theorem 18], a cancellation in a session



N. Lagaillardie, R. Neykova and N. Yoshida 1:25

is propagated, but raise blocks a reduction when the actor is not involved in a session,
and its behaviour is also stop, meaning it is terminated. Otherwise, the actor will leave
the session and restart. In contrast, MultiCrusty ensures the strong progress properties by
construction (see § 2). We also implemented interleaved sessions (as shown in [30]), where
one participant is involved in two different protocols at the same time.

7 Conclusion and future work
Rust’s pledge to guarantee memory safety does not extend to communication safety. Rust’s
built-in binary channels and affine type system are insufficient to ensure correct interaction
and termination of multiple communicating processes. This paper overcomes this limitation
by providing two main contributions. We proposed a new typing discipline, affine multiparty
session types, which captures implicit/explicit cancellation mechanisms in Rust, and proved
its cancellation termination theorem. In addition to progress and liveness properties, our
end-point processes can guarantee that all processes terminate safely and cancellation is
correctly propagated across all channels in a session, whenever and wherever a failure
happens. We embedded the theory in Rust and developed a practical library for safe
multiparty communication, MultiCrusty, which ensures deadlock-freedom and liveness in
the presence of cancellations of arbitrary processes. Evaluation of MultiCrusty shows that
it has only a negligible overhead when compared with the built-in unsafe Rust channels. We
demonstrated the use of MultiCrusty for programming distributed application protocols
with exception handling patterns.

As part of future work, we would like to develop recovery strategies based on causal
analysis, along the lines of [38]. In addition, it would be interesting to verify role-parametric
session types following [6] in an affine setting. Finally, we plan to study polymorphic meshed
channels with different delivery guarantees such as TCP and UDP.

References
1 Davide Ancona, Viviana Bono, and Mario Bravetti. Behavioral Types in Programming

Languages. Number 2-3. Now Publishers Inc., Hanover, MA, USA, 2016. doi:10.1561/
2500000031.

2 Stephanie Balzer and Frank Pfenning. Manifest Sharing with Session Types. Proc. ACM
Program. Lang., 1(ICFP), August 2017. doi:10.1145/3110281.

3 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest Deadlock-Freedom for
Shared Session Types. In Luís Caires, editor, Programming Languages and Systems - 28th
European Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, volume 11423 of Lecture Notes in Computer Science, pages 611–639,
Cham, 2019. Springer. doi:10.1007/978-3-030-17184-1_22.

4 Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. J. ACM,
30(2):323–342, 1983. URL: http://doi.acm.org/10.1145/322374.322380, doi:10.1145/
322374.322380.

5 Luís Caires and Frank Pfenning. Session Types as Intuitionistic Linear Propositions. In Paul
Gastin and François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, pages 222–236,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/978-3-642-15375-4_16.

6 David Castro, Raymond Hu, SungShik Jongmans, Nicholas Ng, and Nobuko Yoshida. Distrib-
uted Programming Using Role-Parametric Session Types in Go: Statically-Typed Endpoint
APIs for Dynamically-Instantiated Communication Structures. Proc. ACM Program. Lang.,
3(POPL), January 2019. Place: New York, NY, USA Publisher: Association for Computing
Machinery. doi:10.1145/3290342.

ECOOP 2022

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
http://doi.acm.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/3290342


1:26 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

7 Ruofei Chen and Stephanie Balzer. Ferrite: A Judgmental Embedding of Session Types
in Rust. CoRR, abs/2009.13619, 2020. URL: https://arxiv.org/abs/2009.13619, arXiv:
2009.13619.

8 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 26(2):238–302, 2016. doi:10.1017/S0960129514000188.

9 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Optimising Asynchronous Communication
in Rust: Deadlock-Free Message Reordering with Multiparty session Types, 2022. To appear
at PPoPP 2022.

10 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and Python. FMSD, 46(3):197–225, 2015. URL: http://dx.doi.org/10.1007/s10703-
014-0218-8, doi:10.1007/s10703-014-0218-8.

11 José Duarte and António Ravara. Retrofitting Typestates into Rust. page 83–91, 2021.
doi:10.1145/3475061.3475082.

12 Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax
and Routing. Technical Report RFC7230, RFC Editor, June 2014. URL: https://www.rfc-
editor.org/info/rfc7230, doi:10.17487/rfc7230.

13 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional Asynchronous
Session Types: Session Types Without Tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29,
January 2019. Place: New York, NY, USA Publisher: ACM. doi:10.1145/3290341.

14 Simon Gay and António Ravara. Behavioural Types: from Theory to Tools. In Be-
havioural Types: from Theory to Tools, Automation, Control and Robotics, pages 1–
412. Rivers publishers, Alsbjergvej 10, 9260 Gistrup, Denmark, 2017. URL: https://
www.riverpublishers.com/dissertations_xml/9788793519817/9788793519817.xml, doi:
10.13052/rp-9788793519817.

15 Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and Nobuko Yoshida. Precise
Subtyping for Asynchronous Multiparty Sessions. Proc. ACM Program. Lang., 5(POPL),
January 2021. doi:10.1145/3434297.

16 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session
Types for Safe Runtime Adaptation in an Actor Language. In Anders Møller and
Manu Sridharan, editors, 35th European Conference on Object-Oriented Programming
(ECOOP 2021), volume 194 of Leibniz International Proceedings in Informatics (LIPIcs),
page 30, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Inform-
atik. URL: https://2021.ecoop.org/details/ecoop-2021-ecoop-research-papers/12/
Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-an-Actor-Language, doi:
10.4230/LIPIcs.ECOOP.2021.12.

17 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline
for structured communication-based programming. In Chris Hankin, editor, Programming
Languages and Systems, ESOP ’98, pages 122–138, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg. doi:https://doi.org/10.1007/BFb0053567.

18 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
SIGPLAN Not., 43(1):273–284, January 2008. doi:10.1145/1328897.1328472.

19 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification Through Endpoint API
Generation. In Perdita Stevens and Andrzej Wasowski, editors, Fundamental Approaches
to Software Engineering, volume 9633, pages 401–418. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016. URL: http://link.springer.com/10.1007/978-3-662-49665-724, doi:
10.1007/978-3-662-49665-724.

20 Raymond Hu and Nobuko Yoshida. Explicit Connection Actions in Multiparty Session
Types. In Marieke Huisman and Julia Rubin, editors, Fundamental Approaches to Software
Engineering, volume 10202, pages 116–133. Springer Berlin Heidelberg, Berlin, Heidelberg,

https://arxiv.org/abs/2009.13619
http://arxiv.org/abs/2009.13619
http://arxiv.org/abs/2009.13619
https://doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.1007/s10703-014-0218-8
http://dx.doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1145/3475061.3475082
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://doi.org/10.17487/rfc7230
https://doi.org/10.1145/3290341
https://www.riverpublishers.com/dissertations_xml/9788793519817/9788793519817.xml
https://www.riverpublishers.com/dissertations_xml/9788793519817/9788793519817.xml
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1145/3434297
https://2021.ecoop.org/details/ecoop-2021-ecoop-research-papers/12/Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-an-Actor-Language
https://2021.ecoop.org/details/ecoop-2021-ecoop-research-papers/12/Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-an-Actor-Language
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328897.1328472
http://link.springer.com/10.1007/978-3-662-49665-724
https://doi.org/10.1007/978-3-662-49665-724
https://doi.org/10.1007/978-3-662-49665-724


N. Lagaillardie, R. Neykova and N. Yoshida 1:27

2017. Series Title: Lecture Notes in Computer Science. URL: https://link.springer.com/
10.1007/978-3-662-54494-57, doi:10.1007/978-3-662-54494-57.

21 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP’08, volume 5142 of LNCS, pages 516–541, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. doi:10.1007/978-3-540-70592-5_22.

22 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a Minimal
Core Calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, May 2001.
doi:10.1145/503502.503505.

23 Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty Session Pro-
gramming With Global Protocol Combinators. In Robert Hirschfeld and Tobias Pape, ed-
itors, 34th European Conference on Object-Oriented Programming (ECOOP 2020), volume
166 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:30, Dag-
stuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https:
//drops.dagstuhl.de/opus/volltexte/2020/13166, doi:10.4230/LIPIcs.ECOOP.2020.9.

24 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session Types
for Rust. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming,
WGP 2015, page 13–22, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2808098.2808100.

25 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and Blame Assignment for
Higher-Order Session Types. SIGPLAN Not., 51(1):582–594, January 2016. doi:10.1145/
2914770.2837662.

26 Aparicio Jorge. Crate: Criterion, 2021. Last accessed: July 2021. URL: https://crates.io/
crates/criterion.

27 Wen Kokke. Rusty Variation: Deadlock-free Sessions with Failure in Rust. Electronic
Proceedings in Theoretical Computer Science, 304:48–60, Sep 2019. URL: http://dx.doi.
org/10.4204/EPTCS.304.4, doi:10.4204/eptcs.304.4.

28 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking Protocols
with Mungo and stmungo. In Proceedings of the 18th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’16, page 146–159, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2967973.2968595.

29 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking
protocols with Mungo and stmungo: A session type toolchain for Java. Science of
Computer Programming, 155:52–75, April 2018. Selected and Extended papers from
the International Symposium on Principles and Practice of Declarative Programming
2016. URL: https://www.sciencedirect.com/science/article/pii/S0167642317302186,
doi:https://doi.org/10.1016/j.scico.2017.10.006.

30 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay safe under panic: Affine
rust programming with multiparty session types. Technical report, 2022. arXiv: to appear.

31 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From Communicating Machines to
Graphical Choreographies. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, page 221–232, New York,
NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2676726.2676964.

32 Julien Lange and Nobuko Yoshida. Verifying Asynchronous Interactions via Communicating
Session Automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification -
31st International Conference, CAV 2019, volume 11561 of Lecture Notes in Computer Science,
pages 97–117, Cham, 2019. Springer. doi:10.1007/978-3-030-25540-4_6.

33 Sam Lindley and J. Garrett Morris. A Semantics for Propositions as Sessions. In Jan Vitek,
editor, Programming Languages and Systems, pages 560–584, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg. doi:10.1007/978-3-662-46669-8_23.

34 Sam Lindley and J. Garrett Morris. Talking Bananas: Structural Recursion for Session Types.
SIGPLAN Not., 51(9):434–447, September 2016. doi:10.1145/3022670.2951921.

ECOOP 2022

https://link.springer.com/10.1007/978-3-662-54494-57
https://link.springer.com/10.1007/978-3-662-54494-57
https://doi.org/10.1007/978-3-662-54494-57
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/503502.503505
https://drops.dagstuhl.de/opus/volltexte/2020/13166
https://drops.dagstuhl.de/opus/volltexte/2020/13166
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2914770.2837662
https://doi.org/10.1145/2914770.2837662
https://crates.io/crates/criterion
https://crates.io/crates/criterion
http://dx.doi.org/10.4204/EPTCS.304.4
http://dx.doi.org/10.4204/EPTCS.304.4
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.1145/2967973.2968595
https://www.sciencedirect.com/science/article/pii/S0167642317302186
https://doi.org/https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/3022670.2951921


1:28 Stay Safe under Panic: Affine Rust Programming with Multiparty Session Types

35 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Generating Interactive
WebSocket Applications in TypeScript. Electronic Proceedings in Theoretical Computer
Science, 314:12–22, April 2020. URL: http://arxiv.org/abs/2004.01321v1, doi:10.4204/
EPTCS.314.2.

36 Dimitris Mostrous and Vasco T. Vasconcelos. Affine Sessions. Logical Methods in Computer
Science ; Volume 14, 8459:Issue 4 ; 18605974, 2018. Medium: PDF Publisher: Episciences.org.
URL: https://lmcs.episciences.org/4973, doi:10.23638/LMCS-14(4:14)2018.

37 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A Session Type
Provider: Compile-Time API Generation of Distributed Protocols with Refinements in f#.
In Proceedings of the 27th International Conference on Compiler Construction, CC 2018,
page 128–138, New York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3178372.3179495.

38 Rumyana Neykova and Nobuko Yoshida. Let It Recover: Multiparty Protocol-Induced
Recovery. In Proceedings of the 26th International Conference on Compiler Construction,
CC 2017, page 98–108, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3033019.3033031.

39 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. Spy: Local Verification of Global
Protocols. In Axel Legay and Saddek Bensalem, editors, Runtime Verification, volume 8174
of LNCS, pages 358–363, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:https:
//doi.org/10.1007/978-3-642-40787-1_25.

40 Nicholas Ng, Jose Gabriel de Figueiredo Coutinho, and Nobuko Yoshida. Protocols by Default.
In Björn Franke, editor, Compiler Construction, pages 212–232, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg. doi:https://doi.org/10.1007/978-3-662-46663-6_11.

41 Developers Rust. Rust: attempt-catch macro, 2018. Last accessed: July
2021. URL: https://play.integer32.com/?version=stable&mode=debug&edition=2018&
gist=95979b17196adbc203c4f563e00d384b.

42 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming. In Peter Müller, editor, 31st
European Conference on Object-Oriented Programming (ECOOP 2017), volume 74 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1–24:31, Dagstuhl, Germany,
2017. Schloss Dagstuhl–LeibnizZentrum fuer Informatik. ISSN: 1868-8969. URL: http:
//drops.dagstuhl.de/opus/volltexte/2017/7263, doi:10.4230/LIPIcs.ECOOP.2017.24.

43 Alceste Scalas and Nobuko Yoshida. Lightweight Session Programming in Scala. In Shriram
Krishnamurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented
Programming (ECOOP 2016), volume 56 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 21:1–21:28, Dagstuhl, Germany, 2016. Schloss Dagstuhl–LeibnizZentrum fuer
Informatik. ISSN: 1868-8969. URL: http://drops.dagstuhl.de/opus/volltexte/2016/6115,
doi:10.4230/LIPIcs.ECOOP.2016.21.

44 Alceste Scalas and Nobuko Yoshida. Less is More: Multiparty Session Types Revisited. Proc.
ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290343.

45 Authors Scribble. Scribble home page. 2021. URL: http://www.scribble.org.
46 McArthur Sean. Crate: Hyper, 2021. Last accessed: July 2021. URL: https://crates.io/

crates/hyper.
47 Company StackOverflow. Stackoverflow: 2020 Developer Survey, 2020. Last accessed: July

2021. URL: https://insights.stackoverflow.com/survey/2020.
48 Contributors Tokio. Crate: Tokio, 2021. Last accessed: July 2021. URL: https://crates.

io/crates/tokio.
49 Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding Real-World

Concurrency Bugs in Go. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’19, page 865–878, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3297858.3304069.

http://arxiv.org/abs/2004.01321v1
https://doi.org/10.4204/EPTCS.314.2
https://doi.org/10.4204/EPTCS.314.2
https://lmcs.episciences.org/4973
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3033019.3033031
https://doi.org/https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/https://doi.org/10.1007/978-3-662-46663-6_11
https://play.integer32.com/?version=stable&mode=debug&edition=2018&gist=95979b17196adbc203c4f563e00d384b
https://play.integer32.com/?version=stable&mode=debug&edition=2018&gist=95979b17196adbc203c4f563e00d384b
http://drops.dagstuhl.de/opus/volltexte/2017/7263
http://drops.dagstuhl.de/opus/volltexte/2017/7263
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
http://drops.dagstuhl.de/opus/volltexte/2016/6115
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/3290343
http://www.scribble.org
https://crates.io/crates/hyper
https://crates.io/crates/hyper
https://insights.stackoverflow.com/survey/2020
https://crates.io/crates/tokio
https://crates.io/crates/tokio
https://doi.org/10.1145/3297858.3304069


N. Lagaillardie, R. Neykova and N. Yoshida 1:29

50 Vasco T. Vasconcelos, Simon J. Gay, and António Ravara. Type checking a multith-
readed functional language with session types. Theoretical Computer Science, 368(1):64–87,
2006. URL: https://www.sciencedirect.com/science/article/pii/S0304397506003902,
doi:https://doi.org/10.1016/j.tcs.2006.06.028.

51 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. Proceedings of the ACM on
Programming Languages, 5(OOPSLA):1–30, October 2021. URL: https://dl.acm.org/doi/
10.1145/3485501, doi:10.1145/3485501.

52 Contributors Wikipedia. Wikipedia: Flow (psychology), 2021. Last accessed: July 2021. URL:
https://en.wikipedia.org/wiki/Flow_(psychology).

53 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The Scribble Protocol
Language. In Martín Abadi and Alberto Lluch Lafuente, editors, Trustworthy Global Computing,
pages 22–41, Cham, 2014. Springer International Publishing. doi:https://doi.org/10.1007/
978-3-319-05119-2_3.

54 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. Stat-
ically Verified Refinements for Multiparty Protocols. Proc. ACM Program. Lang., 4(OOPSLA),
November 2020. doi:10.1145/3428216.

ECOOP 2022

https://www.sciencedirect.com/science/article/pii/S0304397506003902
https://doi.org/https://doi.org/10.1016/j.tcs.2006.06.028
https://dl.acm.org/doi/10.1145/3485501
https://dl.acm.org/doi/10.1145/3485501
https://doi.org/10.1145/3485501
https://en.wikipedia.org/wiki/Flow_(psychology)
https://doi.org/https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1145/3428216

	1 Introduction
	2 Overview: affine multiparty session types (AMPST) in Rust
	2.1 Example: Video streaming service

	3 Affine multiparty session processes for Rust programming
	3.1 Affine multiparty session processes
	3.2 Affine multiparty session typing system
	3.3 Properties of affine multiparty session types

	4 Design and implementation of MultiCrusty
	4.1 Challenges for the implementation of MultiCrusty
	4.2 Meshed Channels in MultiCrusty
	4.3 Types for affine meshed channels
	4.4 Exception and cancellation

	5 Evaluations: benchmarks, expressiveness and case studies
	5.1 Performance
	5.2 Expressiveness

	6 Related work
	6.1 Session types implementations in Rust
	6.2 Multiparty session types implementations in other languages

	7 Conclusion and future work

