
155

CAMP: Cost-Aware Multiparty Session Protocols

DAVID CASTRO-PEREZ and NOBUKO YOSHIDA, Imperial College London, United Kingdom

This paper presents CAMP, a new static performance analysis framework for message-passing concurrent

and distributed systems, based on the theory of multiparty session types (MPST). Understanding the run-

time performance of concurrent and distributed systems is of great importance for the identification of

bottlenecks and optimisation opportunities. In the message-passing setting, these bottlenecks are generally

communication overheads and synchronisation times. Despite its importance, reasoning about these intensional
properties of software, such as performance, has received little attention, compared to verifying extensional
properties, such as correctness. Behavioural protocol specifications based on sessions types capture not

only extensional, but also intensional properties of concurrent and distributed systems. CAMP augments

MPST with annotations of communication latency and local computation cost, defined as estimated execution

times, that we use to extract cost equations from protocol descriptions. CAMP is also extendable to analyse

asynchronous communication optimisation built on a recent advance of session type theories. We apply our

tool to different existing benchmarks and use cases in the literature with a wide range of communication

protocols, implemented in C, MPI-C, Scala, Go, and OCaml. Our benchmarks show that, in most of the cases,

we predict an upper-bound on the real execution costs with < 15% error.

CCS Concepts: • Theory of computation � Program analysis; • Software and its engineering �
Software performance; System description languages;

Additional Key Words and Phrases: parallel programming, session types, cost models, message optimisations

ACM Reference Format:
David Castro-Perez and Nobuko Yoshida. 2020. CAMP: Cost-Aware Multiparty Session Protocols. Proc. ACM
Program. Lang. 4, OOPSLA, Article 155 (November 2020), 30 pages. https://doi.org/10.1145/3428223

1 INTRODUCTION
Understanding the amount of resources, e.g. time or memory that are required by a computation,

is of great importance. Correct but slow-performing software can cause a number of problems,

ranging from the unnecessary use of resources, to exploitable security vulnerabilities. Worse still,

performance issues are very difficult to detect in runtime because of their non fail-stop nature;

and although the root causes of performance bugs can be very diverse, uncoordinated functions
and synchronisation issues are prevalent, i.e. inefficient composition of efficient functions, and

unnecessary synchronisation that increases thread competition [Jin et al. 2012]. These inefficient

compositions have more impact in a distributed setting, where the communication overhead and

synchronisation cost may become the bottleneck of the whole system.

The development of new static performance analysis tools will reduce the impact of bad per-

forming software, by allowing the identification of their bottlenecks and optimisation. Further, for

concurrency and distribution, such a tool must take into account communication and synchro-

nisation overheads. This paper presents a new static performance analysis framework, CAMP

Authors’ address: David Castro-Perez, d.castro-perez@imperial.ac.uk; Nobuko Yoshida, n.yoshida@imperial.ac.uk, Imperial

College London, Computing, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2475-1421/2020/11-ART155

https://doi.org/10.1145/3428223

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

https://doi.org/10.1145/3428223
https://doi.org/10.1145/3428223

155:2 David Castro-Perez and Nobuko Yoshida

(Cost-Aware Multiparty Protocols), that can identify potential performance bottlenecks in concurrent

and distributed systems. Specifically, CAMP addresses the following two main challenges: non-
determinism and practicality. Firstly, the non-deterministic nature of concurrent and distributed

systems makes it hard to reason statically about the performance of alternative interleavings of

actions in a program trace; and secondly, making the performance analysis practically useful for

already existing implementations is not trivial.

CAMP solves the non-determinism issue by building on top of multiparty session types (MPST)
[Coppo et al. 2015; Honda et al. 2008].MPST is a well-established theory that describes not only

extensional, but also intensional information about communicating systems. Specifically, MPST
captures the communication structure, or protocol among distributed peers. Protocols appear not

only in distributed networks but also in parallel multicore programming as patterns or topologies
[Goetz et al. 2006; Lea 1997; Rauber and Rünger 2010; Taubenfeld 2006].MPST uses global types
for describing such protocols from a global point of view, and can be used to ensure deadlock-
freedom and session fidelity: every send has a matching receive, and every component of the system

complies with its part in the global protocol. Built on theMPST theory, CAMP enables the protocol-

based performance analysis, giving a precise abstraction as (correct) communication structures of

programs. By tying the analysis to a particular protocol specification that is statically enforced on

the system, CAMP solves the issue of non-determinism.

On the practical side, since all we require is a global type, CAMP can be readily applied to

existing implementations, as long as they are proven to comply with a known global type. We show

this by taking existing benchmarks, either implemented usingMPST-based tools, or following a

known protocol. Different extensions of the core MPST have been already used to implement a

wide range of applications written in different programming languages through several transports

and architectures e.g. [Castro et al. 2019; Castro-Perez and Yoshida 2020b; Gay and Ravara 2017;

Hu and Yoshida 2017; Imai et al. 2020; Ng et al. 2015], and our methodology is easily adaptable to

these variants. In addition, not only CAMP is immediately usable for analysis of representative

parallel patters [Asanovic et al. 2009; Krommydas et al. 2016; Rauber and Rünger 2010], but also it

is applicable to Savina benchmarks [Imam and Sarkar 2014] or multicore algorithms which incur

more complex patterns and synchronisations (§8.2).

The key notion in CAMP is that of execution cost: the amount of time that it takes a protocol,

participant or function to run from beginning to end. To statically compute execution costs for

concurrency and distribution,CAMP extends global types with sizes for values of messages (encoded

in the payload types) and local computation cost information. This size and cost information can

be obtained via profiling, or further static analysis, such as using sized-types [Hughes et al. 1996].
Our cost models take these extended protocols, and compute a set of equations which describe the

total cost of each participant. These measurements provide us with fine-grained information to

obtain communication overhead and synchronisation cost among participants of a protocol. For

recursive protocols, CAMP produces a set of recurrence equations that describe the total cost after
each iteration of the protocol. For non-terminating protocols (e.g. streaming computation split in

multiple stages), CAMP computes the latency, or the average cost per iteration.
CAMP enables to quantify the performance gain of asynchronous communication optimisation.

We evaluate this using non-optimised and optimised benchmarks. The optimisation analysis by

CAMP is grounded on asynchronous session subtyping, which is one of the most advanced session

types theories in the literature, and has been actively studied over a decade using various different

formalisms, e.g., first and higher-order mobile processes [Chen et al. 2017, 2014; Ghilezan et al. 2021;

Mostrous and Yoshida 2009, 2015; Mostrous et al. 2009], denotational semantics [Demangeon and

Yoshida 2015; Dezani-Ciancaglini et al. 2016] and automata theories [Bravetti et al. 2019, 2017, 2018;
Lange and Yoshida 2017].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:3

Contributions. We present a compile-time performance analysis framework, CAMP, for con-
current/distributed systems that infers upper execution cost bounds of multiparty session protocols.

The cost models in CAMP are parametric, and can combine both static and dynamic (e.g., profiling)

information to produce accurate results. We prove that the cost analysis by CAMP is sound with

respect to the operational semantics of a given global type instrumented with sizes and execution

costs; and extensible to analyse communication optimisations. Our main contributions are:

a) we define the semantics of CAMP, integrating global and local type semantics with local compu-
tation costs, that can be used to explore the costs of particular traces (§3);

b) we instrument global types with size and local cost information, and use it to statically estimate

an upper bound of the execution cost of a protocol, that we prove sound with respect to the

operational semantics (§4);

c) we define multiple metrics on the cost recurrences associated with recursive protocols, that can

be used to effectively analyse the performance behaviour of potentially infinite executions (§5);

d) we extend CAMP to handle asynchronous message optimisations, enabling us to statically

quantify the potential performance gains when performing such optimisations/reordering (§6);

e) we implement a DSL for specifying global types, from which we can extract cost equations (§7),

and we compare our cost model predictions with real benchmarks used inMPST implemen-

tations in different languages: C-MPI [Ng et al. 2015], C+pthreads [Castro-Perez and Yoshida

2020b], Go [Castro et al. 2019], OCaml [Imai et al. 2020] and F★ [Zhou et al. 2020]. Additionally,

we apply CAMP to a subset of the Savina benchmarking suite (Scala) [Imam and Sarkar 2014].

These benchmarks include examples of common, and complex topologies, such as ring, butterfly

and a double-buffering protocol (§8).

§9 discusses related work and §10 concludes the paper. See Castro-Perez and Yoshida [2020a]

for additional definitions and full proofs. The git repository https://github.com/camp-cost/camp

provides a working prototype implementation, described in §7 and the data used in §8, with

instructions for replicating our experiments.

2 OVERVIEW

𝐺C

𝐿1 𝐿2 ... 𝐿𝑛

𝑃1 𝑃2 ... 𝑃𝑛

cost

approxi-
mates the
execution

time of

each 𝑃𝑖

estimate cost of

each role in 𝐺

project global type
𝐺 onto each role

type-check each

process 𝑃𝑖 against

local type 𝐿𝑖

Fig. 1. CAMP framework

MPST Basics. We first explain how

MPST satisfies extensional properties. Fig.

1 depicts the standard top-downmethodol-

ogy ofMPST enhanced with cost-analysis,

which we illustrate by a simple scatter-
gather example between two Masters (m1,
m2) and two Workers (w1, w2).

𝐺 = m1 → w1{𝜏1}.m1 → w2{𝜏1}.
w1 → m2{𝜏2}.w2 → m2{𝜏2}

𝐺 is a global type: a specification of the pro-
tocol between participants from a global

perspective.𝐺 says master m1 first sends a
message with type 𝜏1 to worker w1 then to worker w2, and finally master m2 collects a message with

type 𝜏2 from each worker. For each participant p, the global type is projected to a local type, which
describes localised send and receive actions from p viewpoint:

𝐿1 = w1 ! 𝜏1 .w2 ! 𝜏1.end 𝐿2 = m1 ? 𝜏1 .m2 ! 𝜏2.end 𝐿3 = w1 ? 𝜏2 .w2 ? 𝜏2 .end

𝐿1 says m1 should send (!) a 𝜏1 message to w1, then to w2, while 𝐿2 says w1 receives (?) a 𝜏1 message

from m1, followed by sending a 𝜏2 message to m2 (worker w2 has the same type 𝐿2). Local types

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

https://github.com/camp-cost/camp

155:4 David Castro-Perez and Nobuko Yoshida

are used to statically check local programs 𝑃𝑖 implementing these types, i.e. the communication

structures of each program complies with their local type. A well-typed system of programs is

guaranteed free from deadlock and type errors, following the protocol given by 𝐺 (session fidelity).

Cost-Aware MPST. Now we consider the cost to run 𝐺 : m1 → w1{𝜏1⋄𝑐1}.m1 → w2{𝜏1⋄𝑐1}.w1 →

m2{𝜏2}.w2 → m2{𝜏2} Here 𝑐1 represents the local computation cost at the receiver side. In this example,

we are assuming the computational cost at w1 and w2 is 𝑐1, while such cost at m2 is 0. Another factor
we should take into account is the communication cost, which is parameterised by types, i.e. the

time required for sending (cO (𝜏)) and receiving (cI (𝜏)) a value of type 𝜏 .
We assume our transport is asynchronous, i.e. sending is non-blocking and the order of messages

are preserved, like TCP communications, hence there is no communication ordering between w1
and w2. Both workers can process the values independently at two different locations or CPUs.

Then, the total execution cost at m1, w1 and w2 are:

m1 ↦→ 2 × cO (𝜏1) w1 ↦→ cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2) w2 ↦→ 2 × cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2)
To consider the cost for m2, we should take care of the dependencies in the protocol. Each w𝑖 can
operate in parallel, and they exhibit almost the same cost. The only difference is that worker w1 can
perform its computation as soon as m1 sends one message, but worker w2 can only proceed after m1
sends the second message. This difference means that m2 can start gathering one of the messages,

while the other worker finishes its actions, which will be delayed by the time it takes m1 to send
one message. Hence the cost of w2 is:

m2 ↦→ max(cI (𝜏2), cO (𝜏1)) + cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2) + cI (𝜏2)
In §4, we shall prove the cost calculated based on local types and global types semantics coincide.

In many scenarios, we do not know how many iterations recursive protocols are going to run, or

this number of iterations is large. In such cases, computing the cost of the protocol is not useful or

meaningful. In such scenarios, we calculate the average cost per iteration of a protocol (latency)
from a set of recurrences. From this latency, we calculate other useful metrics, such as the latency

divided by the number of messages exchanged per iteration by participant (latency relative to a
particular participant). The latency relative to a participant is used to estimate how much work can

a participant do per iteration of the protocol.

3 COST-AWARE MULTIPARTY SESSION PROTOCOLS

p q r

wait

wait

wait

send

receive

compute

receive

compute

send

receive

compute

send

cO
cI

𝑐q

cO
cI

𝑐r

cO
cI

𝑐p

Fig. 2. A ring protocol, and an execution trace.

This section introduces cost-aware multiparty ses-

sion protocols (CAMP) which is an extension of

multiparty session types (MPST) [Coppo et al.

2015; Deniélou and Yoshida 2013; Honda et al.

2008] where the payload types (𝜏) are types that

have been extended with size annotations, adapted
from the literature on sized types [Avanzini and
Dal Lago 2017; Hughes et al. 1996], and interac-

tions have been extended with cost annotations (𝑐)
which represent the local execution time at the

receiver:

𝜏 B int𝑖 | · · · | 𝐷𝑖 ®𝜏
𝑐 F 𝑖 | 𝑘 | 𝑐 + 𝑐 | max(𝑐, 𝑐) | 𝑘 × 𝑐

Our types are base types (integer, boolean, . . .) an-

notated with a size 𝑖 , type constructors 𝐷 applied

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:5

to a sequence of sized types ®𝜏 , annotated with a

size 𝑖 . Cost expressions 𝑐 are either sizes 𝑖 , constants 𝑘 , the addition of two costs, the maximum of

two costs, or a constant multiplied by a cost. A size 𝑖 an arithmetic expression that may contain

constants (𝑘) or size variables (𝑛,𝑚, . . .). Definitions of global and local types are based on the most

commonly usedMPST in the literature [Coppo et al. 2015]. The syntax of global (𝐺) and local (𝐿)

types in MPST is given below:

𝐺 F p → q{𝜏⋄𝑐}.𝐺 | p → q : {𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼 | 𝜇𝑋 .𝐺 | 𝑋 | end
𝐿 F p ! 𝜏 .𝐿 | p ⊕ {𝑙𝑖 .𝐿𝑖 }𝑖∈𝐼 | p ? 𝜏⋄𝑐.𝐿 | p & {𝑙𝑖 .𝐿𝑖 }𝑖∈𝐼 | 𝜇𝑋 .𝐿 | 𝑋 | end

We start with a set of roles, p, q, . . . , and a set of labels, 𝑙1, 𝑙2, These are considered as natural

numbers: roles are participant identifiers, e.g. thread or process ids; and labels are tags that dif-

ferentiate branches in the data/control flow. Global type p → q{𝜏⋄𝑐}.𝐺 denotes data interactions
from role p to role q with value of type 𝜏 and local computation cost 𝑐 ; Branching is represented by

p → q : {𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼 with actions 𝑙𝑖 from p to q. end represents a termination of the protocol. 𝜇𝑋 .𝐺

represents a recursion, which is equivalent to [𝜇𝑋 . 𝐺/𝑋]𝐺 . We assume recursive types are guarded

[Pierce 2002].

Each role in 𝐺 represents a different participant in a parallel process. Local types represent the
communication actions performed by each role. The send type p ! 𝜏 .𝐿 expresses sending of a value

of type 𝜏 to role p followed by interactions specified by 𝐿. The receive type p ?𝜏⋄𝑐.𝐿 receives a value

of type 𝜏 from role p with local computation cost 𝑐 . The selection type represents the transmission

to role p of label 𝑙𝑖 chosen in the set of labels (𝑖 ∈ 𝐼) followed by 𝐿𝑖 . The branching type is its dual.
The rest are the same as 𝐺 . roles(𝐺)/roles(𝐿) denote the set of roles that occur in 𝐺/𝐿.

Remark 3.1. Global types which combine label and data messages are also used in the literature.

They can be encoded as global types in this paper by using singleton labels (see [Deniélou and

Yoshida 2013, p.178]). E.g. p → q : {𝑙𝑖 (𝜏𝑖).𝐺𝑖 }𝑖∈𝐼 is encoded as p → q : {𝑙𝑖 .𝐺 ′𝑖 }𝑖∈𝐼 and 𝐺 ′𝑖 = p →

q{𝜏𝑖 }.𝐺𝑖 . It is possible to account for the differences in cost by setting the cost of sending/receiving

labels appropriately, e.g. removing the cost of sending labels, and slightly increasing the size of the

data messages, to account for the fact that they must be sent alongside a label.

End Point Projection. The local type 𝐿 of a participant p in a global type 𝐺 can be obtained by

the end point projection (EPP) of 𝐺 onto p, denoted by 𝐺 as 𝐺 ↾ p. The local type gives a local view
of a global protocol onto each participant. Our definition of EPP follows the standard projection

rules in [Demangeon and Honda 2012; Deniélou and Yoshida 2013]. The projection uses the full
merging operator [Demangeon and Honda 2012; Deniélou and Yoshida 2013], which allows more

well-formed global types than the original projection rules [Honda et al. 2008].

Definition 3.1 (Projection and Merging). The end point projection (EPP) of 𝐺 onto p, denoted by 𝐺

as 𝐺 ↾ p, is the partial function defined below, together with the merging of local types 𝐿𝑖 :

Projection:

(q → r{𝜏⋄𝑐}. 𝐺) ↾ p

=


r ! 𝜏 . (𝐺 ↾ p) if p = q ≠ r
q ? 𝜏⋄𝑐. (𝐺 ↾ p) if p = r ≠ q
𝐺 ↾ p otherwise

(q → r : {𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼) ↾ p

=


r ⊕ {𝑙𝑖 .𝐺𝑖 ↾ p} if p = q ≠ r
q & {𝑙𝑖 .𝐺𝑖 ↾ p} if p = r ≠ q
⊓𝑖∈𝐼 (𝐺𝑖 ↾ p) otherwise

(𝜇𝑋 .𝐺) ↾ p

=

{
𝜇𝑋 .(𝐺 ↾ p) if 𝐺 ↾ p ≠ 𝑋 ′, ∀𝑋 ′
end otherwise

(𝑋) ↾ p = 𝑋 end ↾ p = end

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:6 David Castro-Perez and Nobuko Yoshida

Merging:

p & {𝑙𝑖 .𝐿𝑖 }𝑖∈𝐼 ⊓ p & {𝑙 𝑗 .𝐿′𝑗 }𝑗 ∈𝐽 = p & {𝑙𝑘 .𝐿𝑘 ⊓ 𝐿′𝑘 }𝑘∈𝐼∩𝐽 ∪ {𝑙𝑙 .𝐿𝑙 }𝑙 ∈𝐼\𝐽 ∪ {𝑙𝑚 .𝐿𝑚}𝑚∈𝐽 \𝐼
𝜇𝑋 .𝐿1 ⊓ 𝜇𝑋 .𝐿2 = 𝜇𝑋 .(𝐿1 ⊓ 𝐿2) 𝐿 ⊓ 𝐿 = 𝐿

The first line of the projection rule defines a case where the sender and receiver are the same

[Deniélou et al. 2012]. The global type projection onto a role is not necessarily defined. Particularly,

projecting q → r : {𝑙𝑖 .𝐺𝑖 } onto p, with r ≠ p and q ≠ p, is only defined if the projection of all 𝐺𝑖
onto p can be merged (Def. 3.1). Two local types can be merged only if they are the same, or if they

branch on the same role, and their continuations can be merged. For example, p’s local type of the
global type p → q{𝜏⋄𝑐}.end is q ! 𝜏 .end, while q’s is p ? 𝜏⋄𝑐.end. As a more complex example, r’s
local type of the branching global type:

𝜇𝑋 .p → q
{
𝑙1 .q → r : 𝑙2.p → r : 𝑙3.𝑋, 𝑙4 .q → r : 𝑙5 .p → r : 𝑙6.end

}
is 𝜇𝑋 .q & {𝑙2.p & {𝑙3 .𝑋 }, 𝑙5.p & {𝑙6 .end}}.
We say that a global type is well formed, if its projection on all its roles is defined. We denote:

Wf (𝐺) = ∀p ∈ roles(𝐺), ∃𝐿,𝐺 ↾ p = 𝐿.

Definition 3.2 (Label Broadcasting). We define a macro to represent the broadcasting of a label

to multiple participants in a choice. We write p → {q𝑗 }𝑗 ∈[1,𝑛] : {𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼 as a synonym to p →
q1{𝑙𝑖 .p→ q2{𝑙𝑖p→ q𝑛{𝑙𝑖 .𝐺𝑖 } . . .}}𝑖∈𝐼 . Similarly, for local types, {q}𝑗 ∈[1,𝑛] ⊕ {𝑙𝑖 .𝐿𝑖 }𝑖∈𝐼 expands
to q ⊕ {𝑙𝑖 .q2 ⊕ {𝑙𝑖 q𝑛 ⊕ {𝑙𝑖 .𝐿𝑖 } . . .}}𝑖∈𝐼 .

It is straightforward to derive: (p → {q𝑗 }𝑗 ∈𝐽 : {𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼) ↾ r = {q}𝑗 ∈𝐽 ⊕ {𝑙𝑖 .𝐺𝑖 ↾ r}𝑖∈𝐼 , if p = r,
and (p→ {q𝑗 }𝑗 ∈𝐽 : {𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼) ↾ r = q𝑗 & {𝑙𝑖 .𝐺𝑖 ↾ r}𝑖∈𝐼 , if r = q𝑗 for some 𝑗 ∈ 𝐽 .

3.1 Labelled Transition System of Global Types
We introduce the labelled transition system (LTS) of global types to associate protocol execution

costs with cost annotations. Our semantics is based on the LTS for global and local types in Deniélou

and Yoshida [2013] that define their asynchronous operational semantics, and prove their sound

and complete correspondence.

We designate the observables (𝛼, 𝛼 ′, . . .) to be the send, receive, branch and select actions that

trigger a transition, and an internal transition at a role, which represents the cost 𝑐 a role spends

performing computation at the receiver (denoted by p⋄𝑐). The syntax of the observables is:

𝛼 F pq ! 𝜏 | pq ? 𝜏 | pq⊕ | pq& | p⋄𝑐

The p⋄𝑐 does not affect the communication structure of the protocol, similar to the silent actions of

common process calculi. We say that the subject of an action 𝛼 is the role in charge of performing

it: p = subj(pq ! 𝜏) = subj(qp ? 𝜏) = subj(pq⊕) = subj(qp&) = subj(p⋄𝑐).
Following [Deniélou and Yoshida 2013], we extend the grammar of𝐺 to represent the intermediate

steps in the execution with the construct p⇝⇝⇝ q{𝜏⋄𝑐}.𝐺 to represent the fact that p has sent the
message of type 𝜏 but q has not received it yet, and p⋄(𝜏⋄𝑐).𝐺 to represent that p is performing a

computation of type 𝜏 and cost 𝑐 . For the branching we use p ⇝⇝⇝ q 𝑗 {𝑙𝑖 . 𝐺𝑖 }𝑖∈𝐼 to represent the

fact that p has sent label 𝑙 𝑗 to q. Then the LTS for global types is defined as below. The main rules

different from [Deniélou and Yoshida 2013] are [GR1a,GR2a,GR2b] which consider the execution

cost. When we send a message or a label, the type becomes the received mode p⇝⇝⇝ q (e.g. [GR1a])

and then it asynchronously receives the corresponding message (e.g. [GR2a]). We also observe the

actions under the prefix if the participants are unrelated (e.g. [GR4a]).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:7

Definition 3.3 (LTS for Global Types). The relation 𝐺
𝛼−→ 𝐺 ′ is defined as follows:

[GR1a] p → q{𝜏⋄𝑐}.𝐺 pq!𝜏−−−→ p⇝⇝⇝ q{𝜏⋄𝑐}.𝐺 [GR2a] p⇝⇝⇝ q{𝜏⋄𝑐}.𝐺 pq?𝜏−−−→ q⋄(𝜏⋄𝑐).𝐺
[GR1b] p → q{𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼

pq⊕𝑙 𝑗−−−−→ p⇝⇝⇝ q : 𝑗 {𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼 (𝑗 ∈ 𝐼) [GR2b] q⋄(𝜏⋄𝑐).𝐺 q⋄𝑐−−→ 𝐺

[GR2c] p⇝⇝⇝ q : 𝑗 {𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼
pq&𝑙 𝑗−−−−→ 𝐺 𝑗 [GR4a]

𝐺
𝛼−→ 𝐺 ′ p, q ∉ subj(𝛼)

p → q{𝜏⋄𝑐}.𝐺 𝛼−→ p → q{𝜏⋄𝑐}.𝐺 ′

[GR4b]
∀𝑖 ∈ 𝐼 𝐺𝑖

𝛼−→ 𝐺 ′𝑖 p, q ∉ subj(𝛼)

p → q{𝑙𝑖 . 𝐺𝑖 }𝑖∈𝐼
𝛼−→ p → q{𝑙𝑖 . 𝐺 ′𝑖 }𝑖∈𝐼

[GR5a]
𝐺

𝛼−→ 𝐺 ′ q ∉ subj(𝛼)

p⇝⇝⇝ q{𝜏⋄𝑐}.𝐺 𝛼−→ p⇝⇝⇝ q{𝜏⋄𝑐}.𝐺 ′

[GR5b]
𝐺

𝛼−→ 𝐺 ′ p ∉ subj(𝛼)

p⋄(𝜏⋄𝑐).𝐺 𝛼−→ p⋄(𝜏⋄𝑐).𝐺 ′
[GR3]

𝐺 [𝜇𝑋 .𝐺/𝑋] 𝛼−→ 𝐺 ′

𝜇𝑋 .𝐺
𝛼−→ 𝐺 ′

[GR5c]
𝐺 𝑗

𝛼−→ 𝐺 ′𝑗 q ∉ subj(𝛼) ∀𝑖 ∈ 𝐼 \ 𝑗,𝐺𝑖 = 𝐺 ′𝑖

p⇝⇝⇝ q 𝑗 {𝑙𝑖 . 𝐺𝑖 }𝑖∈𝐼
𝛼−→ p⇝⇝⇝ q 𝑗 {𝑙𝑖 . 𝐺 ′𝑖 }𝑖∈𝐼

3.2 Labelled Transition System of Local Types
The labelled transition system (LTS) of local types are given for configurations (𝐶) which map each

participant to its local type and a set of FIFO queues (𝑄) where each represents a queue from sender

p to receiver q. We also extend the syntax (𝜏⋄𝑐).𝐿 to represent the intermediate state where the

receiver executes a local computation with cost 𝑐 . In the definition below, [LR2,LR3] formalise the

observability of the local computation cost 𝑐 when receiving the value. Other rules are the standard

FIFO enqueue and dequeue rules.

Definition 3.4 (LTS for Local Types). The relation ⟨𝐶,𝑄⟩ ℓ−→ ⟨𝐶 ′, 𝑄 ′⟩ where 𝐶 = [p ↦→ 𝐿𝑖]𝑖∈𝐼 and
𝑄 = [pq ↦→ 𝑤]𝑖∈𝐼 , 𝑗 ∈𝐼 is defined as follows:

[LR1] ⟨𝐶 [p ↦→ q ! 𝜏 . 𝐿], 𝑄 [pq ↦→ 𝑤]⟩ pq!𝜏−−−→ ⟨𝐶 [p ↦→ 𝐿], 𝑄 [pq ↦→ 𝑎 ·𝑤]⟩
[LR2] ⟨𝐶 [p ↦→ q ? 𝜏⋄𝑐. 𝐿], 𝑄 [qp ↦→ 𝑤 · 𝜏]⟩ qp?𝜏−−−→ ⟨𝐶 [p ↦→ (𝜏⋄𝑐).𝐿], 𝑄 [qp ↦→ 𝑤]⟩
[LR3] ⟨𝐶 [p ↦→ (𝜏⋄𝑐).𝐿], 𝑄⟩ p⋄𝑐−−→ ⟨𝐶 [p ↦→ 𝐿], 𝑄⟩
[LR4] ⟨𝐶 [p ↦→ q ⊕ {𝑙𝑖 .𝐿𝑖 }𝑖∈𝐼], 𝑄 [pq ↦→ 𝑤]⟩ pq⊕𝑙𝑖−−−−→ ⟨𝐶 [p ↦→ 𝐿𝑖], 𝑄 [pq ↦→ 𝑙𝑖 ·𝑤]⟩
[LR5] ⟨𝐶 [p ↦→ q & {𝑙𝑖 .𝐿𝑖 }𝑖∈𝐼], 𝑄 [qp ↦→ 𝑤 · 𝑙𝑖]⟩

qp&𝑙𝑖−−−−→ ⟨𝐶 [p ↦→ 𝐿𝑖], 𝑄 [qp ↦→ 𝑤]⟩

The following theorem shows the global type semantics is exactly matched with local asynchro-

nous interactions between participants.

Theorem 3.5. [Soundness and Completeness] Let 𝐺 be a global type with P = roles(𝐺) and let
𝐶 = [p ↦→ 𝐺 ↾ p]p∈P . Then 𝐺 ≈ (𝐶; [pq ↦→ 𝜖]p,q∈P).

Proof. (Sketch) The proof of soundness and completeness is a straightforward adaptation of that

in [Deniélou and Yoshida 2013]. The distinction between send/receive and select/branch actions is

straightforward, e.g. actions GR1a and GR1b are special cases of rule GR1 in [Deniélou and Yoshida

2013] (see Remark 3.1). The addition of cost actions to local types is does not complicate the proof,

since it only happens after communication has taken place, which is ensured by being local to each

role, and the local context. □

Definition 3.6 (Deadlock-freedom). We call ⟨𝐶0, 𝑄0⟩ deadlock-free if for all 𝐶 and 𝑄 such that

⟨𝐶0, 𝑄0⟩
®ℓ−→ ⟨𝐶,𝑄⟩, either (1) ∀p ∈ dom(𝐶). 𝐶 (p) = end and 𝑄 = ∅; or (2) ⟨𝐶,𝑄⟩ ℓ−→ ⟨𝐶 ′, 𝑄 ′⟩ for

some 𝐶 ′ and 𝑄 ′. We call global type 𝐺 deadlock-free if ⟨𝐶0, ∅⟩ such that 𝐶0 = [p ↦→ 𝐺 ↾ p]p∈P with

P = roles(𝐺) is deadlock-free.
Note that the definition of deadlock-freedom is not affected by cost annotations. Hence by

Remark 3.1, we can directly apply the result in [Deniélou and Yoshida 2013] to obtain:

Theorem 3.7 (Deadlock-freedom). ([Deniélou and Yoshida 2013]) Wf (𝐺) is deadlock-free.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:8 David Castro-Perez and Nobuko Yoshida

4 COST FOR MULTIPARTY SESSION PROTOCOLS (1): BOUNDED RECURSION
This section presents the cost analysis for protocols with bounded recursions. We first define the

cost of a trace, as the total cost accumulated by each participant at the end of the execution of a

trace. Next we introduce the cost model using global types and show that it provides an upper

bound of the cost of any possible trace for each participant.

4.1 Cost of Local Traces
We first explain several assumptions for giving a calculation of cost. Our first assumption in theory

is that participants do not share resources with other participants, i.e. they can run on independent

CPUs, with no source of contention such as memory or shared cache.

p

r

q

cO

cO cO

cI

cI

cI

𝑐p

𝑐r

𝑐q

Fig. 3. A cost-annotated ring protocol.

The cost of a trace is the total execution time taken by each

participant to run the protocol from start to end. We compute

this total execution cost by tracking the dependency from the

input to the output (IO-dependency), and by associating each

action in a trace (Def. 3.3) with an execution cost. Assuming

that every participant has access to their own set of resources

(including CPU) implies that every action in the trace (Def.

3.3) will be triggered as early as possible, e.g. send actions will

not be arbitrarily delayed by other actions. This also implies

that any pair of actions will happen in parallel if swapped

freely according to the semantics.

We explain these assumptions with simple examples. Consider the following trace:

p → r{𝜏⋄𝑐}.q → r{𝜏 ′⋄𝑐 ′} pr!𝜏 · qr!𝜏′−−−−−−−−−→ p⇝⇝⇝ r{𝜏⋄𝑐}.q⇝⇝⇝ r{𝜏 ′⋄𝑐 ′}

According to Def. 3.3, since subj(pr ! 𝜏) = p ≠ q = subj(qr ! 𝜏 ′), because the sender is different in
each action, this would be another possible trace for the same global type:

p → r{𝜏⋄𝑐}.q → r{𝜏 ′⋄𝑐 ′} qr!𝜏′ · pr!𝜏−−−−−−−−−→ p⇝⇝⇝ r{𝜏⋄𝑐}.q⇝⇝⇝ r{𝜏 ′⋄𝑐 ′}

The intuition is that, since p and q are running on different CPUs, and their actions are independent,

both qr ! 𝜏 ′ and pr ! 𝜏 can happen in parallel.

We assume that the cost of the message-passing operations depend on the size of the data that is

sent and that the costs of sending and receiving messages are known, and that they are functions

on the size of the data. Due to the presence of IO-dependencies, we record when the send actions

have happened: a participant cannot perform a computation until received a value, and it cannot

receive a value until at least the time it took for the sender to finish sending the data has passed.

Cost Environments, Queues and Trace Cost. To record the cost, we use queues that record
when the data becomes available. A cost dependency queue is, similarly to𝑄 in Def. 3.4, a mapping

from pairs of participants to queues of execution times, that records when the data in the queue

becomes available. We use𝑊 for these cost queues.

The cost of a sequence of actions is defined as a mapping from participants to the total execution

time accumulated by each participant, defined as cost environments. It is computed by adding the

cost of each individual action to the cost of the participant that performs it, taking into account the

cost dependencies recorded by the queue.

We call mappings from participants to total accumulated costs cost environments. If 𝑐 is an

execution time estimation and 𝑅 is a set of participants, then 𝑇 = [r ↦→ 𝑐]𝑟 ∈𝑅 , with the usual

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:9

extension 𝑇 [r ↦→ 𝑐] and indexing 𝑇 (r) operations. We define 𝑇 (r) = 0, if r ∉ 𝑇 and the following

operations:

𝑇 [𝑐 ′ |r ↩→ 𝑐] = 𝑇 [r ↦→ max(𝑇 (r), 𝑐 ′) + 𝑐]
This operation is used to record cost dependencies. Specifically, 𝑇 [𝑐 ′ |r ↩→ 𝑐] means that r incurs
additional cost 𝑐 , after possibly waiting for an action by an external process with total cost 𝑐 ′. If the
action that took 𝑐 time depends on an action that took 𝑐 ′ time, then the cost of r will be updated
with the maximum of either the time 𝑐 ′, or the total accumulated cost by r. We write:

𝑇 [r′ |r ↩→ 𝑐] for 𝑇 [𝑇 (r′) |r ↩→ 𝑐] and 𝑇 [r ↩→ 𝑐] for 𝑇 [0|r ↩→ 𝑐].
For the cost of actions, we define: (1) cI (𝜏) is the time required for receiving a value of type 𝜏 ;

(2) cO (𝜏) is the time required for sending a value of type 𝜏 ; (3) 𝑐𝜏 is cost associated to type 𝜏 ; and

(4) the cost of labels 𝑙 is calculated as unit type 1.

Definition 4.1 (Cost of a Trace and Action Cost). The cost of a trace ®𝛼 takes as an input an initial

cost 𝑇 , an input dependency queue𝑊 , and produces a pair of a final cost 𝑇 ′ and queue𝑊 ′
.

C(𝜖) (𝑇,𝑊) = (𝑇,𝑊) C(𝛼 · ®𝛼) = C(®𝛼) (C(𝛼) (𝑇,𝑊))
The initial cost is C(®𝛼) = C(®𝛼) ([r ↦→ 0]r∈ ®𝛼 , [pq ↦→ 𝜖]pq∈ ®𝛼) with empty initial queues and zero

costs. The cost of individual actions is defined below:

C(pq ? 𝜏) (𝑇,𝑊 [pq ↦→ 𝑐 ·𝑤]) = (𝑇 [𝑐 |q ↩→ cI (𝜏)],𝑊 [pq ↦→ 𝑤]))
C(pq & 𝑙𝑘) (𝑇,𝑊 [pq ↦→ 𝑐 ·𝑤]) = (𝑇 [𝑐 |q ↩→ cI (1)],𝑊 [pq ↦→ 𝑤]))
C(pq ! 𝜏) (𝑇,𝑊 [pq ↦→ 𝑤])) = (𝑇 [p ↩→ cO (𝜏)],𝑊 [pq ↦→ 𝑤 · (𝑇 (p) + cO (𝜏))])
C(pq ⊕ 𝑙𝑘) (𝑇,𝑊 [pq ↦→ 𝑤])) = (𝑇 [p ↩→ cO (1)],𝑊 [pq ↦→ 𝑤 · (𝑇 (p) + cO (1))])

C(p⋄𝑐) (𝑇,𝑊) = (𝑇 [p ↩→ 𝑐],𝑊)

Example of Trace Cost. We show an example of calculating the cost of a trace. Consider the

following global type:

𝐺 = p → q{str𝑛⋄𝑛 × 3ms}.q → p{int𝑖⋄6ms}.end
In this protocol, there are two participants, p and q. First, p sends a string of size 𝑛 to q, that requires
𝑛 × 3ms of local computation time. Then, q replies with an integer of size 𝑖 (i.e. smaller than 𝑖) to p,
that takes a constant computation time of 6ms. We represent this scenario as a trace of actions:

𝑡𝑟 = pq ! str𝑛 · pq ? str𝑛 · q⋄(𝑛 × 3ms) · qp ! int𝑖 · qp ? int𝑖 · p⋄(6ms)
To compute the cost, we traverse the trace, record at which time each event happened in the

message queue, and add the cost of each action to the total execution time accumulated by the

subject of the action. For example, C(pq ! str𝑛) ([], []) = ([p ↦→ cO (str𝑛)], [pq ↦→ cO (str𝑛)]), i.e. the
cost of sending a string of size 𝑛 is added to the cost for p, and the message queue now records that

this message was sent after cO (str𝑛) time. Then, C(pq ? str𝑛) ([p ↦→ cO (str𝑛)], [pq ↦→ cO (str𝑛)]) =
([p ↦→ cO (str𝑛); q ↦→ cO (str𝑛) + cI (str𝑛)], []). That means that the cost of receiving a string of size

𝑛 is added to the cost of q, after the time recorded in the queue pq, in this case the cost of sending a

string of size 𝑛, and the message queue would now be empty. By following the cost rules with the

remaining actions, we produce the following cost equation:

C(tr) =
[
p ↦→ cO (str𝑛) + cI (str𝑛) + 𝑛 × 3ms + cO (int𝑖) + cI (int𝑖) + 6ms

q ↦→ cO (str𝑛) + cI (str𝑛) + 𝑛 × 3ms + cO (int𝑖)

]
By instantiating the sizes of the messages and the send/receive costs with e.g. profiling information,

we can now estimate how much time it will take the protocol to complete.

Example 4.2 (Scatter/Gather). This global type represents a scatter/gather protocol, where p
distributes tasks to q and r, and s collects the results. We omit the cost on the receiving end of s to

represent that s simply gathers the results, and that has computation cost 0.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:10 David Castro-Perez and Nobuko Yoshida

𝐺 = p → q{𝜏1⋄𝑐1}.p → r{𝜏1⋄𝑐1}.q → s{𝜏2}.r → s{𝜏2}.end

We show below two examples of the possible traces:

𝑡𝑟1 = pq ! 𝜏1 · pq ? 𝜏1 · q⋄𝑐1 · qs ! 𝜏2 · qs ? 𝜏2 · s⋄0 · pr ! 𝜏1 · pr ? 𝜏1 · r⋄𝑐1 · rs ! 𝜏2 · rs ? 𝜏2 · s⋄0
𝑡𝑟2 = pq ! 𝜏1 · pr ! 𝜏1 · pr ? 𝜏1 · r⋄𝑐1 · pq ? 𝜏1 · q⋄𝑐1 · qs ! 𝜏2 · rs ! 𝜏2 · qs ? 𝜏2 · s⋄0 · rs ? 𝜏2 · s⋄0

Since we assume that each participant can run in parallel to the remaining of the participants,

the cost of both traces yield the same result:

C(𝑡𝑟1) ([], []) = C(pq ? 𝜏1 · · ·) ([p ↦→ cO (𝜏1)], [pq ↦→ cO (𝜏1)])
= C(q⋄𝑐1 · · ·) ([p ↦→ cO (𝜏1)]; q ↦→ cO (𝜏1) + cI (𝜏1), [])

=

[
p ↦→ 2 × cO (𝜏1); q ↦→ cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2); r ↦→ 2 × cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2);
s ↦→ max(cI (𝜏2), cO (𝜏1)) + cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2) + cI (𝜏2)

]
Example 4.3 (Parallel Pipeline). We now show the cost of a fragment of the trace that corresponds

with𝐺 = 𝜇𝑋 .p→ q{𝜏1⋄𝑐1}.q→ r{𝜏2⋄𝑐2}.𝑋 . Two possible traces for two iterations of this protocol

are as follows:

𝑡𝑟1 = pq ! 𝜏1 · pq ! 𝜏1 · pq ? 𝜏1 · q⋄𝑐1 · qr ! 𝜏2 · pq ? 𝜏1 · q⋄𝑐1 · qr ! 𝜏2 · qr ? 𝜏2 · r⋄𝑐2 · qr ? 𝜏2 · r⋄𝑐2
𝑡𝑟2 = pq ! 𝜏1 · pq ? 𝜏1 · q⋄𝑐1 · qr ! 𝜏2 · qr ? 𝜏2 · r⋄𝑐2 · pq ! 𝜏1 · pq ? 𝜏1 · q⋄𝑐1 · qr ! 𝜏2 · qr ! 𝜏2 · r⋄𝑐2

In the first trace, p sends first two messages to q. Then, q receives, computes them and sends

the results to r. Finally, r receives the results, and performs their computation with cost 𝑐2. The

second trace, instead, is the repetition of two single iterations of the protocol, where p sends one
message, q receives, processes and sends the result to r, and r performs its local computation. Note,

however, that since the cost models assume that each participant runs at a different CPU, the costs

of both traces is the same. To help readability, we name 𝑇 p = cO (𝜏1), 𝑇 q = cI (𝜏1) + 𝑐1 + cO (𝜏2) and
𝑇 q = cI (𝜏2) + 𝑐2. The trace cost is:

C(𝑡𝑟1) ([], []) = C(pq ? 𝜏1 · · ·) ([p ↦→cO (𝜏1)], [pq ↦→cO (𝜏1)]) = C(q⋄𝑐1 · · ·) ([p ↦→cO (𝜏1)]; q ↦→cO (𝜏1) + cI (𝜏1), [])
=
[
p ↦→ 2 ×𝑇 p; q ↦→ 𝑇 p +𝑇 q +max(𝑇 p,𝑇 q) r ↦→ 𝑇 p +𝑇 q +𝑇 r +max(𝑇 p,𝑇 q,𝑇 r)

]
We can see that the cost is the expected one, where the cost includes the initialisation and finalisation

of the protocol, where the costs are added, and a pipeline steady state, where the cost is themaximum

of the costs of each participant.

Example 4.4 (Dependency Cycle). We change slightly the pipeline example, to illustrate what

happens to the trace cost when we introduce a dependency cycle in the protocol. The protocol

that we show below is a recursive ping-pong, where p sends to q, and then q replies to p: 𝜇𝑋 .p→
q{𝜏1⋄𝑐1}.q→ p{𝜏2⋄𝑐2}.𝑋 . There is only one possible trace for such protocol, due to the input/output

dependencies between q and p (see conditions p, q ∉ subj(𝛼) in Def. 3.3, e.g. [GR4a]). The trace and

cost in this instance is:

𝑡𝑟 = pq ! 𝜏1 · pq ? 𝜏1 · q⋄𝑐1 · qp ! 𝜏2 · qp ? 𝜏2 · p⋄𝑐2 · pq ! 𝜏1 · pq ? 𝜏1 · q⋄𝑐1 · qp ! 𝜏2 · qp ? 𝜏2 · p⋄𝑐2
C(𝑡𝑟) ([], []) =

[
p ↦→ 2 × (𝑇 p +𝑇 q) q ↦→ cO (𝜏1) +𝑇 p + 2 ×𝑇 q

]
Here, 𝑇 p = cO (𝜏1) + cI (𝜏2) + 𝑐2 and 𝑇 q = cI (𝜏1) + 𝑐1 + cO (𝜏2). Participant p needs to send 𝜏1, then

wait for q to complete its part of the protocol, and then receive 𝜏2 and process it. Therefore, the

cost per iteration is𝑇 p +𝑇 q in all cases. For participant q, the situation is slightly different. A single

iteration of q only requires it to wait until p sends 𝜏1, and then perform its part of the protocol.

Hence, the cost is cO (𝜏1) +𝑇 q. However, on the next iteration, q needs to wait until p finishes with

its actions for the previous iteration. This implies that the cost of a single iteration for q (cO (𝜏1) +𝑇 q)

is less than the average cost per iteration (𝑇 p +𝑇 q).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:11

4.2 Cost of Global Protocols
We have introduced a way to compute the cost of one trace. This cost is useful to statically analyse

the potential execution times of particular executions of a protocol. However, it is in general not

feasible to produce all possible traces to analyse the cost of a concurrent/distributed system. Our

global type cost addresses this issue, by providing a syntactic method to estimate an upper bound

of the execution cost.

The global type cost produces, just like Def. 4.1, a cost environment, with a per-participant

estimation. The protocol will complete when all the participants have finished their tasks, and so

the overall cost is the maximum of the cost per participant. The global type cost is a function from

a global type, an estimation of the number of iterations for the recursive protocols, and an initial

cost environment. For proving completeness, we use a dependency queue as an input to the global

type cost, that will only be used at intermediate stages of the execution.

Definition 4.5 (Global Type Cost). Let the maximum operation that combines two cost environ-

ments compute a per participant maximummax(𝑇,𝑇 ′) = [p ↦→ max(𝑇 (p),𝑇 ′(p))]p∈dom(𝑇)∪dom(𝑇 ′) 1.
We define the function unfold, that unrolls the recursive protocol 𝜇𝑋 .𝐺 𝑘 times:

unfold𝑘+1 (𝑋,𝐺) = [unfold𝑘 (𝑋,𝐺)/𝑋]𝐺 unfold0 (𝑋,𝐺) = end

Then the global type cost is defined recursively on the structure of global types:

• C(p → q{𝜏⋄𝑐}.𝐺, ®𝑘) (𝑇,𝑊) = C(𝐺, ®𝑘) (𝑇 [p ↩→ cO (𝜏)] [p|q ↩→ cI (𝜏) + 𝑐],𝑊)
• C(p → q{𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼 , ®𝑘) (𝑇,𝑊) = max{C(𝐺𝑖 , ®𝑘) (𝑇 [p ↩→ cO (1)] [p|q ↩→ cI (1)],𝑊)}𝑖∈𝐼
• C(𝜇𝑋 .𝐺, 𝑘 · ®𝑘) (𝑇,𝑊) = C(unfold𝑘 (𝑋,𝐺), ®𝑘) (𝑇,𝑊)
• C(end) (𝑇,𝑊) = (𝑇,𝑊)

For completeness, and for the proofs, we define the cost rules for the extended global types used in

the semantics.

• C(p⇝⇝⇝ q{𝜏⋄𝑐}.𝐺, ®𝑘) (𝑇,𝑊 [pq ↦→ 𝑐p ·𝑤]) = C(𝐺, ®𝑘) (𝑇 [𝑐p |q ↩→ cI (𝜏) + 𝑐],𝑊 [pq ↦→ 𝑤])
• C(p⇝⇝⇝ q 𝑗 {𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼 , ®𝑘) (𝑇,𝑊 [pq ↦→ 𝑐p ·𝑤]) = C(𝐺 𝑗 , ®𝑘) (𝑇 [𝑐p |q ↩→ cI (1)],𝑊 [pq ↦→ 𝑤])
• C(p⋄(𝜏⋄𝑐) .𝐺, ®𝑘) (𝑇,𝑊) = C(𝐺, ®𝑘) (𝑇 [p ↩→ 𝑐],𝑊)

We write C(𝐺, ®𝑘) to represent C(𝐺, ®𝑘) ([], []). Since the dependency queue is only used in the

definitions for the intermediate stages of the execution (⇝⇝⇝), we can write C(𝐺, ®𝑘) (𝑇). When

we compare the output of the cost functions, we refer to the per-participant cost, ignoring the

dependency queue: (𝑇,𝑊) ≤ (𝑇 ′,𝑊 ′), ∀p ∈ 𝑇,𝑇 (p) ≤ 𝑇 (p′).
The first rule in Def. 4.5 explains the cost of an interaction from p to q. Participant p needs

to send a message, and this is what the cost 𝑇 [p ↩→ cO (𝜏)] reflects. Participant q will receive

a value from p, and then take 𝑐 time performing a computation. Since q needs to wait until p
finishes, we add this dependency to the cost: [p|q ↩→ cI (𝜏) + 𝑐]. The cost of a choice is computed

similarly, but to produce an upper bound of the cost of all branches, we compute the maximum

cost per-participant. The cost of the intermediate stages of the execution of the protocol (p⇝⇝⇝ q)
requires accessing the information in𝑊 , and retrieving when p completed the send operation.

The cost of a computation (p⋄(𝜏⋄𝑐)) is added to accumulated cost of participant p. The cost of a
recursive protocol uses parameter 𝑘 to first unroll the recursion, and then compute the cost. We go

back to the Examples 4.2, 4.3 and 4.4 and show the computed cost by their global type.

Example 4.6 (Scatter/Gather). We illustrate the global type cost using the scatter/gather protocol:

𝐺 = p → q{𝜏1⋄𝑐1}.p → r{𝜏1⋄𝑐1}.q → s{𝜏2}.r → s{𝜏2}.end.
1
The maximum operation is defined even if p is not in one of the environments: recall that𝑇 (p) = 0 if p ∉ dom(𝑇)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:12 David Castro-Perez and Nobuko Yoshida

C(p → q{𝜏1⋄𝑐1} . . .) ([]) = C(p → r{𝜏1⋄𝑐1} . . .)
([
p ↦→ cO (𝜏1); q ↦→ cO (𝜏1) + cI (𝜏1) + 𝑐1

])
= C(q → s{𝜏2} . . .)

([
p ↦→ 2 × cO (𝜏1); q ↦→ cO (𝜏1) + cI (𝜏1) + 𝑐1; r ↦→ 2 × cO (𝜏1) + cI (𝜏1) + 𝑐1

])
= C(r → s{𝜏2} . . .)

([
p ↦→ 2 × cO (𝜏1); q ↦→ cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2); r ↦→ 2 × cO (𝜏1) + cI (𝜏1) + 𝑐1;
s ↦→ cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2) + cI (𝜏2);

])
=

[
p ↦→ 2 × cO (𝜏1); q ↦→ cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2); r ↦→ 2 × cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2);
s ↦→ cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2) +max(cI (𝜏2), cO (𝜏1)) + cI (𝜏2);

]
The final cost produced by the global type predicts the same as the one taking any possible trace.

Example 4.7 (Parallel Pipeline). 𝐺 = 𝜇𝑋 .p→ q{𝜏1⋄𝑐1}.q→ r{𝜏2⋄𝑐2}.𝑋 . Applying the cost models

with
®𝑘 = 2, C(𝐺, 2) ([]), produces the same cost as the trace cost. Particularly, for any arbitrary 𝑘 ,

C(𝐺,𝑘) ([]) produces:[
p ↦→ 𝑘 ×𝑇 p; q ↦→ 𝑇 p +𝑇 q + (𝑘 − 1) ×max(𝑇 p,𝑇 q)r ↦→ 𝑇 p +𝑇 q +𝑇 r + (𝑘 − 1) ×max(𝑇 p,𝑇 q,𝑇 r)

]
Example 4.8 (Dependency Cycle). 𝐺 = 𝜇𝑋 .p→ q{𝜏1⋄𝑐1}.q→ p{𝜏2⋄𝑐2}.𝑋 . For any arbitrary 𝑘 > 1,

C(𝐺,𝑘) ([]) produces the following cost, which corresponds to the trace cost:[
p ↦→ 𝑘 × (𝑇 p +𝑇 q) q ↦→ cO (𝜏1) +𝑇 q + (𝑘 − 1) × (𝑇 p + ×𝑇 q)

]
We showed in the previous examples that function C(𝐺) accurately predicts an upper bound of

the cost obtained from any trace of the protocol. We formalise this statement below in Theorem

4.12, and provide a full proof in Castro-Perez and Yoshida [2020a]. In the formalisation, we use

unfold(𝐺, ®𝑘) to unroll all recursion variables, using the parameters
®𝑘 , i.e. unfold(𝐺, ®𝑘) is defined

recursively on 𝐺 , with the only interesting case unfold(𝜇𝑋 .𝐺, 𝑘 · ®𝑘) = unfold𝑘 (𝑋, (unfold(𝐺, ®𝑘))).
Function unfold(𝐺, ®𝑘) is only defined if there are enough the size of

®𝑘 is that of the amount of

recursion variables in 𝐺 .

Definition 4.9 (Well-Formedness of Dependency Queues). A dependency queue𝑊 is well formed

with respect to a global type 𝐺 if it only contains the values required to compute the cost of 𝐺 .

Wf (𝐺,𝑊 [pq ↦→ 𝑤]) =⇒Wf (p⇝⇝⇝ q{𝜏⋄𝑐}.𝐺,𝑊 [pq ↦→ 𝑐p ·𝑤])
Wf (𝐺,𝑊 [pq ↦→ 𝜖]) =⇒Wf (p → q{𝜏⋄𝑐}.𝐺,𝑊 [pq ↦→ 𝜖])

Wf (𝐺,𝑊) =⇒Wf (p⋄{𝜏⋄𝑐}.𝐺,𝑊)
𝑗 ∈ 𝐼 ∧Wf (𝐺 𝑗 ,𝑊 [pq ↦→ 𝑤]) =⇒Wf (p⇝⇝⇝ q 𝑗 {𝜄𝑖 .𝐺𝑖 }𝑖∈𝐼 ,𝑊 [pq ↦→ 𝑐 ·𝑤])
∀(𝑖 ∈ 𝐼),Wf (𝐺𝑖 ,𝑊 [pq ↦→ 𝜖]) =⇒Wf (p → q {𝜄𝑖 .𝐺𝑖 }𝑖∈𝐼 ,𝑊 [pq ↦→ 𝜖])

Wf (end, [])
We generally write Wf (𝐺, (𝑇,𝑊)) = Wf (𝐺,𝑊).

Lemma 4.10 (Preservation of Wf). If Wf (𝐺, (𝑇,𝑊)) and 𝐺 ℓ−→ 𝐺 ′, then Wf (𝐺 ′, C(ℓ) (𝑇,𝑊)).

Proof. By induction on the structure of 𝐺
ℓ−→ 𝐺 ′. See Castro-Perez and Yoshida [2020a]. □

This lemma states that if𝑊 is well-formed with respect to 𝐺 , and 𝐺 ′ results from taking a step

in 𝐺 , then the queue that results from C(ℓ) (𝑇,𝑊) is well formed with respect to 𝐺 ′.

Lemma 4.11 (Cost Preservation). If 𝐺
ℓ−→ 𝐺 ′, then C(𝐺 ′) (C(ℓ) (𝑇,𝑊)) ≤ C(𝐺) (𝑇,𝑊).

Proof. By induction on the structure of the derivation of 𝐺
ℓ−→ 𝐺 ′. □

This is the main lemma, that states that if𝐺 transitions to𝐺 ′ with action ℓ , then, given an initial

cost/queue (𝑇,𝑊), the cost of 𝐺 ′ on an initial cost after running ℓ on (𝑇,𝑊) is less or equal than
the cost of𝐺 with initial cost (𝑇,𝑊). The reason why this cost is less or equal, rather than equal, is

that a branching may take a lower cost path in the protocol.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:13

p

q

r

cO cO cO cO cO

cI 𝑐q cO cI 𝑐q cO cI 𝑐q cO cI 𝑐q cO cI 𝑐q cO

cI 𝑐r cI 𝑐r cI 𝑐r cI 𝑐r cI 𝑐r

Fig. 4. Latency of a parallel pipeline.

Theorem 4.12 (Bounded-Cost Soundness). If unfold(𝐺, ®𝑘) ®𝛼−→ end, then C(®𝛼) ≤ C(𝐺, ®𝑘).

Proof. We prove the following generalised statement. If 𝐺
®ℓ−→ end and Wf (𝐺, (𝑇,𝑊)) then

C(®ℓ) ≤ C(𝐺). To recover the original statement, we need to specialise this statement with 𝐺 =

unfold(𝐺 ′, ®𝑘), and𝑊 = []. By induction on the length of ®ℓ :
Case ®ℓ = 𝜖 :𝐺

𝜖−→ 𝐺 ′ implies that𝐺 = 𝐺 ′, therefore𝐺 = end. C(𝜖) (𝑇,𝑊) = C(end) (𝑇,𝑊) = (𝑇,𝑊).

Case ®ℓ = ℓ1 · ®ℓ ′:𝐺
ℓ1 · ®ℓ′−−−→ 𝐺 ′ implies that there is a𝐺 ′′ s.t.𝐺

ℓ1−→ 𝐺 ′′
®ℓ′−→ 𝐺 ′. By Lemma 4.10, we know

thatWf (𝐺 ′′, (C(ℓ1) (𝑇,𝑊))). Therefore, by the IH, C(®ℓ ′) (C(ℓ1) (𝑇,𝑊)) ≤ C(𝐺 ′′, C(ℓ1) (𝑇,𝑊)). The
proof is completed by Lemma 4.11, that allows us to derive that C(𝐺 ′′, C(ℓ1) (𝑇,𝑊)) ≤ C(𝐺) (𝑇,𝑊).

□

5 COST FOR MULTIPARTY SESSION PROTOCOLS (2): LATENCY OF RECURSION
Previous section presented cost models for multiparty session protocols with bounded recursion.

In this section, we extend the cost models for multiparty session protocols with two notions:

(1) The average cost per iteration of a protocol, which we call latency (C𝜔 (𝐺)).
(2) The latency relative to p, denoted by C𝜔p (𝐺), as the latency of a global type, divided by the

number of messages exchanged by participant p per iteration.

These cost models are useful for scenarios where we do not know how many iterations the protocol

is going to run, or this number of iterations is large. For example, consider the protocol for a parallel

program following a master-worker pattern, where the master (m1) distributes a stream of tasks to

a series of workers (w𝑖), and then collects the results (m2):

𝑚𝑤 (𝑛) = 𝜇𝑋 .m1 → {m2, w1, . . . , w𝑛}{
𝜄1 . m1 → w1{𝜏⋄𝑐}. . . . m1 → w𝑛{𝜏⋄𝑐}.w𝑛 → m2{𝜏⋄𝑐}. . . . w1 → m2{𝜏⋄𝑐}.𝑋
𝜄2 . end

}
When such protocols are run in practice, they are aimed at speeding up some computation on a large,

potentially unbounded, stream of tasks. Therefore, computing C(𝑚𝑤 (𝑛), 𝑘) can be computationally

very expensive, or impossible if 𝑘 is unknown. These scenarios are where the average cost per

iteration, or latency (C𝜔 (𝐺)) is more useful. The key property of C𝜔 (𝐺) is that approximates to

C(𝐺,𝑘)/𝑘 as 𝑘 grows. In the protocol above, it is clear that C𝜔 (𝑚𝑤 (𝑛)) > C𝜔 (𝑚𝑤 (𝑚)) if 𝑛 > 𝑚,

due to the greater number of interactions that involve m1 and m2 per iteration. However, unless the
cost of the extra interactions outweigh the cost of a computation performed by w𝑖 , it is preferable
to use𝑚𝑤 (𝑛) than𝑚𝑤 (𝑚), subject to the available resources. This is where the latency relative to

a participant is useful, since it provides a better measurement about how fast is𝑚𝑤 (𝑛) processing
tasks.

We explain the intuition behind C𝜔 (𝐺) and C𝜔p (𝐺) using the master-worker protocol, and

C(𝑚𝑤 (𝑛), 𝑘) from §4. For simplicity, we omit branching:

𝑚𝑤 (𝑛) = 𝜇𝑋 . m1 → w1{𝜏⋄𝑐}. . . . m1 → w𝑛{𝜏⋄𝑐}.w𝑛 → m2{𝜏⋄𝑐}. . . . w1 → m2{𝜏⋄𝑐}.𝑋

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:14 David Castro-Perez and Nobuko Yoshida

To simplify the calculations, we also assume that all w𝑖 only do their actions after m1 has finished
sending all tasks, although the cost models in §4 will predict a lower cost for wi than wj if 𝑖 < 𝑗 ,

since they only need to wait until their required data has been sent. We start with𝑚𝑤 (2) and 𝑘 = 1:

C(𝑚𝑤 (2), 1) ≤
[
m1 ↦→ 2 ×

𝑇 1

cO (𝜏1); wi ↦→ 2 ×𝑇 1 +
𝑇

cI (𝜏1) + 𝑐1 + cO (𝜏2); m2 ↦→ 2 ×𝑇 1 +𝑇 + 2 × (cI (𝜏2) + 𝑐2)
𝑇 2

]
We named the relevant parts as 𝑇 1, 𝑇 and 𝑇 2 for readability’s sake. For any arbitrary 𝑘 > 1, we

compute the cost C(𝑚𝑤 (2), 𝑘) as:

C(𝑚𝑤 (2), 𝑘)≤
[
m1 ↦→ 2 ×𝑇 1 + (𝑘 − 1) × 2 ×𝑇 1; wi ↦→ 2 ×𝑇 1 +𝑇 + (𝑘 − 1) ×max(2 ×𝑇 1,𝑇);
m2 ↦→ 2 ×𝑇 1 +𝑇 + 2 ×𝑇 2 + (𝑘 − 1) ×max(2 ×𝑇 1,𝑇 , 2 ×𝑇 2)

]
There are two parts in this cost that can be distinguished, the fixed cost that corresponds to the

initial and final stages of the protocol: [m1 ↦→ 2 ×𝑇 1; wi ↦→ 2 ×𝑇 1 +𝑇 ; m2 ↦→ 2 ×𝑇 1 +𝑇 + 2 ×𝑇 2],
and the latency, which is the cost that increases the more iterations we take. In general, for an

arbitrary 𝑛, the latency is:

C𝜔 (𝑚𝑤 (𝑛)) = [m1 ↦→ 𝑛 ×𝑇 1; wi ↦→ max(𝑛 ×𝑇 1,𝑇); m2 ↦→ max(𝑛 ×𝑇 1,𝑇 , 𝑛 ×𝑇 2)]

If we keep increasing the number of workers, the latency will indicate a greater cost. However, in

this particular protocol what matters is the cost per message interaction of m𝑖 , which are the workers

that respectively distribute tasks and collect the results. We use C𝜔m2 (𝑚𝑤 (𝑛)) = C𝜔 (𝑚𝑤 (𝑛))/𝑖 ,
where 𝑖 is the number of message exchanged by m2 per iteration:

C𝜔m2 (𝑚𝑤 (𝑛)) =
[
m1 ↦→ 𝑇 1; wi ↦→ max(𝑇 1,𝑇 /𝑛); m2 ↦→ max(𝑇 1,𝑇 /𝑛,𝑇2)

]
Since C𝜔m2 (𝑚𝑤 (𝑛)) is less than C𝜔m2 (𝑚𝑤 (𝑚)) if𝑚 < 𝑛, then the latency relative to m2 is a better
measurement to compare how fast a protocol processes tasks. In the remainder of this section, we

define C𝜔 and C𝜔p ; and prove that they approximate C(𝐺,𝑘) for a sufficiently large 𝑘 .

5.1 Latency of Nested Recursive Protocols
The master-worker protocol above contains only one recursion variable. In general, recursive

protocols can have multiple nested recursive sub-protocols. Intuitively, to compute C𝜔 of 𝜇𝑋 .𝐺 ,

we need to estimate the total execution time of a single iteration of 𝐺 . If 𝐺 contains recursive

sub-protocols, this implies that we need to know howmany iterations they will run, before recursive

variable 𝑋 is found. We illustrate this with the recursive global type below:

𝐺 = 𝜇𝑋 . p → q{𝜏⋄𝑐1}.𝜇𝑌 . q → p {𝑙1 . 𝑌 ; 𝑙2 . 𝑋 }

To compute C𝜔 (𝐺), we need to know how many times the branch that ends in recursion variable 𝑌

will be taken. Since this depends on the particular implementation of the protocol, we parameterise

such recursion variables with some 𝑘 , and defer its instantiation. To produce an equation to estimate

the latency that is parametric in this 𝑘 , we split the protocol 𝐺 into two sub-protocols:

𝐺𝑌 = 𝜇𝑌 . q → p {𝑙1 . 𝑌 ; 𝑙2 . 𝑍 } 𝐺𝑋 = 𝜇𝑋 . p → q{𝜏⋄𝑐1}.[𝑋/𝑍]𝐺𝑌

If C𝜔 (𝐺𝑌) contains another recursion variable, then we keep splitting it until we have a set of global

types, each of which defined using at most one bound recursion variable. To compute C𝜔 (𝐺𝑋) we
require a parameter 𝑘 , and we will use 𝑘 × C𝜔 ([end/𝑍]𝐺𝑌) for the cost of any participant in the

inner sub-protocol. In the remainder of this section, we focus on recursive protocols with at most

one recursion variable.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:15

5.2 Cost Recurrences
Computing C𝜔 is done in two steps. First, we build a system of recurrence equations, 𝑇 (𝑛), that
capture the execution costs after 𝑛 iterations of the recursive protocol. Then, we build the difference

equations Δ(𝑛), where Δ(𝑛) (p) = 𝑇 (𝑛 +1) (p) −𝑇 (𝑛) (p), and estimate the value of Δ(𝑛), as 𝑛 grows.

We observe that, for the recurrences that we generate, with 𝑛 ≥ 2, Δ(𝑛) stabilises.

Definition 5.1 (Cost Recurrences). We use C(𝐺) from Def. 4.5. Given a recursive global type 𝜇𝑋 .𝐺 ,

we define its cost recurrence, 𝑇 (𝑛), as follows: 𝑇 (𝑛 + 1) = C([end/𝑋]𝐺,𝑇 (𝑛)), 𝑇 (0) = [].

Consider the following parallel pipeline:

𝐺 = 𝜇𝑌 . p → q{𝜏1⋄𝑐1}. q → r{𝜏2⋄𝑐2}. 𝑌

We show below an example of the system of recurrence equations that we generate. We take the

resulting cost environment, and we produce a different equation𝑇 p,𝑇 q, and𝑇 r for every participant

in the protocol:

𝑇 p (𝑛 + 1) = 𝑇 p (𝑛) + cO (𝜏1) 𝑇 q (𝑛 + 1) = max(𝑇 p (𝑛 + 1),𝑇 q (𝑛)) + cI (𝜏1) + 𝑐1 + cO (𝜏2)
𝑇 r (𝑛 + 1) = max(𝑇 q (𝑛 + 1),𝑇 r (𝑛)) + cI (𝜏2) + 𝑐2

Definition 5.2 (Cost Difference Equations). Given a recursive global type 𝜇𝑋 .𝐺 , with cost recurrence

𝑇 , we define its cost difference equation Δ, as Δ(𝑛) = 𝑇 (𝑛 + 1) −𝑇 (𝑛).

The cost difference equation provides an estimate on how much the cost increases for each

participant after running the protocol one additional iteration.

Definition 5.3 (Latency per Iteration). The latency of a recursive protocol 𝜇𝑋 .𝐺 with cost difference

Δ(𝑛) is defined as the cost expression 𝑐 that is the least upper bound of the difference equation

Δ(𝑛), for a sufficiently large 𝑛:

C𝜔 (𝜇𝑋 .𝐺) = 𝑐 s.t. ∃𝑘,∀𝑛 ≥ 𝑘, 𝑐 ≥ Δ(𝑛)

Suppose that we want to compute the latency of the previous parallel pipeline. On average,

excluding the initialisation of the protocol, the latency for rmust be the maximum of the times for p,
q and r, as usual in parallel pipelines. This is because the actions of p, q and r are independent across
iterations. The solution of Δ(0) shows that the cost is the addition of all individual costs. However, by
solving Δ(1), we obtain the expected result, where 𝑇 p = cO (𝜏1), 𝑇 q = max(𝑇 p, cI (𝜏1) + 𝑐1 + cO (𝜏2)),
and 𝑇 r = max(𝑇 q, cI (𝜏2) + 𝑐2).

When the actions of a recursive protocol are not independent across iterations, i.e. the send/re-

ceive dependency graph forms a cycle, then all participants will need to synchronise. An example

of this is the protocol:

𝐺 = 𝜇𝑌 . p → q{𝜏1⋄𝑐1}. q → p{𝜏2⋄𝑐2}. 𝑌
In the first iteration, we will have that p sends 𝜏1 to q, which needs to wait for the message, and then

takes 𝑐1 time. At this point, we have that p spent cO (𝜏1), and q took cO (𝜏1) +cI (𝜏1) +𝑐1. Next, q sends
𝜏2 to p, which is completed after cO (𝜏1) +𝑇 q, where𝑇 q = cI (𝜏1) +𝑐1+cO (𝜏2). Then, p needs to receive
𝜏2 and take 𝑐2 of local computation time. Since the accumulated time by p is cO (𝜏1) < cO (𝜏1) +𝑇 q,

we increase the total time spent by p:𝑇 q +𝑇 p, where𝑇 p = cO (𝜏1) + cI (𝜏2) + 𝑐2. In the next iteration,

we have that p takes 𝑇 p + 𝑇 q + cO (𝜏1). Next, q takes max(cO (𝜏1) + 𝑇 q,𝑇 p + 𝑇 q + cO (𝜏1)) + 𝑇 q =

𝑇 p + 𝑇 q + cO (𝜏1) + 𝑇 q, and finally p will take 2 × (𝑇 p + 𝑇 q). After 𝑘 iterations, the cost for p is

𝑘 × (𝑇 p +𝑇 q), while the cost for q is (𝑘 − 1) × (𝑇 p +𝑇 q) + cO (𝜏1) +𝑇 q, which approximates𝑇 p +𝑇 q.

Definition 5.4 (Latency with respect to p). We define C𝜔p (𝜇𝑋 .𝐺) = C𝜔 (𝜇𝑋 .𝐺) (p)/count(p,𝐺),
where count(p,𝐺) is the number of interactions of 𝐺 in which p occurs.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:16 David Castro-Perez and Nobuko Yoshida

5.3 Correctness
We guarantee that the latency correctly approximates the bounded cost of a protocol. Moreover,

given an arbitrary trace that is the result of a 𝑘-unrolling of a recursive global type 𝐺 , 𝑘 × C𝜔 (𝐺)
will approximate the cost of the full trace.

Theorem 5.5 (Cost Latency Correspondence). Given a sufficiently large 𝑘2, for all 𝑘1 > 𝑘2,
C(𝐺,𝑘1) − C(𝐺,𝑘2) ≤ (𝑘1 − 𝑘2) × C𝜔 (𝐺).

This result follows directly from our definition of C𝜔 , since the latency approximates Δ(𝑛)
(with Δ(𝑛) = 𝑇 (𝑛 + 1) −𝑇 (𝑛)) for a sufficiently large 𝑛, and that 𝑇 (𝑛 + 1) is the recurrence that
approximates C(𝐺,𝑛). We need to show that 𝑘 × Δ(𝑛) = 𝑇 (𝑛 + 𝑘) −𝑇 (𝑛), and then take 𝑘2 = 𝑛 and

𝑘1 = 𝑛 + 𝑘 .

Proposition 5.6. Given 𝜇𝑋 .𝐺 , let𝑇 (𝑛+1) = C([end/𝑋]𝐺,𝑇 (𝑛)) and𝑇 (0) = []. Then,C(𝜇𝑋 .𝐺, 𝑛) =
𝑇 (𝑛).

Proof. By induction on 𝑛, the base case is straightforward:𝑇 (0) = C(𝜇𝑋 .𝐺, 0) = C(end) = []. If
𝑛 =𝑚+1, then𝑇 (𝑚+1) = C([end/𝑋]𝐺,𝑇 (𝑚)) = C([end/𝑋]𝐺, C(𝜇𝑋 .𝐺,𝑚)) = C(𝜇𝑋 .𝐺,𝑚+1). □

Proposition 5.6 states that given a recursive protocol, instantiating its recurrence with some

number 𝑛 yields the same cost as unrolling the protocol 𝑛 times and computing its cost. We

use Proposition 5.6 in combination with Definition 5.2 to derive the following. Assume Δ is the

difference equation for recursive protocol 𝐺 . Then, the following equality holds:

Δ(𝑛) = C(𝐺,𝑛 + 1) − C(𝐺,𝑛) (1)

Theorem 5.7 (Latency Soundness). There exists 𝑘 ′ such that for all 𝑘 , if unfold𝑘 (𝐺) ®𝛼−→ end,
then C(®𝛼) ≤ 𝑘 × C𝜔 (𝐺) + 𝑘 ′.

Proof. By Definition 5.2, we know that there exists some 𝑘0 such that for all 𝑛 ≥ 𝑘0,

C𝜔 (𝐺) ≥ Δ(𝑛). (2)

We show that 𝑘 ′ is C(𝐺,𝑘0). By Theorem 4.12, we know that C(®𝛼) ≤ C(𝐺,𝑘). Therefore, it is
sufficient to show that for all 𝑘 , C(𝐺,𝑘) ≤ 𝑘 × C𝜔 (𝐺) + C(𝐺,𝑘0). We proceed by case analysis:

Case 𝑘 ≤ 𝑘0 straightforward, since C(𝐺,𝑘) ≤ C(𝐺,𝑘0) if 𝑘 ≤ 𝑘0.

Case 𝑘 > 𝑘0: By induction on 𝑘 . All cases ≤ 𝑘0 are straightforwardly true.

• Case 𝑘 = 𝑘0 + 1 follows from C(𝐺,𝑘0) ≤ C(𝐺,𝑘0 + 1):
C(𝐺,𝑘0) ≤ C(𝐺,𝑘0 + 1) {multiply 𝑘0}

𝑘0 × C(𝐺,𝑘0) ≤ 𝑘0 × C(𝐺,𝑘0 + 1) {add C(𝐺,𝑘0 + 1)}
C(𝐺,𝑘0 + 1) + 𝑘0 × C(𝐺,𝑘0) ≤ C(𝐺,𝑘0 + 1) + 𝑘0 × C(𝐺,𝑘0 + 1) {sub 𝑘0 × C(𝐺,𝑘0)}

C(𝐺,𝑘0 + 1) ≤ (𝑘0 + 1) × C(𝐺,𝑘0 + 1) − 𝑘0 × C(𝐺,𝑘0) {cancel C(𝐺,𝑘0)}
C(𝐺,𝑘0 + 1) ≤ (𝑘0 + 1) × (C(𝐺,𝑘0 + 1) − C(𝐺,𝑘0)) + C(𝐺,𝑘0) {by (1) and (2)}
C(𝐺,𝑘0 + 1) ≤ (𝑘0 + 1) × C𝜔 (𝐺) + C(𝐺,𝑘0)

• 𝑘 = 𝑘2 + 1, with 𝑘2 > 𝑘0 . Assume the induction hypothesis C(𝐺,𝑘2) ≤ 𝑘2 × Δ(𝑘2) + C(𝐺,𝑘0):
C(𝐺,𝑘2) ≤ 𝑘2 × Δ(𝑘2) + C(𝐺,𝑘0) {by (1)}
C(𝐺,𝑘2) ≤ 𝑘2 × C(𝐺,𝑘2 + 1) − 𝑘2 × C(𝐺,𝑘2) + C(𝐺,𝑘0) {add C(𝐺,𝑘2 + 1)}

C(𝐺,𝑘2 + 1) + C(𝐺,𝑘2) ≤ (𝑘2 + 1) × C(𝐺,𝑘2 + 1) − 𝑘2 × C(𝐺,𝑘2) + C(𝐺,𝑘0) {sub C(𝐺,𝑘2)}
C(𝐺,𝑘2 + 1) ≤ (𝑘2 + 1) × (C(𝐺,𝑘2 + 1) − C(𝐺,𝑘2)) + C(𝐺,𝑘0) {by (1) and (2)}
C(𝐺,𝑘2 + 1) ≤ (𝑘2 + 1) × C𝜔 (𝐺) + C(𝐺,𝑘0)

□

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:17

This implies that the latency approximates the cost of a trace of a 𝑘-unrolling of a recursive

protocol, and it follows from Theorems 5.5 and 4.12. To illustrate this, consider the average cost per

recursion iteration, C(®𝛼)/𝑘 . By Theorem 5.7, we know that C(®𝛼)/𝑘 ≤ C𝜔 (𝐺) + 𝑘 ′/𝑘 . Since 𝑘 ′ does
not depend on 𝑘 , for a sufficiently large 𝑘 , the term 𝑘 ′/𝑘 will become smaller, and the upper bound

of C(®𝛼)/𝑘 will be approximately C𝜔 (𝐺).

6 ASYNCHRONOUS MESSAGE OPTIMISATION
This section illustrates one of the key features of CAMP, the formulation and its soundness of

asynchronous message optimisations. We extend the cost equations in §4 and §5 to tackle protocols

in which certain actions have been permuted for optimisation purposes. Parallel programs often

make use of parallel pipelines to overlap computation and communication, as far as the overlapping

does not interfere with data dependencies. The overlapping can reduce stall time due to blocking

wait in the asynchronous communication model. Under the CAMP theory, optimisation should

preserve the deadlock-freedom and produce the same outcome, while ensuring less cost for the

overall calculation.

p q r
send send send

receive receive receive

compute compute compute

Fig. 5. Optimised ring trace.

Fig.5 shows a safe and efficient ring protocol,

in which stage 𝑖 shares data with stage (𝑖 +
1) mod 3, and then proceed to do some local

computation. This protocol behaves similarly to

that of Fig. 2 in §3, but the output actions have

been permuted so that they are performed first,

thus reducing the amount of synchronisation

required. The optimised version, however, is

more difficult to check against a standard global

type, because of the permuted actions. This can be illustrated by comparing the optimised and

un-optimised local types of q:

𝐿q = 𝜇𝑋 .p ? 𝜏⋄𝑐.r ! 𝜏 .𝑋 𝐿′q = 𝜇𝑋 .r ! 𝜏 .p ? 𝜏⋄𝑐.𝑋
𝐿q is the unoptimised local type, and 𝐿′q is the optimised version. Both local types represent a

similar communication pattern. However, in the left version 𝐿q, the send action only happens after

receiving, and computing (with cost 𝑐), while the right version first sends a value of type 𝜏 , and

then performs the receive and local computation. This removes unnecessary synchronisation, and

allows r to continue with its interactions before q finishes its own local computation.

Only certain message permutations are valid. For example, if instead of swapping the send and

receive actions for 𝐿q, we permute the actions for participant p, then we end up in the following

(incorrect) situation:

𝐿′p = 𝜇𝑋 .r ? 𝜏⋄𝑐.q ! 𝜏 .𝑋 𝐿′q = 𝜇𝑋 .p ? 𝜏⋄𝑐.r ! 𝜏 .𝑋 𝐿′r = 𝜇𝑋 .p ? 𝜏⋄𝑐.p ! 𝜏 .𝑋
This is a clear deadlock situation, since all participants are waiting for a message from each other.

To avoid such situations, we define the Asynchronous Message Optimisation for global types, and

show its soundness:

Definition 6.1 (Asynchronous Message Optimisation). We first extend the syntax of global types

to include send (!) and receive (?) actions as: 𝐺 F pq ! {𝜏}.𝐺 | pq ? {𝜏}.𝐺 | . . . The asynchronous
optimisation relation, 𝐺1 ⪯ 𝐺2 (read: 𝐺1 is more optimal than 𝐺2), with p

1
≠ p

2
or q

1
≠ q

2
is the

transitive closure of the rules below:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:18 David Castro-Perez and Nobuko Yoshida

[Init] pq ! {𝜏}.qp ? {𝜏}.𝐺 ⪯ p → q{𝜏}.𝐺
[Out] p

1
q
1
! {𝜏1}.p2q2 ! {𝜏2}.𝐺 ⪯ p

2
q
2
! {𝜏2}.p1q1 ! {𝜏1}.𝐺

[In] p
1
q
1
? {𝜏1}.p2q2 ? {𝜏2}.𝐺 ⪯ p

2
q
2
? {𝜏2}.p1q1 ? {𝜏1}.𝐺

[Opt] p
1
q
1
! {𝜏1}.q2p2 ? {𝜏2}.𝐺 ⪯ q

2
p
2
? {𝜏2}.p1q1 ! {𝜏1}.𝐺

[OBra] p
2
q
2
! {𝜏2}.p1 → q

1
{𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼 ⪯ p

1
→ q

1
{𝑙𝑖 .p2q2 ! {𝜏2}.𝐺𝑖 }𝑖∈𝐼

[IBra] p
1
→ q

1
{𝑙𝑖 .q2p2 ? {𝜏2}.𝐺𝑖 }𝑖∈𝐼 ⪯ q

2
p
2
? {𝜏2}.p1 → q

1
{𝑙𝑖 .𝐺𝑖 }𝑖∈𝐼

[Cong] 𝐺 ⪯ 𝐺 ′ ⇒ 𝐸 [𝐺] ⪯ 𝐸 [𝐺 ′]

where 𝐸 ::= [] | p → q{𝜏}.𝐸 | p → q({𝑙 .𝐸} ∪ {𝑙𝑘 .𝐺𝑘 }𝑘∈𝐾) | 𝜇𝑋 .𝐸.

The optimisation starts first splitting, by [Init], the message to a sending and receiving operation;

[Out] permute two outputs to two different participants; [In] is its dual; [OBra] permutes a send

and a branch; [IBra] is dual; and [Cong] is a congruence rule. The key rules are [Opt], [OBra] and
[IBra], that perform permutations that allow communication and computation to overlap. This is

because the rules permute send actions to the left, and receive actions to the right. We prove that

whenever 𝐺2 is deadlock-free, then 𝐺1 ⪯ 𝐺2 must also be deadlock free. Moreover, we show that

𝐺1 ⪯ 𝐺2 is decidable. Notice that: (1) our definition is different from the literature asynchronous

subtyping for session types, motivated from more practical use cases; (2) our cost models can be

applied even whenever we do not have that 𝐺1 ⪯ 𝐺2, in which case, safety can be guaranteed by

using any method from the literature. See §9.

Theorem 6.2 (Asynchronous Message Optimisation).

(1) (Soundness) Suppose 𝐺2 is a deadlock-free global type and 𝐺1 ⪯ 𝐺2. Then 𝐺1 is deadlock-free.
(2) (Decidability) Given 𝐺1 and 𝐺2, it is decidable whether 𝐺1 ⪯ 𝐺2 or not.

Proof. (1) By induction on the derivation of𝐺1⪯𝐺2. Assume𝐺1⪯𝐺2 and𝐺2 is deadlock-free and

𝐶𝑖 = [p ↦→ 𝐺𝑖 ↾ p]p∈P with 𝑖 = 1, 2. We prove if ⟨𝐶2, 𝑄⟩ is deadlock-free, then ⟨𝐶1, 𝑄⟩ is deadlock-
free. To do this proof, we extend the projection for global types as follows. pq!{𝜏}.𝐺 ↾ r = q!{𝜏}.(𝐺 ↾
r) if p = r, and 𝐺 ↾ r otherwise. pq ? {𝜏}.𝐺 ↾ r = q ? {𝜏}.(𝐺 ↾ r) if p = r, and 𝐺 ↾ r otherwise. All

cases except [Opt] is obvious. The [Opt] states: p
1
q
1
! {𝜏1}.q2p2 ? {𝜏2}.𝐺 ⪯ q

2
p
2
? {𝜏2}.p1q1 ! {𝜏1}.𝐺 .

We know that ⟨𝐶2, 𝑄⟩ is deadlock free. Note that p𝑖 ≠ q𝑖 , otherwise 𝐺2 cannot be proven deadlock

free (it is either ill-formed, or the optimisation of an ill-formed global type). There are two cases,

considering the side conditions for the rules: a) if p
1
≠ q

2
, straightforward since these subject of both

interactions are different; b) if p
1
= q

2
= p, then we have𝐶1 \p = 𝐶2 \p,𝐶2 (p) = p

2
? {𝜏2}.q1 ! {𝜏1}.𝐿,

and 𝐶1 (p) = q
1
! {𝜏1}.p2 ? {𝜏2}.𝐿. Since ⟨𝐶2, 𝑄⟩ is deadlock free, then 𝑄 (p

2
p) = 𝑤 · 𝜏2. Therefore,

⟨𝐶1, 𝑄⟩
∗−→ ⟨𝐶 ′

1
, 𝑄 ′⟩, ⟨𝐶2, 𝑄⟩

∗−→ ⟨𝐶 ′
2
, 𝑄 ′⟩, with 𝐶 ′

1
(p) = 𝐶 ′

2
(p) = 𝐿, and 𝑄 ′(p

2
p) = 𝑤 . Since ⟨𝐶2, 𝑄⟩ is

deadlock free, then ⟨𝐶 ′
2
, 𝑄 ′⟩ must also be deadlock free, and ⟨𝐶 ′

1
, 𝑄 ′⟩ as well.

(2) We consider a normal form which is derived applying [Out,In] with the side condition p
1
< p

2
;

and all other rules except [Init] as much as possible until no rule is applicable, and finally applying

[Init] to all pairs of send/receive. Then if 𝐺1 ⪯ 𝐺2, there exists a unique global type 𝐺 such that

𝐺𝑖 ⪯ 𝐺 derivable applying the above rules finitely. This means interpreting 𝐺1 ⪯ 𝐺2 as a term

rewriting system. The term rewriting system is terminating because a) the terms are finite, since

we do not unroll recursion; and b) the only potential rewrite cycle appears in rules [Out,In], which
is prevented by the additional side condition that p

1
< p

2
The repeated application of these rules

permute the send and receive actions to their rightmost and leftmost position respectively. By the

side conditions of the rules, it is straightforward to show that any critical pairs can be unified, since

no rule can prevent another rule from being applied. □

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:19

Finally, we prove that, ignoring sending costs, if𝐺1 ⪯𝐺2, then the cost of𝐺1 is less than the cost

of 𝐺2. The reason why we need to ignore sending costs for this proof is that permuting two output

actions may introduce delays in a later computation stage. Note that this property is a statement

about the synchronisation costs, not an algorithm for optimising a protocol. To illustrate this case,

consider the following global types:

𝐺1 = pq
1
! 𝜏 .pq

2
! 𝜏 .q

1
p ? 𝜏 .q

2
p ? 𝜏 .q

1
⋄𝑐1 .q2⋄𝑐2 .q2r ! 𝜏 ′.rq2 ? 𝜏 ′.end

𝐺2 = pq
2
! 𝜏 .pq

1
! 𝜏 .q

1
p ? 𝜏 .q

2
p ? 𝜏 .q

1
⋄𝑐1 .q2⋄𝑐2 .q2r ! 𝜏 ′.rq2 ? 𝜏 ′.end

It is clear that 𝐺1 ⪯ 𝐺2, by [Out]. However, whenever 𝑐2 ≥ 𝑐1, then C(𝐺1) ≥ C(𝐺2), since q2 must

wait longer in 𝐺1 than in 𝐺2 before receiving the message of type 𝜏 . Note that, even if 𝑐1 = 𝑐2,

the cost of the global protocol will be greater in 𝐺1, since r is the participant that takes longer in
the protocol, and needs to wait for q

2
. The implications of this result are twofold: (a) we know

that whenever 𝐺1 ⪯ 𝐺2, 𝐺1 contains less overhead due to synchronisation; and (b) for a given 𝐺2,

choosing an optimal𝐺1 ⪯𝐺2 is not straightforward, and depends on actual local computation costs

and communication latencies.

Theorem 6.3 (Optimisation Cost). Suppose 𝐺2 is a well-formed global type and 𝐺1 ⪯ 𝐺2. If the
sending cost is 0, then C(𝐺1) ≤ C(𝐺2).

Proof. By induction on the derivation of 𝐺1 ⪯ 𝐺2. Most cases are permutations of independent

interactions, and all independent interactions can be permuted with no effect on the cost. Since we

assume zero send costs, the cost of sending two actions is the same, independently of the order. The

reasoning is similar for receiving interactions. The only rules that we need to consider are [Opt],
[OBra] and [IBra]. Notice that in all the cases, the left hand side contains a sending (or choice) at an

earlier position than the right hand side. We show the proof for case [Opt], but all cases follow a

similar structure. The cost of p
1
q
1
! {𝜏1}.p2q2 ? {𝜏2}.𝐺 is the cost of𝐺 , where the message queue for

p
1
q
1
contains the current execution time for p

1
. If p

1
≠ p

2
, then the cost will be the same in both

cases. But if p
1
= p

2
, then the cost in the right hand side will contain the accumulated cost for p

1
,

plus the cost of receiving from q
2
. Since the costs recorded at the message queue are greater, then

the cost of the continuation must also be greater. □

We illustrate how this optimisation reduces synchronisation time with one iteration of a ring

protocol of size 2: p → q{𝜏1⋄𝑐1}.q → p{𝜏2⋄𝑐2}.end. The only possible trace for running such protocol

is: pq ! 𝜏1 · pq ? 𝜏1 · q⋄𝑐1 · qp ! 𝜏2 · qp ? 𝜏2 · p⋄𝑐2 . This trace and the derived cost imply that computation

costs 𝑐1 and 𝑐2 cannot happen in parallel: 𝑇 p = cO (𝜏1) + cI (𝜏1) + 𝑐1 + cO (𝜏2) + cI (𝜏2) + 𝑐2 .
In cases where such interactions are independent, we can permute the send/receive actions of q to

remove the synchronisation cost from p, and allow any trace that is an interleaving of the following
sub-traces, where the send operations happen before the matching receive:

𝑡𝑟p = pq ! 𝜏1 · qp ? 𝜏2 · p⋄𝑐2 𝑡𝑟q = qp ! 𝜏2 · pq ? 𝜏1 · q⋄𝑐1

Such optimisations is represented by the following type: pq ! {𝜏1}.qp ! {𝜏2}.qp ? {𝜏1⋄𝑐1}.pq ? {𝜏2⋄𝑐2}.end.
This scenario will have the cost that we show below, which is smaller than the original cost.

𝑇 p = max(cO (𝜏1), cO (𝜏2)) + cI (𝜏2) + 𝑐2 𝑇 q = max(cO (𝜏1), cO (𝜏2)) + cI (𝜏1) + 𝑐1

7 IMPLEMENTATION
We implemented a library in Haskell for describing global types augmented with size and cost

information, from which we can derive cost equations for protocols.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:20 David Castro-Perez and Nobuko Yoshida

7.1 Resource Contention
CAMP addresses the issue that multiple participants may need to share computational resources.

We model the cases in which the participants of a protocol are mapped to distinct nodes of a
distributed system, where each node may contain multiple cores. This requires: a) a target hardware
specification, and b) a mapping from participants to nodes. The target hardware specification

describes the amount of nodes available, the cores per-node, and the communication latencies

between nodes. The mapping from participants to nodes assigns each participant of the distributed

system to a different node. Our assumptions are: a) there is no mechanism for process migration;

b) processes can be pinned to specific nodes, but not to specific cores; and c) an optimistic scheduling

scenario, in which participants will run as soon as possible, whenever a core becomes available.

Definition 7.1 (Target Hardware Specification). The target hardware is specified as an indexed set

of node descriptions, and the communication latencies between nodes: {𝐶𝑛}𝑛∈𝑁 and {𝐿𝑛1𝑛2 }𝑛1,𝑛2∈𝑁 .
Here, 𝑁 is the set of node identifiers, 𝐶𝑛 is a natural number that describes the number of available

cores for node 𝑛, and 𝐿𝑛1𝑛2 is a function from a size to the amount of time it takes to transmit a

value from 𝑛1 to 𝑛2.

Definition 7.2 (Participant Mapping). The participant mapping associates each participant with a

specific node. We say that participants are pinned to nodes𝑀 : P → 𝑁 .

For example, consider the master-worker example, where we have 1 master and 5 workers:

𝜇𝑋 . m → w1{𝜏1}.m → w5{𝜏1}.w1 → m{𝜏2}.w5 → m{𝜏2}.𝑋
First, we need to know which is the target hardware. In our case, this is a distributed system

with two nodes, 𝑛1 and 𝑛2, with 1 and 4 cores respectively. That is: with 𝐶𝑛1 = 1 and 𝐶𝑛2 = 4.

Suppose that the communication latency between 𝑛1 and 𝑛2 is a known function on the size of

the messages, 𝑙 . Then, 𝐿𝑛1𝑛2 = 𝐿𝑛2𝑛1 = 𝑙 . Our hardware description is completed by {𝐶𝑛}𝑛∈{𝑛1,𝑛2 } ,
and {𝐿𝑛𝑛′}𝑛,𝑛′∈{𝑛1,𝑛2 } . Finally, we require to map our participants to the different nodes in the

architecture. In our example, we may want to run m in 𝑛1, and w𝑖 in 𝑛2:𝑀 (m) = 𝑛1 and𝑀 (w𝑖) = 𝑛2.

To compute the cost in this specific scenario, we use the resource bounded cost equations. The

key difference is that, as well as keeping track of the accumulated time per-role, we keep the

accumulated time per node, using a core-availability time, which is the earliest time at which a

core becomes available. The resource-bounded cost equations are obtained using C(𝐺) (𝑇, 𝑆,𝑊),
where 𝑆 accumulates the cost at each core and each node of the system. We assume a hardware

specification and mapping. The rules are now modified in the following way:

C(p → q{𝜏}.𝐺, ®𝑘) (𝑇, 𝑆,𝑊) = C(𝐺, ®𝑘) (𝑇 [p ↦→ 𝑆1 (𝑀 (p)𝑐), q ↦→ 𝑆2 (𝑀 (q)𝑐)], 𝑆2,𝑊
where 𝑆1 = 𝑆 [𝑀 (p)𝑐1 ↩→ cO (𝜏)], 𝑆2 = 𝑆1 [𝑀 (q)𝑐2 ↩→ cI (𝜏) + 𝐿𝑀 (p)𝑀 (q)], ∀𝑐, 𝑆 [𝑀 (p)𝑐1] ≤ 𝑆 [𝑀 (p)𝑐]
and ∀𝑐, 𝑆1 [𝑀 (q)𝑐2] ≤ 𝑆 [𝑀 (q)𝑐]. In this definition, we update the accumulated cost of p and q to the
total accumulated cost of the lowest cost core of the node to which they are mapped. The definition

of 𝑆 [𝑛𝑐 ↩→ 𝑐] is the same as in §4.

7.2 A Monadic Interface for Global Types
We develop a deep embedding of the global types of §3 in Haskell, and provide a monadic interface

on top as a simpler interface for representing protocols. We call this monadic interface GTM, for

Global Type Monad. In GTM, there is an implicit end at the end of each sequence of interactions. An

interaction is specified using function message, and participants are created using mkRole. Function
gclose runs the code in the GTM monad, and produces the resulting global type (CGT). We show

below the Haskell code that generates an𝑛-stage pipeline, and a recursive 2-stage pipeline generated

using the following code:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:21

pipe :: [(SType, Cost)] → Role→ GTM () → GTM ()
pipe [] 𝑝 𝑘 = 𝑘

pipe ((𝑡, 𝑐) : 𝑟) 𝑝 𝑘 = mkRole >>= 𝜆𝑞 → message 𝑝 𝑞 𝑡 (cost 𝑡) >> pipe 𝑟 𝑞 𝑘

rpipe2 :: CGT
rpipe2 = gclose $ mkRole >>= 𝜆𝑟 → grec $ 𝜆𝑥 → pipe [(𝑡1, 𝑐1), (𝑡2, 𝑐2)] 𝑟 𝑥

The code for rpipe2 produces the following global type: 𝜇𝑋 .p → q{t1⋄c1}.q → r{t2⋄c2}.𝑋 .
Notice that embedding a global type language in Haskell allows us to compute topologies based on

any input parameters, such as the number of stages of a pipeline, that would otherwise require

the use of extensions toMPST, e.g. parameterised roles [Castro et al. 2019; Deniélou et al. 2012].

However, to check well-formedness, we need to instantiate the parameters.

We provide functions cost and latency , both of type CGT→ Time, to compute the set of equations

that describe the cost (latency) of an input global type. To obtain a particular prediction, the user

needs to provide an instantiation of all free size and cost variables in the equations, including the

transmission costs between participants.

8 EVALUATION
This section presents a number of benchmarks used to evaluate the predictive power of CAMP. Our
benchmarks are taken from multiple different sources, mostlyMPST-based tools [Castro et al. 2019;
Castro-Perez and Yoshida 2020b; Imai et al. 2020; Ng et al. 2015; Zhou et al. 2020], but also a subset

of the Savina actor benchmarking suite [Imam and Sarkar 2014]. We categorise our benchmarks

following the structure of the Savina benchmarking suite: (i) microbenchmarks, (ii) concurrency

benchmarks, and (iii) parallel algorithms. Microbenchmarks focus on different structures and

protocols, and are aimed at testing and evaluating the different features of CAMP. Concurrency
benchmarks are aimed at evaluating the impact on communication and synchronisation. This can

be useful to, e.g. estimate server response times, and set the appropriate timeouts in larger systems.

In the context of parallel algorithms, the main use of the cost models is to predict the parallel

speedups achieved by a particular parallelisation, without needing to run or profile the application.

8.1 Methodology
We follow a series of steps in order to make our results as consistent as possible. We will detail

now these steps, highlighting which part is automated, and which needs to be provided by the

developer. Our methodology is divided in two parts: (1) characterising the target architecture; and

(2) benchmark cost analysis.

Characterising the target architecture. To tailor a cost analysis to a specific target architec-

ture, we need to characterise the costs of sending/receiving data between nodes. This requires

three steps: (1) specifying the amount of nodes, and the amount of processors/cores per node;

(2) estimate message latencies between nodes; and, (3) profiling send/receive operations in the

required languages/frameworks with inputs of different sizes.

We require the results of these steps to be stored in a .hs file, as an architecture description, that

will be imported and used by CAMP’s cost models. These steps must be performed only once per

architecture and programming language.

Additionally to our theory, the implementation allows programmers to specify an overhead

for running multiple participants in a single node. This is to account for all factors that CAMP is

currently not considering for deriving cost equations. See §10 for a discussion.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:22 David Castro-Perez and Nobuko Yoshida

Benchmark cost analysis. This is the main part of the cost analysis. This part does not require
that the target application is implemented using anMPST-based framework. Assume that we start

with a target application, already implemented. The steps of our methodology are the following:

(1) Write its global type. Since most of our benchmarks are derived from implementations in

other MPST-based tools, this step is straightforward. For non MPST-based implementations,

the developer needs to analyse the communication protocol and write it as a global type.

(2) Extract the sequential parts. The sequential parts must be extracted as self-contained

implementations, that can be run independently of the whole distributed system.

(3) Run the profiler on the sequential parts. Our profiler requires multiple input sizes, mea-

sures the execution costs of the sequential parts on these input sizes, and performs cubic

spline interpolation on the gathered data. Note that the sequential cost is only valid for inputs

of sizes that are within the measured range. This part can be omitted when using a static

cost analysis, or the cost equations are known and provided manually.

(4) Annotate the global type and extract cost equations.

(5) Instantiate the cost by feeding the profiling information for both the target architecture

and the sequential parts.

8.2 Benchmark Structure
We list and provide a brief explanation of all the benchmarks that we used for the cost models. We

used two different hardware configurations for the evaluation. We name them Arch1 and Arch2:
Arch1 is a 4-core Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with hyperthreading, and Arch2
comprises 2 NUMA nodes, 12 cores per node and 62GB of memory, using Intel Xeon CPU E5-2650

v4 @ 2.20GHz chips. Arch2 is an HPC cluster that uses PBS queuing mechanism. We made sure that

we consistently selected the same hardware for every execution. In the remainder of this section,

we will specify whether the benchmarks were run on Arch1 or Arch2.
We used the benchmarks as defined in the different sources from where we took the source code.

Overall, we used averages of > 50 repetitions for benchmarks with large computation costs, and

linear regression (95% CI) for smaller (micro-benchmarks such as ping-pong, all-to-all, etc).

Microbenchmarks. Recursive Ping-Pong is the recursive ping-pong example. We run both the

Scala benchmark (pp-akka) from the Savina benchmarking suite [Imam and Sarkar 2014], and the

OCaml version taken from Imai et al. [2020] on Arch1, on three different transports (pp-ev, pp-lwt,
pp-ipc-𝑛). Since the cost of sending in the ipc transport depends on the input size, we use 𝑛 to

differentiate different runs of this benchmark with different input sizes. We introduced an arbitrary

computation to the Scala version to increase the local computation costs. Thread Ring (ring) is
the Scala version from Imam and Sarkar [2014], both with and without asynchronous message

optimisations, on Arch1. Counting Actor (count) is a benchmark with two actors, one of which

counts the number of messages received from the other. This is the Savina microbenchmark Imai

et al. [2020] on Arch1. One-to-All, All-to-One and All-to-All: we use the Go one-to-all, all-to-one
and all-to-all Go implementations (1a, a1 and aa) in [Castro et al. 2019], all run on Arch1.

Concurrency Benchmarks. Two-Buyer Protocol (twobuy). We use an F★ implementation

taken from [Zhou et al. 2020], and extracted into OCaml. Sleeping Barberx, Dining Philoso-
phers and Cigarette Smoker (barb, dphil, csmok). These are the Savina Akka benchmarks in

[Imam and Sarkar 2014], run on Arch1. K-Nucleotide, Spectral-Norm and Regex-DNA (kn, sn,
dna). These benchmarks are Go implementations taken from [Castro et al. 2019], based on the

Computer Language Benchmarks Game, and use different combinations of scatter, gather, choices

and recursion.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:23

A

B

(a)

ready

A

B

(b)

copy

ready

ready

A

B

(c)

copy

copy

A

B

(d)

copy

ready

ready

A

B

(e)

copy

copy

Fig. 6. Double-Buffering

Parallel Algorithms. All these benchmarks were run on Arch2, and they were taken from

two sources: Ng et al. [2015](NBody, linear equation solver, wordcount and adpredictor) and

Castro-Perez and Yoshida [2020b](dot product, fast fourier transform and mergesort).

Ng et al. [2015]. The work by Ng et al. [2015] has implemented representative parallel bench-

marks from [Asanovic et al. 2009]. NBody (nb) is a 2D NBody simulation in C+MPI which is

implemented as a thread ring with asynchronous communication optimisations. Linear equation
solver (ls) is parallelised using a wraparound mesh. Similarly to the NBody example, we required

the extension with asynchronous communication optimisation.WordCount (wc) and AdPredictor
(ap) are parallelised using map-reduce.

Double-BufferingAlgorithm. (dbuff) [USENIX 2020] is a well-known technique for increasing

the throughput of a device that has two buffers. To accurately represent a double-buffering protocol,

we use CAMP’s extension with asynchronous message optimisations. We show the protocol below,

using participants p for source, q for sink and r for the service:
rp ! {𝑟1}.rp ! {𝑟2}.𝜇𝑋 . pr ? {𝑟1}.p → r{𝑠1}.q → r{𝑡1}.r → q{𝑢1}.rp ! {𝑟1}.pr ? {𝑟2}.

p → r{𝑠2}.q → r{𝑡2}.r → q{𝑢2}.rp ! {𝑟2}. 𝑋
Fig. 6 illustrates this protocol. Suppose a streaming service with two buffers (A and B), a source
(left) and a sink (right). First (a), buffer A is ready to copy an element (message 𝑟1), and so it notifies

the source. Then (b), an element is copied into A (message 𝑠1). Meanwhile, both the sink and B can

notify the service and the source (respectively) that they are ready to copy (messages 𝑟2 and 𝑡1). This

implies that, next (c), both the service and the sink can copy an element in parallel (messages 𝑠1
and 𝑢1). Note that using a single buffer, this would not be possible, since we would risk overwriting

the buffer before the sink copied it. In the next iteration (d), we can swap the buffers, and repeat

the process. By swapping the buffers, both the service (buffer A) and the sink can notify that they

are ready, even if data is still being copied to buffer B (messages 𝑟2 and 𝑡2). Finally (e), buffer A and

the sink can copy the respective next elements, again in parallel (messages 𝑠2 and 𝑢2).

Remark 8.1 (Double-buffering). (1) Definition 6.1 does not directly check the asynchronous

subtyping of local types from the above global type as our rules do not include unrolling recursive

global types (to obtain the decidability result). However we can apply any (sound) asynchronous

subtyping relation from the literature since the cost calculation does not related to well-formedness

of global types. For example, local types that behave as the projections of this global type are

known as deadlock-free [Mostrous et al. 2009; Yoshida et al. 2008]. (2) The syntax of the global
type in [Mostrous et al. 2009] uses the explicit channels in global types. We translated them to

corresponding labels, which does not affect the cost calculation, and our end-point implementation

is essentially as identical as one in [Yoshida et al. 2008].

Castro-Perez and Yoshida [2020b]. Mergesort (ms) follows a divide-and-conquer protocol.

Fast Fourier Transform (fft) is the Cooley-Tukey fast-fourier transform algorithm, implemented

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:24 David Castro-Perez and Nobuko Yoshida

(a) Butterfly pattern
𝑥𝑘−𝑁 /2

##

// 𝑋𝑘−𝑁 /2 = 𝑥𝑘−𝑁 /2+
𝑥𝑘 ∗ 𝜔𝑘−𝑁 /2𝑁

𝑥𝑘

;;

// 𝑋𝑘 = 𝑥𝑘−𝑁 /2 + 𝑥𝑘 ∗ 𝜔𝑘𝑁
(b) FFT diagram

𝑥0 //
0

1 //
0

��

2 //
0

��

3 //
0

𝑋0 //

𝑥4 //
1

>>

//
1

��

//
1

��

//
1

𝑋1 //

𝑥2 //
2

//
2

FF

//
2

��

//
2

𝑋2 //

𝑥6 //
3

>>

//
3

FF

//
3

��

//
3

𝑋3 //

𝑥1 //
4

//
4

��

//
4

KK

//
4

𝑋4 //

𝑥5 //
5

>>

//
5

��

//
5

KK

//
5

𝑋5 //

𝑥3 //
6

//
6

FF

//
6

KK

//
6

𝑋6 //

𝑥7 //
7

>>

//
7

FF

//
7

KK

//
7

𝑋7 //

(c) Global type

Π𝑛.foreach(𝑖 < 2
𝑛){

foreach(𝑙 < 𝑛){
foreach(𝑖 < 2

𝑙){
foreach(𝑗 < 2

𝑛−𝑙−1){
foreach(𝑘 < 2){
foreach(𝑘 ′ < 2){
p𝑖×2𝑛−𝑙+𝑘×2𝑛−𝑙−1+𝑗
→ p𝑖×2𝑛−𝑙+𝑘′×2𝑛−𝑙−1+𝑗 }}}}}}

(d) Programs
P0 (𝑣) F P1 (𝑣) F
𝑥 ← fft(𝑣);
send P1 𝑥 ;
𝑦 ← recv P1;
𝑥 ← zip+ (𝑥,𝑦);
send P2 𝑥 ;
𝑦 ← recv P2;
𝑥 ← zip+ (𝑥,𝑦);
send P4 𝑥 ;
𝑦 ← recv P4;
𝑥 ← zip+ (𝑥,𝑦);
return(𝑥)

𝑥 ← fft′(𝑣);
send P0 𝑥 ;
𝑦 ← recv P0;
𝑥 ← zip− (𝑥,𝑦);
send P3 𝑥 ;
𝑦 ← recv P3;
𝑥 ← zip+ (𝑥,𝑦);
send P5 𝑥 ;
𝑦 ← recv P5;
𝑥 ← zip+ (𝑥,𝑦);
return(𝑥);

Fig. 7. Butterfly Network Topology for Fast Fourier Transform

in C using pthreads, parallelised using a butterfly topology as illustrated in Fig. 7. It uses a divide-

and-conquer strategy based on the following equation (we use 𝜔2𝑘
𝑁

= 𝜔𝑘
𝑁 /2):

𝑋𝑘 =
∑𝑁−1
𝑗=0 𝑥 𝑗 𝜔

𝑗𝑘

𝑁
=
∑𝑁 /2−1
𝑗=0

𝑥2𝑗 𝜔
𝑗𝑘

𝑁 /2 + 𝜔
𝑘
𝑁

∑𝑁 /2−1
𝑗=0

𝑥2𝑗+1 𝜔
𝑗𝑘

𝑁 /2
Each of the two separate sums are DFT of half of the original vector members, separated into even

and odd. Recursive calls can then divide the input set further based on the value of the next binary

bits. Fig. 7(a) illustrates this recursive principle, called butterfly, where two different intermediary

values can be computed in constant time from the results of the same two recursive calls. The

complete algorithm for a size-8 is illustrated by the diagram from Fig.7(b). The global type in

Fig.7(c) shows the resulting global type, in terms of the indices of the participants that need to

communicate. We use keyword foreach to represent that the body must be expanded for all natural

numbers that satisfy the condition (similarly to parameterisedMPST [Deniélou et al. 2012]). CAMP
uses a recursive definition that expands into a butterfly of the required size. Fig.7(d) shows the

(abstract) code of our implementation for participants 0 and 1. We show the high-level structure, in

terms of send and receive. Suppose that participants receive as initial value 𝑣 , the deinterleaving of

the input vector. Then, they all start applying a sequential fft, and communicate the result to the

appropriate participants. Then, they apply the necessary addition and subtraction to compute their

part of the result, and communicate it accordingly.

8.3 Discussion of Predicted Execution Times
Fig. 8 shows a comparison, for each benchmark, of the execution times compared with the pre-

dictions by our cost models. For most of our examples, we get predictions with < 15% of error.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:25

Benchmark Protocol Cost (s) Real (s) Diff (%)

OCaml [Imai et al. 2020]

pp-ev PP 6.39e-6 6.29e-6 2.07

pp-lwt PP 4.20e-7 4.07e-7 3.29

pp-ipc-0 PP 6.27e-6 5.95e-6 5.40

pp-ipc-1 PP 6.28e-6 6.12e-6 2.66

pp-ipc-2 PP 6.42e-6 6.19e-6 3.67

pp-ipc-3 PP 7.96e-6 7.80e-6 2.08

pp-ipc-4 PP 2.54e-5 2.09e-5 21.9

pp-ipc-5 PP 2.20e-4 2.19e-4 0.62

Go [Castro et al. 2019]

aa-2 AA 2.42e-6 2.13e-6 14

aa-4 AA 4.85e-6 4.45e-6 8.8

1a-2 S 6.28e-6 4.46e-6 0.41

1a-3 S 8.12e-6 7.64e-6 6.42

1a-4 S 9.98e-6 9.85e-6 1.34

a1-2 G 2.8e-6 2.14e-6 30.66

a1-3 G 3.27e-6 2.86e-6 14.09

a1-4 G 3.74e-6 3.30e-6 13.22

sn-1 SG, CR 11.62 11.58 0.37

sn-2 SG, CR 5.87 5.81 1.05

sn-3 SG, CR 3.98 3.95 0.79

sn-4 SG, CR 3.06 3.05 0.08

kn-1 SG 10.88 10.65 2.16

kn-2 SG 11.93 11.13 7.15

kn-3 SG 14.01 13.01 7.69

kn-4 SG 17.28 17.17 0.66

dna-1 SG 3.00 2.93 2.38

dna-2 SG 3.34 3.39 1.38

dna-3 SG 3.68 3.66 0.48

dna-4 SG 4.02 4.01 0.24

Savina [Imam and Sarkar 2014]

pp-akka PP 4.4e-5 3.99e-5 10.28

ring Ring 7.09-3 5.04e-3 40.67

ring-opt Ring 5.24e-4 5.4e-4 2.8

count CR 1.98e-4 1.53e-4 29.41

barb CR 3.5e-4 3.36e-4 4.16

dphil CR 2.03e-4 1.92e-4 5.75

csmok CR 1.05e-4 1.03e-4 1.6

Benchmark Protocol Cost (s) Real (s) Diff (%)

C-MPI [Ng et al. 2015]

nb-1 Ring 177.91 177.91 2e-6

nb-4 Ring 45.17 44.71 1.02

nb-16 Ring 12.07 11.10 8.79

nb-32 Ring 6.69 7.84 15

nb-64 Ring 4.29 4.28 0.086

ls-1 Mesh 10.98 10.58 3.78

ls-4 Mesh 4.34 4.44 2.23

ls-16 Mesh 1.88 1.72 9.67

ls-32 Mesh 1.19 1.30 8.79

ls-64 Mesh 0.87 0.72 0.20

wc-1 MR 57 57 1e-5

wc-2 MR 31.8 27.5 17

wc-8 MR 17 16 6.26

wc-24 MR 17.5 19.5 10

wc-64 MR 20.6 23.0 10

ap-1 MR 657 656 7e-2

ap-2 MR 330 284 16

ap-8 MR 67 65 3.4

ap-24 MR 51 45 13

ap-64 MR 74 64 17

C-pthreads [Castro-Perez and Yoshida 2020b]

fft Btfly 143.1 143.0 5.8e-2

fft-2 Btfly 74.3 74.1 1.7e-1

fft-4 Btfly 40.5 40.8 7.2e-1

fft-8 Btfly 24.3 21.8 12

fft-32 Btfly 13.6 12.4 9.3

ms-2 d&c 53.6 53.2 7.3-1

ms-4 d&c 31.39 31.33 1.3-1

ms-8 d&c 20.1 18.1 11.3

ms-16 d&c 14.6 14.2 2.5

OCaml [Zhou et al. 2020]

twobuy CR 4.0133 4.0035 0.24

C [Yoshida et al. 2008]

dbuff Double Buffer 2.54e-1 2.12e-1 19.7

Fig. 8. Predicted vs real execution times: PP = Ping-Pong, AA = All-to-All, S = Scatter, G = Gather, SG =
Scatter-Gather, CR = choice with recursion, MR = MapReduce, D&C = parallel divide and conquer.

Examples include pp-ipc-4, a1-2, ring, count, nb-32, wc-2, ap-2, ap-64, and dbuff. We observe

that the worst predictions are those of the microbenchmarks, with very small execution times.

Here, communication costs dominate, and are repeated a large number of times. With such small

costs, a small error is amplified after a large enough number of iterations. An example of this is

ring, that is a recursive ring protocol that is run for 10
5
iterations.

When we consider examples with larger local computation costs, most of the predictions are

with less than 10% error. There are a small number of examples above than 10% where errors in the

prediction are due to factors that CAMP’s cost models do not take into account, such as scheduler

costs, cost of thread creation, or resource contention such as shared caches. These details that

the cost models do not take into account can also explain why, in some cases, the cost models do

not predict an upper bound of the cost, since the real executions include slowdowns due to these

factors. Note, however, that CAMP offers a quick and static first assessment of the performance

behaviour of concurrent and distributed systems which use different transports and topologies,

without the need to deploy or profile the application.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:26 David Castro-Perez and Nobuko Yoshida

Asynchronous Communication Optimisations. Algorithms fft, dbuff, nb and ring all rely
on asynchronous communication optimisations. Both fft and dbuff require to be specified using

this extension. For ring, we take measurements to compare the optimised and unoptimised global

types. We can observe a speedup in the execution of the protocol that is predicted by the cost

models, which is consistent with Theorem 6.3.

9 RELATEDWORK
Resource Analysis and Session Types. Das et al. [2018b] combine session types with amortised

resource analysis in a linear type system, to reason about resource usage of message-passing

processes, but their work focuses on binary sessions in a linear type system, while we focus on

multiparty session types, and the global execution times of the protocol. Das et al. [2018a] extend a

system of binary session types in a Curry-Howard correspondence with intuitionistic linear logic

[Caires and Pfenning 2010; Caires et al. 2016] with temporal modalities next, always, and eventually,
to prescribe the timing of the communication. A fundamental difference with our work is that Das

et al. [2018a] require the introduction of delays into the processes, to match the specified cost. In

our case, the processes are left unmodified, and the cost is computed from the protocol descriptions.

Finally, their work are limited to theory, while our work are readily applied to real use cases.

Asynchronous Communication Optimisation. The first idea of asynchronous communi-

cation optimisation was found in Scribble [scribble authors 2008] where a multiparty financial

protocol with message ordering permutations is informally described. Later this idea was formalised

as asynchronous session subtyping for the 𝜋-calculus [Chen et al. 2017, 2014; Mostrous and Yoshida

2009, 2015; Mostrous et al. 2009] and its denotational properties were studied in [Demangeon and

Yoshida 2015; Dezani-Ciancaglini et al. 2016]. Concurrently, because of the need of asynchronous

optimisation in multiparty protocols, several applications inspired by asynchronous subtyping

have been developed in Java [Hu 2017], C [Yoshida et al. 2008] and MPI-C [Ng et al. 2015, 2012], but

without any formal theories. Recently, this subtyping relation was found undecidable for binary
session types [Bravetti et al. 2017, 2018; Lange and Yoshida 2017] and its sound algorithm for binary

session communicating automata was proposed in [Bravetti et al. 2019]. We have implemented

a different and more practical decidable optimisation relation based on asynchronous subtyping

for multiparty session types, recently proposed in [Ghilezan et al. 2021]. None of the above work

has (1) developed a formal cost theory which can justify the optimisation; and (2) measured and

compared the cost of optimised/unoptimised applications with a formal justification. CAMP is the

first framework which (1) proposes a formal cost theory with asynchronous optimisation (Theorems

6.2 and 6.3) and (2) justifies the optimisation cost against real benchmarks using (1).

Timed Session Types. The notion of time has been introduced to session types [Bartoletti

et al. 2017; Bocchi et al. 2015, 2019, 2014], to account for protocols that require time specifications,

originated from communicating timed automata (CTA) [Krčál and yi 2006]. Session types and the

𝜋-calculus processes have been related in terms of static typing [Bocchi et al. 2019, 2014], or timed

session types are linked with compliments relations [Bartoletti et al. 2017] or CTA [Bocchi et al.

2015]. Among them, [Bartoletti et al. 2017; Bocchi et al. 2019] are limited to binary or server-client

session types. All of the above works are theoretical only, while the work in [Bocchi et al. 2014]

was applied to the runtime monitoring in Python [Neykova et al. 2017]. The main difference is that

the above timed session types focus on ensuring that deadlines or time constraints are satisfied.

In contrast, our work does not enforce any time constraints, since we are interested on the static

estimation of execution costs, but not on enforcing that timeouts and deadlines are respected.

Type-Based and Amortised Cost Analysis. Handley et al. [2019] use refinement types to rea-

son about efficiency, cost, of Haskell programs, but they do not consider concurrency or parallelism.

Sized types [Hughes et al. 1996] are one of the successful techniques for cost analysis of programs

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

CAMP: Cost-Aware Multiparty Session Protocols 155:27

[Avanzini and Dal Lago 2017; Portillo et al. 2002; Vasconcelos 2008]. Most of the uses of sized types

do not deal with concurrency and distribution. Exceptions are [Gimenez and Moser 2016], that

address space and space-time complexity of parallel reductions of interaction-net programs using

sized and scheduled types, but they do not address message-passing and distributed environments.

The work [Hoffmann and Shao 2015] extends earlier amortised cost analyses [Hoffmann et al. 2012]

to parallel reductions. Their work focuses on parallel functional programs with explicit parallel

composition, but does not address message-passing. To our best knowledge, none of the work

above addresses the cost of message-passing constructs or distributed environments.

10 CONCLUSIONS AND FUTUREWORK
We have presented CAMP, a framework for statically predicting the cost, execution times, of

concurrent and distributed systems. CAMP augments global types from the theory of multiparty

session types with local computation costs, and its trace semantics is extended with local computation

observable actions. We have developed a way to extract cost equations from these instrumented

protocol descriptions, that we can use for estimating upper-bounds of the execution times required

by the participants of a protocol. CAMP can be used to predict the latency, i.e. the execution times

that the participants of a protocol will require, on average, per iteration of the protocol. Furthermore,

we extended CAMP to address asynchronous communication optimisation. CAMP’s cost analysis on
top of multiparty session types gives us several benefits. Firstly, we can use global types to reason

about both correctness and performance of concurrent and distributed systems. Secondly, the cost

analysis can be readily applied and integrated into any MPST framework. Thirdly, it can be used in

non-session-based concurrency benchmarks by simply providing MPST protocols. It suffices to

describe the global type instrumented with cost, and instantiate the derived cost equations with

measured or estimated communication latencies, and local computation costs. And, fourthly our

prototype accounts for CPU/CORE availability of the target hardware.

CAMP addresses two main concerns when estimating execution costs of concurrent and dis-

tributed systems: communication overheads, and synchronisation. Although these factors are a

main source of inefficiency, there are more that we still do not take into account, such as the cost of

starting new threads, the cost of context switching/scheduling, or the cost of resource contention

such as shared caches [Lea 1997]. We plan to study how to extend CAMP to take such factors into

account as future work. CAMP considers distributed systems comprised of multiple nodes, each of

which with a number of CPUs/cores. We plan to extend CAMP’s hardware descriptions to consider
heterogeneity, e.g. CPU clusters, FPGAs, etc. CAMP’s cost models take the maximum cost of the

different possible branches in a protocol. This is sufficient to compute a worst-case execution time

of non-recursive protocols. However, we can extend our costs to take into account the weight of
different branches, so that our cost models would compute an average cost based on the probability

to take the different branches. Moreover, since communication latencies may not be very predictable,

we plan to study the extension of CAMP to use probabilistic cost estimations. Finally we plan to

study the development of a performance analysis tool for existing code, based on the inference or
extraction of the communication protocol followed by non-session-typed implementations such as

[Gabet and Yoshida 2020; Lange et al. 2018; Ng and Yoshida 2016].

ACKNOWLEDGMENTS
We thank the OOPSLA reviewers for their careful reviews and suggestions; and Lorenzo Gheri

and Fangyi Zhou for their comments. Francisco Ferreira and Keigo Imai helped testing our arti-

fact submission. The work is supported by EPSRC EP/T006544/1, EP/K011715/1, EP/K034413/1,

EP/L00058X/1, EP/N027833/1, EP/N028201/1, EP/T006544/1, EP/T014709/1 and EP/V000462/1, and

NCSS/EPSRC VeTSS.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

155:28 David Castro-Perez and Nobuko Yoshida

REFERENCES
Krste Asanovic, Rastislav Bodík, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubiatowicz, Nelson Morgan, David A.

Patterson, Koushik Sen, John Wawrzynek, David Wessel, and Katherine A. Yelick. 2009. A view of the parallel computing

landscape. Commun. ACM 52, 10 (2009), 56–67. https://doi.org/10.1145/1562764.1562783

Martin Avanzini and Ugo Dal Lago. 2017. Automating sized-type inference for complexity analysis. PACMPL 1, ICFP (2017),

43:1–43:29. https://doi.org/10.1145/3110287

Massimo Bartoletti, Tiziana Cimoli, and Maurizio Murgia. 2017. Timed Session Types. Logical Methods in Computer Science
13, 4 (2017). https://doi.org/10.23638/LMCS-13(4:25)2017

Laura Bocchi, Julien Lange, and Nobuko Yoshida. 2015. Meeting Deadlines Together. In 26th International Conference on
Concurrency Theory (LIPIcs), Vol. 42. Schloss Dagstuhl, 283–296.

Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2019. Asynchronous Timed Session

Types - From Duality to Time-Sensitive Processes. In 28th European Symposium on Programming, ESOP 2019 (LNCS), Luís
Caires (Ed.), Vol. 11423. Springer, 583–610. https://doi.org/10.1007/978-3-030-17184-1_21

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. 2014. Timed Multiparty Session Types. In CONCUR 2014 - Concurrency
Theory - 25th International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings (LNCS), Paolo Baldan

and Daniele Gorla (Eds.), Vol. 8704. Springer, 419–434. https://doi.org/10.1007/978-3-662-44584-6_29

Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro. 2019. A Sound Algorithm for

Asynchronous Session Subtyping. In 30th International Conference on Concurrency Theory (LIPIcs), Vol. 140. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2017. Undecidability of asynchronous session subtyping. Inf.
Comput. 256 (2017), 300–320.

Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2018. On the boundary between decidability and undecidability of

asynchronous session subtyping. Theor. Comput. Sci. 722 (2018), 19–51. https://doi.org/10.1016/j.tcs.2018.02.010

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR 2010 - Concurrency
Theory, 21th International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings (LNCS), Paul
Gastin and François Laroussinie (Eds.), Vol. 6269. Springer, 222–236. https://doi.org/10.1007/978-3-642-15375-4_16

Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear logic propositions as session types. Mathematical Structures
in Computer Science 26, 3 (2016), 367–423. https://doi.org/10.1017/S0960129514000218

David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. 2019. Distributed Programming using

Role-Parametric Session Types in Go (POPL’19). ACM, New York, NY, USA, 12.

David Castro-Perez and Nobuko Yoshida. 2020a. CAMP: Cost-Aware Multiparty Session Protocols. arXiv:2010.04449 [cs.PL].

David Castro-Perez and Nobuko Yoshida. 2020b. Compiling First-Order Functions to Session-Typed Parallel Code. In

Proc. of the 29th Int. Conf. on Compiler Construction (CC2020) (CC 2020). ACM, New York, NY, USA, 143–154. https:

//doi.org/10.1145/3377555.3377889

Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. 2017. On the Preciseness of Subtyping

in Session Types. LMCS 13 (2017), 1–62. Issue 2.
Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2014. On the Preciseness of Subtyping in Session

Types. In PPDP. ACM Press, 135–146.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2015. A Gentle Introduction to

Multiparty Asynchronous Session Types. In 15th International School on Formal Methods for the Design of Computer,
Communication and Software Systems: Multicore Programming (LNCS), Vol. 9104. Springer, 146–178.

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018a. Parallel complexity analysis with temporal session types. PACMPL
2, ICFP (2018), 91:1–91:30. https://doi.org/10.1145/3236786

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018b. Work Analysis with Resource-Aware Session Types. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj
Dawar and Erich Grädel (Eds.). ACM, 305–314. https://doi.org/10.1145/3209108.3209146

Romain Demangeon and Kohei Honda. 2012. Nested Protocols in Session Types. In CONCUR 2012 – Concurrency Theory,
Maciej Koutny and Irek Ulidowski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 272–286.

Romain Demangeon and Nobuko Yoshida. 2015. On the Expressiveness of Multiparty Sessions. In FSTTCS 2015 (LIPIcs),
Prahladh Harsha and G. Ramalingam (Eds.), Vol. 45. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 560–574.

https://doi.org/10.4230/LIPIcs.FSTTCS.2015.560

Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata: Characterisation

and Synthesis of Global Session Types. In Automata, Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II (LNCS), Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,

and David Peleg (Eds.), Vol. 7966. Springer, 174–186. https://doi.org/10.1007/978-3-642-39212-2_18

Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. 2012. Parameterised Multiparty Session Types.

Logical Methods in Computer Science 8, 4 (2012). https://doi.org/10.2168/LMCS-8(4:6)2012

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

https://doi.org/10.1145/1562764.1562783
https://doi.org/10.1145/3110287
https://doi.org/10.23638/LMCS-13(4:25)2017
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1145/3377555.3377889
https://doi.org/10.1145/3377555.3377889
https://doi.org/10.1145/3236786
https://doi.org/10.1145/3209108.3209146
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.560
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.2168/LMCS-8(4:6)2012

CAMP: Cost-Aware Multiparty Session Protocols 155:29

Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and Nobuko Yoshida. 2016. Denotational

and Operational Preciseness of Subtyping: A Roadmap. In Theory and Practice of Formal Methods - Essays Dedicated to
Frank de Boer on the Occasion of His 60th Birthday. 155–172. https://doi.org/10.1007/978-3-319-30734-3_12

Julia Gabet and Nobuko Yoshida. 2020. Static Race Detection and Mutex Safety and Liveness for Go Programs (LIPIcs).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik. To appear in ECOOP’20.

Simon Gay and Antonio Ravara (Eds.). 2017. Behavioural Types: from Theory to Tools. River Publishers.
Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, andNobuko Yoshida. 2021. Precise Subtyping for Asynchronous

Multiparty Sessions. Proc. ACM Program. Lang. POPL (2021). To appear in POPL’21.

Stéphane Gimenez and Georg Moser. 2016. The complexity of interaction. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 243–255. https://doi.org/10.1145/2837614.2837646

Brian Goetz, Tim Peierls, Joshua J. Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. 2006. Java Concurrency in Practice.
Addison-Wesley.

Martin A. T. Handley, Niki Vazou, and Graham Hutton. 2019. Liquidate Your Assets: Reasoning about Resource Usage in

Liquid Haskell. Proc. ACM Program. Lang. 4, POPL, Article Article 24 (Dec. 2019), 27 pages. https://doi.org/10.1145/3371092
Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Multivariate amortized resource analysis. ACM Trans. Program.

Lang. Syst. 34, 3 (2012), 14:1–14:62. https://doi.org/10.1145/2362389.2362393

Jan Hoffmann and Zhong Shao. 2015. Automatic Static Cost Analysis for Parallel Programs. In 24th European Symposium on
Programming, ESOP 2015 (LNCS), Jan Vitek (Ed.), Vol. 9032. Springer, 132–157. https://doi.org/10.1007/978-3-662-46669-8_

6

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In Proc. of 35th Symp.
on Princ. of Prog. Lang. (POPL ’08). ACM, New York, NY, USA, 273–284. https://doi.org/10.1145/1328438.1328472

Raymond Hu. 2017. Distributed Programming Using Java APIs Generated from Session Types. Behavioural Types: from
Theory to Tools (2017), 287–308.

Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions in Multiparty Session Types. In 20th Int. Conf. on
Fundamental Approaches to Software Engineering, FASE 2017 (LNCS), Marieke Huisman and Julia Rubin (Eds.), Vol. 10202.

Springer, 116–133. https://doi.org/10.1007/978-3-662-54494-5_7

John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of Reactive Systems Using Sized Types. In

Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Papers Presented at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, Hans-Juergen Boehm and Guy

L. Steele Jr. (Eds.). ACM Press, 410–423. https://doi.org/10.1145/237721.240882

Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. 2020. Multiparty Session Programming with Global

Protocol Combinators. https://github.com/keigoi/ocaml-mpst (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

To appear in ECOOP’20.

Shams M. Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation of Actor

Libraries. In Proc. of the 4th Int. Workshop on Programming Based on Actors Agents & Decentralized Control (AGERE! ’14).
Association for Computing Machinery, New York, NY, USA, 67–80.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Understanding and detecting real-world

performance bugs. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, Beijing,
China - June 11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 77–88. https://doi.org/10.1145/2254064.2254075

K. Krommydas et al. 2016. OpenDwarfs: Characterization of Dwarf-Based Benchmarks on Fixed and Reconfigurable

Architectures. J Sign Process Syst 85 (2016), 373—-392.
Pavel Krčál and Wang yi. 2006. Communicating Timed Automata: The More Synchronous, the More Difficult to Verify.

249–262. https://doi.org/10.1007/11817963_24

Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2018. A Static Verification Framework for Message

Passing in Go using Behavioural Types. In 40th International Conference on Software Engineering. ACM, 1137–1148.

Julien Lange and Nobuko Yoshida. 2017. On the Undecidability of Asynchronous Session Subtyping. In 20th International
Conference on Foundations of Software Science and Computation Structures (LNCS), Vol. 10203. Springer, 441–457.

Doug Lea. 1997. Concurrent programming in Java - design principles and patterns. Addison-Wesley-Longman.

Dimitris Mostrous and Nobuko Yoshida. 2009. Session-Based Communication Optimisation for Higher-Order Mobile

Processes. In Typed Lambda Calculi and Applications, 9th International Conference, TLCA 2009, Brasilia, Brazil, July
1-3, 2009. Proceedings (Lecture Notes in Computer Science), Pierre-Louis Curien (Ed.), Vol. 5608. Springer, 203–218.

https://doi.org/10.1007/978-3-642-02273-9_16

Dimitris Mostrous and Nobuko Yoshida. 2015. Session Typing and Asynchronous Subtying for Higher-Order 𝜋-Calculus.

Info.& Comp. 241 (2015), 227–263.
DimitrisMostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal Typing in Partially Commutative Asynchronous

Sessions. In ESOP (LNCS), Vol. 5502. Springer, 316–332.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

https://doi.org/10.1007/978-3-319-30734-3_12
https://doi.org/10.1145/2837614.2837646
https://doi.org/10.1145/3371092
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1007/978-3-662-46669-8_6
https://doi.org/10.1007/978-3-662-46669-8_6
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1145/237721.240882
https://github.com/keigoi/ocaml-mpst
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1007/11817963_24
https://doi.org/10.1007/978-3-642-02273-9_16

155:30 David Castro-Perez and Nobuko Yoshida

Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2017. Timed Runtime Monitoring for Multiparty Conversations.

FAOC (2017), 1–34.

Nicholas Ng, José Gabriel de Figueiredo Coutinho, and Nobuko Yoshida. 2015. Protocols by Default - Safe MPI Code

Generation Based on Session Types. In 24th Int. Conf. on Compiler Construction, CC 2015 (LNCS), Björn Franke (Ed.),

Vol. 9031. Springer, 212–232. https://doi.org/10.1007/978-3-662-46663-6_11

Nicholas Ng and Nobuko Yoshida. 2016. Static deadlock detection for concurrent Go by global session graph synthesis. In

Proceedings of the 25th International Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016,
Ayal Zaks and Manuel V. Hermenegildo (Eds.). ACM, 174–184. https://doi.org/10.1145/2892208.2892232

Nicholas Ng, Nobuko Yoshida, and Kohei Honda. 2012. Multiparty Session C: Safe Parallel Programming with Message

Optimisation. In Objects, Models, Components, Patterns - 50th International Conference, TOOLS 2012, Prague, Czech Republic,
May 29-31, 2012. Proceedings (Lecture Notes in Computer Science), Carlo A. Furia and Sebastian Nanz (Eds.), Vol. 7304.

Springer, 202–218. https://doi.org/10.1007/978-3-642-30561-0_15

Benjamin C Pierce. 2002. Types and programming languages. The MIT Press.

Álvaro J. Rebón Portillo, Kevin Hammond, Hans-Wolfgang Loidl, and Pedro B. Vasconcelos. 2002. Cost Analysis Using

Automatic Size and Time Inference. In Implementation of Functional Languages, 14th International Workshop, IFL 2002,
Madrid, Spain, September 16-18, 2002, Revised Selected Papers (LNCS), Ricardo Pena and Thomas Arts (Eds.), Vol. 2670.

Springer, 232–248. https://doi.org/10.1007/3-540-44854-3_15

Thomas Rauber and Gudula Rünger. 2010. Parallel Programming - for Multicore and Cluster Systems. Springer. https:

//doi.org/10.1007/978-3-642-04818-0

The scribble authors. 2008. Scribble homepage. https://www.scribble.com.

Gadi Taubenfeld. 2006. Synchronization algorithms and concurrent programming. Pearson Education.

USENIX. 2020. Double-Buffering Algorithm (web). https://www.usenix.org/legacy/publications/library/proceedings/

usenix02/full_papers/huang/huang_html/node8.html.

Pedro B. Vasconcelos. 2008. Space cost analysis using sized types. Ph.D. Dissertation. University of St Andrews, UK.

http://hdl.handle.net/10023/564

Nobuko Yoshida, Vasco Thudichum Vasconcelos, Hervé Paulino, and Kohei Honda. 2008. Session-Based Compilation

Framework for Multicore Programming. In Formal Methods for Components and Objects, 7th International Symposium,
FMCO 2008, Sophia Antipolis, France, October 21-23, 2008, Revised Lectures (Lecture Notes in Computer Science), Frank S.

de Boer, Marcello M. Bonsangue, and Eric Madelaine (Eds.), Vol. 5751. Springer, 226–246. https://doi.org/10.1007/

978-3-642-04167-9_12

Fangyi Zhou, Francisco Ferreira, RaymondHu, Rumyana Neykova, and Nobuko Yoshida. 2020. Statically Verified Refinements

for Multiparty Protocols. (2020). Conditionally Accepted by OOPSLA ’20, Preprint on https://www.doc.ic.ac.uk/~fz315/

oopsla20-preprint.pdf.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 155. Publication date: November 2020.

https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/3-540-44854-3_15
https://doi.org/10.1007/978-3-642-04818-0
https://doi.org/10.1007/978-3-642-04818-0
https://www.scribble.com
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/huang/huang_html/node8.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/huang/huang_html/node8.html
http://hdl.handle.net/10023/564
https://doi.org/10.1007/978-3-642-04167-9_12
https://doi.org/10.1007/978-3-642-04167-9_12
https://www.doc.ic.ac.uk/~fz315/oopsla20-preprint.pdf
https://www.doc.ic.ac.uk/~fz315/oopsla20-preprint.pdf

	Abstract
	1 Introduction
	2 Overview
	3 Cost-Aware Multiparty Session Protocols
	3.1 Labelled Transition System of Global Types
	3.2 Labelled Transition System of Local Types

	4 Cost for Multiparty Session Protocols (1): Bounded Recursion
	4.1 Cost of Local Traces
	4.2 Cost of Global Protocols

	5 Cost for Multiparty Session Protocols (2): Latency of Recursion
	5.1 Latency of Nested Recursive Protocols
	5.2 Cost Recurrences
	5.3 Correctness

	6 Asynchronous Message Optimisation
	7 Implementation
	7.1 Resource Contention
	7.2 A Monadic Interface for Global Types

	8 Evaluation
	8.1 Methodology
	8.2 Benchmark Structure
	8.3 Discussion of Predicted Execution Times

	9 Related Work
	10 Conclusions and Future Work
	Acknowledgments
	References

