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Abstract. Asynchronous multiparty session types are a type-based 
framework that ensures the compatibility of components in a distributed 
system by specifying a global protocol. Each component can be indepen-
dently developed and refined locally, before being integrated into a larger 
system, leading to higher quality distributed software. This paper studies 
the interplay between global protocols and an asynchronous refinement 
relation, precise asynchronous multiparty subtyping. This subtyping rela-
tion locally optimises asynchronous messaging, enabling a permutation 
of two actions in a component while still preserving the safety and live-
ness of the overall composed system. In this paper, we first define the 
asynchronous association between a global protocol and a set of local 
(optimised) s pecifications. We then prove the soundness and complete-
ness of the operational correspondence of this asynchronous association.
We demonstrate that the association acts as an invariant to provide type
soundness, deadlock-freedom and liveness of a collection of components
optimised from the end-point projections of a given global protocol.

Keywords: Multiparty session types · Precise asynchronous 
multiparty session subtyping · Type-s afety · Association · Optimisation

1 Introduction 

Concurrent and distributed components, often viewed as multiagents, are an effec-
tive abstraction for building flexible concurrent and distributed systems. Jean-
Bernard Stefani is a pioneer of component-based software engineering (CBSE). 
He has promoted CBSE to both language and system communities, proposing a 
numb er of novel frameworks, systems and models. Two of many examples are a
software framework for component-based OS kernels, Think [11], which enables 
code-reuse and reduction of development times for building embedded systems; 
and a modular, extensible and language-indep endent model for configurable soft-
ware systems, Fractal1, which was first introduced by Fr ance Telecom and

1 https://fractal.ow2.io/. 
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Fig. 1. Top-down methodology of multiparty session types. G denotes a global type, 
which is projected into the three participants, p, q and r, generating local types T p, T q 
and T r for each participant. Local type s are then refined to T opt

p , T opt
q and T opt

r . Three
distributed programs Pp, Pq and Pr follow.

INRIA. Think has had a significant impact on the embedded systems commu-
nity, and Fractal has been used for developing multiple implementations i n
different programming languages (such as Java, C, C++, Smalltalk, .Net).

Session types [14, 20] are a type discipline for codifying concurrent compo-
nents. Multiparty session types [15, 16] (MPST) extend this idea from two-party 
to multiparty communication, facilitating a programmer in specifying a global 
protocol to coordinate communicating components. Using MPST, we can ensure 
that typed components interact without type errors or deadlocks by construction. 
Similar to Fractal, the MPST framework is language-agnostic, and has been
adapted into over 20 programming languages [22]. 

Figure 1 describes the MPST workflow. We assume a set of participants P in 
the distributed system. We specify a global protocol (type) G, which is projected 
into  a  set  of  local protocols (types) {T p}p∈P from the viewpoint of each partici-
pant p.  Th  e local type T p is then refined to an optimised local type T opt

p using
the multiparty asynchronous subtyping relation �a [13]. Subtyping �a allows for 
“safe permutations” of actions (explained in § 1), enabling us to type a more 
optimised program Pp which conforms to T opt 

p . Once each program is typed, we 
can automatically guarantee that a collection of distributed programs {Pp}p∈P
satisfy safety, deadlock-freedom and liveness.

This workflow (called top-down in [21]) is implemented by the MPST 
toolchains, Scribble [25]  and  νScr [26], which check whether a given global 
protocol is well-formed, and if so, generate a corresponding set of local typ es.
Building on this, the Rust toolchain Rumpsteak [10]  uses  νScr to generate 
state machines, from which optimised APIs are generated u sing a sound approx-
imation of �a.

Ring-Choice Example. We explain our workflow by introducing a running 
example which will be referenced throughout this paper, the ring-choice protocol
Gring from [9]:
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Fig. 2. Ring protocol: Projected and optimised interactions (from [9]) 

Gring = μt.p→q:add(int).q→r:
{
add(int) . r→p: {add(int) . t} 
sub(int) . r→p: {sub(int) . t}

}

The global type Gring sp ecifies that:

1. p sends an integer n to q labe lled by add;
2. q sends an integer m to r labelled b y add or sub;

(a) if add is selected, it sends the integer m + k labelled by add to p,  a  nd the
protocol restarts from Step 1; and

(b) if sub is selected, it sends the integer m − k labelled by sub to p , and the
protocol restarts from Step 1.

If we assume synchronous interactions as illustrated in Fig. 2(a), no data flow 
would occur from q to r and from r to p before q receives data from p.  This  
synchronisation is captured b y the local types which are projected from G:

Tp = μt.q⊕{add(int).r&{add(int).t, sub(int).t}} 
Tq = μt.p&{add(int).r⊕{add(int).t, sub(int).t}} 
Tr = μt.q&{add(int).p⊕{add(int).t}, sub(int).p⊕{sub(in t).t}}

where the notation ⊕ is a selection type which denotes an internal choice 
(followed by label and payload), while & denotes a branching type, representing
an external choice.

Under asynchronous interactions illustrated in Fig. 2(b), assuming that each 
participant begins with its own initial value, q can concurrently choose one of 
two labels to send the data to r before receiving data from p, letting r and p start 
the next action. By applying asynch ronous subtyping (�a), we can optimise Tp

to the following T opt
p , pushing the external choice behind the internal one:

T opt 
q = μt.r⊕{add(int).p&{add(int).t}, sub(int).p&{add(int). t}}

With process Pq typed by T opt 
q , we can run the ring p rotocol more efficiently

(see [10]). An overview of the history of asynchronous subtyping is given in [8], 
encompassing the theory and applications of the relation.
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Contributions. This paper proves the sound and complete operational cor-
respondence between behaviours of global type G and a set of local types 
{T opt 

p }p∈P , which are refined or optimised by �a from G ’s projection {Tp}p∈P .
We say {T opt

p }p∈P is associated to G.
More formally, given a typing context Δ = {p :  (σp, T opt 

p )}p∈roles(G), Δend 

where roles(G) is a set of roles in G, σp is the type of the queue for participant p, 
and Δend is a typing context which contains only termination type end (which 
denotes the participant has completed communications), then the association
between Δ and a global type G is defined as follows:

Δ �a G if G �p (σp, Tp) and T opt 
p �a T p for all p ∈ roles(G) (1) 

Once we obtain the soundness and completeness of the association, we can 
derive the subject reduction theorem and session fidelity of the top-do wn app-
roach from the corresponding results of the bottom-up system [13,  Theorems  4.11  
and 4.13]. The bottom-up system does not use global types and their projec-
tions, but requires an additional check that the collection o f local types (i.e., a
typing context) satisfies a safety property [19]. 

More specifically, we divide the steps to derive t hese results as follows:

Step 1 We define the operational semantics of G (denoted by G−→G′)  and  a  
ty ping context Δ (denoted by Δ → Δ′).

Step 2 We prove soundness:  if  Δ �a G and G −→ , then there exist G′ and Δ′

such that G −→ G′, Δ → Δ′ and Δ′ �a G′.
Step 3 We prove completeness:  if  Δ �a G and Δ → Δ′, then there exists G′

such that G−→G′ and Δ′ �a G′.
Step 4 We define the typing rule for multiparty session processes using the

association:

∀p ∈ dom(Δ) � Pp � Tp � hp � σp Δ(p)  =  (σp, Tp) Δ �a G

�top Πp∈dom(Δ) (p � Pp | p � hp) � Δ
[SessTop]

where � P � T is a typing judgement to assign type T to process P and
� h � σ assigns type σ to a FIFO queue h (defined in [13, Figure 5]). p � Pp 

means process Pp is acting as participant p, buffering sent messages in its
queue p � hp.

Step 5 We prove the subject reduction theorem of the top-down sys-
tem using the completeness of the association with the subject reduction the-
orem of the bottom-up system [13, Theorem 4.11]; and the session fidelity 
theorem of the top-down system using the soundness and completeness 
of the association with the s ession fidelity theorem of the bottom-up sys-
tem [13, Theorem 4.13]. We can also derive safety, deadlo ck-freedom and
liveness from [19]  and [13, Theorem 4.12]. We give detailed explanations in
Sect. 5.
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Fig. 3. Syntax of typ es.

Outline. We provide an extensive exploration of global and loc al types
in Sect.2.1, including syntax, projection, and subtyping. We define operational 
semantics for both global types (Sect.3.1) and typing contexts (Sect.3.2). We 
establish the sound and complete operational relationship between these two
semantics in Sect.4. Furthermore, we demonstrate that the top-down typing sys-
tem ensures subject reducution, session fidelity, and liveness in Sect.5.  Full  proofs  
are found in [18]. 

2 Multiparty Session Types 

This section introduces global and local types, together with queue ty pes. As in
[1], our formulation of global types includes special runtime-specific constructs to 
allow global types to represent en-route messages which have been sent but not 
yet received, and we give a novel projection relation (Def. 1) which extends the 
standard coinductive projection [12, Definition 3.6] to asynchronous semantics 
by simultaneously projecting onto b oth local and queue types.

2.1 Global and Local Types 

Multiparty Session Type (MPST) theory uses global types to provide a compre-
hensive overview of communications between roles,  such  as  p, q, s, t,  .  .  ., belong-
ing to a set R.  It  employs  local types, which are obtained via projection from a 
global type, t o describe how an individual role communicates with other roles
from a local viewpoint. The syntax of global and local types is presented in Fig. 3, 
where constructs are mostly standard [19]. 
Basic types are taken from a set B, and describe types of values, ranging over 
integers, booleans, real numbers, units, etc.
Global types range over G, G′, Gi,  .  .  ., and describe the high-level behaviour for 
all roles. The set of roles in a global type G is denoted by roles(G). We explain
each syntactic construct of global types.
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– p→q: {mi(Bi).Gi}i∈I :  a  transmission, denoting a message from role p to role 
q, with a label mi, a payload of type Bi, and a continuation Gi,  where  i is taken 
from an index set I. We require that the index set be non-empty (I �= ∅),
labels mi be pair-wise distinct, and self receptions be excluded (i.e. p �= q).

– p 
mj�q: {mi(Bi).Gi}i∈I :  a  transmission en route, representing a transmission 

of the message with index j ∈ I which has already been sent by role p but 
has not been received by role q. Note that since q has not yet received the 
message, all branch es are still present even though it is predetermined which
will be chosen. This type is only meaningful at runtime.

– μt.G:  a  recursive global type, where contractive requirements apply [17, 
§21.8], i.e. each recursion variable t is bound within a μt.. . . and is guarded.

– end:  a  terminated global type (omitted where unambiguous).

Local types (or session types) range over T , T ′, Ti,  .  .  ., and describe the 
behaviour of a single role. We elucidate each syntactic construct of local types.

An internal choice (selection), p⊕{mi(Bi).Ti}i∈I , indicates that the cur-
rent role is expected to send to role p;  an  external choice (branching), 
p&{mi(Bi).Ti}i∈I , indicates that the current role is expected to receive from 
role p;  a  recursive local type, μt.T , follows a pattern analogous t o μt.G; finally,
we use end for termination (omitted where unambiguous). Similar to global
types, local types also need pairwise distinct, non-empty labels.
Queue types range over σ, σ′, σi,  .  .  ., and describe the type of queues storing 
buffered asynchronous messages: ∅ is the empty queue; (p, m(B)) is the type of a 
queued message being sent to participan t p with a message label m and a payload
of type B; and σ ·σ′ is the concatenation of two queues.

2.2 Projections 

Projection. In the top-down approach of MPST, local types are obtained by 
projecting a global type onto r oles. Our definition of projection, as given in Def.
1 below, is slightly modified from the traditional presentation of projection as 
a partial function from global to local types. We define projection coinductively 
as a relation between global types G and pairs of local types T and queue types
σ, allowing the queues to capture buffered messages, projected from en-route
transmissions, at the local level.

Definition 1 (Global Type Projection). The projection of a global type 
G onto a role p is defined coinductively as a r elation G�p(σ, T ) by the rules in
Fig. 4. 

where
�

is the merge operator for session types ( full merging), define d coin-
ductively as follows:

– If unf(T )  =  end and unf(T ′)  =  end then T 
 T ′ = end.
– If unf(T )  =  p⊕{mi(Bi).Ti}i∈I and unf(T ′)  =  p⊕{mi(Bi).T ′

i}i∈I then T 

T ′ = p⊕{mi(Bi).Ti 
 T ′

i}i∈I .



122 K. Pischke and N. Yoshida

Fig. 4. Rules for coinductive pro jection.

– If unf(T )  =  p&{mi(Bi).Ti}i∈I and unf(T ′)  =  p&
{
mj(Bj).T ′

j

}
j∈J then T 


T ′ = p&{mk(Bk).T ′′
k }k∈I∪J .  Where  T ′′

k = 

⎧⎪⎨ 

⎪⎩ 

Tk 
 T ′
k if k ∈ I ∩ J

Tk if k ∈ I \ J

T ′
k if k ∈ J \ I

We make use of an unfolding function, defined by unf(μt.T ) = unf(T{μt.T/t}) 
when there is a rec ursion binder at the outermost level otherwise unf(T ) = T .

A new rule, [P-⊕-II], allows an en-route message (q, mj(Bj)) to be included 
in the projected queue of outgoing messages. If a global type G starts with a 
transmission from role p to role q, projecting it onto role p (resp. q) results in an 
internal (resp. external) choice, provided that the continuation of each branching
of G is also projectable. When projecting G onto other participants r (r �= p
and r �= q), a merge operator, as defined in Def. 1, is used to ensure that the 
projections of all continuations are “compatible”. It is noteworthy that there are 
global types that c annot be projected onto all of their participants as shown in
[21, § 4.4].

Recall the ring-choice example: projection Gring�pTp can be derived by apply-
ing [P-L], [P-R], [P-⊕], [P-�], and merging the results of applying [P-&], to the
coinductive hypothesis for each branch.
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2.3 Asynchronous Multiparty Subtyping 

We introduce a subtyping relation �a on local types, as defined in Def. 2.  This  
subtyping relation is standard [19], and will be used later when defining local 
type semantics and establishing the relationship bet ween global and local type
semantics.

Given a standard subtyping <: for basic types (e.g. including int <: real), 
we give a summary of asynchronous subtyping �a introduced in [13]. We first 
consider the tree representation of local type T (denoted by T(T )).

We write T for generic trees and additionally define three specific types of 
tree. Single-input trees (denoted by V) are those which have only a singleton 
choice in all branchings, while single-output trees (denoted by U) are those which 
have only a singleton choice in all selections. Trees which are both single-input
and single-output are called single-input-single-output (SISO) trees (denoted by
W). These can all be defined coinductively by the following equations.

T = p&{mi(Bi).Ti}i∈I | p⊕{mi(Bi).Ti}i∈I | end 
U = p&{mi(Bi).Ui}i∈I | p!m(B); U | end 
V = p?m(B); V | p⊕{mi(Bi).Vi}i∈I | end 
W = p?m(B); W | p!m(B);W | end

We will define reorderings of SISO trees, and to do so, we consider non-
empty sequences A(p) of receives not including p and B(p) of sends not including 
p together with receive s from any participant. These sequences are inductively
defined (where p �= q) by:

A(p) = q?m(B) | q?m(B); A(p) B(p) = r?m(B) | q!m(B) | r?m(B); B(p) | q!m(B); B(p)

We define the set act(W) of actions of a SISO tree:
act(end)  =  ∅; act(p?m(B); W)  =  {p?}  ∪  act(W);  and  act(p!m(B); W)  =  

{p!} ∪ act(W).
Using these definitions, we introduce a refinement relation (�) defined coin-

ductively by the following rules:
B′ <: B W � A(p) ; W′ act(W)  =  act(A(p) ; W′) 

p?m(B); W � A(p) ; p?m(B′); W′ [Ref-A] 

B <: B′
W � B(p) ; W′ act(W)  =  act(B(p) ; W′) 

p!m(B); W � B(p) ; p!m(B′); W′ [Ref-B] 

B′ <: B W � W
′

p?m(B); W � p?m(B′); W′ [Ref-In] 
B <: B′

W � W
′

p!m(B); W � p!m(B′); W′ [Ref-Out] 

end � end
[Ref-End]

We can extract sets of single-input and single-output trees from a given tree 
using the functions �·�SI and �·�SO.
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�p&{mi(Bi).Ti}i∈I�SI =
⋃

i∈I{p?mi(Bi); Vi | Vi ∈ �Ti�SI}
�p⊕{mi(Bi).Ti}i∈I�SI = {p⊕{mi(Bi).Vi}i∈I |  ∀i ∈ I : Vi ∈ �Ti�SI} �end�SI = {end}

�p⊕{mi(Bi).Ti}i∈I�SO =
⋃

i∈I{p!mi(Bi); Ui | Ui ∈ �Ti�SO}
�p&{mi(Bi).Ti}i∈I�SO = {p&{mi(Bi).Ui}i∈I |  ∀i ∈ I : Ui ∈ �T i�SO} �end�SO = {end}

Definition 2 (Subtyping). We consider trees that have only singleton choices 
in branchings (called single-input (SI) trees), or in selections ( single-output 
(SO) trees), and we define the session subtyping �a over all s ession types by
considering their decomposition into SI, SO, and SISO trees.

∀U ∈ �T(T )�SO ∀V
′ ∈ �T(T ′)�SI ∃W ∈ �U�SI ∃W

′ ∈ �V′�SO W � W
′

T �a T
′ [Sub]

The refinement � captures safe permutations of input/output messages, that 
never cause deadlocks or communication errors under asynchrony; and the sub-
typing relation �a focuses on rec onciling refinement � with the branching struc-
tures in session types.

Example 1 (Subtyping the Ring Protocol Projection). To demonstrate that 
T opt 
q �a Tq, we must show that for all U ∈ �T

(
T opt 
q

)
�
SO 

and V′ ∈ �T
(
Tq

)
�SI, 

there exist W ∈ �U�SI and W
′ ∈ �V′�SO such that W � W

′. Consider the follow-
ing sets:

�T
(
T opt 
q

)
�SO =

{
r!add(int); p?add(int); .  .  .,  r!sub(int); p?add(int); .  .  .,  .  .  .

}

�T(Tq)�SI =
{
p?add(int); r ⊕

{
add(int).. . .
sub(int).. . .

}}

Now, we must find for each U in the first set and V
′ in the second, a 

pair of SISO trees (W, W′) such that W � W
′. For instance, if the sec-

ond U is chosen, we have W = r!sub(int); p?add(in t); . . . and we can pick
W

′ = p?add(int); p!sub(int); . . .
Then we can apply rule [Ref-B] to validate that it is safe to reorder the send 
ahead of the receive in the optimised type. We could form a similar argument in
the other cases. Thus we conclude that:T opt

q �a Tq.

Lemma 1 (Merge preserves subtyping). Given collections of mergeable 
types Ti and T ′

i (i ∈ I). If for all i ∈ I, Ti �a T
′
i then

�
i∈I Ti �a

�
i∈I T ′

i .

3 Operational Semantics 

3.1 Semantics of Global Types 

We now present the Labelled Transition System (LTS) semantics for global types. 
To begin, we introduce the transition labels in Def. 3, which are also used in the 
LTS semantics of typing contexts (discussed later in §3.2).
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Fig. 5. Global type reduction rules.

Definition 3 (Transition Labels). Let α be a transition l abel of the form:
α ::= p:q&m

∣∣ p:q⊕m (receive or s end a message)

Definition 4 (Global Type Reductions). The global type transition α−→ is 
inductively defined by the rules in Fig. 5.  We  use  G −→ G′ if there exists α such 
that G α−→G′; we write G −→ if there exists G′ such that G −→ G′,  and  G �−→ for 
its negation (i.e. ther e is no G′ such that G −→G′). Finally, −→∗ denotes the
transitive and reflexive closure of −→.

The semantics of global types reflect the reorderings permitted by asyn-
chronous subtying, allowing transitions according to s pecific asynchronous
behaviours:

– [GR-μ] permits a valid transition to take p lace under a recursion binder.
– [GR-&] describes the receiving of asynchronous messages, allowing en-route 

message to be received.
– [GR-⊕] describes the sending of asynchronous messages, resulting in a standard

transmission becoming an en-route one.
– [GR-Ctx-I] allows the semantics to anticipate a deeper transition inside a com-

munication type so long as it is not a send between the same participants or 
receive by the sending participant. The restriction α �= p:q⊕m′ corresponds 
with the fact that B(p) does not allow sends preempting sends to the same 
participant, and the restriction α �= p:r&m′′ corresponds with the fact that
B(p) does not allow receives preempting sends to the same participant.

– [GR-Ctx-II] is even more flexible. The only restriction, α �= q:p&m′ does not 
place any limits on the sender who has already triggered an en-route message, 
only requiring the receiver not pre-emptively receive a different message from
the same sender, as with A(p).
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In this way, [GR-Ctx-I] and [GR-Ctx-II] enable the semantics to capture the 
same ideas of safe reorderings which are already present in the existing precise 
asynchronous subtyping relation. We can safely execute actions pre-emptively 
exactly when the new behaviour corresponds to a SISO tree which is a refinement
of a top level behaviour.

Definition 5 (Balanced+ Global Types). A  global  type  G is balanced+ 

iff, for every type G′, G′′ such that G −→∗ G′ −→∗ G′′,  where G′′ = 
q→r: {mi(Bi).G′′′

i }i∈I (or q mk�r: {mi(Bi).G′′′
i }i∈I) and for each of the roles p ∈ 

{q, r}, there exists a k ≥ 0 such that all fair paths G′ −→ G′
1 −→ G′

2 −→ .  .  .  reach 
a  type  G′′ = s→t:

{
mj(Bj).G′′′

j

}
j∈J (or q mk�r: {mi(Bi).G′′′

i }i∈I)  in  at  most  k 
steps with p ∈  {s, t }. As is standard when defining projectable types, we assume
well-formed global types satisfy this condition. For types without en-route trans-
misions, this aligns with the normal definition of balanced types (Def 3.3 in [12] 
and Def 4.17 in [21]). Given en-route types are only runtime behaviour, we also 
restrict ourselves to global types G′ which are the result of running a global typ e
G−→∗ G′ where G does not contain en-route transmissions.

Example 2 (Semantics of Global Type for Ring Protocol). Consider the global 
type for the ring-choice protocol (§1). The asynchronous semantics enable us to 
apply both [GR-⊕] reductions, corresponding to sends from p to q and from q to 
r, before any receive reductions (using [GR-&]) are applied. As we will see later, 
this particular choice of global reduction path corresponds to behaviour which
can only be captured by the optimised local type.

We begin by reducing Gring via a send action from p to q:

Gring 
p:q⊕add −−−−−→ G (1) ring = p add�q:add(int).q→r:

{
add(int) . r→p: {add(int) .  Gring} 
sub(int) . r→p: {sub( int) . Gring}

}

At this point, a message from p to q is in transit. We then perform another 
[GR-⊕] reduction, using [GR-Ctx-II] to apply the sending from q to r under the
existing en-route type:

G (1) ring 
q:r⊕sub −−−−−→ G (2) ring = p add�q:add(int).q sub�r:

{
add(int) . r→p: {add(int) .  Gring} 
sub(int) . r→p: {sub (int) . Gring}

}

The state G (2) ring reflects the two en-route messages: one from p to q and one 
from q to r. We can the proceed with the c orresponding receive actions using
the [GR-&] rule. First, q receives the message from p:

G (2) ring 
q:p&add −−−−−→ G (3) ring = q sub�r:

{
add(int) . r→p: {add(int) .  Gring} 
sub(int) . r→p: {sub(int) . Gring}

}
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Fig. 6. Typing context reduction rules.

Then, r receives the message from q:

G (3) ring 
r:q&sub −−−−−→ G (4) ring = r→p: {sub(int) . Gring}

Next, r sends to p:

G (4) ring 
r:p⊕sub −−−−−→ G (5) ring = r sub�p: {sub(int) . Gring}

Finally, p receives this last message, returning us to the original state of the
protocol:

G (5) ring 
r:p&sub −−−−−→ G ring

In §3.2, we will show that this reduction sequence corresponds to a behaviour 
of the optimised local implementation for q.

3.2 Semantics of Typing Context 

After introducing the semantics of global types, we now present an LTS semantics 
for typing contexts, which are collections of local types. The formal definition of
a typing context is provided in Def. 6, followed by its reduction rules in Def. 7. 

Definition 6 (Typing Contexts). Δ denotes a partial mapping from partic-
ipants to queues and t ypes. Their syntax is defined as:

Δ ::= ∅ ∣∣ Δ, p:(σ , T )
The context composition Δ1,  Δ2 is defined iff dom(Δ1 ) ∩ dom(Δ2) = ∅.

Definition 7 (Typing Context Reduction). The typing context transition 
α−→ is inductively defined by the rules in Fig. 6. We write Δ α−→ if there exists 
Δ′ such that Δ α−→ Δ′. We write Δ → Δ′ iff Δ α−→ Δ′ for some α and Δ �→ for 
its negation (i.e. there is no Δ′ such that Δ → Δ′), and we denote →∗ as the
reflexive and transitive closure of →.
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Example 3 (Operational Semantics of Optimised Ring Context). As an example, 
consider the operational semantics of the optimised ring protocol. Each transition 
captures either a m essage send or receive, which either enqueues or dequeues a
message in the queue of the sending participant.

Δ0 = p:(∅,  Tp), q:(∅,  T  opt 
q ), r:(∅,  Tr) 

p:q⊕add(int) −−−−−−−→ Δ1 = p:(〈(q, add(int))〉, r&
{
add(int).Tp 

sub(int).Tp

}

), q:(∅,  T  opt 
q ), r:(∅,  Tr) 

q:r⊕sub(int) −−−−−−−→ Δ2 = p:(〈(q, add(int))〉, r&
{
add(int).Tp 

sub(int).Tp

}

), 

q:(〈(r, sub(int))〉, p&{
add(int).T opt 

q

}
), r:(∅,  Tr) 

q:p&add(int) −−−−−−−→ Δ3 = p:(∅, r&
{
add(int).Tp 

sub(int).Tp

}

), q:(〈(r, sub(int))〉,  T  opt 
q ), r:(∅,  Tr) 

r:q&sub(int) −−−−−−−→ Δ4 = p:(∅, r&
{
add(int).Tp 

sub(int).Tp

}

), q:(∅,  T  opt 
q ), r:(∅, p⊕{sub(int).Tr}) 

r:p⊕sub(int) −−−−−−−→ Δ5 = p:(∅, r&
{
add(int ).Tp

sub(int).Tp

}

), q:(∅, T opt
q ), r:(〈(p, sub(int))〉, Tr)

p:r&sub(int)−−−−−−−→ Δ0

4 Global and Local Type Asynchronous Association 

Following the introduction of LTS semantics for global types (Def. 4) and typing 
contexts (Def. 7), we establish a relationship between these two semantics using 
the projection relation �p (Def. 1) and the subtyping relation �a (Def. 2). 

Definition 8 (Association of Global Types and Typing Contexts). A 
typing context Δ is associated with a global type G written Δ �a G,  iff  Δ can be 
split i nto two disjoint (possibly empty) sub-contexts Δ = ΔG, Δend where:

1. ΔG contains projections of G: dom(ΔG)  =  roles(G),  and  ∀p ∈ roles(G) : 
Δ(p) =  (σp, T ′

p) and ∃Tp : T ′
p �a Tp and G�p(σp, Tp);

2. Δend contains only end endpoints: ∀p ∈ dom(Δend)  :  Δ(p) = (∅, end).

The association · �a · is a binary relation over typing contexts Δ and global 
types G. There are two requirements for the association: (1) the typing context 
Δ must include an entry for each role; and (2) for e ach role p, its corresponding
entry in the typing context (Δ(p)) must be a subtype (Def. 2) of the projection 
of the global type o nto this role.

Looking again at the ring protocol example, we can observe how the reduc-
tion of the global type corresponds to updates in the local context. This forms 
an operational correspondence between the global semantics and local process
configurations. Each global step is matched by a change in the local context.
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Gring 
p:q⊕add −−−−−→ G (1) ring 

q:r⊕sub −−−−−→ G (2) ring 
q:p&add −−−−−→ G (3) ring 

r:q&sub −−−−−→ G (4) ring 
r:p⊕sub −−−−−→ G (5) ring

� a � a � a � a � a � a
 

Δ0 
p:q⊕add −−−−−→ Δ1 

q:r⊕sub −−−−−→ Δ2 
q:p&add −−−−−→ Δ3 

r:q&sub − −−−−→ Δ4
r:p⊕sub−−−−−→ Δ5

This idea is illustrated through two main theorems: Thm. 2 shows that the 
reducibility of a global type aligns with that of its associated typing context;
while Thm. 1 illustrates that each possible reduction of a typing context is 
simulated by an action in the reductions of the associated global type.

Theorem 1 (Completeness of Association). Given associated global type 
G and typing context Δ such that Δ �a G.  If  Δ α−→ Δ′, then there exists G′ such
that Δ′ �a G′ and G

α−→ G′.

Proof (Sketch). By case analysis on α. For each type of action we consider the 
possible structure of G permitted by the �a relation and find that it must be
able to take a corresponding step. See [18] for detailed p roofs.

Theorem 2 (Soundness of Association). Let Δ �a G and assume G α−→ G′. 
Then there exist an action α′,  a  context  Δ ′, and a global type G′′ such that

G α′
−→ G′′, Δ α′

−→ Δ′, Δ′ �a G′′.

Proof (Sketch). By induction on the transition G α−→ G′. We again consider the 
possible structure of G permitted by �a and conclude that Δ can take a step.
We can then use Thm 1 to find a corresponding global type transition which 
preserves association. See [18] for detailed p roofs.

5 Deriving the Main Theorems from Associations 

This section demonstrates how to derive the main theorems using soundness 
and completeness of t he associations, together with the corresponding results in
[13, Theorems 4.11, 4.12 and 4.13]. Before that, we recall the b ottom-up typing
system for a multiparty session:

∀p ∈ dom(Δ) � Pp � Tp � hp � σp Δ(p)  =  (σp, Tp) ϕ(Δ)
�bot Πp∈dom(Δ) (p � Pp | p � h  p) � Δ

[SessBot]

where ϕ is some desired property, which is usually a safety property–a selected 
label is always available at the branching process [19, 23]. In [13], a liveness 
property [13, Definition 4.17] is used instead for proving t he preciseness of �a.
See [13, § 7.1].
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Deriving Subject Reduction Theorem. We prove the subject reduction 
theorem of the top-down system using the completeness of the association with 
the following subject reduction theorem of the bottom-up system. We define 
asynchronous multiparty session (M,Mi, ...) as: M ::= p�Pp | p�hp

∣∣ M | M ′.

Theorem 3 (Subject Reduction, Theorem 4.11 [ 13]). Assume �bot M � Δ 
with Δ live and M →∗ M ′. Then there exist live Δ′, Δ′′ such that �bot M ′ � Δ′′

with Δ′ �a Δ and Δ′→∗Δ′′.

Theorem 4 (Subject Reduction of the Top-Down System). Assume
�top M � Δ and M →∗ M ′. Then there exists Δ such that �bot M ′ � Δ′

withΔ→∗Δ′.

Proof. Assume M ≡ Πp∈dom(Δ)(p � Pp | p � hp) and �top M � Δ is derived with 

∀p ∈ dom(Δ) � Pp � Tp � hp � σp Δ(p)  =  (σp, Tp) Δ �a G (2) 

by [SessST]. Suppose M → M ′. We need to prove that there exist G′ and Δ′

such that Πp∈role(G′) (p � P  ′p | p � h′
p) with Δ′ �a G′.

Note that Δ is live by [19, 23]. Hence by Theorem 3, there exist live Δ′, Δ′′

such that �bot Πp∈role(G) P
′
p � Δ′′ with Δ′ �a Δ and Δ′→∗Δ′′. By Definition 8, 

Δ′ �a G. Then by Theorem 1, Δ′→∗Δ′′ implies G−→∗ 
G′ and Δ′′ �a G

′. Hence
�top Πp∈dom(Δ′′) P

′
p � Δ′′ as desired.

Deriving Session Fidelity. We derive session fidelity of the top-down system. 
We use the soundness and completeness of the association with session fidelity
of the bottom-up system

Theorem 5 (Session Fidelity, Theorem 4.13 [ 13]). Assume �bot M � Δ 
with Δ live. Assume Δ →. Then there exist M ′ and Δ′ such that M →+ M ′, 
Δ → Δ′ and �bot M ′ � Δ′.

Theorem 6 (Session Fidelity of the Top-Down System). Assume �top 

M � Δ is derived by Δ �a G and G−→. Then there exist M ′ and Δ′ such that 
M →+ M ′, G−→G′ and �top M ′ � Δ′ with Δ′ �a G′.

Proof. Assume Δ �a G. By the soundness of the association, G−→ implies Δ →. 
Suppose M ≡ Πp∈dom(Δ)(p � Pp | p � hp) and �top M ′ � Δ is derived with (2) 
above. By Theorem 5, there exist M ′ and Δ′ such that M →+ M ′ and Δ → 
Δ′. Hence by the completeness of the association, and Theorem 4, G−→G′ and 
Δ′ �a G

′ with �top M ′ � Δ′, a s desired.

Next we show that typed multiparty sessions are live (defined in [13, § 2.3]).

Theorem 7 (Liveness of the Top-Down System). Assume �top M � Δ. 
Then for all M ′ such that M →∗ M ′, M ′ is safe, d eadlock-free and live.

Proof. We first note that if M is live, then M is safe and deadlock-free. If 
Δ �a G,  then  Δ is live, hence we have �bot M � Δ. Then by Theorem 4.12
in [13], M is live.
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6 Conclusion 

We have proposed an asynchronous association relation and proved its sound 
and complete operational correspondence. This work is the first to prove these 
results based on (1) asynchronous precise subtyping and (2) projection with co-
inductive full merging. We introduced a new operational semantics for global 
t ypes, which captures more behaviours allowed by permuting actions than the
previous asynchronous global type semantics in [2, 16]. We developed a new pro-
jection relation which associates global types with a pair of a local type and a 
queue type for each participant. Using this correspondence, we derived the sub-
ject reduction theorem and the session fidelity theorem of the top-down system
from the corresponding theorems of the bottom-up system [13, Theorem 4.11 
and 4.13]. Since the projection Δ of G is known to be safe, deadlock-free and
live [19, 24], we can derive that asynchronous multiparty session processes typed 
by the top-down typing system ( [SessTop]) are also safe, deadlock-free and live
(Theorem 7). While [13] has proved the subject reduction theorem and session 
fidelity theorem under the subsumption rule of �a, it does n ot use the top-down
typing system. On the other hand, [12] has shown that multiparty synchronous 
subtyping is precise in the synchronous multiparty session calculus using the top-
down system. None of the previous work has defined association with respect to 
asynchronous subtyping or co-inductive projection. An interesting open question
is whether the association theorems hold for the sound decidable asynchronous
subtyping relations [7, 10] (and [4, 5] by extending binary to multiparty session 
types) so that we can derive the subject reduction theorems under those rela-
tions.

We have demonstrated the usefulness of association in deriving the main 
theorems of the top-down system, by reusing the theorems in [13]. We have not 
yet reached a stage to claim that MPST is a theoretical framework for building 
component-based software systems as Jean-Bernard Stefani has defined. There 
still needs to be more effort applied to developing practical applications of MPST 
for testing and maintaining compositionality and reusability of protocols. The 
most challenging topic is to type individual components, each being written in a 
different programming language or running on a different platform, while ensur-
ing their type-safety and deadlock-freedom, assuming they conform to a shared 
global protocol. Implementing such a component-based architecture requires sig-
nificant engineering effort such as defining system requirements, identifying com-
ponents, splitting the system into components, integrating these components,
and designing the interfaces for components. We plan to conduct a serious study
along these lines in the near future to make MPST a true theory of CBSE.
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