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Abstract. Many communication-centred systems today rely on asynchronous
messaging among distributed peers to make efficient use of parallel execution and
resource access. With such asynchrony, the communication buffers can happen to
grow inconsiderately over time. This paper proposes a static verification method-
ology based on multiparty session types which can efficiently compute the upper
bounds on buffer sizes. Our analysis relies on a uniform causality audit of the en-
tire collaboration pattern — an examination that is not always possible from each
end-point type. We extend this method to design algorithms that allocate commu-
nication channels in order to optimise the memory requirements of session exe-
cutions. From these analyses, we propose two refinements methods which respect
buffer bounds: a global protocol refinement that automatically inserts confirma-
tion messages to guarantee stipulated buffer sizes and a local protocol refinement
to optimise asynchronous messaging without buffer overflow. Finally our work is
applied to overcome a buffer overflow problem of the multi-buffering algorithm.

1 Introduction

Session types for buffer bound analysis. The expensive cost of synchronous commu-
nications has led programmers to rely on asynchronous messaging for efficient network
interactions. The downside is that non-blocking IO requires buffers that can grow in-
considerately over time, bringing systems to stop. The analysis and debugging of this
phenomenon is mainly done by a tedious monitoring of the communicated messages of
the whole distributed system. This paper shows that, when a global interaction pattern is
explicitly specified as a multiparty session [1, 10, 14, 21], types can provide an effective
way to statically verify buffer usage and communication optimisations, automatically
guaranteeing safe and deadlock-free runs.

Session types, first introduced in [9, 19], can specify communication protocols by
describing the sequences and types of read, write and choices on a given channel. For
example, type T0 =!〈nat〉; !〈string〉; ?〈real〉;end, in the original binary session type syn-
tax, expresses that a nat-value and string-value will be sent in that order, then that a
real-value is expected as an input, and finally that the protocol ends.

We can use session types to calculate the upper bounds of the buffer sizes of asyn-
chronous channels (message passing is non-blocking and order-preserving using FIFO
buffers). For example, from type T0, we can compute that the maximum number of
messages that might be stored in a communication buffer is two, while a different type
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T1 =!〈nat〉; ?〈real〉; !〈string〉;end guarantees a maximum size of one, since the dual
process engaged with T1 is forced to consume a nat-value before sending the next real-
message. This use of session types is informally observed in [6] and formally studied in
[7] for binary session types. However, the binary case does not yield a direct extension
to multiparty interactions as explained below.
Buffer bounds analysis in multiparty sessions. We start by illustrating the difficul-
ties of such an analysis on a simple three party interaction (Example (a) below), where
s!〈V 〉 is an output of V to s, s?(x);P an input at s, and µX .P a recursive agent:

Example (a)
(A) Alice=µX .s1!〈1〉;s3?(x);X

(B) Bob =µX .s1?(x);s2!〈Orange〉;X

(C) Carol=µX .s2?(x);s3!〈2.4〉;X
Example (b)
(B1) Bob1 =µX .s1?(x);X

(C1) Carol1=µX .s3!〈2.4〉;X
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We assume the three buffers of s1, s2 and s3 are initially empty and that values are
pushed and read one by one. Assuming session types ensure that accesses to buffers do
not create any race condition at any moment of the infinite protocol execution, none of
the channels s1,s2,s3 need to buffer more that one value at any given time.

However, if we change Bob and Carol to Bob1 and Carol1 as Example (b) above,
while they still interact correctly, the buffers of s1 and s3 need an unbounded size be-
cause of the lack of synchronisation between Bob1 and Carol1.

The main difficulty of the communication buffer analysis is that, unlike in binary
session types, each end-point type itself does not provide enough information: for ex-
ample, Alice’s local type Ta = µx.s1!〈nat〉;s3?〈real〉;x (repeatedly sends a nat-value to
s1 and receives a real-value from s3) is the same in both Examples (a) and (b), while the
needed buffer size for s1 and s3 are different (1 in (a) and ∞ in (b)) due to the change
in the other parties’ behaviours. Our first question is: can we statically and efficiently
determine the upper size of buffers in multiparty interactions? In our case, we take
advantage of the existence of a global session type [1, 10, 14, 21] for the analysis:

G = µx.Alice→ Bob: s1 〈nat〉;Bob→ Carol : s2 〈string〉;Carol→ Alice : s3 〈real〉;x

The above type represents the global interaction between Alice-Bob-Carol in (a) where
Alice→ Bob: s1 〈nat〉; means that Alice sends a nat-value to Bob through buffer s1. To
analyse buffer usage, we consider sessions as graphs and track causal chains for each
channel: alternated message production and consumption mark the execution points at
which buffers are emptied. This can be observed in Example (a). On the other hand,
the global type of Alice-Bob1-Carol1 in (b) lacks the second Bob→ Carol: no message
forces Carol to wait for Bob’s reception before sending the next message. In that case,
each buffer may accumulate an unbounded number of messages.
Channel allocation. Our next problem is about resource allocation. Given a global
scenario, can we assign the minimum number of resources (channels) without conflict
so that, for instance, we can efficiently open a minimal number of sockets for a given
network interaction? Assume Alice and Carol in (a) wish to communicate one more
message after completing three communications, where the new communication hap-
pens on a fresh channel s4 (Example (c) below). Can we reuse either s1,s2 or s3 for this
new communication? Reusing s1 creates a writing conflict (the order between Alice’s
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first and third messages would be unspecified) and reusing s3 would create a reading
conflict (Carol could read her own message).

Example (c)
(A2) Alice2=µX .s1!〈1〉;s3?(x);s4!〈x+1〉;X
(B) Bob =µX .s1?(x);s2!〈Orange〉;X
(C2) Carol2=µX .s2?(x);s3!〈2.4〉;s4?(y);X
Example (d)
(A3) Alice3=µX .s1!〈1〉;s3?(x);s2!〈x+1〉;X
(C3) Carol3=µX .s2?(x);s3!〈2.4〉;s2?(y);X
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Example (d)
The only safe way to reuse a channel in Example (c) is to merge s2 and s4 as in Example
(d), in which case communications on other channels prevent any conflict.

Global refinement for multiparty sessions. The third issue is how to fix a buffer
overflow problem by “global refinement”, i.e. alteration of the original global protocol
to satisfy given buffer sizes. Here, our simple approach is the insertion of a minimal
number of confirmation messages to enforce synchronisation. In network or business
protocols, they can be implemented as a system level signal. Consider the interaction
(b) among Alice-Bob1-Carol1 where each buffer requires an unbounded size. If we
wish to enforce a buffer size of at most 2, we can build a new global type where one
confirmation message from Bob to Carol is inserted in any second iteration as:

G′ = µx. Alice→ Bob: s1 〈nat〉;Carol→ Alice : s3 〈real〉;
Alice→ Bob: s1 〈nat〉;Bob→ Carol : s2 〈string〉;Carol→ Alice : s3 〈real〉;x

The revised processes following G′ are given as:

Bob4 = µX .s1?(x);s1?(x);s2!〈Signal〉;X Carol4 = µX .s3!〈2.4〉;s2?(x).s3!〈2.4〉;X

Local refinement for multiparty messaging optimisations. The last issue is about
flexible local refinement (optimisations) based on [13, 14]. Assume that, in Example
(a), Bob wishes to always start the asynchronous transmission of the string Orange to
the buffer s3 without waiting for the delivery of the first nat-value from Alice on s1.

Bob5 = µX .s2!〈Orange〉;s1?(x);X (1.1)

Due to Bob’s unilateral implementation change, all three minimal buffer sizes go up
from 1 to 2. Moreover, suppose Bob repeatedly applies the same optimisation on his
next n messages, as in s2!〈Orange〉;s2!〈Orange〉; ..;s2!〈Orange〉;Bob. While the result
is communication-safe (no mismatch of the communication with Carol), all three min-
imal buffer sizes go up from 1 to n. How can we perform local optimisation without
altering buffer sizes in a multiparty session?
Contributions are summarised in the figure below. To the best of our knowledge, our
work is the first which guarantees safe buffered multiparty communications for the
π-calculus with communication-safety, progress and flexible refinements. The key con-
tribution is a general causal analysis over graphs constructed from multiparty session
types (§ 3). The appendices list omitted definitions, examples and proofs.
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1. The overall analysis starts from global
types that have no channel annotation.
We attribute channels based on memory
requirements (§ 4).

2. From global types, our bound analy-
sis computes the buffer bounds of finite
channels and finds the infinite ones (§ 3)

3. The global refinement method then in-
troduces additional messages to prevent
any unboundedness (§ 5.1).

4. Once the global type has been projected
to local types, local refinement can op-
timise the distributed execution of the
participants’ processes (§ 5.2).

5. The running optimised processes can
then be typed and enjoy communica-
tion, buffer and type safety and progress
properties (§ 3).

6. We apply our work to the multibuffer-
ing algorithm and to a Multiproces-
sor System-on-Chip (MPSoC) use case
(§ 6).

2 Asynchronous Multiparty Sessions

Syntax. We start from the π-calculus for multiparty sessions from [10] with unbounded
and bounded buffers. Base sets and the grammars are given below.

P ::= a[2..n](s̃ m̃).P | a[p](s̃).P request, accept
| s!〈ẽ〉;P | s?(x̃);P send, receive
| s!〈〈s̃〉〉;P | s?((s̃));P session send, receive
| s� l;P | s�{li : Pi}i∈I selection, branch
| if e then P else Q conditional
| 0 | (ν a)P | (ν s̃)P inact, hiding
| P | Q | µX .P | X par, recursion
| sn : h̃ message buffer

a,b,x,y, .. shared names
s, t, .. session channels
l, l′, .. labels

X ,Y, .. process variables
m,n, .. buffer size (integers or ∞)

e ::= v | e and e′ · · · expressions
v ::= a | true | false · · · values
h ::= l | ṽ | t̃ message values

a[2..n](s̃ m̃).P initiates, through a shared name a, a new session si with buffer size mi
(1≤ n≤ ∞) with other participants, each of the form a[p](s̃).Q with 1≤ p≤ n−1. The
si in vector s̃ is a session channel (bounded by buffer size mi) used in the session. We call
p, q,... (natural numbers) the participants of a session. Session communications (which
take place inside an established session) are performed by the sending and receiving of
a value; the session sending and reception (where the former delegates to the latter the
capability to participate in a session by passing a channel associated with the session
which is called delegation); and by selection and branching (the former chooses one of
the branches offered by the latter). sn :h̃ is a message buffer of size n representing ordered
messages in transit h̃ with destination s. This may be considered as a network pipe in a
TCP-like transport with fixed bandwidth. The rest of the syntax is standard from [10].
We often omit n from sn : h̃, 0, and unimportant arguments e.g. s!〈〉 and s?();P. An
initial process does not contain any runtime syntax (buffers and session hiding).
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Reductions. A selection of reduction rules is given below.

a[2..n](s̃ ñ).P1 | a[2](s̃).P2 | · · · | a[n](s̃).Pn → (ν s̃)(P1 | P2 | ... | Pn | sn1
1 : /0 | ... | snm

m : /0)

s!〈ẽ〉;P | sn : h̃ → P | sn : h̃ · ṽ (n 
 |h̃|, ei ↓ vi)

s!〈〈t̃〉〉;P | sn : h̃ → P | sn : h̃ · t̃ (n 
 |h̃|)
s� l;P | sn : h̃ → P | sn : h̃ · l (n 
 |h̃|)

s?(x̃);P | sn : ṽ · h̃→ P[ṽ/x̃] | sn : h̃

s?((t̃));P | sn : t̃ · h̃→ P | sn : h̃

s�{li : Pi}i∈I | sn : l j · h̃→ Pj | sn : h̃ ( j ∈ I)

The first rule describes the initiation of a new session among n participants that syn-
chronise over the shared name a. After the initiation, they will share m fresh private
session channels si and the associated m empty buffers of size nm ( /0 denotes an empty
queue). The output rules for values, sessions and selection respectively enqueue val-
ues, sessions and labels if the buffer is not full. ei ↓ vi denotes the evaluation of ei to
vi. We define | /0| = 0 and |h̃ · h| = |h̃|+ 1. The size n = ∞ corresponds to the original
asynchronous unbounded buffered semantics [10]. The input rules perform the comple-
mentary operations. Processes are considered modulo a structural equivalence≡, whose
definition is standard (e.g. µX .P≡ P[µX .P/X ]) [10].

3 Bound Analysis in Multiparty Sessions

This section presents an analysis of causal chains and buffer sizes and introduces the
typing system for the buffer safety property (Corollary 3.9).

3.1 Global Types and Dependencies

Global types. A global type, written by G,G′, .., describes the whole conversation
scenario of a multiparty session as a type signature. Our starting syntax is from [10].

G,G′ ::= p→ p′ : k 〈U〉;G′ values
| p→ p′ : k {l j : G j} j∈J branching
| µx.G | x | end recursion, end

U,U ′ ::= S̃ | T @p sorts, session
S,S′ ::= bool | nat | G base, shared

Type p→ p′ : k 〈U〉;G′ says that participant p sends a message of type U on the chan-
nel k (represented as a natural number) so that participant p′ can receive it. The session
continues with the interactions described in G′. The value types U,U ′ are either a vector
of sorts or a located type T @p, representing a local type T assigned to participant p.
Located types are used for delegation and defined in § 3.3. Sorts S,S′ are either base
types or global types for shared names. Type p→ p′ : k{l j : G j} j∈J says that participant
p can invoke one of the li labels on channel k (for participant p′ to read) and that inter-
actions described in G j follow. We require p 6= p′ to prevent self-sent messages. Type
µx.G is for recursive protocols, assuming the type variables (x,x′, . . . ) are guarded in
the standard way, i.e. they only occur under values or branchings. We assume G in value
types is closed, i.e. without free type variables. Type end represents session termination
(often omitted). k ∈ G means k appears in G. The functions chans(G) and prins(G) re-
spectively give the number of channels and participants of G.
Sessions as graphs. Global types can be seen (isomorphically) as session graphs, that
we define in the following way. First, we annotate in G each syntax occurrence of
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subterms of the form p→ p′ : k 〈U〉;G′ or p→ p′ : k {l j : G j} j∈J with a node name
(n1,n2, . . .). Then, we inductively define a function nodeG that gives a node nk (or the
special node end) for each of the syntactic subterm of G as follows:

nodeG(end) = end nodeG(ni : p→ p′ : k 〈U〉;G′) = ni
nodeG(µx.G′) = nodeG(G′) nodeG(n j : p→ p′ : k {l j : G j} j∈J) = n j

nodeG(x) = nodeG(µx.G′) (if the binder of x is µx.G′ ∈ G)

We define G as a session graph in the following way: for each subterm of G of the form
n : p→ p′ : k 〈U〉;G′, we have an edge from n to nodeG(G′), and for each subterm of G
of the form n′ : p→ p′ : k{l j : G j} j∈J , we have edges from n′ to each of the nodeG(G j)
for j ∈ J. We also define the functions pfx(ni) and ch(ni) that respectively give the
prefix (p→ p′ : k) and channel (k) that correspond to ni. For a global type G, nodeG(G)
distinguishes the initial node. size(G) denotes the number of edges of G.

Example 3.1 (Session graph) Our running example extends Example (a) from § 1
with branching. Below, we give the global type followed by its graph representation,
with the edges as the dotted arrows (labels are for information). n1 is the initial node.

µx.Alice→ Bob: s1 〈nat〉;Bob→ Carol : s2{
l1 : Carol→ Alice : s3{l3 : Alice→ Carol : s2 〈string〉;x}
l2 : Carol→ Alice : s3{l4 : end}

}
n1 : Alice→ Bob : s1 // n2 : Bob→ Carol : s2

l1
��

l2
// n5 : Carol→ Alice : s3

l4
��

n4 : Alice→ Carol : s2

OO

n3 : Carol→ Alice : s3
l3oo end

The recursion call yields a cycle in the graph, while branching gives the edges l1 and l2.

The edges of a given session graph G define a successor relation between nodes,
written n≺ n′ (omitting G). Paths in this session graph are referred to by the sequence
of nodes they pass through: a path n0 ≺ . . .≺ nn can be written more concisely n0 . . .nn
or ñ when there is no ambiguity. We say that a path n0 . . .nn has suffix ni . . .nn for
0 < i < n. The empty path is ε . The transitive closure of ≺ is ≺≺.
IO-chains. We detect causality chains in a given G by the relation ≺IO, defined below:

n1≺IO n2 if n1≺≺n2 and pfx(n1)=p1→p :k1 and pfx(n2)=p→p2 :k2 with k1 6=k2

The relation ≺IO asserts the order between a reception by a principal and the next mes-
sage it sends. An input-output dependency (IO-dependency) from n1 to nn is a chain
n1≺IO · · ·≺IO nn (n≥ 1).

3.2 Algorithms for Buffer Size Analysis

Unbounded buffers. In some sessions, messages (sent asynchronously) can accumu-
late without moderation in a buffer. A simple test can predict which channels require an
unbounded buffer. We use the fact that IO-dependencies characterise the necessity for
a channel buffer to be emptied before proceeding. Infinite channels are the ones where
such a dependency is missing.
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Definition 3.2 (infinite and finite) A channel k is said to be finite if, for every node
n ∈G and for every cycle ñ for≺ such that ch(n) = k and n ∈ ñ, there exists a cycle for
≺IO that starts from n and only involves nodes from ñ. The other channels are infinite.

Correspondingly, buffers are said to be bounded or unbounded. Given G, checking for
the infinity of k in G can be computed in a time bounded by O(size(G)3). The proof re-
lies on the fact that establishing all IO-dependencies of a given session has O(size(G)3)
time-complexity (assuming the number of participants as a constant).

Example 3.3 (Session graph and infinite channels) We illustrate on our running ex-
ample the previous notions. We add to the picture the IO-dependencies (with⇒).

n1 : Alice→ Bob : s1 //
IO

,4 n2 : Bob→ Carol : s2

��

IO

��

//

IO
,4 n5 : Carol→ Alice : s3

��
n4 : Alice→ Carol : s2

OO

IO
,4 n3 : Carol→ Alice : s3oo

IO

fn VVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVIOlt
end

Since each node of the main cycle n1n2n3n4 is part of the IO-cycles n1n2n3 or n3n4,
there are no infinite channels in this session.

Counting finite buffer size. To compute the bounds on buffer sizes, we first need to
define a property on paths that characterises when a buffer has to be emptied.

Definition 3.4 (reset) If ñ=n0 . . .nnn is a path in G, the property Reset(ñ) holds if there
exist 0≤ i0 < .. . < i j ≤ n ( j≥ 1) such that ni0 ≺IO . . .≺IO ni j ≺IO n and ch(ni0)=ch(n).
One practical instance of the nodes {ni0 , . . . ,ni j ,n} is called the reset nodes of ñ.

The paths that satisfy the reset property are the ones for which there exists a reception
guard to the last node.

Now that we know which buffers are infinite and have characterised the resetting
paths that control buffer growth, we can describe our algorithm to count the buffer size
required by finite channels. For each channel k of a global session type G, we define a
function Bk〈G〉 that will compute the bound on the buffer size of channel k. The key
step is to reset the counter when we recognise the appropriate IO-dependencies.

Definition 3.5 (bound computation) Given a session graph G, for each channel k, we
compute the bound as Bk〈G〉= Bk〈0, /0,ε,n0〉 for n0 the initial node of G.

Bk〈m,P, ñ,n〉=


0 if n = end or ñ ∈P
maxn≺n′ Bk〈m,{ñ}∪P, ñn,n′〉 if ch(n) =k′,k 6= k′

maxn≺n′ Bk〈1,{ñ}∪P,n,n′〉 if ch(n) = k,Reset(ñn)
max(m+1,maxn≺n′ Bk〈m+1,{ñ}∪P, ñn,n′〉) if ch(n) = k,¬Reset(ñn)

The algorithm explores all the paths of the session graph until they grow to satisfy the
reset property. Since we examine only finite channels, the length of such paths is limited
and the algorithm terminates. The bound on the buffer size of a channel is the maximum
buffer size required over these paths. For each path, the algorithm acts recursively on
the edges and maintains a counter (m in Bk〈m,P, ñ,n〉) that records the current size
of the buffer. If the current prefix does not involve the channel k, the size of the buffer
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is unchanged and the computation continues to the next nodes. If the current prefix
uses the channel k, there are two cases: (a) the reset property holds for the current
path, in which case the buffer has been emptied prior to the current message; or (b) the
reset property does not hold and the buffer needs to be able to keep one more value.
When there are no further node, or when the path currently examined has already been
considered (i.e. is inP), the algorithm stops.

Given a global type G, the upper bound of channel k in G can be computed in
polynomial time. Note that the computation can be done for all channels at once.

Example 3.6 (buffer bound analysis) We illustrate the algorithm on our running ses-
sion example, where we compute the bound for channel s2 (we omitP for readability):

Bs2〈0,ε,n1〉 max explanation
= Bs2〈0,n1,n2〉 0 s1 6= s2
= max(Bs2〈1,n1n2,n3〉,Bs2〈1,n1n2,n5〉) 1 ¬Reset(n1n2)
= max(Bs2〈1,n1n2n3,n4〉,Bs2〈1,n1n2n5,end〉) 1 s3 6= s2
= max(Bs2〈1,n4,n1〉,0) 1 Reset(n1n2n3n4)
= Bs2〈1,n4n1,n2〉 1 s1 6= s2
= max(Bs2〈2,n4n1n2,n3〉,Bs2〈2,n4n1n2,n5〉) 2 ¬Reset(n4n1n2)
= max(Bs2〈2,n4n1n2n3,n4〉,Bs2〈2,n4n1n2n5,end〉) 2 s3 6= s2
= max(Bs2〈1,n4,n1〉,0) 2 Reset(n4n1n2n3n4)

The algorithm starts with n1, the root of G. Since n1 uses buffer s1 (different from s2),
we continue with the successor n2. It uses s2 and, since the accumulated path n1n2 does
not satisfy the reset property, the buffer requirement of s2 needs to be increased to 1. The
next nodes, n3 and n5, do not use the channel s2. Since n4 uses s2 and Reset(n1n2n3n4)
holds (there is n2≺IO n3≺IO n4), the buffer has to be emptied before n4: we thus reini-
tialise the buffer requirement to 1 and the path to just n4. On the other branch, we reach
end and stop the computation. The next prefix of n4, n1, does not use s2, but it succes-
sor n2 does. We thus check the reset property on the path n4n1n2, but it does not hold.
The buffer requirement is thus increased to 2. As previously, n3 and n5 do not use the
channel s2 and the accumulated path (in the main branch) becomes n4n1n2n3. The next
prefix, n4, uses s2 and Reset(n4n1n2n3n4) holds: thus we initialise the buffer require-
ment back to 1 and the path to just n4. However, we just explored such a situation earlier
in the computation and thus stop. The maximum buffer size encountered for s2 is then
2. Such a computation for s1 and s3 gives a buffer size of 1.

3.3 Subject Reduction and Buffer Safety

Once global type G is agreed upon by all parties, a local type Ti from each party’s
viewpoint is generated as a projection of G, and implemented as a process Pi. If all the
resulting local processes P1, ..,Pn can be type-checked against T1, ..,Tn, they are auto-
matically guaranteed to interact properly, without communication mismatch (commu-
nication safety) nor getting stuck inside a session (progress) [10]. Here we additionally
ensure the absence of buffer-overflow based on the buffer bound analysis of G.
Local types. Local session types type-abstract sessions from each end-point’s view.

T ::= k!〈U〉;T | k?〈U〉;T | k⊕{li : Ti}i∈I | k&{li : Ti}i∈I | µx.T | x | end
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Type k!〈U〉 expresses the sending to k of a value of type U . Type k?〈U〉 is its dual. Type
k⊕{li : Ti}i∈I represents the transmission to k of a label li chosen in the set {li | i ∈
I}, followed by the communications described by Ti. Type k&{li : Ti}i∈I is its dual.
The remaining type constructors are standard. We say a type is guarded if it is neither
a recursive type nor a type variable. The relation between global and local types is
formalised by projection, written G �p (called projection of G onto p) and defined in
[10, 21]. For example, (p→ p′ : k 〈U〉;G′) �p = k!〈U〉;(G′ �p), (p→ p′ : k 〈U〉;G′) �
p′ = k?〈U〉;(G′ �p′) and (p→ p′ : k 〈U〉;G′) �q = (G′ �q). We take an equi-recursive
view, not distinguishing between µx.T and its unfolding T [µx.T/x].
Linearity. To avoid race conditions and conflicts between typed processes, we build
on the definition of linearity from [10]. The relations ≺II and ≺OO are defined by:
n1≺II n2 if n1≺≺n2 and pfx(n1)=p1→p :k1 and pfx(n2)=p2→p :k2 s.t. p1 6=p2⇔ k1 6=k2

n1≺OO n2 if n1≺≺n2 and pfx(n1)=p→p1 :k1 and pfx(n2)=p→p2 :k2 s.t. p1 6=p2⇒ k1 6=k2

The three relations ≺IO, ≺II and ≺OO are used to characterise the authorised sequences
of actions. An input dependency (I-dependency) from n1 to n2 is a chain n1 ≺φ1 · · · ≺φn

n2 (n ≥ 1) such that φi = IO for 1 ≤ i ≤ n− 1 and φn = II. An output dependency (O-
dependency) from n1 to n2 is a chain n1 ≺φ1 · · · ≺φn n2 (n≥ 1) such that φi ∈ {OO, IO}.
These dependency relations are respectively written ≺≺II and ≺≺OO. G is linear (written
Lin(G)) if, whenever two nodes n1 ≺≺ n2 use the same channel k, the dependencies
n1 ≺≺II n2 and n1 ≺≺OO n2 hold. If G carries other global types, we inductively demand
the same. Examples can be found in [10] and Appendix B.1 . We call linear global types
whose projections are defined coherent. Hereafter we only consider coherent types.
Typing initial processes. The type judgements for initial processes are of the form Γ `
P.∆ which means: “under the environment Γ , process P has typing ∆”. Environments
are defined by: Γ ::= /0 | Γ ,u : S | Γ ,X : ∆ and ∆ ::= /0 | ∆ , s̃m̃ : {T @p}p∈I . A sorting
(Γ ,Γ ′, ..) is a finite map from names to sorts and from process variables to sequences of
sorts and types. Typing (∆ ,∆ ′, ..) records linear usage of session channels. In multiparty
sessions, it assigns a family of located types to a vector of session channels. In addition,
we annotate each session channel sk with its buffer bound mk.

Among the typing rules, the rule for session initiation uses the buffer size Bsi〈G〉
calculated from G.

Γ ` a : G Γ ` P.∆ , s̃m̃ : (G�1)@1 |s̃|= chans(G) Bk〈G〉= mk

Γ ` a[2..n](s̃ m̃).P.∆

The type for s̃ is the first projection of the declared global type for a in Γ . The end-
point type (G�p)@p means that the participant p has G�p, which is the projection of G
onto p, as its end-point type. The condition |s̃|= chans(G) means the number of session
channels meets those in G. The condition Bk〈G〉= mk ensures that the size of the buffer
mi for each sk does not exceed the size calculated from G. Similarly for accept. Other
rules for initial processes are identical with [10]. Note that since Bk〈G〉 is decidable,
type-checking for processes with type annotations is decidable [10, 21].

The rest of the typing system for programs and one for runtime are similar with
those in [10] (Appendix C.4). Judgements for runtime are there extended to Γ `Σ P.∆

with Σ a set of session channels associated to the current queue.
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For the subject reduction, we need to keep track of the correspondence between
the session environment and the buffer sizes. We use the reduction over session typing,
∆

k→ ∆ ′, that is generated by rules between types such as k!〈U〉;T @p,k?〈U〉;T ′@q
k→

T @p,T ′@q. The key lemma about the correspondence between buffer size and reduc-
tion follows. We set [[G]] to be the family {(G�p)@p | p ∈ G}. Regarding each type in
[[G]] as the corresponding regular tree, we can define ≺, ≺II,≺IO and ≺OO among its
prefixes precisely as we have done for G.

Lemma 3.7 If ∆(s̃) = [[G]] and ∆
sk→ ∆ ′, then [[G]]( k→)∗[[G′]] with ∆ ′(s̃) = [[G′]] and

Bk〈G〉 ≥Bk〈G′〉.

When Γ `Σ P . ∆ , we say that (Γ ,Σ ,P,∆) is fully coherent for session s̃ if there exist
P1, . . . ,Pk,Σ

′,∆ ′ such that Γ `Σ]Σ ′ P | P1 | . . . | Pk .∆ ,∆ ′ and ∆ ,∆ ′ = ∆ ′′, s̃ñ : {Tp@p}p∈I
with [[G]] = {Tp@p}p∈I , G coherent and Bi〈G〉 ≤ ni (1≤ i≤ k).

Theorem 3.8 (Subject Reduction) Γ `Σ P.∆ and P−→Q with (Γ ,Σ ,P,∆) fully co-
herent imply Γ `Σ Q.∆ ′ for some ∆ ′, sk such that ∆ = ∆ ′ or ∆(

sk→)∗∆ ′ and Bk〈G〉 ≥
Bk〈G′〉 with ∆(s̃) = [[G]], ∆ ′(s̃) = [[G′]] and (Γ ,Σ ,Q,∆ ′) fully coherent.

The proof relies on Lemma 3.7 and the fact that session reduction does not affect the
causal dependencies within global types, so that buffer sizes can only decrease.

To state our buffer safety result, we define the buffer overflow error as follows:

n≤ |h̃| ⇒ s!〈ẽ〉;P | sn : h̃→ Err, s!〈〈t̃〉〉;P | sn : h̃→ Err, s� l;P | sn : h̃→ Err

P→ Err ⇒ P | Q→ Err, (ν a)P→ Err, (ν s̃)P→ Err, P≡ Q→ Err

Corollary 3.9 (Buffer Safety) If Γ `Σ P.∆ , then for all P′ s.t. P−→∗ P′, P′ 6→ Err.

4 Channel Attribution

This section describes algorithms that attribute channels to the communications of a
given global type without channels, called stripped global types (G,G′, ...) defined as:

G ::= . . . | p→ p′〈U〉;G′ | p→ p′{l j : G j} j∈J values, branching

Our algorithms transform G into regular type G by adding channel annotations. We
define the channel allocation of a global type G to be the value of the function ch.
Singleton allocation. The simplest channel allocation attributes a different channel to
each communication occurring in the global type syntax tree. Formally, the singleton
allocation is such that: ∀n,n′ ∈ G, ch(n) = ch(n′) ⇐⇒ n = n′. Singleton allocations
enjoy the following good properties.

Lemma 4.1 For any global type G with singleton allocation, (1) G satisfies the linearity
property; (2) for the finite channels k of G, Bk〈G〉 = 1; (3) for the finite channels k of
G, ∑k Bk〈G〉 ≤ size(G).
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Channel equalities. As well as values of the ch function, allocations can be seen as
partitions of the set of nodes {n}n∈G. We then define partition refinement through the
notion of channel equality, i.e. the union of two partitions to produce a new allocation.

Definition 4.2 (channel equality) A channel equality is the substitution of two chan-
nels k and k′ in a global type G by a single fresh channel k′′ while keeping G linear.

As we take the singleton allocation as a base, we can describe channel allocations by
sets E of channel equalities, the empty set corresponding to the singleton allocation. We
write GE the global type G with channel equalities E.

In the rest of this section, we always start from the singleton allocation and proceed
by channel equality. We notably rely on the fact that the result of the equality of two
finite channels is finite. Formally, if Bk〈G〉= ∞ then ∀E,Bk〈GE〉= ∞.

Note that the total number of possible channel allocations is finite and corresponds
to the number of partitions of a given finite set. The exact count (if we do not take into
account the linearity property) is given by a Bell number [18] which is exponential in
the size of the global type. Given the finite number of possible allocations, we know that
there exists an algorithm to find allocations satisfying any decidable property. Notably,
one can reach any given memory requirement (number of channels, buffer sizes).
Principal allocation. The most widely used allocation method attributes two commu-
nication channels (one in each direction) for each pair of participants. The session types
in [1, 7] follow this allocation. Formally, the principal allocation is such that: ∀n,n′ ∈
G s.t. pfx(n) = p→ q : k and pfx(n′) = p′→ q′ : k′,(k = k′ ⇐⇒ p = p′∧q = q′).

Lemma 4.3 For any global type G with principal allocation, (1) G satisfies the linearity
property; (2) chans(G)≤ n× (n−1) where n = prins(G).

Greedy allocations. We now define a family of efficient algorithms, that give good
allocation results in practice.

Definition 4.4 (Greedy allocation algorithm) Given a global type with singleton allo-
cation G, of initial node n0, and a successor function succ over the nodes, the function
I /0

/0 (n0) is defined by:

I K
E (n) = I K′

E ′ (n′) where


succ(n) = n′

ch(n) = k
K′ = K∪{k}

∧E ′ =
{

E ∪{k = k′} if ∃k′∈K,Lin(GE∪{k=k′})
E otherwise

I K
E (end) = E

This algorithm is parameterised by the successor function over nodes (that can be given
e.g. by a depth-first graph search) and by the choice between the possible channels
k′ ∈ K for equality. The greedy algorithm has the advantage of not backtracking and
thus enjoys a polynomial complexity (if the choice procedures are polynomial) in the
size of the graph. In particular, we define two efficient heuristics based on the generic
greedy algorithm. In the greedy algorithm, we implement K by either:
1. (Early) a queue, so that we choose for channel equality the oldest channel k′ ∈ K .
2. (Late) a list, so that we choose for channel equality the latest channel k′ ∈ K.

The early and late allocations are not optimal in terms of total memory requirements
(computed by ∑k Bk〈G〉 when all channels are finite) but give good results in practice
while being polynomial.
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Example 4.5 (comparison of the allocations)
We apply the different allocation algo-
rithms on a three-party stripped global
type. The results are given in the ad-
jacent table in term of number of al-
located channels and total memory re-
quirement. The greedy algorithms give
the best results on this example, with
the early greedy algorithm allocating
less channels than the late greedy al-
gorithm.

Singleton Principal Early G. Late G.
n0 : A→ B; k0 k0 k0 k0
n1 : B→ A; k1 k1 k1 k1
n2 : A→ B; k2 k0 k0 k0
n3 : A→ B; k3 k0 k0 k1
n4 : A→ C; k4 k2 k2 k2
n5 : C→ B; k5 k3 k1 k3
n6 : B→ C; k6 k4 k2 k1
n7 : B→ C k7 k4 k2 k2

Nb channels 8 5 3 4
Memory Req. 8 7 5 5

5 Global and Local Refinements

5.1 Global Refinement: Insertion of Confirmation Messages

This subsection presents two algorithms to automatically insert confirmation messages
to limit the buffer size requirements of a given session type. This allows the treatment
of infinite channels left out in the previous section.

Our algorithms work in three steps: first, (1) the confirmation messages to introduce
are computed from the global type; next, (2) the algorithms determine how many un-
foldings of the global type are necessary to reach the desired buffer sizes; finally, (3)
the confirmation messages are inserted in the unfolded global type.

For step (1), the optimal-confirmation algorithm looks for the minimal number of
confirmation messages to introduce to bound all channel buffers. The algorithm will in
practice try every combination of sender, receiver and channel. Note that at most one
message per infinite channel is needed. The instant-confirmation algorithm relies on
this property and adds a confirmation for each infinite channel of the original session
type. For a given channel k whose latest prefix is p→ p′ : k, the confirmation is of the
form p′→ p : k′ with k′ chosen by one of the channel allocation algorithms.

For step (2), once the set of confirmation messages is chosen, both algorithms
determine the optimal number of unfolding of the global type needed to reach the
desired buffer sizes (the unfolding happens within the recursion calls: φ 1(µx.G) =
µx.φ 1(G[µx∗.G/x]), φ 1(µx∗.G) = G and φ n+1(G) = φ n(φ 1(G))). After each unfold-
ing and until the memory targets are met, the confirmation messages are introduced (at
the level of recursion variables for the instant version) and buffer sizes are checked.

Example 5.1 Recall G = µx.Alice→ Bob: s1 〈nat〉;Carol→ Alice : s3 〈bool〉;x (Ex-
ample (b) from § 1) where the channels s1 and s3 are infinite. We illustrate the optimal
confirmation algorithm on the l.h.s. and the instant one on the r.h.s for G below. The
two algorithms give the following results when asked to limit buffer sizes to 2.

µx. Alice→ Bob: s1 〈nat〉;
Carol→ Alice : s3 〈bool〉;
Alice→ Bob: s1 〈nat〉;

n0 : Bob→ Carol : s4 〈unit〉;
Carol→ Alice : s3 〈bool〉;x

µx. Alice→ Bob: s1 〈nat〉;
Carol→ Alice : s3 〈bool〉;
Alice→ Bob: s1 〈nat〉;
Carol→ Alice : s3 〈bool〉;

n1 : Bob→ Alice : s4 〈unit〉;
n2 : Alice→ Carol : s5 〈unit〉;x

12



The optimal-confirmation discovers (on the l.h.s.) that n0 is enough to bound all chan-
nels. On the r.h.s., the instant-confirmation introduces two confirmation messages, n1
and n2. In both, unfolding is done exactly once to reach a bound of 2 on all buffer sizes.

5.2 Local Refinement: Messaging Optimisations

One of the significant practical concerns in systems with messaging is to optimise inter-
actions through more asynchronous data processing to increase parallelism. In § 5.1, we
study how to limit the size of buffers by refining global types. Our next step concerns
messaging optimisations that respect the agreed buffer sizes. Our recent work [13, 14]
developed a new form of subtyping, the asynchronous subtyping, that characterises the
compatibility between classes of type-safe permutations of actions, in order to send
messages before receiving. This subtyping allows, however, not only Bob5 in (1.1) in
§ 1 but also µX .s2!〈Orange〉;X as a refinement of Bob, which changes all buffer sizes
from 1 to ∞, leading to buffer overflows. Our aim is to overcome this problem by con-
trolling permutations locally with the help of the IO-dependency analysis. The key idea
is to prohibit the permutation of an output action at k0 with an input or branching action
which prevents (by IO-causality) the accumulation of values in k0.

Recall Definition 3.4. We define the minimal resetting paths to be the paths that
satisfy the reset property while none of their suffix does. Then, we define the dependent
nodes of channel k, noted dep(k) to be the union of the reset nodes of the minimal
resetting paths that end with k. This set of nodes characterises a buffer usage.

First, for a given G, we choose a partition {N0, . . . ,Nn} of the set of nodes of G. This
partition should satisfy the two properties: ∀n ∈ Ni,n

′ ∈ N j,ch(n) = ch(n′)⇒ Ni = N j
and ∀n ∈ Ni,dep(ch(n)) ⊂ Ni. The choice of a partitioning depends in particular on a
choice of reset and dependent nodes. Note that the trivial partitioning (with only one
partition) is always possible. Since that, for each channel k, all nodes using k are part of
the same partition (written N(k)), we can annotate all uses of k in G by N(k).

In the example below, the partitioning is made of N1 = {n1,n2} and N2 = {n3,n4}:
we give the annotated session graph (with the IO-dependencies highlighted) on the left
and the projected types (where the annotations are kept) on the right.

n1 : Alice→ Bob : sN1
1

//
IO
,4 n2 : Bob→ Alice : sN1

2

��

IOlt

n4 : Bob→ Alice : sN2
4

OO

IO
,4 n3 : Alice→ Bob : sN2

3
oo

IOlt

TAlice = µx.sN1
1 !;sN1

2 ?;sN2
3 !;sN2

4 ?;x

TBob = µx.sN1
1 ?;sN1

2 !;sN2
3 ?;sN2

4 !;x

T opt
Alice = µx.sN1

1 !;sN2
3 !;sN1

2 ?;sN2
4 ?;x

Next, we apply the size-preserving asynchronous communication subtyping, following
the annotations on the projected types. The relation T � T ′ means T is more asyn-
chronous than (or more optimised than) T ′. The main rule is:

(OI) kN !〈U〉;kN0
0 ?〈U ′〉;T � kN0

0 ?〈U ′〉;kN !〈U〉;T (N∩N0 = /0)

where the two prefixes are permutable if the IO-chains of the two prefixes are dis-
joint. We can always permute two inputs and two outputs with distinct channels since
they do not contribute to the input and output alternations that constitute the IO-chains.
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The branching/selection rules are similarly defined, and others are context rules. Then
we define a coinductive subtyping relation T1 6c T2 as a form of type simulation,
following [13, 14]. The important fact is that 6c does not alter buffer sizes: suppose
[[G]] = {T @p}p with T @p = (G�p)@p and p ∈G. Assume T @p6c T ′@p with [[G′]] =
{T ′@p}p Then Bk〈G〉 = Bk〈G′〉. Since there is no change in the buffer bounds, Type
and Buffer Safety are just proved from Theorem 3.8 and Corollary 3.9.

In the example above, in Alice’s type, we can permute sN1
2 ? and sN2

3 ! (T opt
Alice6c TAlice)

since N1∩N2 = /0, keeping the size of each buffer one. Hence process typable by T opt
Alice

can safely send message at s3 before input at s2. In Alice-Bob5-Carol from § 1, the
original global type G annotated by IO-chains has only one partition N = {n1,n2,n3}:

µx. Alice→ Bob: sN
1 〈nat〉;Bob→ Carol : sN

2 〈string〉;Carol→ Alice : sN
3 〈real〉;x

Bob’s local type is µx.sN
1 ?〈nat〉;sN

2 !〈string〉;x, which prevents any optimisation� by
(OI). Hence, Bob5 is not typable. Some typable examples are given in the next section.

6 Application Examples

Multi-buffering algorithm. The double buffering algorithm [5] is widely used in high-
performance and multicore computing. We generalise this algorithm to multi-buffering
[15], and solve an open issue in our previous work [14, § 5]. The aim is to transport a
large amount of data as a series of units (say each unit is 16kB) from a source (Source)
to a transformer (called Kernel). Each unit gets processed at Kernel and delivered to a
sink (Sink). Kernel uses n 16kB buffers, named Bi, to maximise the message transfer
asynchrony. Processes which represent Source, Sink, Kernel and Optimised Kernel are
given below using parameterised processes [21] (i.e. where foreach(i < n){P[i]} means
we iterate P[i] for 0≤ i<n):

Source: µX .foreach(i < n){ri?(); si!〈yi〉};X Sink: µX .foreach(i < n){ti!〈〉;ui?(zi)};X

Kernel: µX .foreach(i < n){ri!〈〉;si?(xi); ti?();ui!〈xi〉};X

Optimised Kernel: r0!〈〉; ...;rn−1!〈〉; µX .foreach(i < n){si?(xi); ti?();ui!〈xi〉;ri!〈〉};X

In the loop, Kernel notifies Source with signals at ri that it is ready to receive data
in each channel si of buffer Bi. Source complies, sending one unit via si. Then Kernel
waits for Sink to inform (via ti) that Sink is ready to receive data via ui: upon receiving
the signals, Kernel sends the unit of processed data to Sink via ui. If Kernel sends the
n notifications to r0,...,rn−1 ahead like Optimised Kernel, Source can start its work for
the next unit (sending y j at s j) without waiting for other buffers.

The following proposition means that the n-buffers of size one in Kernel simulate
one buffer of size n, maximising the asynchrony. The proof is done by annotating the
global type with partitions {ri,si} and {ui, ti}, and checking that the permutation of the
projected Kernel type satisfies the (OI) rule.

Proposition 6.1 (n-buffering correctness) Source-Optimal Kernel-Sink satisfies both
progress and communication-safety. Also each buffer at si and ui holds at most one unit.
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If Optimised Kernel is optimised as r0!〈〉; ...;foreach(i < n){ri!〈〉;si?(xi); ti? ;ui!〈xi〉}
(which is not typable in our system), then all buffers are forced to hold 2 units. This
unsafe optimisation is typable in [14] but prevented here by Proposition 6.1.
MPSoC buffer allocations. We take a use case from [4] and present performance opti-
misations of MPSoC. We show that this use case can be described with branching and
parameterised types (from [21]) and can then be optimised and verified by applying all
of the methods developed in § 3–5.2.

s12P1

P6

P3

P4 P5

s13

s16
s34

s46
s56

s35 s24 s25

P2

P1

P5

P6

P4

P3

optimal
confirm.

instant
confirm.

The diagram shows six processes connected by nine FIFOs and
its specification is given below:

G =µx.( foreach(i ∈ {2,3}){G[i]};p[1]→p[6] : on);x

G[i] = p[1]→p[i] :
{

on :p[i]→p[4] : on; p[4]→p[6] : on;
off :p[i]→p[5] : off; p[5]→p[6] : off

}
where foreach(i ∈ I){G[i]} means that G[i] is repeated for each i ∈ I.

For simplicity, we perform the principal allocation (§ 4). By Definition 3.2, buffers
of infinite sizes are needed if the data is continuously sent by p[1]. To limit their
upper bounds to size m, we apply the two global refinement algorithms presented
in § 5.1. The optimal algorithm inserts one confirmation after each m iterations as
in: µx.foreach(n < m){foreach(i ∈ {2,3}){G[i]}};p[6]→p[1]〈unit〉 : x. The instant
confirmation inserts nine messages (as shown by the red arrows), but has the advantage
of allowing more asynchronous optimisation (§ 5.2). For example, using instant confir-
mation, p[1] can send the m+1-th message to p[2] without waiting for the confirmation
of the m-th message from p[6], while this is impossible with optimal confirmation. Fi-
nally we can prove that the above MPSoC six processes are communication-safe, and
satisfy progress and buffer-safety (after global and local refinements).

7 Related Work

Checking buffer bounds based on global specifications has been studied through Petri
nets and Synchronous data flow. Recent advances [8] in the study of Kahn Process
Networks (KPN) have improved Parks’s algorithm [17] to ensure safe executions of
stream-based applications with bounded buffers, using an appropriate scheduling pol-
icy. Their theory is applied to KPN applications on MPSoC [4], demonstrating the ef-
fectiveness of non-uniform, fine-grained buffer allocations. By contrast, our approach
is type-based and relies on the existence of a global specification that brings additional
guarantees (such as deadlock-freedom) and allows global choreography manipulation
and refinements. It is moreover directly applicable to programming languages [11, 21]
by extending existing type syntax and checking.

The idea of using a type-abstraction to investigate channel communications goes
back to Nielson & Nielson’s work on CML [16]. Gay & Vasconcelos [7] propose a
linear type system for binary sessions to enforce buffer bounds computed by a fixed
point method. Their work is thus limited to a particular channel allocation (i.e. principal,
cf. § 4) and does not extend to multiparty interactions (their method would find that the
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buffers in Example (a) are infinite). Terauchi & Megacz [20] describe a polynomial
method to infer buffer bounds of a concurrent language through program analysis using
linear programming techniques, improving on previous work in [12], see [20, § 7]. Our
bound computation method differs in that it starts from a direct type-based abstraction
of global interaction structures, namely session graphs, not from direct investigation
of local types nor processes (normally in distributed systems, a peer does not know
other peer’s type or implementation [11]). It also leads to the general simplicity of the
analysis, and the uniform treatment of subtle issues such as asynchronous optimisations.
Thanks to session types, the channel passing problem in [20, § 6] does not arise in our
analysis: different (possibly newly generated) sessions and names can be stored in the
same buffer, still giving the exact bound of stored channels. None of [7, 20] have studied
either channel allocation, global refinement or messaging optimisation.

Among process calculi for service-oriented computing (SOC), contracts [3] and the
conversation calculus [2] provide static type checking for a series of interactions and
ensure progress. We demonstrate the advantage of global types by the simplicity of
our analysis and the uniform treatments and articulation of our various algorithms. Our
approach is, however, extensible to these calculi because (1) the IO-causality analysis
does not rely on the form of session branches so that other form of sums can be analysed
by the same technique; and (2) combining with a polynomial inference which builds
a graph from a collection of local types [[G]] [14], Subject Reduction Theorem can be
proved using our invariance method noting that we use [[G]] for the proofs. An extension
to other formalisms for SOC including [2, 3] is an interesting future work.

Further topics include the enrichment of global types with more quantitative infor-
mation (such as distance, probabilities and weights), which would enable finer-grained
analyses and optimisations.
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A Appendix for Section 2: Reductions and Structural Congruence

We define the full set of reduction and structural congruence rules mentioned in Sec-
tion 2.

a[2..n](s̃ ñ).P1 | a[2](s̃).P2 | · · · | a[n](s̃).Pn
→ (ν s̃)(P1 | P2 | ... | Pn | sn1

1 : /0 | ... | snm
m : /0) [LINK]

s!〈ẽ〉;P | sn : h̃ → P | sn : h̃ · ṽ (n 
 |h̃|, ei ↓ vi) [SEND]

s!〈〈t̃〉〉;P | sn : h̃ → P | sn : h̃ · t̃ (n 
 |h̃|) [DELEG]

s� l;P | sn : h̃ → P | sn : h̃ · l (n 
 |h̃|) [SEL]

s?(x̃);P | sn : ṽ · h̃ → P[ṽ/x̃] | sn : h̃ [RECV]

s?((t̃));P | sn : t̃ · h̃ → P | sn : h̃ [SREC]

s�{li : Pi}i∈I | sn : l j · h̃ → Pj | sn : h̃ ( j ∈ I) [BRA]

if e then P else Q → P (e ↓ true) [IFT]

if e then P else Q → Q (e ↓ false) [IFF]

P→ P′ ⇒ (ν n)P→ (ν n)P′ [SCOP]

P→ P′ ⇒ P | Q → P′ | Q [PAR]

P≡ P′ and P′→ Q′ and Q′ ≡ Q ⇒ P→ Q [STR]

where n = a or n = s̃.

P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)
(ν n)P | Q≡ (ν n)(P | Q) if n 6∈ fn(Q) (ν nn′)P≡ (ν n′n)P

(ν n)0≡ 0 µX .P≡ P[µX .P/X ] (ν s1..sn)Πis
ni
i : /0≡ 0
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n denotes either a or s. For process P, fpv(P) and fn(P) respectively denote the sets of
free process variables and free identifiers in P. A sequence of parallel composition is
written ΠiPi.

B Appendix for Sections 3.1 and 3.2: Bound Analysis in
Multiparty Sessions

This section lists the omitted definitions of Sections 3.1 and 3.2 and details causal
dependencies.

B.1 Dependency Analysis Examples

We list all three dependencies together for the reader’s convenience.

Definition B.1 (dependencies) Fix G. The relations ≺φ , with φ ∈ {II, IO,OO}, over
ordered prefixes are defined by:

n1≺II n2 if n1≺n2 ∧
{
n1 =p1→p :k1
n2 =p2→p :k2

s.t. p1 6=p2⇔ k1 6=k2

n1≺IO n2 if n1≺n2 ∧
{

n1 =p1→p :k1
n2 =p→p2 :k2

with k1 6=k2

n1≺OO n2 if n1≺n2 ∧
{
n1 =p→p1 :k1
n2 =p→p2 :k2

s.t. p1 6=p2⇒ k1 6=k2

The relation ≺II expresses the fact that a principal follows the receive order when dif-
ferent senders send on different channels, or when a unique sender sends two messages
on the same channel. The relation ≺IO asserts the order between a reception by a prin-
cipal and the next message it sends. Finally, the relation ≺OO orders consecutive sends
by a same principal, except when a unique channel is used for different concurrent re-
ceivers. We now combine these relations to define dependency relations that express
causality chains.

Definition B.2 (dependency relations)

1. An input dependency (I-dependency) from n1 to n2 is a chain n1 ≺φ1 · · · ≺φn n2
(n≥ 0) such that φi = I0 for 1≤ i≤ n−1 and φn = II.

2. An output dependency (O-dependency) from n1 to n2 is a chain n1 ≺φ1 · · · ≺φn n2
(n≥ 1) such that φi ∈ {OO, IO}.

3. An input-output dependency (IO-dependency) from n1 to n2 is a chain n1 ≺φ1
· · · ≺φn n2 (n≥ 1) such that φi = IO.

The O-dependency characterises the sequentiality between exchanged messages while
the input dependency makes sure that a reception at n2 is guarded and does not conflict
with the reception at n1. In (2), the last II-ordering is needed since, if it ends with an
IO-edge, an input at n2 may not have been completed.
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Example B.3 We illustrate the notion of infinite channels on a variation from our run-
ning example.

µx.Alice→ Bob: s1 〈nat〉;Carol→ Alice : s3Alice→ Carol : s2 〈string〉;x

n1 : Alice→ Bob : s1

((
n4 : Alice→ Carol : s2

OO

IO
,4 n3 : Carol→ Alice : s3oo

IO

go VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVIOlt

Since the node n1 is part of the main cycle n1n3n4, but not part of the IO-cycle n3n4,
the channel s1 is infinite.

Proposition B.4 Computing all IO-dependencies of a given session graph has com-
plexity O(size(G)3).

Proof. We explore the graph up to one unfolding. For each explored node, we find the
IO-dependencies that end there. The overall complexity is thus O(size(G)3).

Example B.5 (reset function) In the following session type (part of the previous one-
unfolding of the session involving Alice, Bob and Carol), we are interested in the truth
value of Reset(ñ,) where ñ = n1 ≺ n2 ≺ n3 ≺ n4:

n1 : Alice→ Bob: s1 〈nat〉;
n2 : Bob→ Carol : s2 〈string〉;
n3 : Carol→ Alice : s3 〈real〉;
n4 : Alice→ Bob: s1 〈nat〉;end

The only node of ñ using the same channel as n4 is n1. Since n1 ≺IO n2 ≺IO n3 ≺IO n4,
there is an IO-dependency between n4 and n1. The property Reset(ñ,n4) holds.

This example illustrates that Bob has to complete the reception on channel s1 in
n1 since he is the sender of the next message. The same goes for Carol and Alice,
thus preventing Bob from accumulating in s1 the two messages sent in n1 and n4. We
therefore know that the buffer of channel s1 is empty prior to the message of n4.

Note finally that in the following session type, the property Reset(n1n2n3n4n5,) also
holds, although the buffer of s1 can accumulate a second value in n3.

n1 : Alice→ Bob: s1 〈nat〉;
n2 : Bob→ Carol : s2 〈string〉;
n3 : Alice→ Bob: s1 〈nat〉;
n4 : Carol→ Alice : s3 〈real〉;
n5 : Alice→ Bob: s1 〈nat〉;end

Proposition B.6 Computing the buffer bounds of a given global session graph is poly-
nomial.

Proof. The buffer bound computation algorithm is polynomial because the lengths of
the paths it has to examine are limited. The reason is that, for a given linear session
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graph, any IO-chain (such as the ones mentionned in the reset property definition) that
is longer than twice the number of participants imply the existence of a shorter IO-sub-
chain.

As a matter of fact, if a given participant appears twice as a receiver and once as
a sender in a minimal IO-chain, it means that one of the two receptions use the same
channel as the send done by this participant (by definition of the IO-dependency). Any
other situation (three receptions) implies that the IO-chain can be short-cut.

As the search for an IO-chains can be limited to chains that are no longer than twice
the number of participants, paths that need to be explored do not need to be longer
than O(n ∗ size(G)) (with n the number of participants). Consequently, the paths that
are explored by the bound computation algorithm are guaranteed to satisfy the reset
property when they reach a certain length that depends only linearly on the size of the
graph.

This ensures that the in-depth exploration of the session graph that is done to com-
pute the buffer bounds is polynomial in the size of the graph (assuming the number of
participants is a constant).

C Appendix for Section 3.3: Typing Rules and Buffer Safety
Theorem

This section lists the typing system omitted from the main section and gives the proofs
of the subject reduction and Buffer safety.

We start from the example of the linearity.

Example C.1 (linearity) We illustrate the linearity property on a counter-example.

n1 : Alice→ Bob: s1 〈nat〉;
n2 : Carol→ Bob: s1 〈string〉;

In the above excerpt of a global type, linearity is broken since there is no input and
output causality between the two prefixes which have the same channel s1. Actually,
Bob faces a race condition since both Alice and Carol try to enqueue the values on
the same channel. On the other hand, the previous global type in Example B.5 satisfies
the linearity condition since there is the O-dependency from n1 to n4 such that n1 ≺IO

n2 ≺IO n3 ≺IO n4 and an I-dependency n1 ≺II n4. With these I and O chains, we can
ensure no race at s1. More examples about linearity can be found in [10].

C.1 Projection

The following defines the projection of a global type to local types at each participant.
Then the projection of G onto p, written G�p, is inductively given as:

– (p1→ p2 : k 〈U〉;G′)�p =
k!〈U〉.(G′ �p) if p = p1 6= p2

k?〈U〉.(G′ �p) if p = p2 6= p1

(G′ �p) if p 6= p2 and p 6= p1
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– (p1→ p2 : k {l j : G j} j∈J)�p =
⊕{l j : (G j �p)} j∈J if p = p1 6= p2

&{l j : (G j �p)} j∈J if p = p2 6= p1

(G1 �p) if p 6= p2 and p 6= p1

and ∀i, j ∈ I.Gi �p = G j �p
– (µx.G)�p = µx.(G�p), x�p = x, and end�p = end.

When a side condition does not hold the map is undefined. We also use the extended
projection from [21] for branching (for which the proof does not change).

C.2 Typing System for Initial Processes.

We list the typing system for initial processes in figure 1.

C.3 Typing rules for runtime processes

Typing runtime processes is more involved since, for subject reduction, we need to
maintain an invariant about the number of messages in buffers and processes. We start
by extending the types and environments to accommodate buffer sizes:

∆ ::= /0 | ∆ , s̃ñ : {Hp@p}p∈I M ::= k!〈U〉 | k⊕ l | M;M H ::= T | M | M;T

where M,M′, ... range over message types which represent the messages contained in
buffers; H,H ′, ... range over generalised types which are either local types, message
types, or message types followed by local types.

We first type a single queue (buffer), in which the turnstile ` is decorated with s
(where s is the session of the current buffer) and where the session environments are
mappings from channels to message types. We list the full typing rules for buffers in
figure 2.

Since all rules are similar to standard multiparty session typing systems, we only
explain two rules from figure 2.

Γ `{sk} sñ
k : /0. /0

Γ ` vi : Si Γ `{sk} sk : h̃.∆

Γ `{sk} sk : h̃ · ṽ.∆ ; s̃ñ : k!〈S̃〉@p

The empty buffer has an empty session environment. Each message adds an output type
to the current channel type where ; is defined by:

∆ ; s̃m̃ :M@p =



∆ ′, s̃m̃ : {Hq@q}q∈I\{p}∪{Hp;M@p}
if p ∈ I ∆ = ∆ ′, s̃m̃ : {Hq@q}q∈I

∆ ′, s̃m̃ : {Hq@q}q∈I ∪{M@p}
if p 6∈ I ∆ = ∆ ′, s̃m̃ : {Hq@q}q∈I

∆ ′, s̃m̃ : {M@p}
otherwise
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Fig. 1 Typing system for initial processes

Γ ,a : S ` a : S Γ ` true, false : bool
Γ ` ei .bool

Γ ` e1or e2 : bool
[NAME], [BOOL], [OR]

Γ ` a : G Γ ` P.∆ , s̃m̃ : (G�1)@1 |s̃|= chans(G) Bk〈G〉= mk

Γ ` a[2..n](s̃ m̃).P.∆
[MCAST]

Γ ` a : G Γ ` P.∆ , s̃m̃ : (G�p)@p |s̃|= |sid(G)|
Γ ` a[p](s̃).P.∆

[MACC]

Γ ` e : S Γ ` P.∆ , s̃m̃ : T @p

Γ ` sk!〈e〉;P.∆ , s̃m̃ : k!〈S〉;T @p
[SEND]

Γ ,x : S ` P.∆ , s̃m̃ : T @p

Γ ` sk?(x);P.∆ , s̃m̃ : k?〈S〉;T @p
[RCV]

Γ ` P.∆ , s̃m̃ : T @p

Γ ` sk!〈〈t̃〉〉;P.∆ , s̃m̃ : k!〈T ′@p′〉;T @p, t̃ ñ : T ′@p′
[DELEG]

Γ ` P.∆ , s̃m̃ : T @p, t̃ ñ : T ′@p′

Γ ` sk?((t̃));P.∆ , s̃m̃ : k?〈T ′@p′〉;T @p
[SREC]

Γ ` P.∆ , s̃m̃ : Tj@p j ∈ I
Γ ` sk � l jP.∆ , s̃m̃ : k⊕{li : Ti}i∈I@p

[SEL]

Γ ` Pi .∆ , s̃m̃ : Ti@p ∀i ∈ I
Γ ` sk �{li : Pi}i∈I .∆ , s̃m̃ : k &{li : Ti}i∈I@p

[BRA]

Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P | Q.∆ ,∆ ′
[CONC]

Γ ` e.bool Γ ` P.∆ Γ ` Q.∆

Γ ` if e then P else Q.∆
[IF]

∆ end only
Γ ` 0.∆

Γ ,a : G ` P.∆

Γ ` (ν a)P.∆
[INACT],[NRES]

∆ end only
Γ ,X : ∆ ` X .∆ ,

Γ ,X : ∆ ` P.∆

Γ ` µX .P.∆
[VAR],[DEF]

When we type parallel composition of processes, we need to calculate the resulting
buffer sizes and check that they do not exceed the specified sizes. The parallel compo-
sition of session environments, denoted by ∆1 ◦∆2, is defined as:

∆ \dom(∆ ′) ∪∆ ′ \dom(∆)

∪{s̃ñ : {Hp ◦H ′p@p}p∈I | s̃ñ : {Hp@p}p∈I ∈ ∆ , s̃ñ : {H ′p@p}p∈I ∈ ∆ ′,Bk〈{Hp ◦H ′p@p}p∈I〉 ≤ nk}

22



Fig. 2 Typing rules for buffers

Γ `{sk} sk : /0. /0
Γ ` vi : Si Γ `{sk} sk : h̃.∆

Γ `{sk} sk : h̃ · ṽ.∆ ; s̃m̃ : k!〈S̃〉@p
[QNIL],[QVAL]

Γ `{sk} sk : h̃.∆

Γ `{sk} sk : h̃ · t̃ .∆ ; s̃m̃ : k!〈T @q〉@p, t̃ : T @q
[QSESS]

Γ `{sk} sk : h̃.∆

Γ `{sk} sk : h̃ · l .∆ ; s̃m̃ : k⊕ l@p
[QSEL]

where H ◦H ′ is defined as H;H ′ if H is a message type; or H ′;H if H ′ is a message
type; and otherwise undefined. The operator ◦ on environments ∆ ,∆ ′ is defined if the
result respects the buffer bounds. The interesting two rules for runtime processes which
contain buffers are:

Γ `Σ P.∆ Γ `Σ ′ Q.∆
′

Σ ∩Σ
′ = /0

Γ `Σ∪Σ ′ P | Q.∆ ◦∆
′

Γ `Σ P.∆ , s̃ñ : {Tp@p}p∈I {Tp@p}p∈I coherent
Bk〈{Tp@p}p∈I〉 ≤ nk s̃ ∈ Σ

Γ `Σ\s̃ (ν s̃)P.∆

The judgement Γ `Σ P.∆ means that P contains the buffers whose session names are
in ∆ . We define the full rules in figure 3.

Fig. 3 Typing rules for runtime processes

Γ ` P.∆

Γ ` /0 P.∆

Γ `Σ P.∆ ∆
′end only

Γ `Σ P.∆ ◦∆
′ [DNIL], [DWEAK]

Γ `Σ P.∆ Γ `Σ ′ Q.∆
′

Σ ∩Σ
′ = /0

Γ `Σ∪Σ ′ P | Q.∆ ◦∆
′ [DCONC]

Γ `Σ P.∆ , s̃ñ : {Tp@p}p∈I {Tp@p}p∈I coherent

Bk〈{Tp@p}p∈I〉 ≤ nk s̃ ∈ Σ

Γ `Σ\s̃ (ν s̃)P.∆
[DRES]

Γ ,a : G `Σ P.∆

Γ `Σ (ν a)P.∆

Γ ,X : ∆ ` P.∆

Γ `Σ µX .P.∆
[DNAME],[DVAR]

For the parallel composition, we use ◦ and make sure that all buffers are disjoint. In
the rule [DCONC], we check that, when queues are composed, the family at s̃ is coherent
(i.e. satisfies the linearity constraint [10]), and does not exceed the upper bounds of the
buffers.

To prove subject reduction, we keep track of the correspondence between the ses-
sion environment and the size of the buffer. We use the reduction over session typing,
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∆
k→ ∆ ′ generated by the following rules:

k!〈U〉;H@p,k?〈U〉;H ′@q
k→ H@p,H ′@q

k⊕;{l : H, ...}@p
k→ k⊕ l;H@p

k⊕ l;H@p,k&{l : H ′, ...}@q
k→ H@p,H ′@q

∆
s→ ∆ ′ =⇒ ∆ ,∆0

s→ ∆ ′,∆0

H1@p1,H2@p2
k→ H ′1@p1,H ′2@p2 =⇒ s̃ : {H1@p1,H2@p2, ...}i∈I

sk→ s̃ : {H ′1@p1,H ′2@p2, ...}i∈I

C.4 Appendix for Proofs of Subject Reduction Theorem and Buffer Safety

This subsection gives the proofs of the subject reduction theorem and buffer safety.
Below we often write Bk〈G〉 and [[G]] = {Tp@p}p∈I as Bk〈{Tp@p}p∈I〉.

Proof (Proofs of Lemma 3.7). Mechanical by case analysis on the environment reduc-
tion rules.

Lemma C.2 Γ `Σ P.∆ and P≡ Q imply Γ `Σ P.∆ .

Proof. By induction on the derivation P≡Q. We assume in each case that Γ `Σ P.∆ .

Case P | 0 ≡ P. Assuming that Γ `Σ P . ∆ and knowing that Γ ` /0 0 . /0 by [DNIL],
we can use rule [DCONC] to get the desired Γ `Σ P | 0 . ∆ . In the other direction, we
know that Γ `Σ P | 0 . ∆ . The last rule is [DCONC]. We thus have ∆ = ∆1 ◦∆2 and
Σ = Σ1]Σ2 with Γ `Σ1 P . ∆1 and Γ `Σ2 0 . ∆2. By [INACT], we have Σ2 = /0 and ∆2
has only end. We can then use weakening to get the desired Γ `Σ1 P.∆1 ◦∆2.

Case P | Q≡ Q | P. Assuming Γ `Σ P | Q.∆ , we get from [DCONC] the existence of
∆ = ∆1 ◦∆2 and Σ = Σ1]Σ2 such that Γ `Σ1 P.∆1 and Γ `Σ2 Q.∆2. Since the ◦ and ]
are commutative, we can apply [DCONC] with permuted premises to get Γ `Σ Q |P.∆ .

Case (P | Q) | R ≡ P | (Q | R). Similar to the previous case, but using the associativity
of ] and ◦ instead of the commutativity.

Case (ν n)P | Q ≡ (ν n)(P | Q) if n 6∈ fn(Q). Assuming that Γ `Σ (ν n)P | Q . ∆ , we
get from [DCONC] the existence of ∆ = ∆1 ◦ ∆2 and Σ = Σ1 ] Σ2 such that Γ `Σ1
(ν n)P . ∆1 and Γ `Σ2 Q . ∆2. We invert [DNAME] and conclude by weakening on the
typing judgement of Q, and apply [DCONC] then [DNAME]. The other direction relies
on the strenghtening of the typing judgement with a name absent from the free names
of Q. Case (ν nn′)P≡ (ν n′n)P. By the reordering of environment bindings.

Case (ν n)0≡ 0. Trivial.
Case µX .P ≡ P[µX .P/X ]. Assuming that Γ `Σ µX .P . ∆ , we get from [DVAR] that
Γ ,X : ∆ `Σ P.∆ . We conclude by type preservation by substitution of process variable.
Case (ν s1..sn)Πis

ni
i : /0≡ 0. We repeatedly use [QNIL], [DCONC] and [DNAME].
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Proof (Proof of Theorem 3.8).
Γ `Σ P.∆ and P−→Q with fully coherent (Γ ,Σ ,P,∆) imply Γ `Σ Q.∆ ′ for some ∆ ′,
sk such that ∆ = ∆ ′ or ∆(

sk→)∗∆ ′ and Bk〈∆(s̃)〉 ≥Bk〈∆ ′(s̃)〉, with (Γ ,Σ ,Q,∆ ′) fully
coherent. The property Bk〈∆(s̃)〉 ≥Bk〈∆ ′(s̃)〉 comes from lemma 3.7.

By induction on the derivation P−→ Q.
Case [LINK]. Let P = a[2..n](s̃ m̃).P1 | a[2](s̃).P2 | · · · | a[n](s̃).Pn and Q = (ν s̃)(P1 | P2 |
... |Pn | sn1

1 : /0 | · · · | snm
m : /0). We assume that Γ `Σ P.∆ . We know that a∈Γ . The last rule

is [CONC]. We thus have ∆ = ∆1 ◦ . . .◦∆n and Σ = /0 such that Γ ` /0 a[2..n](s̃ m̃).P1 .∆1

and Γ ` /0 a[i](s̃).Pi . ∆i for 2 ≤ i ≤ n. By reversing [MCAST] and [MACC], we get
Γ ` /0 Pi . ∆i, s̃m̃ : (G �i)@i for 1 ≤ i ≤ n. From repeated applications of [QNIL] and
[DCONC], we get Γ `s̃ ΠiPi |Πisi : /0.∆ ,{s̃m̃ : (G�i)@i}i≤n. We conclude by [DRES].
Case [SEND]. Let P = s!〈e〉;R | sn : h̃ and Q = R | sn : h̃ ·v with n 
 |h̃|, e ↓ v. We assume
that Γ `Σ P . ∆ . By reversing typing rules [DCONC], we know that Γ ` /0 s!〈e〉;R . ∆1
and that Γ `sn sn : h̃.∆2 with ∆ = ∆1 ◦∆2 and Σ = {sn}. By reversing [SEND], we have
Γ ` e : S and ∆1 = ∆ ′1, s̃

m̃ : k!〈S〉;T @p with Γ ` /0 R.∆ ′1, s̃
m̃ : T @p. By [QVAL] and type

preservation for expression reduction, we get Γ `{sk} sk : h̃ · ṽ . ∆2; s̃m̃ : k!〈S̃〉@p. By
[DCONC] we get Γ `Σ Q. (∆ ′1, s̃

m̃ : T @p)◦ (∆2; s̃m̃ : k!〈S̃〉@p). Since the definition of ◦
gives us (∆ ′1, s̃

m̃ : T @p)◦ (∆2; s̃m̃ : k!〈S̃〉@p) = (∆ ′1, s̃
m̃ : k!〈S〉;T @p)◦ (∆2) = ∆ , we can

conclude that Γ `Σ Q.∆ .
Case [SEL]. Similar to [SEND].
Case [RECV]. Let P = s?(x);R | sn :v · h̃ and Q = R[v/x] | sn : h̃. We assume that Γ `Σ P.
∆ . By reversing typing rules [DCONC], we know that Γ ` /0 s?(x);R.∆1 and that Γ `sn

sn :v· h̃.∆2 with ∆ = ∆1◦∆2 and Σ = {sn}. By reversing [RCV], ∆1 = ∆ ′1, s̃
m̃ : k?〈S〉;T @p

with Γ ,x : S ` /0 R . ∆ ′1, s̃
m̃ : T @p. By type preservation for expression substitution, we

have Γ ` /0 R[v/x].∆ ′1, s̃
m̃ : T @p. By queue typing reversion, we have ∆2 = ∆ ′2, s̃

m̃ : k!〈S〉;T ′@q

with Γ `sn sn : h̃.∆ ′2, s̃
m̃ : T ′@q and Γ ` v : S. By the definition of ◦, we know that p 6= q.

Then we have the reduction ∆ = ∆1◦∆2 =(∆ ′1, s̃
m̃ : k?〈S〉;T @p)◦(∆ ′2, s̃m̃ : k!〈S〉;T ′@q) k→

(∆ ′1, s̃
m̃ : T @p)◦(∆ ′2, s̃m̃ : T ′@q). By [DCONC], we get Γ `sn R[v/x] | sn :h̃.(∆ ′1, s̃

m̃ : T @p)◦
(∆ ′2, s̃

m̃ : T ′@q). In the “coherent for sk” environment, we can conclude from lemma 3.7.
Case [BRA]. Similar to [RECV].
Case [DELEG]. Let P = s!〈〈t̃〉〉;R | s : h̃ and Q = R | sn : h̃ · t̃ with n 
 |h̃|. We assume that
Γ `Σ P . ∆ . We proceed in a similar way to [SEND]: we just use [QSESS] instead of
[QVAL].
Case [SREC]. Let P = s?((t̃));R | sn :t̃ · h̃ and Q = R | sn :h̃. We assume that Γ `Σ P.∆ . By
reversing typing rules [DCONC], we know that Γ ` /0 s?((t̃));R.∆1 and that Γ `sn sn :v ·
h̃.∆2 with ∆ = ∆1◦∆2 and Σ = {sn}. By reversing [SREC], ∆1 = ∆ ′1, s̃

m̃ : k?〈T ′@p′〉;T @p

with Γ ` R.∆ ′1, s̃
m̃ : T @p, t̃ ñ : T ′@p′. By queue typing reversion, we have ∆2 = ∆ ′2, s̃

m̃ :
k!〈T @q〉;T ′@p, t̃ : T @q;T ′′. By the definition of ◦, we know that p 6= q. Then we have

the reduction ∆ = ∆1◦∆2 =(∆ ′1, s̃
m̃ : k?〈T ′@p′〉;T @p)◦(∆ ′2, s̃m̃ : k!〈T @q〉;T ′@p, t̃ : T @q;T ′′) k→

(∆ ′1, s̃
m̃ : T @p)◦ (∆ ′2, s̃m̃ : T ′@p, t̃ : T @q;T ′′). We conclude by [DCONC].

For the remaining cases, it is sufficient to give a sketch proof since they are standard.
Case [IFT] and [IFF]. Trivial.
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Case [SCOP]. By induction with [NRES].
Case [PAR]. By induction with [DCONC].
Case [DEFIN]. By induction with [DEF].
Case [STR]. By lemma C.2.

Proof (Proofs of Buffer Safety (Corollary 3.9)). By Subject Congruence and Reduc-
tion, it is sufficient to prove: If Γ `Σ P . ∆ then P 6→ Err. Suppose P = s!〈e〉;Q | sn : h̃
with n ≤ |h̃|. This contradicts the typing system of the parallel composition [DCONC]
since ◦ is not defined. The remaining cases (selection and delegation) are similar. Other
cases are by inductive hypothesis.

D Appendix for Section 4: Channel Attribution

We give here the omitted definitions and proofs, along with additional details from
Section 4.

Definition D.1 (stripped session type) We formally define the stripped session types
G by:

G ::= p→ p′〈U〉;G′ values | p→ p′{l j : G j} j∈J branching
| µx.G | x recursion | end end

Proof (Proof of Lemma 4.1).
1. Since in the singleton allocation, two prefixes using the same channel always in-

volve the same sender and receiver, there is always an I-dependency and an O-
dependencies between these prefixes.

2. We rely on the fact that if the channel is finite, there is an IO-dependency between
its only two uses in any cycle of the unfolded graph. Therefore, the reset property
holds when the bound computation algorithm checks it: the bound is exactly 1.

3. The total number of channels is bounded by the size of the global type.

Lemma D.2 The existence of an infinite channel in a session does not depend on any
particular set of channel equalities. If Bk〈G〉= ∞ then ∀E,Bk〈GE〉= ∞.

Proof (Proof of Lemma D.2). Since each equality embeds a linearity check, and that
linearity imposes a II and OO dependency between uses of the same channel, it follows
that an IO-dependency cannot be broken by a channel equality.

Branch allocation. The branch allocation is a simple refinement of the singleton allo-
cation.

Definition D.3 (branch allocation) Singleton allocations can be optimised by allow-
ing the sharing of channels between branches that are not under a recursion operator.

The branch allocation preserves linearity and is efficient to compute. The sizes of
the channels in the branch allocation verify the same properties as in the singleton allo-
cation.

Principal allocation. The most widely used allocation method attributes two commu-
nication channels (one in each direction) for each pair of participants.

26



Proof (Proof of Lemma 4.3).
1. By the same argument as in lemma 4.1(1).
2. There is at most one channel per pair of participants.

E Appendix for Section 5.1: Confirmation Message Insertion

The unfolding function unfolds under the recursion and not outside. The unfolding func-
tion is defined by:

φ 1(p→ p′ : k 〈U〉;G′) = p→ p′ : k 〈U〉;φ 1(G′)
φ 1(p→ p′ : k {l j : G j} j∈J) = p→ p′ : k {l j : φ 1(G j)} j∈J

φ 1(µx.G) = µx.φ 1(G[µx∗.G/x])
φ 1(µx∗.G) = G

φ 1(end) = end

The additional proposition about the algorithms given below.

F Appendix for Section 5.2: Messaging Optimisations

This section gives the omitted definitions from Section 5.2. The global types and local
types are extended with annotations by a set of nodes N.

G ::= p→ p′ : kN 〈U〉;G′ | p→ p′ : kN {l j : G j} j∈J | · · ·
T ::= kN!〈U〉;T | kN?〈U〉;T | kN⊕{li : Ti}i∈I | kN&{li : Ti}i∈I | · · ·

We often omit N if it is not necessary. The projection is defined just as before on the
extended types.

Definition F.1 (action subtyping) We assume k 6= k0.

(OI) kN !〈U〉;kN0
0 ?〈U ′〉;T � kN0

0 ?〈U ′〉;kN !〈U〉;T N0∩N = /0

(OB) kN !〈U〉;kN0
0 &{l j :Tj} j∈J � kN0

0 &{l j :kN !〈U〉;Tj} j∈J N0∩N = /0

(SI) kN ⊕{l j :kN0
0 ?〈U〉;Tj} j∈J � kN0

0 ?〈U〉;kN ⊕{l j :Tj} j∈J N0∩N = /0

(SB) kN ⊕{li :kN0
0 &{l′j :Ti j} j∈J}i∈I � kN0

0 &{l′j :kN ⊕{li :Ti j}i∈I} j∈J N0∩N = /0

(OO) k!〈U〉;k0!〈U ′〉;T � k0!〈U ′〉;k!〈U〉;T

(II) k?〈U〉;k0?〈U ′〉;T � k0?〈U ′〉;k?〈U〉;T

(SO) k⊕{li :k0!〈U〉;Ti}i∈I � k0!〈U〉;k⊕{li :Ti}i∈I

(OS) k0!〈U〉;k⊕{li :Ti}i∈I � k⊕{li :k0!〈U〉;Ti}i∈I

(SS) k⊕{li :k0⊕{l′j :Ti j} j∈J}i∈I � k0⊕{l′j :k⊕{li :Ti j}i∈I} j∈J
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(CO)
T � T ′

k!〈U〉;T � k!〈U〉;T ′
(CI)

T � T ′

k?〈U〉;T � k?〈U〉;T ′

(CB)
∀i ∈ I. Ti� T ′i

k&{li :Ti}i∈I � k&{li :T ′i }i∈I

(CS)
∀i ∈ I. Ti� T ′i

k⊕{li :Ti}i∈I � k⊕{li :T ′i }i∈I

(Tr)
T1� T2 T2� T3

T1� T3

(E) end� end

(M) µx.T � µx.T

We omit (BI, IB,BB).

Definition F.2 (n-time unfolding) For clarity, we omit N from the definition below.

ϕ0(T ) = T for all T ϕ1+n(T ) = ϕ1(ϕn(T ))
ϕ1(k!〈U〉;T ) = k!〈U〉;ϕ1(T ) ϕ1(k⊕{li : Ti}i∈I) = k⊕{li : ϕ1(Ti)}i∈I
ϕ1(k?〈U〉;T ) = k?〈U〉;ϕ1(T ) ϕ1(k&{li : Ti}i∈I) = k&{li : ϕ1(Ti)}i∈I
ϕ1(µx.T ) = T [µx.T/x] ϕ1(x) = x
ϕ1(end) = end

Below we define the asynchronous communication subtyping from [14]. We omit
delegation for simplicity (see [13] for the full definition). Below we write Type for the
collection of all closed local types.

Definition F.3 (Size-preserving asynchronous subtyping) A relation ℜ∈Type×Type
is an asynchronous type simulation if (T1,T2) ∈ ℜ implies the following conditions.
This relation is not related to the type annotations.

– If T1 = end, then ϕn(T2) = end.
– If T1 = k!〈U1〉;T ′1 , then ϕn(T2)� k!〈U2〉;T ′2 , (T ′1 ,T

′
2) ∈ℜ and (U1,U2) ∈ℜ.

– If T1 = k?〈U1〉;T ′1 , then ϕn(T2)� k?〈U2〉;T ′2 , (T ′1 ,T
′

2) ∈ℜ and (U2,U1) ∈ℜ.
– If T1 = k⊕{li : T1i}i∈I , then ϕn(T2)� k⊕{l j : T2 j} j∈J and I ⊆ J and
∀i ∈ I.(T1i,T2i) ∈ℜ.

– If T1 = k&{li : T1i}i∈I , then ϕn(T2)� k&{l j : T2 j} j∈J and J ⊆ I and
∀j ∈ J.(T1 j,T2 j) ∈ℜ.

– If T1 = µx.T , then (ϕ1(T1),T2) ∈ℜ.

where a type simulation of (U1,U2) ∈ℜ is defined as a standard bisimulation (since U
is invariant). The coinductive subtyping relation T1 6c T2 (read: T1 is an size-preserving
asynchronous subtype of T2) is defined when there exists a type simulation ℜ with
(T1,T2) ∈ℜ.

Lemma F.4 Suppose [[G]] = {T @p}p with T @p=(G�p)@p and p∈G. Assume T @p6c
T ′@p with G′ = {T ′@p}p Then Bk〈G〉= Bk〈G′〉.

Proof. Obvious since the permutations do not alter the IO-ordering in [[G]] by definition.
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Fig. 4 Double-Buffering
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G Appendix for Section 6: Application Examples

G.1 Appendix for the Multi-Buffering Examples

We give additional explanations concerning the buffering algorithm, taking the case
n = 2. It is sufficient to understand the basic mechanism from the double-buffering
version of the algorithm. We take a simple stream program for data encryption explained
by the following figure.

KernelSource
x[i]

x[i−1]

x[i] x[i−1]

Sink

A data producer Source continuously feeds data to Kernel, which calculates the
XOR of each element with a key and outputs the result to a stream to a consumer Sink.
Kernel uses two arrays, or buffers, named A and B in the picture: while Source uses a
single 16k array (in practice it can use a large cyclic buffer), fed by, say, a byte stream
from an external channel. While Kernel is receiving data into the array A from Source,
it processes data in the array B and sends the result to Sink, then repeats the same
exchanging the roles of A and B. Figure 4 explains the following five steps:

(a) Kernel tells Source it is ready to receive an initial strip at A;
(b) Source immediately does so: asynchronously Kernel continues to tell Source it’s

also ready at B, and again asynchronously Sink tells Kernel it’s ready to receive at
its own array;
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(c) Kernel finishes its processing at its A-strip and sends the resulting data to Sink,
while Source is sending its strip to B at Kernel;

(d) The sending at B by Source continues, but (since Kernel has now sent out its A-
strip) Kernel asynchronously tells Source it is ready at A; again asynchronously
Sink tells the same to Kernel;

(e) Now the situation is symmetric to (c): Source writing to A to Kernel and Kernel
writing from B to Sink. We now go back to (b).

The algorithm allows asynchrony among local computations and communications with
minimal synchronisation to prevent data pollution, overlapping computation and com-
munication, cf. [15, Double-buffering] and [5].

Proof. Proof of Proposition 6.1 First we define the global type. For simplicity, we
consider the double-buffering.

µx.( K→ So : r
nr0 ,ns0
0 〈〉; So→ K : s

nr0 ,ns0
0 〈U〉;

Si→ K : t
nu0 ,nt0
0 〈〉; K→ Si : u

nu0 ,nt0
0 〈U〉;

K→ So : r
nr1 ,ns1
1 〈〉; So→ K : s

nr1 ,ns1
1 〈U〉;

Si→ K : t
nu1 ,nt1
1 〈〉; K→ Si : u

nu1 ,nt1
1 〈U〉;x)

Thus we can permute the first outputs r0 and r1 at Kernel since they are disjoint with
the previous prefixes. However the second output at r0 (the second output created by
the second unfolding) cannot be permuted with the first inputs at s0 since r0’s set is not
disjoint with s0’s set. Similarly for r1 and s1.

The communication safety and progress are respectively derived from Theorem 5.5
and Theorem 5.12 in [10].

By the above annotation, the following Unsafe Kernel (which leads to two units
bounds) is not typable since it permutes the second r1 with s1.

Unsafe Kernel: r0!〈〉;r1!〈〉; µX .(s0?(xA); t0?();u0!〈xA〉;
r0!〈〉;r1!〈〉;s1?(xB); t1?();u1!〈xB〉;X)

G.2 Appendix for MPSoC Buffer Allocations

This appendix gives the omitted definitions and some additional material about the MP-
SoC example from § 6

Remark G.1 (foreach and sequencing) As the readers might have already noticed,
even when the two prefixes are syntactically composed sequentially in the global type,
there might be no actual ordering. For example, in the following global type, there is no
sequentiality imposed between {Alice,Bob} and {Carol,Dave}.

Alice→ Bob : k〈U〉;Carol→ Dave : k′〈U〉

Hence the local processes typable from the above global type are also typable by the
following global type:

Carol→ Dave : k′〈U〉;Alice→ Bob : k〈U〉
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Similarly inside foreach, it is not needed to have explicit ordering. As such, we can
think about global types up to asynchronous permutations (see [14]). In the MPSoC
example, many actions can be permutable as explained below.

The local processes which confirm the projection of the following type is given be-
low.

Original Global Type

µx. (foreach(i ∈ {2,3}){

p[1]→ p[i] :
{

on : p[i]→ p[4] : on;p[4]→ p[6] : on
off : p[i]→ p[5] : off;p[5]→ p[6] : off

}
};

p[1]→ p[6] : 〈real〉);x

Local Processes We assume si j is a channel from P[i] to P[ j].

P[1] = µX .s12 � l;s13 � l;s16!〈V 〉;X

P[2] = µX .s12 �{on : s13 �on;X , off : s25 �off;X}
P[3] = µX .s13 �{on : s34 �on;X , off : s35 �off;X}
P[4] = µX .s24 � lx;s34 � ly;s46!〈x+ y〉;X

P[5] = µX .s25 � lx;s35 � ly;s56!〈x+ y〉;X

P[6] = µX .s46?(x);s56?(y);s16?(z);X

where we use the flexible projection for branching from [21, § 3] and omits the useless
branchings from P[4] and P[5].
Global Refinement: Optimal The first global refinement for the global type is given
by the following type.

µx.foreach(n < m){foreach(i ∈ {2,3}){G[i]}};p[6]→p[1]〈unit〉 : x

As seen from the above type, the final confirmation imposes a global synchronisation
from all participants after m times parallel iterations.
Local Processes The only different processes are P[1] and P[6]. Below c61 is a channel
for the confirmation message from P[6] to P[1].

P[1] = µX .foreach(n < m){s12 � l1;s13 � l3;s16 � l6};c61?();X

P[6] = µX .foreach(n < m){s46?(x);s56?(y);s16?(z)};c61!〈〉;X

Global Refinement: Instant. The global type which is derived directly by applying the
instant algorithm is given as below:

µx. foreach(n < m){
foreach(i ∈ {2,3}){

p[1]→ p[i] :
{

on : p[i]→ p[4] : on,p[4]→ p[6] : on,
off : p[i]→ p[5] : off;p[5]→ p[6] : off,

}
};

p[1]→ p[6] : 〈real〉;
};
p[2]→ p[1] : 〈unit〉;p[3]→ p[1] : 〈unit〉;p[4]→ p[2] : 〈unit〉;
p[4]→ p[3] : 〈unit〉;p[5]→ p[2] : 〈unit〉;p[5]→ p[3] : 〈unit〉;
p[6]→ p[4] : 〈unit〉;p[6]→ p[5] : 〈unit〉;p[6]→ p[1] : 〈unit〉;x
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The causalities are the same as the following types, which gives the same end-point
processes up to asynchronous permutations.

µx. (foreach(i ∈ {2,3}){
foreach(n < m){

p[1]→ p[i] :
{

on : p[i]→ p[4] : on;p[4]→ p[6] : on,
off : p[i]→ p[5] : on;p[5]→ p[6] : on

}
};

(p[i]→ p[1] : 〈unit〉;p[4]→ p[i] : 〈unit〉;p[5]→ p[i] : 〈unit〉)};
(p[6]→ p[4] : 〈unit〉;p[5]→ p[4] : 〈unit〉);
foreach(n < m){p[1]→ p[6] : 〈real〉};p[6]→ p[1] : 〈unit〉;
);x

The processes are similarly defined. For example, P[1] can be implemented as below
(we assume ci j denotes the confirmation channel from P[i] to P[ j]):

µX .(foreach(i ∈ {2,3}){foreach(n < m){s1i � l};ci1?()};
foreach(n < m){s16!〈V 〉};c61?());X ;

Since each confirmation is sent independently, there are more parallel executions (i.e.
independent loops) compared to the first one.
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