
Asynchronous timed session types

from duality to time-sensitive processes‹

Laura Bocchi1, Maurizio Murgia1,4, Vasco Thudichum Vasconcelos2, and
Nobuko Yoshida3

1 University of Kent, UK
2 University of Lisbon, Portugal
3 Imperial College London, UK
4 University of Cagliari, Italy

Abstract. We present a behavioural typing system for a higher-order
timed calculus, using session types to model timed protocols, and the
calculus to abstract implementations. Behavioural typing ensures that
processes in the calculus will perform actions in the time-windows pre-
scribed by their protocols. We introduce duality and subtyping for timed
asynchronous session types. Duality includes a class of protocols that pre-
vious work on asynchronous timed session types could not type-check.
Subtyping is critical for precision of our typing system, especially for
session delegation. The composition of dual (timed asynchronous) types
enjoys progress when using an urgent receive semantics, in which receive
actions are executed as soon as the expected message is available. Our
calculus increases the modelling power of calculi used in the previous
work on timed sessions, adding a blocking receive primitive with time-
out, and a primitive that consumes an arbitrary amount of time in a
given range.

Keywords: Session types · timers · duality · π-calculus.

1 Introduction

Time is at the basis of many real-life protocols. These include common client-
server interactions e.g., “An SMTP server SHOULD have a timeout of at least
5 minutes while it is awaiting the next command from the sender” [22]. By
protocol, we intend application-level specifications of interaction patterns – via
message passing – among distributed applications. An extensive literature offers
theories and tools for formal analysis of timed protocols, modelled for instance
as timed automata [3, 26, 33] or Message Sequence Charts [2]. These works al-
low to reason on the properties of protocols, defined as formal models. Recent
work, based on session types, focused on the relationship between time-sensitive

‹ This work has been partially supported by EPSRC EP/N035372/1, EP/K011715/1,
EP/N027833/1, EP/K034413/1, EP/L00058X/1 and EP/N028201/1. We thank
Julien Lange for his advise and comments.



2 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

protocols, modelled as timed extensions of session types, and their implementa-
tions abstracted as processes in some timed calculus. The relationship between
protocols and processes is given in terms of static behavioural typing [12, 15] or
run-time monitoring [6, 7, 30] of processes against types. Existing work on timed
session types and processes [12, 15, 30, 7] is based on simple abstractions for pro-
cesses which do not capture time sensitive primitives such as: blocking (as well
as non-blocking) receive primitives with timeout, and time consuming actions
with variable, yet bound, duration. This paper provides a theory of asynchronous
timed session types for a calculus that features both primitives. We focus on the
asynchronous scenario, as modern distributed systems (e.g., web) are often based
on asynchronous communications via FIFO channels [4, 32]. The link between
protocols and processes is given in terms of static behavioural typing, checking
for punctuality of interactions with respect to protocols prescriptions. Unlike
previous work on asynchronous timed session types [12], our type system can
check processes against protocols that are not wait-free. In wait-free protocols,
the time-windows for corresponding send and receive actions have an empty in-
tersection. We illustrate wait-freedom using a protocol modelled as two timed
session types, each owning a set of clocks (with no shared clocks between types).

SC “!Commandpx ă 5, txuq.S1C SS “?Commandpy ă 5, tyuq.S1S (1)

The protocol in (1) involves a client SC with a clock x, and a server SS with a
clock y (with both x and y initially set to 0). Following the protocol, the client
must send a message of type Command within 5 minutes, reset x, and continue
as S1C. Dually, the server must be ready to receive a command with a timeout
of 5 minutes, reset y, and continue as S1S. The model in (1) is not wait-free: the
intersection of the time-windows for the send and receive actions is non-empty
(the time-windows actually coincide). The protocol in (2), where the server must
wait until after the client’s deadline to read the message, is wait-free.

!Commandpx ă 5, txuq.S2C ?Commandpy “ 5, tyuq.S2S (2)

Patterns like the one in (1) are common (e.g., the SMPT fragment mentioned
at the beginning of this introduction) but, unfortunately, they are not wait-free,
hence ruled out in [12]. Arguably, (2) is an unpractical wait-free variant of (1):
the client must always wait for at least 5 minutes to have the message read,
no matter how early this message was sent. The definition of protocols for our
typing system (which allows for not wait-free protocols) is based on a notion of
asynchronous timed duality, and on a subtyping relation that provides accuracy
of typing, especially in the case of channel passing.

Asynchronous timed duality In the untimed scenario, each session type has one
unique dual that is obtained by changing the polarities of the actions (send vs
receive, and selection vs branching). For example, the dual of a session type S
that sends an integer and then receives a string is a session type S that receives
an integer and then sends a string.

S “!Int.?String S “?Int.!String



Asynchronous timed session types 3

Duality characterises well-behaved systems: the behaviour described by the com-
position of dual types has no communication mismatches (e.g., unexpected mes-
sages, or messages with values of unexpected types) nor deadlocks. In the timed
scenario, this is no longer true. Consider a timed extension of session types (us-
ing the model of time in [3]), and of (untimed) duality so that dual send/receive
actions have equivalent time constraints and resets. The example below shows a
timed type S with its dual S, where S owns clock x, and S owns clock y (with
x and y initially set to 0):

S “!Intpx ď 1, xq.?Stringpx ď 2q S “?Intpy ď 1, yq.!Stringpy ď 2q

S sends an integer at any time satisfying x ď 1, and then resets x. After that, S
receives a string at any time satisfying x ď 2. The timed dual of S is obtained by
keeping the same time constraints (and renaming the clock – to make it clear that
clocks are not shared). To illustrate our point, we use the semantics from timed
session types [12], borrowed from Communicating Timed automata [23]. This
semantics is separated, in the sense that only time actions may ‘take time’, while
all other actions (e.g., communications) are instantaneous.5 The aforementioned
semantics allows for the following execution of S | S:

S | S
0.4
ÝÑ

!int
ÝÑ ?Stringpx ď 2q | S (clocks values: x “ 0, y “ 0.4)

0.6
ÝÑ

?int
ÝÑ ?Stringpx ď 2q |!Stringpx ď 2q (clocks values: x “ 0.6, y “ 0)

2
ÝÑ

!String
ÝÑ ?Stringpx ď 2q (clocks values: x “ 2.6, y “ 2)

where: (i) the system makes a time step of 0.4, then S sends the integer and
resets x, yielding a state where x “ 0 and y “ 0.4; (ii) the system makes a
time step of 0.6, then S receives the integer and resets y, yielding a state where
x “ 0.6 and y “ 0; (iii) the system makes a time step of 2, then the continuation
of S sends the string, when y “ 2 and x “ 2.6. In (iii), the string was sent too
late: constraint x ď 2 of the receiving endpoint is now unsatisfiable. The system
cannot do any further legal step, and is stuck.

Urgent receive semantics The example above shows that, in the timed asyn-
chronous scenario, duality does not necessarily characterise well-behaved com-
munications. We argue, however, that the execution of S | S, in particular the
time reduction with label 0.6, does not reflect the semantics of most common
receive primitives. In fact, most mainstream programming languages implement
urgent receive semantics for receive actions. We call a semantics urgent receive
when receive actions are executed as soon as the expected message is available,
given that the guard of that action is satisfied. Conversely, non-urgent receive
semantics allows receive actions at any time satisfying the time constraint, as
long as the message is in the queue. The aforementioned reduction with label
0.6 is permitted by non-urgent receive semantics such as the one in [23], since

5 Separated semantics can encode those where actions have an associated duration.



4 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

it defers the reception of the integer despite the integer being ready for recep-
tion and the guard (y ď 2) being satisfied, but not by urgent receive semantics.
Urgent receive semantics allows, instead, the following execution for S | S:

S | S
0.4
ÝÑ

!int
ÝÑ ?Stringpx ď 2q | S (clocks values: x “ 0, y “ 0.4)

?int
ÝÑ ?Stringpx ď 2q |!Stringpx ď 2q (clocks values: x “ 0, y “ 0)
2
ÝÑ

!String
ÝÑ ?Stringpx ď 2q (clocks values: x “ 2, y “ 2)

If S sends the integer when x “ 0.4, then S must receive the integer immedi-
ately, when y “ 0.4. At this point, both endpoints reset their respective clocks,
and the communication will continue ‘in sync’. Urgent receive primitives are
common; some examples are the non-blocking WaitFreeReadQueue.readpq and
blocking WaitFreeReadQueue.waitForDatapq of Real-Time Java [13], and the
receive primitives in Erlang and Golang. Urgent receive semantics make inter-
actions ‘more synchronous’, but still as asynchronous as real-life programs.

A calculus for timed asynchronous processes Our calculus features two time-
sensitive primitives. The first is a parametric receive operation anpbq. P on a
channel a, with a timeout n that can be 8 or any number in Rě0. The paramet-
ric receive captures a range of receive primitives: non-blocking (n “ 0), blocking
without timeout (n “ 8), or blocking with timeout (n P Rą0). The second prim-
itive is a time-consuming action, delaypδq. P , where δ is a constraint expressing
the time-window for the time consumed by that action. Delay processes model
primitives like Thread.sleeppnq in real-time Java [13] or, more generally, any
time-consuming action, with δ being an estimation of the delay of computation.

Processes in our calculus abstract implementations of protocols given as pairs
of dual types. Consider the processes below:

PC “ delaypx ă 3q. a HELO.P 1C PS “ delaypx “ 5q. a0pbq.P 1S QS “ a5pbq.Q1S

A process for the protocols in (2) could, for example, be: PC for the client
SC , and PS for the server SS . The client process PC performs a time consuming
action for up to 3 minutes, then sends command HELO to the server, and continues
as P 1C . The server process PS sleeps for exactly 5 minutes, receives the message
immediately (without blocking), and continues as P 1S . A process for the protocol
in (1) could, instead be the parallel composition of PC , again for the client, and
QS for the server. Process QS uses a blocking primitive with timeout; the server
now blocks on the receive action with a timeout of 5 minutes, and continues as
Q1S as soon as a message is received. The blocking receive primitive with timeout
is crucial to model processes well-typed against protocols one can express with
asynchronous timed duality, in particular those that are not wait-free.

A type system for timed asynchronous processes The relationship between types
and processes in our calculus is given as a typing system. Well-typed processes
are ensured to communicate at the times prescribed by their types. This result
is given via Subject Reduction (Theorem 4), establishing that the relationship



Asynchronous timed session types 5

between well-typed processes and their types is preserved by reduction. In our
timed scenario, Subject Reduction holds under an assumption (receive liveness)
on the interaction structures of a process. This assumption is orthogonal to time.
To characterise the interaction structures of a timed process we “erase” tim-
ing information from that processes (untimed erasure). Receive liveness requires
that, whenever an untimed erasure is waiting for a message, the corresponding
message is eventually sent by the rest of the system. While receive liveness is
not needed for Subject Reduction in untimed systems [21], it is required for
timed processes. This reflect the (natural) fact that if an untimed erasure vio-
lates progress, then its timed counter-part may miss deadlines. Notably, we can
rely on existing behavioural checking techniques from the untimed setting to
ensure receive liveness [17].

Interestingly, receive liveness is not required for Subject Reduction in related
work on asynchronous timed session types [12]. This difference in the assump-
tions is only apparent, and derives from differences of the respective semantics for
processes. When our processes cannot proceed correctly (e.g., in case of missed
deadlines), they reduce to a failed state, whereas the processes in [12] get stuck,
regarding these scenarios as violations of progress.

Synopsis In Section 2 we introduce syntax and formation rules for asynchronous
timed session types. In Section 3, we give a modular Labelled Transition Sys-
tem (LTS) for types in isolation (Section 3.1) and for compositions of types
(Section 3.3). The subtyping relation is given in Section 3.2 and motivated in
Example 8, after introducing the typing rules. We introduce timed asynchronous
duality and its properties in Section 4. Most remarkably, the composition of dual
timed asynchronous types enjoys progress when using an urgent receive seman-
tics (Theorem 1). Section 5 presents a calculus for timed processes, while Sec-
tion 6 introduces the typing system. The properties of our typing system –
Subject Reduction (Theorem 4) and Time Safety (Theorem 5) – are presented
in Section 7. Conclusions and related works are in Section 8. Proofs and addi-
tional material can be found in an online report [11].

2 Asynchronous timed session types

Clocks and predicates We use the model of time from timed automata [3]. Let X
be a finite set of clocks, x1, . . . , xn range over clocks, and each clock take values
in Rě0. We let t1, . . . , tn range over non-negative real numbers, and n1, . . . , nn
range over non-negative rationals. The set GpXq of predicates over X is:

δ ::“ true | x ą n | x “ n | x´y ą n | x´y “ n |  δ | δ1^δ2 where x, y P X

We derive false, ă, ě, ď in the standard way. Predicates in the form x´y ą n
and x ´ y “ n are called diagonal predicates, and We assume x ‰ y. The set
cnpδq of clocks in δ is as expected.



6 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

Clock valuation and resets A clock valuation ν : X ÞÑ Rě0 returns the time of
the clocks in X. We write ν ` t for the valuation mapping all x P X to νpxq ` t,
ν0 for the initial valuation mapping all clocks to 0, and, more generally, νt for
the valuation mapping all clocks to t. Let ν |ù δ denote that δ is satisfied by ν.
A reset predicate λ over X is a subset of X. When λ is H then no reset occurs,
otherwise the assignment for each x P λ is set to 0. We write ν rλ ÞÑ 0s for the
clock assignment that is like ν except its assigns 0 to all clocks in λ.

Types Timed session types, hereafter just types, have the following syntax:

T ::“ pδ, Sq | Nat | Bool | . . .

S ::“ !T pδ, λq.S | ?T pδ, λq.S | ‘ tlipδi, λiq : SiuiPI | &tlipδi, λiq : SiuiPI |
µα.S | α | end

Sorts T include base types (Nat, Bool, etc.), and sessions pδ, Sq. Messages of
type pδ, Sq allow a participant involved in a session to delegate the remaining
behaviour S; upon delegation the sender will no longer participate in the dele-
gated session and receiver will execute the protocol described by S under any
clock assignment satisfying δ. We denote the the set of types with T.

Type !T pδ, λq.S models a send action of a payload with sort T . The sending
action is allowed at any time that satisfies the guard δ. The clocks in λ are reset
upon sending. Type ?T pδ, λq.S models the dual receive action of a payload with
sort T . The receiving types requires the endpoint to be ready to receive the
message in the precise time window specified by the guard.

Type ‘tlipδi, λiq : SiuiPI is a select action: the party chooses a branch i P I,
where I is a finite set of indices, sends the branching label li, and continues
as prescribed by Si. Each branch is annotated a guard and resets. A branch j
can be selected at any time allowed by δj . The dual type is &tlipδi, λiq : SiuiPI
for branching actions. Each branch is annotated with a guard and resets. The
endpoint must be ready to receive the label for j at any time allowed by δj (or
until another branch is selected).

Recursive type µα.S associates a type variable α to a recursion body S. We
assume that type variables are guarded in the standard way (i.e., they only occur
under actions or branches). We let A denote the set of type variables.

Type end models successful termination.

2.1 Type formation

The grammar for types allow to generate types that are not implementable in
practice, as the one shown in Example 1.

Example 1 (Junk-types). Consider S in (3) under initial clock valuation ν0.

S “?T px ă 5,Hq.!T px ă 2,Hq.end (3)

The specified endpoint must be ready to receive a message in the time-window
between 0 and 5 time units, as we evaluate x ă 5 in ν0. Assume that this



Asynchronous timed session types 7

receive action happens when x “ 3, yielding a new state in which: (i) the clock
valuation maps x to 3, and (ii) the endpoint must perform a send action while
x ă 2. Evidently, (ii) is no longer possible in the new clock valuation, as the
x ă 2 is now unsatisfiable. We could amend (3) in several ways: (a) by resetting
x after the receive action; (b) by restricting the guard of the receive action (e.g.,
x ă 2 instead of x ă 5); or (c) by relaxing the guard of the send action. All
these amendments would, however, yield a different type.

In the remainder of this section we introduce formation rules to rule out junk
types as the one in Example 1 and characterise types that are well-formed. Intu-
itively, well-formed types allow, in any state, to perform some (send or receive)
action in the present time or at some point in the future, unless the type is end.

Judgments The formation rules for types are defined on judgments of the form

A; δ $ S

where A is the environment assigning type variables to guards, and δ is a guard
in GpXq. A is used as an invariant to form recursive types. Guard δ collects
the possible ‘pasts’ from which the next action in S could be executed (unless
S “ end). We use notation Ó δ (the past of δ) for a guard δ1 such that ν |ù δ1 if and
only if Dt : ν ` t |ù δ. For example, Ó p1 ď x ď 2q “ x ď 2 and Ó px ě 3q “ true.
Similarly, we use the notation δrλ ÞÑ 0s to denote a guard in which all clocks in
λ are reset. For example, px ď 3^ y ď 2qrx ÞÑ 0s “ px “ 0^ y ď 2q. We use the
notation δ1 Ď δ2 whenever, for all ν, ν |ù δ1 ùñ ν |ù δ2. The past and reset of
a guard can be inferred algorithmically, and Ď is decidable [8].

A; true $ end
rends

˝ P t!, ?u A; γ $ S δrλ ÞÑ 0s Ď γ T base type

A; Ó δ $ ˝ T pδ, λq.S
rinteracts

˝ P t!, ?u A; γ $ S δrλ ÞÑ 0s Ď γ T “ pδ1, S1q
H; γ1 $ S1 δ1 Ď γ1

A; Ó δ $ ˝ T pδ, λq.S
rdelegates

˝ P t‘,&u @i P I A; γi $ Si δirλi ÞÑ 0s Ď γi

A; Ó
ł

iPI
δi $ ˝ tlipδi, λiq : SiuiPI

rchoices

A,α : δ; δ $ S

A; δ $ µα.S
rrecs

A,α : δ; δ $ α
rvars

Rule rends states that the terminated type is well-formed against any A.
The guard of the judgement is true since end is a final state (as end has no
continuation, morally, the constraint of its continuation is always satisfiable).



8 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

Rule rinteracts ensures that the past of the current action δ entails the past
of the subsequent action γ (considering resets if necessary): this rules out types
in which the subsequent action can only be performed in the past. Rules rends
and rinteracts are illustrated by the three examples below.

Example 2. The judgment in (4) shows a type being discarded after an applica-
tion of rule rinteracts :

H; x ď 3$z ?Natp1 ď x ď 3,Hq.!Natp1 ď x ď 2,Hq.end (4)

The premise of rinteracts would be δ Ę Ó γ, which does not hold for δ “ 1 ď
x ď 3 and Ó γ “ x ď 2. This means that guard p1 ď x ď 3,Hq of the first
action may lead to a state in which guard 1 ď x ď 2 for the subsequent action is
unsatisfiable. If we ‘amend’ the type in (4) by adding a reset in the first action,
as shown below, we obtain a well-formed type; we show its formation below,
where for simplicity we omit obvious preconditions like Nat base type, etc.

rends
H; true $ end 1 ď x ď 2 Ď true

rinteracts
H; x ď 2 $ !Natp1 ď x ď 2,Hq.end x “ 0 Ď x ď 2

rinteracts
H; x ď 3 $ ?Natp1 ď x ď 3, txuq.!Natp1 ď x ď 2,Hq.end

Rule rdelegates behaves as rinteracts , with two additional premises on
the delegated session: (1) S1 needs to be well-formed, and (2) the guard of the
next action in S1 needs to be satisfiable with respect to δ1. Guard δ1 is used to
ensure a correspondence between the state of the delegating endpoint and that
of the receiving endpoint. Rule rchoices is similar to rinteracts but requires
that there is at least one viable branch (this is accomplished by considering the
weaker past Ó

Ž

iPIδi) and checking each branch for formation. Rules rrecs and
rvars are for recursive types and variables, respectively. In rrecs the guard δ

can be easily computed by taking the past of the next action of the in S (or the
disjunction if S is a branching or selection). An algorithm can be found in [11].

Definition 1 (Well-formed types). We say that S is well-formed against
clock valuation ν if Dδ : H; δ $ S and ν |ù δ. We say that S is well-formed if
it is well formed against ν0.

We will tacitly assume types are well-formed, unless otherwise specified. The
intuition of well-formedness is that if A; δ $ S then S can be ‘run’ (using the
types semantics given in Section 3) under any clock valuation ν such that ν |ù δ.

3 Asynchronous session types semantics and subtyping

We give a compositional semantics of types. First, we focus on types in isolation
from their environment and from their queues, which we call simple type con-
figurations. Next we define subtyping for simple type configurations. Finally, we
consider systems (i.e., composition of types communicating via queues).



Asynchronous timed session types 9

ν |ù δ

pν, !T pδ, λqq.S
!T
ÝÑ pν rλ ÞÑ 0s, Sq

[snd]
ν |ù δ

pν, ?T pδ, λq.Sq
?T
ÝÑ pν rλ ÞÑ 0s, Sq

[rcv]

ν |ù δj j P I

pν,‘tlipδi, λiq : SiuiPIq
!lj
ÝÑ pν rλj ÞÑ 0s, Sjq

[sel]

ν |ù δj j P I

pν,&tlipδ, λiq : SiuiPIq
?lj
ÝÑ pν rλj ÞÑ 0s, Sjq

[bra]

pν, Srµt.S{tsq
`
ÝÑ pν1, S1q

pν, µt.Sq
`
ÝÑ pν1, S1q

[rec] pν, Sq
t
ÝÑ pν ` t, Sq [time]

Fig. 1. LTS for simple type configurations

3.1 Types in isolation

The behaviour of simple type configurations is described by the LTS on pairs
pν, Sq over pV ˆ Sq, where clock valuation ν gives the values of clocks in a
specific state, and defined over the following labels

` ::“ !m | ?m | t | τ m ::“ d | l

Label !m denotes an output action of message m and ?m an input action of m.
A message m can be a sort T (that can be either a higher order message pδ, Sq
or base type), or a branching label l. The Labelled Transition System (LTS) for
single types is defined as the least relation satisfying the rules in Figure 1. Rules
[snd], [rcv], [sel], and [bra] can only happen if the constraint of the next action
is satisfied in the current clock valuation. Rule [rec] unfolds recursive types, and
[time] always lets time elapse.

Let s, s1, si (i P N) range over simple type configurations pν, Sq. We write

s
`
ÝÑ when there exists s1 such that s

`
ÝÑ s1, and write s

t `
ÝÑ for s

t
ÝÑ

`
ÝÑ.

3.2 Asynchronous timed subtyping

We define subtyping as a partial relation on simple type configurations. As other
subtyping relations for session types [19, 16, 14] we consider send and receive
actions differently. Our subtyping relation is covariant with output actions and
contra-variant with input actions as the one in [14]. In this way, our subtyping
S ă : S1 captures the intuition that a process well-typed against S can be safely
substituted with a process well-typed against S1. Below, Definition 2, introduces
a notation that is useful in the rest of this section. Subtyping is based on timed
typed simulation (Definition 3).

Definition 2 (Future enabled send/receive). Action ` is future enabled in

s if Dt : s
t `
ÝÑ. We write s

!
ñ (resp. s

?
ñ) if there exists a sending action !m

(resp. a receiving action ?m) that is future enabled in s.



10 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

As common in session types, the communication structure does not allow for
mixed choices: the grammar of types enforces choices to be either all input
(branching actions), or output (selection actions). From this fact it follows that,

given s, it cannot be that both s
!
ñ and s

?
ñ.

Definition 3 (Timed Type Simulation). We fix s1 “ pν1, S1q and s2 “
pν2, S2q. A relation R P pV ˆ Sq2 is a timed type simulation if ps1, s2q P R
implies the following conditions:

1. S1 “ end implies S2 “ end

2. s1
t !m1
ÝÑ s11 implies Ds12,m2 : s2

t !m2
ÝÑ s12, pm2,m1q P S, ps11, s12q P R

3. s2
t ?m2
ÝÑ s12 implies Ds11,m1 : s1

t ?m1
ÝÑ s11, pm1,m2q P S, ps11, s

1
2q P R

4. s1
?
ñ implies s2

?
ñ and s2

!
ñ implies s1

!
ñ

where S is the following extension of R to messages: (1) pT, T 1q P S if T and
T 1 are base types, and T 1 is a subtype of T by sorts subtyping, e.g., pint, natq P S;
(2) pl, lq P S; (3) ppδ1, S1q, pδ2, S2qq P S, if @ν1 |ù δ1 Dν2 |ù δ2 : ppν1, S1q, pν2, S2qq P

R and @ν2 |ù δ2 Dν1 |ù δ1 : ppν1, S1q, pν2, S2qq P R.

Intuitively, if ps1, s2q P R then any environment that can safely interact with s2,
can do so with s1. We write that s2 simulates s1 whenever s1 and s2 are in a
timed type simulation. Below, s2 simulates s1:

s1 “ pν0, !natpx ă 5,Hq.endq s2 “ pν0, !intpx ď 10,Hq.endq

Conversely, s1 does not simulate s2 because of condition (2). Precisely, s2 can

make a transition s2
10 !int
ÝÑ that cannot be matched by s1 for two reasons: guard

x ă 5 is no longer satisfiable when x “ 10, and pnat, intq R S since int is not
a subtype of nat. For receive actions, instead, we could substitute s with s1 if s1

had at least the ‘receiving capabilities’ of s. Condition (4) in Definition 3 rules
out relations that include, e.g., ppν, ?T ptrue,Hq.endq, pν, !T ptrue,Hq.endqq.

Live simple type configurations In our subtyping definition we are interested in
simple type configurations that are not stuck. Consider the example below:

pν, !Intpx ď 10,Hq.endq (5)

The simple type configuration in (5) would not be stuck if ν “ ν0, but would
be stuck for any ν “ ν1rx ÞÑ 10s. Definition 4 gives a formal definition of simple
type configurations that are not stuck, i.e., that are live.

Definition 4 (Live simple type configuration). A simple configuration pν, Sq
is said live if:

S “ end or Dt, ` : pν, Sq
t ˝m
ÝÑ p˝ P t!, ?uq

Observe that for all well-formed S, pν0, Sq is live.



Asynchronous timed session types 11

Subtyping for simple type configurations We can now define subtyping for simple
type configurations and state its decidability.

Definition 5 (Subtyping). s1 is a subtype of s2, written s1 ă : s2, if there
exists a timed type simulation R on live simple type configurations such that
ps1, s2q P R. We write S1 ă : S2 when pν0, S1q ă : pν0, S2q. Abusing the notation,
we write m ă : m1 iff there exists S such that pm,m1q P S.

Subtyping has been shown to be decidable in the untimed setting [19] and
in the timed first order setting [6]. In [6], decidability is shown through a reduc-
tion to model checking of timed automata networks. The result in [6] can be
extended to higher-order messages using the techniques in [3], based on finite
representations (called regions) of possibly infinite sets of clock valuations.

Proposition 1 (Decidability of subtyping). Checking if pδ1, S1q ă : pδ2, S2q

is decidable.

3.3 Types with queues, and their composition

As interactions are asynchronous, the behaviour of types must capture the states
in which messages are in transit. To do this, we extend simple type configurations
with queues. A configuration S is a triple pν, S, Mq where ν is clock valuation, S
is a type and M a FIFO unbounded queue of the following form:

M ::“ H | m; M

M contains the messages sent by the co-party of S and not yet received by S. We
write M for M;H, and call pν, S, Mq initial if ν “ ν0 and M “ H.

Composing types Configurations are composed into systems. We denote S | S1

as the parallel composition of the two configurations S and S1.
The labelled transition rules for systems are given in Figure 2. Rule (snd)

is for send actions. A send action can occur only if the time constraint of S is
satisfied (by the premise, which uses either rule [snd] or [sel] in Figure 1). Rule
(que) models actions on queues. A queue is always ready to receive any message
m. Rule (rcv) is for receive actions, where a message is read from the queue.
A receiving action can only occur if the time constraint of S is satisfied (by
the premise, which uses either rule [rcv] or [bra] in Figure 1). The message is
removed from the head of the queue of the receiving configuration. The third
clause in the premise uses the notion of subtyping (Definition 3) for basic sorts,
labels, and higher order messages. Rule (crcv) is the action of a configuration
pulling a message of its queue. Rule (com) is for communication between a send-
ing configuration and a buffer. Rule (ctime) lets time elapse in the same way for
all configurations in a system. Rule (time) models time passing for single config-
urations. Time passing is subject to two constrains on time passing, expressed

by the second and third condition in the premise. Condition pν, Sq
!
ñ requires

the time action t to preserve the satisfiability of some send action. For example,



12 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

pν, Sq
!m
ÝÑ pν1, S1q

pν, S, Mq
!m
ÝÑ pν1, S1, Mq

(snd) pν, S, Mq
?m
ÝÑ pν, S, M;mq (que)

pν, Sq
?m1

ÝÑ pν1, S1q m1 ă : m

pν, S,m; Mq
τ
ÝÑ pν1, S1, Mq

(rcv)
S1

τ
ÝÑ S11

S1 | S2
τ
ÝÑ S11 | S2

(crcv)

S1
!m
ÝÑ S11 S2

?m
ÝÑ S12

S1 | S2
τ
ÝÑ S11 | S

1
2

(com)
S1

t
ÝÑ S11 S2

t
ÝÑ S12

S1 | S2
t
ÝÑ S11 | S

1
2

(ctime)

pν, Sq
t
ÝÑ pν1, Sq pν, Sq

!
ñ implies pν1, Sq

!
ñ @t1 ă t : pν ` t1, S, Mq

τ
Û

pν, S, Mq
t
ÝÑ pν1, S, Mq

(time)

Fig. 2. LTS for systems. We omit the symmetric rules of (crcv), and (csnd).

in configuration pν0, !T px ă 2,Hq.S,Hq, a transition with label 2 would not pre-
serve any send action (hence would not be allowed), while a transition with label

1.8 would be allowed by condition pν, Sq
!
ñ. Condition @t1 ă t : pν` t1, S, Mq

τ
Û in

the premise of rule (time) checks that there is no ready message to be received in
the queue. This is to model urgency: when a configuration is in a receiving state
and a message is in the queue then the receiving action must happen without
delay. For example, pν0, ?T px ă 2,Hq.S,Hq can make a transition with label 1,
but pν0, ?T px ă 2,Hq.S,mq cannot make any time transition. Below we show
two examples of systems executions. Example 3 illustrates a good communica-
tion, thanks to urgency. In fact, we also illustrate (Example 4) that without an
urgent semantics the system in Example 3 gets stuck.

Example 3 (A good communication). Consider the following types:

S1 “!T px ď 1, xq.?T px ď 2q.end S2 “?T py ď 1, yq.!T py ď 2q.end

System pνrx ÞÑ 0s, S1,Hq | pνrx ÞÑ 0s, S2,Hq can make a time step with label
0.5 by (ctime), yielding the system in (6)

pνrx ÞÑ 0.5s, S1,Hq | pνrx ÞÑ 0.5s, S2,Hq (6)

The system in (6) can move by a τ step thanks to (com): the left-hand side
configuration makes a step with label !T by (snd) while the right-hand side
configuration makes a step ?T by (que), yielding system (7) below.

pνrx ÞÑ 0s, ?T px ď 2q.end,Hq | pνry ÞÑ 0.5s, S2, T q (7)

The right-hand side configuration in the system in (7) must urgently receive
message T due to the third clause in the premise of rule (time). Hence, the only
possible step forward for (7) is by (crcv) yielding the system in (8).

pνrx ÞÑ 0s, ?T px ď 2q.end,Hq | pνry ÞÑ 0s, !T py ď 2q.end,Hq (8)



Asynchronous timed session types 13

Example 4 (In absence of urgency). Without urgency, the system in (7) from
Example 3 may get stuck. Assume the third clause of rule (time) was removed:
this would allow (7) to make a time step with label 0.5, followed by a step by
(rcv) yielding the system in (9), where clock y is reset after the receive action.

pνrx ÞÑ 0.5s, ?T px ď 2q.end,Hq | pνry ÞÑ 0s, !T py ď 2q.end,Hq (9)

followed by a τ step by (com) reaching the following state:

pνrx ÞÑ 2.5s, ?T px ď 2q.end, T q | pνry ÞÑ 0s, end,Hq (10)

The message in the queue in (10) will never be received as the guard x ď 2 is not
satisfiable now or at any point in the future. This system is stuck. Instead, thanks
to urgency, the clocks of the configurations of system (8) have been ‘synchronised’
after the receive action, preventing the system from getting stuck.

4 Timed asynchronous duality

We introduce a timed extension of duality. As in untimed duality, we let each
send/select action be complemented by a corresponding receive/branching ac-
tion. Moreover, we require time constraints and resets to match.

Definition 6 (Timed Duality). The dual type S of S is defined as follows:

!T pδ, λq.S “?T pδ, λq.S ?T pδ, λq.S “!T pδ, λq.S µα.S “ µα.S

‘tlipδi, λiq : SiuiPI “ &tlipδi, λiq : SiuiPI α “ α

&tlipδi, λiq : SiuiPI “ ‘tlipδi, λiq : SiuiPI end “ end

Duality with urgent receive semantics yields the following properties: systems
with dual types enjoys progress (Theorem 1), and behaviour (resp. progress) of
a system is preserved upon substitution of a type with a subtype (Theorem 2)
(resp. (Theorem 3)). A system enjoys progress (Definition 7) if it reaches states
that are either final or that allow further communications, possibly after a delay.
Recall that we assume types to be well-formed (cf. Definition 1): Theorem 1,
Theorem 2, and Theorem 3 rely on this assumption.

Definition 7 (Type Progress). We say that pν, S, Mq is success if S “ end

and M “ H. S1 | S2 satisfies progress if:

S1 | S2 ÝÑ
˚ S11 | S

1
2 ùñ S11 and S12 are success or Dt : S11 | S

1
2

t τ
ÝÑ

Theorem 1 (Duality progress). System pν0, S,Hq | pν0, S,Hq enjoys progress.

We show that subtyping does not introduce behaviour, via the usual notion
of Timed Simulation [1]. Let c, c1, c2 range over systems. Fix c1 “ pν

1
1 , S

1
1 , M

1
1q |

pν12 , S
1
2 , M

1
2q, and c2 “ pν21 , S

2
1 , M

2
1q | pν

2
2 , S

2
2 , M

2
2q. We say that a binary relation

over systems preserves end if: Si1 “ end^ Mi1 “ H iff Si2 “ end^ Mi2 “ H for all
i P t1, 2u. Write c1 À c2 if pc1, c2q are in a timed simulation that preserves end.



14 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

Theorem 2 (Safe Substitution). If S1 ă : S, then pν0, S,Hq | pν0, S
1,Hq À

pν0, S,Hq | pν0, S,Hq.

Theorem 3 (Progressing Substitution). If S1 ă : S, then pν0, S,Hq |
pν0, S

1,Hq satisfies progress.

5 A calculus for asynchronous timed processes

We introduce our asynchronous calculus for timed processes. The calculus ab-
stracts implementations that execute one or more sessions. We let P, P 1, Q, . . .
range over processes, X range over process variables, and define n P Rě0Yt8u.
We use the notation a for ordered sequences of channels or variables.

P ::“ a v.P
| aŸ l. P
| if v then P else P
| P | P
| 0
| def D in P
| Xxa ; ay
| pνabqP
| ab : h

| delaypδq. P (time-consuming)
| anpbq. P
| an Ź tli : PiuiPI

| failed (run-time)
| delayptq. P

D ::“ Xpa ; aq “ P

h ::“ H | h ¨ v | h ¨ a

a v.P sends a value v on channel a and continues as P . Similarly, a Ÿ l. P
sends a label l on channel a and continue as P . Process if v then P else Q
behaves as either P or Q depending on the boolean value v. Process P | Q is
for parallel composition of P and Q, and 0 is the idle process. def D in P is
the standard recursive process: D is a declaration, and P is a process that may
contain recursive calls. In recursive calls Xxa ; ay the first list of parameters has
to be instantiated with values of ground types, while the second with channels.
Recursive calls are instantiated with equations Xpa ; aq in D. Process pνabqP
is for scope restriction of endpoints a and b. Process ab : h is a queue with name
ab (colloquially used to indicate that it contains messages in transit from a to
b) and content h. pνabq binds endpoints a and b, and queues ab and ba in P .

There are two kind of time-consuming processes: those performing a time-
consuming action (e.g., method invocation, sleep), and those waiting to receive a
message. We model the first kind of processes with delaypδq. P , and the second
kind of processes with anpbq. P (receive) and an Ź tli : PiuiPI (branching). In
delaypδq. P , δ is a constraints as those defined for types, but on one single clock
x. The name of the clock here is immaterial: clock x is used as a syntactic tool
to define intervals for the time-consuming (delay) action. In this sense, assume
x is bound in delaypδq. P . Process delaypδq. P consumes any amount of time t
such that t is a solution of δ. For example delaypx ď 3q. P consumes any value
between 0 to 3 time units, then behaves as P . Process anpbq. P receive a message
on channel a, instantiates b and continue as P . Parameter n models different



Asynchronous timed session types 15

receive primitives: non-blocking (n “ 0), blocking (n “ 8), and blocking with
timeout (n P Rě0). If n P Rě0 and no message is in the queue, the process
waits n time units before moving into a failed state. If n is set to 8 the process
models a blocking primitive without timeout. Branching process anŹtli : PiuiPI
is similar, but receives a label li and continues as Pi.

Run-time processes are not written by programmers and only appear upon
execution. Process failed is the process that has violated a time constraint.
We say that P is a failed state if it has failed as a syntactic sub-term. Process
delayptq. P delays for exactly t time units.

Well-formed processes Sessions are modelled as processes of the following form

pνabqpP | ab : h | ba : h 1q

where P is the process for endpoints a and b, ab is the queue for messages from a
to b, and ba is the queues for messages from b to a. A process can have more than
one ongoing session. For each, we expect that all necessary queues are present
and well-placed. We ensure that queues are well-placed via a well-formedness
property for processes (see [11] for an inductive definition). Well-formedness
rules out processes of the following form:

pνabq panpcq. pba : h 1 | P q | Q | ab : hq (11)

The process in (11) in not well-formed since queue ba for communications to
endpoint a is not usable as it is in the continuation of the receive action.
Well-formedness of processes is necessary to our safety results. We check well-
formedness orthogonally to the typing system for the sake of simpler typing rules.
While well-formedness ensures the absence of misplaced queues, the presence of
an appropriate pair of queues for every session is ensured by the typing rules.

Session creation Usually [21, 10] well-formedness is ensured by construction, as
sessions are created by a specific (synchronous) reduction rule. This kind of
session creation is cumbersome in the timed setting as it allows delays that are
not captured by protocols, hence well-typed processes may miss deadlines. Other
work on timed session types [12] avoids this problem by requiring that all session
creations occur before any delay action. Our calculus allows session to be created
at any point, even after delays. In (12) a session with endpoints c and d is created
after a send action (assume P includes the queues for this new session).

pνabq pa v.delaypx ď 3q. pνcdqpP q | Q | ab : h | ba : h 1q (12)

A process like the one in (12) may be thought as a dynamic session creation
that happens synchronously (as in [21, 10]), but assuming that all participants
are ready to engage without delays. Our approach yields a simplification to
the calculus (syntax and reduction rules) and, yet, a more general treatment of
session initiation than the work in [12].



16 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

P á P 1

P ÝÑ P 1
P ù P 1

P ÝÑ P 1
rRed1{Red2s

a v.P | ab : h á P | ab : h ¨ v rSends

anpcq. P | ba : v ¨ h á P rv{cs | ba : h rRcvs

aŸ l. P | ab : h á P | ab : h ¨ l rSels

an Ź tli : PiuiPI | ba : lj ¨ h á Pj | ba : h pj P Iq rBras

|ù δrt{xs
delaypδq. P á delayptq. P

rDets

if true then P else Q á P rIfTs

P á P 1

P | Q á P 1 | Q
P á P 1

def D in P á def D in P 1
rPar{Defs

def Xpa1 ; b1q “ P 1 in Xxv ; by | Q á

def Xpa1 ; b1q “ P 1 in P 1rv, b{a1, b1s | Q rRecs

P ” P 1 P 1 á Q1 Q1 ” Q
P á Q

P á P 1

pνabqP á pνabqP 1
rAStr{AScopes

P ” P 1 P 1 ù Q1 Q1 ” Q
P ù Q P ù ΦtpP q rTStr{Delays

Fig. 3. Reduction for processes (rule rIfFs, symmetric for rIfTs is omitted).

Φtp0q “ 0 Φtpab : hq “ ab : h Φtpfailedq “ failed

ΦtpP1 | P2q “ ΦtpP1q | ΦtpP2q, if WaitpPiq X NEQueuepPjq “ H, i ­“ j P t1, 2u

Φtpdelaypt
1
q. P q “ delaypt1 ´ tq. P if t1 ě t

Φtpa
t1

pa1q. P q “

#

at
1´t
pa1q. P if t1 ě t

failed otherwise

Φtpa
8
pa1q. P q “ a8pa1q. P

ΦtppνabqP q “ pνabqΦtpP q

Φtpdef D in P q “ def D in ΦtpP q

Fig. 4. Time-passing function ΦtpP q. Rule for at
1

Ź tli : PiuiPI is omitted for brevity.
φtpP q is undefined in the remaining cases.



Asynchronous timed session types 17

Reduction for processes Processes are considered modulo structural equivalence,
denoted by ”, and defined by adding the following rule for delays to the standard
ones [28]: delayp0q. P ” P . Reduction rules for processes are given in Figure 3.
A reduction step ÝÑ can happen because of either an instantaneous step á by
rRed1s or time-consuming step ù by rRed2s. Rules rSends, rRcvs, rSels, and
rBras are the usual asynchronous communication rules. Rule rDets models the
random occurrence of a precise delay t, with t being a solution of δ. The other
untimed rules, rIfTs, rPars, rDefs, rRecs, rAStrs, and rAScopes are standard. Note
that rule rPars does not allow time passing, which is handled by rule rDelays.
Rule rTStrs is the timed version of rAStrs. Rule rDelays applies a time-passing
function Φt (defined in Figure 4) which distributes the delay t across all the parts
of a process. ΦtpP q is a partial function: it is undefined if P can immediately
make an urgent action, such as evaluation of expressions or output actions.
If ΦtpP q is defined, it returns the process resulting from letting t time units
elapse in P . ΦtpP q may return a failed state, if delay t makes a deadline in P
expire. The definition of ΦtpP1 | P2q relies on two auxiliary functions: WaitpP q
and NEQueuepP q (see [11] for the full definition). WaitpP q returns the set of
channels on which P (or some syntactic sub-term of P ) is waiting to receive
a message/label. NEQueuepP q returns the set of endpoints with a non-empty
inbound queue. For example, Waitpatpbq. Qq “ Waitpat Ź tli : PiuiPIq “ tau and
NEQueuepba : hq “ tau given that h ­“ H. ΦtpP1 | P2q is defined only if no
urgent action could immediately happen in P1 | P2. For example, ΦtpP1 | P2q is
undefined for P1 “ atpbq. Q and P2 “ ba : v.

In the rest of this section we show the reductions of two processes: one with
urgent actions (Example 5), and one to a failed state (Example 6). We omit
processes that are immaterial for the illustration (e.g., unused queues).

Example 5 (Urgency and undefined Φt). We show the reduction of process P “
pνabqpa ‘Hi’.Q | ab : H | b10pcq. P 1q that has an urgent action. Process P can
make the following reduction by rSends:

P á pνabqpQ | ab : ‘Hi’ | b10pcq. P 1q

At this point, to apply rule rDelays, say with t “ 5, we need to apply the
time-passing function as shown below:

Φ5ppνabqpa ‘Hi’.Q | ab : ‘Hi’ | b10pcq. P 1qq “ pνabqpa ‘Hi’.Q | Φ5pab : ‘Hi’ | b10pcq. P 1qq

which is undefined. Φ5pab : H | b10pcq. P 1q is undefined because Waitpb10pcq. P qX
NEQueuepab : ‘Hi’q “ tbu ­“ H. Since Φ5pP

1q is undefined. Instead, the message
in queue ab can be received by rule rRcvs:

pνabqpQ | ab : ‘Hi’ | b10pcq. P 1q á pνabqpQ | ab : H | P r‘Hi’{csq

Example 6 (An execution with failure). We show a reduction to a failing state of
a process with a non-blocking receive action (expecting a message immediately)



18 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

composed with another process that sends a message after a delay.

delaypx “ 3q. a ‘Hi’.Q | ab : H | b0pcq. P apply rDets
á delayp3q. a ‘Hi’.Q | ab : H | b0pcq. P “ P 1 apply rDelays with t “ 3
á Φ3pP

1q

The application of the time-passing function to P 1 yields a failing state (a mes-
sage is not received ‘in time’) as shown below, where the second equality holds
since Waitpb0pcq. P q X NEQueuepab : Hq “ H:

Φ3pdelayp3q. a ‘Hi’.Q | b0pcq. P | ab : Hq “
Φ3pdelayp3q. a ‘Hi’.Qq | Φ3pb

0pcq. P | Φ3pab : Hqq “
delayp0q. a ‘Hi’.Q | failed | ab : H

6 Typing for asynchronous timed processes

We validate programs against specifications using judgements of the form Γ $

P Ź∆. Write defined on the following environments:

∆ ::“ H | ∆, a : pν, Sq | ∆, ab : M Θ ::“ H | Θ Y t∆u

Γ ::“ H | Γ, a : T | Γ,X : pT ;Θq

Environment ∆ is a session environment, used to keep track of the ongoing ses-
sions. When ∆paq “ pν, Sq it means that the process being validated is acting
as a role in session a specified by S, and ν is the clock valuation describing a
(virtual) time in which the next action in S may be executed. We write domp∆q
for the domain of ∆. Environment Γ maps variables a to sorts T and process
variables X to pairs pT ;Θq, where T is a vector of sorts and Θ is a set of session
environments. The mapping of process variable is used to type recursive pro-
cesses: T is used to ensure well-typed instantiation of the recursion parameters,
and Θ is used to model the set of possible scenarios when a new iteration begins.

Notation, assumptions, and auxiliary definitions. We write ∆1, ∆2 for ∆1 Y∆2

when domp∆1q X domp∆2q “ H. We write ∆ ` t for the session environment
obtained by incrementing all clock valuations in the codomain of ∆ by t.

Definition 8. We define the disjoint union AZB of sets of clocks A and B as:

AZB “ tinlpxq | x P Au Y tinrpxq | x P Bu

where inl and inr are one to one endofunctions on clocks and, for all x P A and
y P B, inlpxq ‰ inrpyq. With an abuse of notation, we define the disjoint union
of clock valuations ν1, ν2, in symbols ν1 Z ν2, as a clock valuation satisfing:

ν1 Z ν2pinlpxqq “ ν1pxq ν1 Z ν2pinrpxqq “ ν2pxq

We use the symbol
Ţ

for the iterate disjoint union.



Asynchronous timed session types 19

For a configuration pν, Sq we define valppν, Sqq “ ν, and typeppν, Sqq “ S. We
overload function val to session environments ∆ as follows:

valp∆q “
ě

aPdomp∆q

valp∆paqq

We require Θ to satisfy the following three conditions:

1. If ∆ P Θ and ∆paq “ pν, Sq, then S is well-formed (Definition 1) against ν;
2. For all ∆1 P Θ, ∆2 P Θ: typep∆1paqq “ S iff typep∆2paqq “ S;
3. There is guard δ such that:

tν | ν |ù δu “
ď

∆PΘ

valp∆q.

The last condition ensures that Θ is finitely representable, and is key for decid-
ability of type checking.

Example 7. We show some examples of Θ that do or do not satisfy the last
requirement above. Let S1 “!T px ď 2q.end and S2 “!T py ď 2q.end, and let:

Θ1 “ t∆ | ∆paq “ pν1, S1q ^∆pbq “ pν2, S2q ^ ν1pxq ď 2^ ν1pxq “ ν2pyqu;

Θ2 “ t∆ | ∆paq “ pν1, S1q ^∆pbq “ pν2, S2q ^ ν1pxq ď
?

2^ ν1pxq “ ν2pyqu;
Θ3 “ t∆ | ∆paq “ pν1, S1q ^∆pbq “ pν2, S2q ^ ν1pxq ` ν2pyq “ 2u.

We have that Θ1 satisfies condition (3): let δ1 “ x ď 2^ y ´ x “ 0. It is easy to
see that tν | ν |ù δ1u “

Ť

∆PΘ valp∆q. For Θ2, a candidate proposition would
be δ2 “ x ď

?
2^ y ´ x “ 0. However, δ2 can not be derived with the syntax of

propositions, as
?

2 is irrational. Indeed, Θ2 does not satisfy the condition. For
Θ3, let δ3 “ x ` y “ 2. Again, δ3 is not a guard, as additive constraints in the
form x` y “ n are not allowed. Indeed, also Θ3 does not satisfy the condition.

In the following, we write a : T for a1 : T1, . . . , an : Tn when a “ a1, . . . , an and
T “ T1, . . . , Tn (assuming a and T have the same number of elements). Similarly
for b : pν, Sq. In the typing rules, we use a few auxiliary definitions: Definition 9
(t-reading ∆) checks if any ongoing sessions in a ∆ can perform an input action
within a given timespan, and Definition 10 (Compatibility of configurations)
extends the notion of duality to systems that are not in an initial state.

Definition 9 (t-reading ∆). Session environment ∆ is t-reading if there exist

some a P domp∆q, t1 ă t and m such that: ∆paq “ pν, Sq ^ pν ` t1, Sq
?m
ÝÑ.

Namely, ∆ is t-reading if any of the open sessions in the mapping prescribe a
read action within the time-frame between ν and ν ` t. Definition 9 is used in
the typing rules for time-consuming processes – rVrcvs, rDrcvs, and rDelts – to
‘disallow’ derivations when a (urgent) receive may happen.

Definition 10 (Compatibility of configurations). Configuration pν1, S1, M1q
is compatible with pν2, S2, M2q, written pν1, S1, M1qKpν2, S2, M2q, if:



20 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

1. M1 “ H_ M2 “ H,

2. @i ­“ j P t1, 2u : Mi “ m; M1i ñ Dν1i, S
1
i,m

1 : pνi, Siq
?m1

ÝÑ pν1i, S
1
iq ^ m ă :

m1 ^ pν1i, S
1
i, M

1
iqKpνj , Sj , Mjq,

3. M1 “ H^ M2 “ Hñ ν1 “ ν2 ^ S1 “ S2.

By condition (3) initial configurations are compatible when they include dual
types, i.e., pν0, S,HqKpν0, S,Hq. By condition (2) two configurations may tem-
porarily misalign as execution proceeds: one may have read a message from
its queue, while the other has not, as long as the former is ready to receive it
immediately. Thanks to the particular shape of type’s interactions, initial con-
figurations – of the form pν0, S,HqKpν0, S,Hq – will only reach systems, say
pν1, S1, M1qKpν2, S2, M2q, in which at least one between M1 and M2 is empty. Con-
dition (1) requires compatible configurations to satisfy this basic property.

Typing rules The typing rules are given in Figure 5. Rule rVrcvs is for input
processes. The first premise consists of two conditions requiring the time-span
rν, ν ` ns in which the process can receive the message to coincide with δ:

– ν`t |ù δ ñ t ď n rules out processes that are not ready to receive a message
when prescribed by the type.

– t ď nñ ν ` t |ù δ requires that anpbq. P can read only at times that satisfy
the type prescription δ. 6

The second premise of rVrcvs requires the continuation P to be well-typed
against the continuation of the type, for all possible session environments where
the virtual time is somewhere between rν, ν ` ns, where the virtual valuation ν
in the mapping of session a is reset according to λ. Rule rDrcvs, for processes re-
ceiving delegated sessions, is like rVrcvs except: (a) the continuation P is typed
against a session environment extended with the received session S1, and (b)
the clock valuation ν1 of the receiving session must satisfy δ1. Recall that by
formation rules (Section 2.1) S1 is well-formed against all ν1 that satisfy δ1.

Rule rVsends is for output processes. Send actions are instantaneous, hence
the type current ν needs to satisfy δ. As customary, the continuation of the
process needs to be well-typed against the continuation of the type (with ν
being reset according to λ, and Γ extended with information on the sort of
b). rDsends for delegation is similar but: (a) the delegated session is removed
from the session environment (the process can no longer engage in the delegated
session), and (b) valuation ν1 of the delegated session must satisfy guard δ1.

Rule rDelδs checks that P is well-typed against all possible solutions of δ.
Rule rDelts shifts the virtual valuations in the session environment of t. This is
as the corresponding rule in [12] but with the addition of the check that ∆ is
not t-reading, needed because of urgent semantics.

Rule rRess is for processes with scopes.

6 While not necessary for our safety results, this constraint simplifies our theory. Tim-
ing variations between types and programs are all handled in one place: rule rSubts.



Asynchronous timed session types 21

Rule rRecs is for recursive processes. The rule is as usual [21] except we use a
set of session environments Θ (instead of a single ∆) to capture a set of possible
scenarios in which a recursion instance may start, which may have different clock
valuations. Rule rVars is also as expected except for the use of Θ.

Rules rPars and rSubts straightforward.

Example 8 (Typing with subtyping). Subtyping substantially increases the power
of our type system, in particular in the presence of channel passing. Intuitively,
without subtyping, the type of any higher-order send action should be an equality
constraint (e.g., x “ 1) rather than more general timeout (e.g., x ă 1). We
illustrate our point using P defined below:

P “ pνa1b1qpνa2b2qpP1 | P2 | P3 | Qq P1 “ delaypx ď 1q. a1 a2

P2 “ b11pcq. c
2pdq P3 “ delayp1 ď x^ x ď 2q. b2 true

where Q contains empty queues of the involved endpoints. Intuitively, P proceeds
as follows: (1) P1 sends channel a2 to P2 within one time unit, and terminates;
(2) P2 reads the message as soon as it arrives, and listens for a message across the
received channel (a2) for two time units; (3) P3 sends value true through channel
b2 at a time in between 1 and 2, unaware that now she is communicating with
P2, and then terminates; (4) P2 reads the message immediately and terminates.
See below for one possible reduction:

P ÝÑ˚ pνa1b1qpνa2b2qpa1 a2 | b
0
1pcq. c

2pdq | delayp0 ď x^ x ď 1q. b2 trueq | Qq

ÝÑ˚ pνa1b1qpνa2b2qp0 | a
2
2pdq | delayp0.5q. b2 true | Qq

ÝÑ pνa1b1qpνa2b2qp0 | a
1.5
2 pdq | b2 true | Qq

ÝÑ˚ pνa1b1qpνa2b2qp0 | 0 | 0 | Qq

Although P executes correctly, the involved processes are well-typed against
types that are not dual:

$ P1 Ź a1 : pν0, S1q, a2 : pν0, S2q $ P2 Ź b1 : pν0, S
1
1q $ P3 Ź b2 : pν0, S2q

for S1 “!py ď 1, S2qpx ď 1q, S2 “?Boolp1 ď y ^ y ď 2q, S11 “?py “ 0, S12qpx ď 1q.
In order to type-check P , we need to apply rule rRess, requiring endpoints of
the same session to have dual types. But clearly: S11 ­“ S1. Without subtyping,
P would not be well-typed. By subtyping, however, py ď 1, S2q ă : py “ 0, S12q
with S12 “?Boolpy ď 2q.end, and then S11 ă : S11. Thanks to the subtyping rule
[subt] we can derive $ P2 Ź b1 : pν0, S1q and, in turn, $ P ŹH.

7 Subject reduction and time safety

The main properties of our typing system are Subject Reduction and Time
Safety. Time Safety ensures that the execution of well-typed processes will only
reach fail-free states. Recall, P is fail-free when none of its sub-terms is the



22 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

@t : ν ` t |ù δ ðñ t ď n
@t ď n : Γ, b : T $ P Ź∆` t, a : pν ` t rλ ÞÑ 0s, Sq ∆ not t-reading

Γ $ anpbq. P Ź∆, a : pν, ?T pδ, λq.Sq
rVrcvs

@t : ν ` t |ù δ ðñ t ď n T “ pδ1, S1q ν1 |ù δ1

@t ď n : Γ $ P Ź∆` t, a : pν ` t rλ ÞÑ 0s, Sq, b : pν1, S1q ∆ not t-reading

Γ $ anpbq. P Ź∆, a : pν, ?T pδ, λq.Sq
rDrcvs

Γ $ b : T ν |ù δ Γ $ P Ź∆, a : pν rλ ÞÑ 0s, Sq

Γ $ a b.P Ź∆, a : pν, !T pδ, λq.Sq
rVsends

T “ pδ1, S1q ν1 |ù δ1 ν |ù δ Γ $ P Ź∆, a : pν rλ ÞÑ 0s, Sq

Γ $ a b.P Ź∆, a : pν, !T pδ, λq.Sq, b : pν1, S1q
rDsends

@t P δ : Γ $ delayptq. P Ź∆

Γ $ delaypδq. P Ź∆

Γ $ P Ź∆` t ∆ not t-reading

Γ $ delayptq. P Ź∆
rDelδ{Delts

pν1, S1, M1qKpν2, S2, M2q Γ $ P Ź∆, a : pν1, S1q, b : pν2, S2q, ba : M1, ab : M2

Γ $ pνabqP Ź∆
rRess

∆ P Θ @i : Γ $ vi : T i
Γ,X : T ;Θ $ Xxv ; by Ź∆

Γ $ P Ź∆1 Γ $ QŹ∆2

Γ $ P | QŹ∆1,∆2
rVar{Pars

@pν, Sq P Θ : Γ,a : T , X : T ;Θ $ P Ź b : pν, Sq Γ,X : T ;Θ $ QŹ∆

Γ $ def Xpa ; bq “ P in QŹ∆
rRecs

Γ $ P Ź∆1 ∆1 ă : ∆

Γ $ P Ź∆

Γ $ P Ź∆

Γ $ P Ź∆, a : pν, endq
rSubt{Weaks

Fig. 5. Selected typing rules for processes

process failed. Time Safety builds on a condition that is not related with time,
but with the structure of the process interactions. If an untimed process gets
stuck due to mismatches in its communication structure, a timed process with
the same communication structure may move to a failed state. Consider P below:

P “ pνabqpνcdqQ R “ ab : H | ba : H | cd : H | dc : H

Q “ a5peq. d e.0 | c5peq. b e.0 | R
(13)

P is well-typed: H $ P Ź a : pν0, Sq, b : pν0, Sq, c : pν0, Sq, d : pν0, Sq with S “
?Intpx ď 5,Hq.end. However, P can only make time steps, and when, overall,
more than 5 time units elapse (e.g., 6 in the reduction below) P reaches a failed
state due to a circular dependency between actions of sessions pνabq and pνcdq:

P ÝÑ Φ6pQq “ pνabqpνcdq pfailed | failed | Rq



Asynchronous timed session types 23

Our typing system does not check against such circularities across different inter-
leaved sessions. This is common in work on untimed [21] and timed [12] session
types. However, in the untimed scenario, progress for interleaved sessions can be
guaranteed by means of additional checks on processes [17]. Time Safety builds
on the results in [17] by using an assumption (receive liveness) on the under-
neath structure of the timed processes. This assumptions is formally captured
in Definition 11, which is based on an untimed variant of our calculus.

The untimed calculus We define untimed processes, denoted by P̂ , as processes
obtained from the grammar given for timed processes (Section 5) without delays
and failed processes. In untimed processes, time annotations of branching/receive
processes are immaterial, hence omitted in the rest of the paper.

Given a (timed) process P , one can obtain its untimed counter-part by eras-
ing delays and failed processes; we denoted the result of such erasure on P by
erasepP q. The semantics of untimed processes is defined as the one for timed
processes (Section 5) except that reduction rules rDelays, rTStrs, and rRed2s,
are removed. Abusing the notation, we write P̂ ÝÑ P̂ 1 when an untimed process
P̂ moves to a state P̂ 1 using the semantics for untimed processes. The defini-
tions of WaitpP̂ q and NEQueuepP̂ q can be derived from the definitions for timed
processes in the straightforward way.

Definition 11 (receive liveness) formalises our assumption on the interaction
structures of a process.

Definition 11 (Receive liveness). P̂ is said to satisfy receive liveness (or is
live, for short) if, for all P̂ 1 such that P̂ ÝÑ˚ P̂ 1:

P̂ 1 ” pνabqQ̂ ^ a P WaitpQ̂q ùñ DQ̂1 : Q̂ ÝÑ˚ Q̂1 ^ a P NEQueuepQ̂1q

In any reachable state P̂ 1 of a live untimed process P̂ , if any endpoint a in P̂ 1 is
waiting to receive a message (a P WaitpQ̂q), then the overall process is able to
reach a state Q̂1 where a can perform the receive action (a P NEQueuepQ̂1q).

Consider process P in (13). The untimed process erasepP q is not live because
WaitperasepP qq “ ta, cu and a, c R NEQueueperasepP qq, since NEQueueperasepP qq
is the empty set. Syntactically, erasepP q is as P , but it does not have the same
behaviour. P can only make time steps, reaching a failed process, while erasepP q
is stuck, as untimed processes only make communication steps.

Properties Time safety relies on Subject Reduction Theorem 4, which establishes
a relation (preserved by reduction) of well-typed processes and their types.

Theorem 4 (Subject reduction for closed systems). Let erasepP q be
live. If H $ P ŹH and P ÝÑ P 1 then H $ P 1 ŹH.

Note that Subject Reduction assumes erasepP q to be live. For instance, the
example of P in (13) is well-typed, but erasepP q is not live. The process can
reduce to a failed state (as illustrated earlier in this section) that cannot be
typed (failed processes are not well-typed). Time Safety establishes that well-
typed processes only reduce to fail-free states.



24 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

Theorem 5 (Time safety). If erasepP q is live, $ PŹH and P ÝÑ˚ P 1,
then P 1 is fail-free.

Typing is decidable if one uses processes annotated with the following in-
formation: (1) scope restrictions pνab : SqP are annotated with the type S of
the session for endpoint a (the type of b is implicitly assumed to be S and both
endpoints are type checked in the initial clock valuation ν0); (2) receive actions
anpb : T q. P are annotated with the type T of the received message; (3) recur-
sion Xpa : T ; a : S, δq “ P are annotated with types for each parameter, and
a guard modelling the state of the clocks. We call annotated programs those
annotated processes derived without using productions marked as run-time (i.e.,
failed and delayptq. P ), and where n in anpb : T q. P ranges over Qě0 Y t8u.

Proposition 2. Type checking for annotated programs is decidable.

8 Conclusion and related work

We introduced duality and subtyping relations for asynchronous timed session
types. Unlike for untimed and timed synchronous [6] dualities, the composition
of dual types does not enjoy progress in general. Compositions of asynchronous
timed dual types enjoy progress when using an urgent receive semantics. We
propose a behavioural typing system for a timed calculus that features non-
blocking and blocking receive primitives (with and without timeout), and time
consuming primitives of arbitrary but constrained delays. The main properties
of the typing system are Subject Reduction and Time Safety; both results rely
on an assumption (receive liveness) of the underneath interaction structure of
processes. In related work on timed session types [12], receive liveness is not
required for Subject Reduction; this is because the processes in [12] block (rather
than reaching a failed state) whenever they cannot progress correctly, hence
e.g., missed deadline are regarded as progress violations. By explicitly capturing
failures, our calculus paves the way for future work on combining static checking
with run-time instrumentation to prevent or handle failures.

Asynchronous timed session types have been introduced in [12], in a multi-
party setting, together with a timed π-calculus, and a type system. The direct
extension of session types with time introduces unfeasible executions (i.e., types
may get stuck), as we have shown in Example 1. [12] features a notion of fea-
sibility for choreographies, which ensures that types enjoy progress. We ensure
progress of types by formation and duality. The semantics of types in [12] is
different from ours in that receive actions are not urgent. The work in [12] gives
one extra condition on types (wait-freedom), because feasible types may still
yield undesirable executions in well-typed processes. Thanks to our duality, sub-
typing, and calculus (in particular the blocking receive primitive with timeout)
this condition is unnecessary in this work. As a result, our typing system allows
for types that are not wait-free. By dropping wait-freedom, we can type a class
of common real-world protocols in which processes may be ready to receive mes-
sages even before the final deadline of the corresponding senders. Remarkably,



Asynchronous timed session types 25

SMTP mentioned in the introduction is not wait-free. For some other aspects,
our work is less general than the one in [12], as we consider binary sessions rather
than multiparty sessions. A theory of timed multiparty asynchronous protocols
that encompasses the protocols in [12] and those considered here is an interesting
future direction. The work in [6] introduces a theory of synchronous timed ses-
sion types, based on a decidable notion of compatibility, called compliance, that
ensures progress of types, and is equivalent to synchronous timed duality and
subtyping in a precise sense [6]. Our duality and subtyping are similar to those
in [6], but apply to the asynchronous scenario [29]. The work in [15] introduces a
typed calculus based on temporal session types. The temporal modalities in [15]
can be used as a discrete model of time. Timed session types, thanks to clocks
and resets, are able to model complex timed dependencies that temporal session
types do not seem able to capture. Other work studies models for asynchronous
timed interactions, e.g., Communicating Timed Automata [23] (CTA), timed
Message Sequence Charts [2], but not their relationships with processes. The
work in [5] introduces a refinement for CTA, and presents a notion of urgency
similar to the one used in this paper.

Several timed calculi have been introduced outside the context of behavioural
types. The work in [31] extends the π- calculus with time primitives inspired to
CTA and is closer, in principle, to our types than our processes. Another timed
extension of the π-calculus [18] with time-consuming actions has been applied to
the analysis the active times of processes. Some works focus on specific aspects
of timed behaviour, such as timeouts [9], transactions [24, 27], and services [25].
Our calculus does not feature exception handlers, nor timed transactions. Our
focus in on detecting time violations via static typing, so that a process only
moves to fail-free states.

The calculi in [7, 12, 15] have been used in combination with session types.
The calculus in [12] features a non-blocking receive primitive similar to our
a0pbq. P , but that never fails (i.e., time is not allowed to flow if a process tries
to read from an empty buffer – possibly leading to a stuck process rather than
a failed state). The calculus in [7] features a blocking receive primitive without
timeout, equivalent to our a8pbq. P . The calculus in [15], seems able to encode
a non-blocking receive primitive like the one of [12] and a blocking receive prim-
itive without timeout like our a8pbq. P . None of these works features blocking
receive primitives with timeouts. Furthermore, existing works feature [7, 12] or
can encode [15] only precise delays, equivalent to delaypx “ nq. P . Such punc-
tual predictions are often difficult to achieve. Arbitrary but constrained delays
are closer abstractions of time-consuming programming primitives (and possibly,
of predictions one can derive by cost analysis, e.g., [20]).

As to applications, timed session types have been used for run-time mon-
itoring [7, 30] and static checking [12]. A promising future direction is that of
integrating static typing with run-time verification and enforcement, towards a
theory of hybrid timed session types. In this context, extending our calculus with
exception handlers [9, 24, 27] could allow an extension of the typing system, that
introduces run-time instrumentation to handle unexpected time failures.



26 L. Bocchi, M. Murgia, V. Vasconcelos and N. Yoshida

References

1. Aceto, L., Inglfsdttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Mod-
elling, Specification and Verification. Cambridge University Press (2007).
https://doi.org/10.1017/CBO9780511814105

2. Akshay, S., Gastin, P., Mukund, M., Kumar, K.N.: Model checking
time-constrained scenario-based specifications. In: FSTTCS. LIPIcs, vol. 8,
pp. 204–215. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010).
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.204

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
4. Advanced Message Queuing Protocols (AMQP). https://www.amqp.org/
5. Bartoletti, M., Bocchi, L., Murgia, M.: Progress-Preserving Refinements of CTA.

In: CONCUR. LIPIcs, vol. 118, pp. 40:1–40:19. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.40

6. Bartoletti, M., Cimoli, T., Murgia, M.: Timed session types. Logical Methods in
Computer Science 13(4) (2017). https://doi.org/10.23638/LMCS-13(4:25)2017

7. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware. In: FACS. LNCS, vol. 9539, pp. 86–104. Springer (2016).
https://doi.org/10.1007/978-3-319-28934-2 5

8. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools, pp.
87–124. Springer (2004). https://doi.org/10.1007/978-3-540-27755-2 3

9. Berger, M., Yoshida, N.: Timed, distributed, probabilistic, typed pro-
cesses. In: APLAS, LNCS, vol. 4807, pp. 158–174. Springer (2007).
https://doi.org/10.1007/978-3-540-76637-7 11

10. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
CONCUR. LNCS, vol. 5201, pp. 418–433. Springer (2008)

11. Bocchi, L., Murgia, M., Vasconcelos, V., Yoshida, N.: Asynchronous timed session
types: from duality to time-sensitive processes (2018), https://www.cs.kent.ac.
uk/people/staff/lb514/tstp.html

12. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: CONCUR.
vol. 8704, pp. 419–434. Springer (2014). https://doi.org/10.1007/978-3-662-44584-
6 29

13. Bruno, E.J., Bollella, G.: Real-Time Java Programming: With Java RTS. Prentice
Hall PTR, 1st edn. (2009)

14. Chen, T.C., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness
of subtyping in session types. In: PPDP. pp. 135–146. ACM (2014).
https://doi.org/10.1145/2643135.2643138

15. Das, A., Hoffmann, J., Pfenning, F.: Parallel complexity analysis with tempo-
ral session types. Proc. ACM Program. Lang. 2(ICFP), 91:1–91:30 (Jul 2018).
https://doi.org/10.1145/3236786

16. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with
linear types. In: CONCUR. LNCS, vol. 6901, pp. 280–296. Springer (2011).
https://doi.org/10.1007/978-3-642-23217-6 19

17. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for struc-
tured communications. In: TGC. LNCS, vol. 4912, pp. 257–275. Springer (2008).
https://doi.org/10.1007/978-3-540-78663-4 18

18. Fischer, M., Förster, S., Windisch, A., Monjau, D., Balser, B.: A new time exten-
sion to π-calculus based on time consuming transition semanticss. In: Languages
for System Specification, pp. 271–283. Springer (2004). https://doi.org/10.1007/1-
4020-7991-5 17



Asynchronous timed session types 27

19. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2-3),
191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

20. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
ESOP. LNCS, vol. 9032, pp. 132–157. Springer (2015)

21. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL. pp. 273–284. ACM (2008)

22. Klensin, J.: Simple mail transfer protocol. RFC 5321, available at https://tools.
ietf.org/html/rfc5321 (October 2008)

23. Krcal, P., Yi, W.: Communicating timed automata: The more synchronous, the
more difficult to verify. In: CAV. LNCS, vol. 4144, pp. 249–262. Springer (2006).
https://doi.org/10.1007/11817963 24

24. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: FOSSACS. LNCS,
vol. 3411, pp. 282–298. Springer (2005). https://doi.org/10.1007/978-3-540-31982-
5 18

25. Lapadula, A., Pugliese, R., Tiezzi, F.: Cows: A timed service-oriented
calculus. In: ICTAC. LNCS, vol. 4711, pp. 275–290. Springer (2007).
https://doi.org/10.1007/978-3-540-75292-9 19

26. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software
Tools for Technology Transfer 1, 134–152 (1997)

27. López, H.A., Pérez, J.A.: Time and exceptional behavior in multiparty struc-
tured interactions. In: WS-FM. LNCS, vol. 7176, pp. 48–63. Springer (2011).
https://doi.org/10.1007/978-3-642-29834-9 5

28. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, New York, NY, USA (1999)

29. Murgia, M.: On urgency in asynchronous timed session types. In: ICE. EPTCS,
vol. 279, pp. 85–94 (2018). https://doi.org/10.4204/EPTCS.279.9

30. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for
multiparty conversations. Formal Asp. Comput. 29(5), 877–910 (2017).
https://doi.org/10.1007/s00165-017-0420-8

31. Saeedloei, N., Gupta, G.: Timed π-calculus. In: TGC. LNCS, vol. 8358, pp. 119–
135. Springer (2014). https://doi.org/10.1007/978-3-319-05119-2 8

32. Vinoski, S.: Advanced message queuing protocol. IEEE Internet Computing 10(6),
87–89 (Nov 2006). https://doi.org/10.1109/MIC.2006.116

33. Yovine, S.: Kronos: A verification tool for real-time systems. (Kronos user’s manual
release 2.2). International Journal on Software Tools for Technology Transfer 1,
123–133 (1997)


