
Characteristic Bisimulations for Higher-Order
Session Processes
Dimitrios Kouzapas1,2, Jorge A. Pérez3, and Nobuko Yoshida1

1 Imperial College London, UK
2 University of Glasgow, UK
3 University of Groningen, The Netherlands

Abstract
Characterising contextual equivalence is a long-standing issue for higher-order (process) lan-
guages. In the setting of a higher-order π-calculus with sessions, we develop characteristic bisim-
ilarity, a typed bisimilarity which fully characterises contextual equivalence. To our knowledge,
ours is the first characterisation of its kind. Using simple values inhabiting (session) types, our
approach distinguishes from untyped methods for characterising contextual equivalence in higher-
order processes: we show that observing as inputs only a precise finite set of higher-order values
suffices to reason about higher-order session processes. We demonstrate how characteristic bisim-
ilarity can be used to justify optimisations in session protocols with mobile code communication.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 Semantics of Programming Languages.

Keywords and phrases Behavioural equivalences, session types, higher-order process calculi.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Context. In higher-order process calculi communicated values may contain processes.
Higher-order concurrency has received significant attention from untyped and typed per-
spectives (see, e.g., [15, 6, 10, 7, 13]). In this work, we consider HOπ, a higher-order process
calculus with session primitives: in addition to functional abstractions/applications (as in
the call-by-value λ-calculus), HOπ contains constructs for synchronisation on shared names,
session communication on linear names, and recursion. Thus, HOπ processes may specify
protocols for higher-order processes that can be type-checked using session types [4]. Al-
though models of session communication with process passing exist [12, 3], their behavioural
equivalences remain little understood. Since types can limit the contexts (environments) in
which processes can interact, typed equivalences usually offer coarser semantics than untyped
semantics. Hence, clarifying the status of these equivalences is key to, e.g., justify non-trivial
optimisations in protocols involving both name- and process-passing.

A well-known behavioural equivalence for higher-order processes is context bisimilarity [16].
This characterisation of barbed congruence offers an adequate distinguishing power at the price
of heavy universal quantifications in output clauses. Obtaining alternative characterisations
of context bisimilarity is thus a recurring, important problem for higher-order calculi—see,
e.g., [15, 16, 6, 7]. In particular, Sangiorgi [15, 16] has given characterisations of context
bisimilarity for higher-order processes; such characterisations, however, do not scale to calculi
with recursive types, which are essential to session-based concurrency. A characterisation
that solves this limitation was developed by Jeffrey and Rathke in [6].

© Dimitrios Kouzapas, Jorge A. Pérez and Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Characteristic Bisimulations for Higher-Order Session Processes

This Work. Building upon [15, 16, 6], our discovery is that linearity of session types
plays a vital role in solving the open problem of characterising context bisimilarity for
higher-order mobile processes with session communications. Our approach is to exploit the
coarser semantics induced by session types to limit the behaviour of higher-order session
processes. Formally, we enforce this limitation by defining a refined labelled transition system
(LTS) which effectively narrows down the spectrum of allowed process behaviours, exploiting
elementary processes inhabiting session types. We then introduce characteristic bisimilarity:
this new notion of typed bisimilarity is tractable, in that it relies on the refined LTS for
input actions and, more importantly, does not appeal to universal quantifications on output
actions. Our main result is that characteristic bisimilarity coincides with context bisimilarity.
Besides confirming the value of characteristic bisimilarity as an useful reasoning technique
for higher-order processes with sessions, this result is remarkable also from a technical
perspective, for associated completeness proofs do not require operators for name-matching,
in contrast to untyped methods for higher-order processes with recursive types [6].

We explain how we exploit session types to define characteristic bisimilarity. Key notions
are triggered and characteristic processes/values. Below, we write s?(x).P for an input on
endpoint s, and s!〈V 〉.Q for an output of value V on endpoint s (the dual of s). Also,

R
s?〈V 〉−−−−→ R′ denotes an input transition along n and R

(ν m̃)s!〈V 〉−−−−−−−→ R′ denotes an output
transition along s, sending value V , and extruding names m̃. Weak transitions are as usual.
Throughout the paper, we write <,<′, . . . to denote binary relations on (typed) processes.

Issues of Context Bisimilarity. Context bisimilarity (≈, Def. 10) is an overly demanding
relation on higher-order processes. There are two issues, associated to demanding clauses for
output and input actions. A first issue is the universal quantification on the output clause of
context bisimilarity. Suppose P <Q, for some context bisimulation <. We have:

(?) Whenever P (ν m̃1)s!〈V 〉−−−−−−−→ P ′ there exist Q′ and W such that Q (ν m̃2)s!〈W 〉=⇒ Q′ and,
for all R with fv(R) = x, (ν m̃1)(P ′ | R{V/x})< (ν m̃2)(Q′ | R{W/x}).

The second issue is due to inputs: it follows from the fact that we work with an early labelled
transition system (LTS). Thus, an input prefix may observe infinitely many different values.
To alleviate this burden, in characteristic bisimilarity (≈C) we take two (related) steps:

(a) We replace (?) with a clause involving a more tractable process closure; and
(b) We refine inputs to avoid observing infinitely many actions on the same input prefix.

Trigger Processes. To address (a), we exploit session types. We first observe that closure
R{V/x} in (?) is context bisimilar to the process P = (ν s)((λz. z?(x).R) s | s!〈V 〉.0). In fact,
we do have P ≈ R{V/x}, since application and reduction of dual endpoints are deterministic.

Now let us consider process TV below, where t is a fresh name. If TV inputs value
λz. z?(x).R then we can simulate the closure of P :

TV = t?(x).(ν s)(x s | s!〈V 〉.0) and TV
t?〈λz. z?(x).R〉−−−−−−−−−→ P ≈ R{V/x} (1)

Processes such as TV offer a value at a fresh name; this class of trigger processes already
suggests a tractable formulation of bisimilarity without the demanding clause (?). Process
TV in (1) requires a higher-order communication along t. As we explain below, we can give
an alternative trigger process; the key is using elementary inhabitants of session types.



D. Kouzapas, J. A. Pérez and N. Yoshida 3

Characteristic Processes and Values. To address (b), we limit the possible input values
(such as λz. z?(x).R above) by exploiting session types. The key concept is that of charac-
teristic process/value of a type, the simplest term inhabiting that type (Def. 11). This
way, for instance, let S =?(S1→�); !〈S2〉; end be a session type: first input an abstraction,
then output a value of type S2. Then, process u?(x).(u!〈s2〉.0 | x s1) is a characteristic
process for S along u. Given a session type S, we write [(S)]u for its characteristic process
along u (cf. Def. 11). Also, given value type U , then [(U)]c denotes its characteristic value. As
we explain now, we use [(U)]c to limit input transitions.

Refined Input Transitions. To refine input transitions, we need to observe an additional
value, λx. t?(y).(y x), called the trigger value. This is necessary: it turns out that a
characteristic value alone as the observable input is not enough to define a sound bisimulation
(cf. Ex. 12). Intuitively, the trigger value is used to observe/simulate application processes.
Based on the above discussion, we refine the transition rule for input actions (cf. Def. 13).
Roughly, the refined rule is:

P
s?〈V 〉−−−−→ P ′ ∧ (V = m ∨ V ≡ λx. t?(y).(y x) ∨ V ≡ [(U)]c with t fresh) ⇒ P ′

s?〈V 〉7−→ P ′

Note the distinction between standard and refined transitions: s?〈V 〉−−−−→ vs. s?〈V 〉7−→ . Our refined
rule for (higher-order) input admits only names, trigger values, and characteristic values.
Using this rule, we define an alternative, refined LTS on typed processes: we use it to define
characteristic bisimulation (≈C, Def. 14), in which the demanding clause (?) is replaced with
a more tractable output clause based on characteristic trigger processes (cf. (2)).

Characteristic Triggers. Following the same reasoning as (1), we can use an alternative
trigger process, called characteristic trigger process with type U to replace clause (?):

t⇐ V : U def= t?(x).(ν s)([[?(U); end]]s | s!〈V 〉.0) (2)

This is justified because in (1) TV
t?〈[(?(U);end)]c〉7−→ ≈ (ν s)([(?(U); end)]s | s!〈V 〉.0). Thus, unlike

process (1), the characteristic trigger process in (2) does not involve a higher-order commu-
nication on t. In contrast to previous approaches [15, 6] our characteristic trigger processes
do not use recursion or replication. This is key to preserve linearity of session endpoints.

It is also noteworthy that HOπ lacks name matching, which is usually crucial to prove
completeness of bisimilarity—see, e.g., [6]. Instead of matching, we use types: a process
trigger embeds a name into a characteristic process so to observe its session behaviour.

Outline. Next we present the session calculus HOπ. § 3 gives the session type system for HOπ
and states type soundness. § 4 develops characteristic bisimilarity and states our main result:
characteristic and context bisimilarities coincide for well-typed HOπ processes (Thm. 16).
§ 5 concludes with related works.

2 A Higher-Order Session π-Calculus

We introduce the Higher-Order Session π-Calculus (HOπ). HOπ includes both name- and
abstraction-passing, shared and session communication, as well as recursion; it is essentially
the language proposed in [12] (where tractable bisimilarities are not addressed).



4 Characteristic Bisimulations for Higher-Order Session Processes

u,w ::= n | x, y, z n ::= a, b | s, s V,W ::= u | λx. P

P,Q ::= u!〈V 〉.P | u?(x).P | u / l.P | u . {li : Pi}i∈I
| X | µX.P | V W | P | Q | (ν n)P | 0

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3 µX.P ≡ P{µX.P/X}
(ν n)0 ≡ 0 P | (ν n)Q ≡ (ν n)(P | Q) (n /∈ fn(P )) P ≡ Q if P ≡α Q

[App] (λx. P )V −→ P{V/x} [Pass] n!〈V 〉.P | n?(x).Q −→ P | Q{V/x}
[Res] P −→ P ′ ⇒ (ν n)P −→ (ν n)P ′ [Sel] n / lj .Q | n . {li : Pi}i∈I −→ Q | Pj (j ∈ I)
[Par] P −→ P ′ ⇒ P | Q −→ P ′ | Q [Cong] P ≡ Q −→ Q′ ≡ P ′ ⇒ P −→ P ′

Figure 1 HOπ: Syntax and Operational Semantics (Structural Congruence and Reduction).

Syntax. The syntax of HOπ is given in Fig. 1 (upper part). We use a, b, c, . . . (resp. s, s, . . . )
to range over shared (resp. session) names. We use m,n, t, . . . for session or shared names.
We define the dual operation over names n as n with s = s and a = a. Intuitively, names s
and s are dual endpoints while shared names represent non-deterministic points. Variables are
denoted with x, y, z, . . . , and recursive variables are denoted with X,Y . . . . An abstraction
λx. P is a process P with name parameter x. Values V,W include identifiers u, v, . . . and
abstractions λx. P (first- and higher-order values, resp.).

Terms include π-calculus constructs for sending/receiving values V . Process u!〈V 〉.P
denotes the output of V over name u, with continuation P ; process u?(x).P denotes the input
prefix on name u of a value that will substitute variable x in continuation P . Recursion µX.P
binds the recursive variable X in process P . Process V W is the application which substitutes
valuesW on the abstraction V . Typing ensures that V is not a name. Processes u.{li : Pi}i∈I
and u / l.P define labelled choice: given a finite index set I, process u . {li : Pi}i∈I offers a
choice among processes with pairwise distinct labels; process u / l.P selects label l on name
u and then behaves as P . Constructs for inaction 0, parallel composition P1 | P2, and name
restriction (ν n)P are standard. Session name restriction (ν s)P binds endpoints s and s in
P . We use fv(P ) and fn(P ) to denote sets of free variables and names; we assume V in
u!〈V 〉.P does not include free recursive variables. If fv(P ) = ∅, we call P closed.

Semantics. Fig. 1 (lower part) defines the operational semantics of HOπ, given as a reduction
relation that relies on a structural congruence ≡. We assume the expected extension of ≡ to
values V . Reduction is denoted −→; some intuitions on the rules in Fig. 1 follow. Rule [App]
is a value application; rule [Pass] defines a shared interaction at n (with n = n) or a session
interaction; rule [Sel] is the standard rule for labelled choice/selection: given an index set I,
a process selects label lj on name n over a set of labels {li}i∈I offered by a branching on the
dual endpoint n; and other rules are standard. We write −→∗ for a multi-step reduction.

I Example 1 (Hotel Booking Scenario). To illustrate HOπ and its expressive power, we
consider a usecase scenario that adapts the example given by Mostrous and Yoshida [12, 13].
The scenario involves a Client process that wants to book a hotel room. Client narrows
the choice down to two hotels, and requires a quote from the two in order to decide. The
round-trip time (RTT) required for taking quotes from the two hotels is not optimal, so the
client sends mobile processes to both hotels to automatically negotiate and book a room.

We now present two HOπ implementations of this scenario. For convenience, we write



D. Kouzapas, J. A. Pérez and N. Yoshida 5

if e then (P1 ; P2) to denote a conditional process that executes P1 or P2 depending on
boolean expression e (encodable using labelled choice). The first implementation is as follows:

Pxy
def= x!〈room〉.x?(quote).y!〈quote〉.y .

{
accept : x / accept.x!〈credit〉.0,
reject : x / reject.0

}
Client1

def= (ν h1, h2)(s1!〈λx. Pxy{h1/y}〉.s2!〈λx. Pxy{h2/y}〉.0 |
h1?(x).h2?(y).if x ≤ y then (h1 / accept.h2 / reject.0 ; h1 / reject.h2 / accept.0))

Process Client1 sends two abstractions with body Pxy, one to each hotel, using sessions s1
and s2. That is, Pxy is the mobile code: while name x is meant to be instantiated by the
hotel as the negotiating endpoint, name y is used to interact with Client1. Intuitively, process
Pxy (i) sends the room requirements to the hotel; (ii) receives a quote from the hotel; (iii)
sends the quote to Client1; (iv) expects a choice from Client1 whether to accept or reject the
offer; (v) if the choice is accept then it informs the hotel and performs the booking; otherwise,
if the choice is reject then it informs the hotel and ends the session. Client1 instantiates two
copies of Pxy as abstractions on session x. It uses two fresh endpoints h1, h2 to substitute
channel y in Pxy. This enables communication with the mobile code(s). In fact, Client1 uses
the dual endpoints h1 and h2 to receive the negotiation result from the two remote instances
of P and then inform the two processes for the final booking decision.

Notice that the above implementation does not affect the time needed for the whole
protocol to execute, since the two remote processes are used to send/receive data to Client1.

We present now a second implementation in which the two mobile processes are meant to
interact with each other (rather than with the client) to reach to an agreement:

Rx
def= if quote1 ≤ quote2 then (x / accept.x!〈credit〉.0 ; x / reject.0)

Q1
def= x!〈room〉.x?(quote1).y!〈quote1〉.y?(quote2).Rx

Q2
def= x!〈room〉.x?(quote1).y?(quote2).y!〈quote1〉.Rx

Client2
def= (ν h)(s1!〈λx.Q1{h/y}〉.s2!〈λx.Q2{h/y}〉.0)

Processes Q1 and Q2 negotiate a quote from the hotel in the same fashion as process Pxy
in Client1. The key difference with respect to Pxy is that y is used for interaction between
process Q1 and Q2. Both processes send their quotes to each other and then internally follow
the same logic to reach to a decision. Process Client2 then uses sessions s1 and s2 to send
the two instances of Q1 and Q2 to the two hotels, using them as abstractions on name x. It
further substitutes the two endpoints of a fresh channel h to channels y respectively, in order
for the two instances to communicate with each other.

The differences between Client1 and Client2 can be seen in the sequence diagrams of Fig. 2.
We will assign session types to these client processes in Example 4. Later on, we will show
that they are behaviourally equivalent using characteristic bisimilarity; see Prop. 4.3.

3 Types and Typing

We define a session typing system for HOπ and state its main properties. Our system distills
the key features of [12, 13]. We give selected definitions; see [1] for a full description.

Types. The syntax of types of HOπ is given below:

(value) U ::= C | L

(name) C ::= S | 〈S〉 | 〈L〉
(abstr) L ::= U→� | U(�

(session) S ::= !〈U〉;S | ?(U);S | end

| ⊕{li : Si}i∈I | µt.S | t
| &{li : Si}i∈I



6 Characteristic Bisimulations for Higher-Order Session Processes

Client1 Hotel1 Hotel2

Code1 Code2

λx. Pxy

λx. Pxy

room
quote

room
quote

quote
quote

⊕

accept

accept

credit
reject

reject

⊕

accept
accept

credit

reject
reject

Client2 Hotel1 Hotel2

Code1 Code2

λx.Q1

λx.Q2

room
quote

room
quote

quote
quote

⊕

accept

credit
reject ⊕

accept

credit
reject

Figure 2 Sequence diagrams for Client1 and Client2 as in Example 1.

Value type U includes the first-order types C and the higher-order types L. Session types
are denoted with S and shared types with 〈S〉 and 〈L〉. Types U→� and U(� denote shared
and linear higher-order types, respectively. As for session types, the output type !〈U〉;S first
sends a value of type U and then follows the type described by S. Dually, ?(U);S denotes
an input type. The branching type &{li : Si}i∈I and the selection type ⊕{li : Si}i∈I define
the labelled choice. We assume the recursive type µt.S is guarded, i.e., µt.t is not allowed.
Type end is the termination type.

Following [2], we write S1 dual S2 if S1 is the dual of S2. Intuitively, duality converts !
into ? and ⊕ into & (and viceversa).

Typing Environments and Judgements. Typing environments are defined below:

Γ ::= ∅ | Γ · x : U→� | Γ · u : 〈S〉 | Γ · u : 〈L〉 | Γ ·X : ∆
Λ ::= ∅ | Λ · x : U(� ∆ ::= ∅ | ∆ · u : S

Γ maps variables and shared names to value types, and recursive variables to session
environments; it admits weakening, contraction, and exchange principles. Λ maps variables
to linear higher-order types, and ∆ maps session names to session types. Both Λ and ∆ are
only subject to exchange. The domains of Γ,Λ and ∆ are assumed pairwise distinct. ∆1 ·∆2
is the disjoint union of ∆1 and ∆2. We define typing judgements for values and processes:

Γ; Λ; ∆ ` V . U Γ; Λ; ∆ ` P . �

The first judgement says that under environments Γ; Λ; ∆ value V has type U ; the second
judgement says that under environments Γ; Λ; ∆ process P has the process type �. The type
soundness result for HOπ (Thm. 3) relies on two auxiliary notions on session environments:

I Definition 2 (Session Environments: Balanced/Reduction). Let ∆ be a session environment.
A session environment ∆ is balanced if whenever s : S1, s : S2 ∈ ∆ then S1 dual S2.
We define the reduction relation −→ on session environments as:

∆ · s :!〈U〉;S1 · s :?(U);S2 −→ ∆ · s : S1 · s : S2

∆ · s : ⊕{li : Si}i∈I · s : &{li : S′i}i∈I −→ ∆ · s : Sk · s : S′k (k ∈ I)

We rely on a typing system that is similar to the one developed in [12, 13]. We state the
type soundness result for HOπ processes; see [1] for details of the associated proofs.



D. Kouzapas, J. A. Pérez and N. Yoshida 7

I Theorem 3 (Type Soundness). Suppose Γ; ∅; ∆ ` P . � with ∆ balanced. Then P −→ P ′

implies Γ; ∅; ∆′ ` P ′ . � and ∆ = ∆′ or ∆ −→ ∆′ with ∆′ balanced.

I Example 4 (Hotel Booking Revisited). Assume S =!〈quote〉; &{accept : end, reject : end}
and U =!〈room〉; ?(quote);⊕{accept :!〈credit〉; end, reject : end}. We give types to the client
processes of Ex. 1:

∅; ∅; y : S ` λx. Pxy . U(�
∅; ∅; s1 :!〈U(�〉; end · s2 :!〈U(�〉; end ` Client1 . �

∅; ∅; y :!〈quote〉; ?(quote); end ` λx.Qi . U(� (i = 1, 2)
∅; ∅; s1 :!〈U(�〉; end · s2 :!〈U(�〉; end ` Client2 . �

4 Characteristic Session Bisimulation

We develop a theory for observational equivalence over session typed HOπ processes that
follows the principles laid in our previous works [9, 8]. We introduce characteristic bisimulation
(Def. 14) and prove that it coincides with reduction-closed, barbed congruence (Thm. 16).

We begin by defining an (early) labelled transition system (LTS) on untyped pro-
cesses (§ 4.1). Then, using the environmental transition semantics (§ 4.2), we define a
typed LTS to formalise how a typed process interacts with a typed observer.

4.1 Labelled Transition System for Processes
Interaction is defined on action labels `:

` ::= τ | n?〈V 〉 | (ν m̃)n!〈V 〉 | n⊕ l | n&l

Label τ defines internal actions. Action (ν m̃)n!〈V 〉 denotes the sending of value V over
channel n with a possible empty set of restricted names m̃ (we may write n!〈V 〉 when m̃ is
empty). Dually, the action for value reception is n?〈V 〉. Actions for select and branch on
a label l are denoted n ⊕ l and n&l, resp. We write fn(`) and bn(`) to denote the sets of
free/bound names in `, resp. Given ` 6= τ , we write subj(`) to denote the subject of `.

Dual actions occur on subjects that are dual between them and carry the same object;
thus, output is dual to input and selection is dual to branching. Formally, duality on actions
is the symmetric relation � that satisfies: (i) n⊕ l � n&l and (ii) (ν m̃)n!〈V 〉 � n?〈V 〉.

The LTS over untyped processes is given in Fig. 3. We write P1
`−→ P2 with the usual

meaning. The rules are standard [9, 8]. A process with an output prefix can interact with the
environment with an output action that carries a value V (rule 〈Snd〉). Dually, in rule 〈Rv〉
a receiver process can observe an input of an arbitrary value V . Select and branch processes
observe the select and branch actions in rules 〈Sel〉 and 〈Bra〉, resp. Rule 〈Res〉 closes the
LTS under restriction if the restricted name does not occur free in the observable action. If
a restricted name occurs free in the carried value of an output action, the process performs
scope opening (rule 〈New〉). Rule 〈Rec〉 handles recursion unfolding. Rule 〈Tau〉 states that
two parallel processes which perform dual actions can synchronise by an internal transition.
Rules 〈ParL〉/〈ParR〉 and 〈Alpha〉 close the LTS under parallel composition and α-renaming.

4.2 Environmental Labelled Transition System
Fig. 4 defines a labelled transition relation between a triple of environments, denoted
(Γ1,Λ1,∆1) `−→ (Γ2,Λ2,∆2). It extends the LTSs in [9, 8] to higher-order sessions. Notice
that due to weakening we have (Γ′,Λ1,∆1) `7−→ (Γ′,Λ2,∆2) if (Γ,Λ1,∆1) `7−→ (Γ′,Λ2,∆2).



8 Characteristic Bisimulations for Higher-Order Session Processes

〈App〉
(λx. P )V τ−→ P{V/x}

〈Snd〉
n!〈V 〉.P n!〈V 〉−−−→ P

〈Rv〉
n?(x).P n?〈V 〉−−−−→ P{V/x}

〈Sel〉
s / l.P

s⊕l−−→ P
〈Bra〉

s . {li : Pi}i∈I
s&lj−−−→ Pj (j ∈ I)

〈Alpha〉

P ≡α Q Q
`−→ P ′

P
`−→ P ′

〈Res〉

P
`−→ P ′ n /∈ fn(`)

(ν n)P `−→ (ν n)P ′

〈New〉

P
(ν m̃)n!〈V 〉−−−−−−−→ P ′ m ∈ fn(V )

(ν m)P (ν m·m̃′)n!〈V 〉−−−−−−−−−→ P ′

〈ParL〉

P
`−→ P ′ bn(`) ∩ fn(Q) = ∅

P | Q `−→ P ′ | Q

〈Tau〉

P
`1−→ P ′ Q

`2−→ Q′ `1 � `2

P | Q τ−→ (ν bn(`1) ∪ bn(`2))(P ′ | Q′)

〈Rec〉

P{µX.P/X} `−→ P ′

µX.P
`−→ P ′

Figure 3 The Untyped LTS for HOπ processes. We omit rule 〈ParR〉.

Input Actions are defined by rules [SRv] and [ShRv]. In rule [SRv] the type of value V and
the type of the object associated to the session type on s should coincide. The resulting type
tuple must contain the environments associated to V . The dual endpoint s cannot be present
in the session environment: if it were present the only possible communication would be the
interaction between the two endpoints (cf. rule [Tau]). Rule [ShRv] is for shared names and
follows similar principles.

Output Actions are defined by rules [SSnd] and [ShSnd]. Rule [SSnd] states the conditions
for observing action (ν m̃)s!〈V 〉 on a type tuple (Γ,Λ,∆ · s : S). The session environment ∆
with s : S should include the session environment of the sent value V , excluding the session
environments of names mj in m̃ which restrict the scope of value V . Analogously, the linear
variable environment Λ′ of V should be included in Λ. Scope extrusion of session names in
m̃ requires that the dual endpoints of m̃ should appear in the resulting session environment.
Similarly for shared names in m̃ that are extruded. All free values used for typing V are
subtracted from the resulting type tuple. The prefix of session s is consumed by the action.
Rule [ShSnd] is for output actions on shared names: the name must be typed with 〈U〉;
conditions on V are identical to those on rule [SSnd].

Other Actions Rules [Sel] and [Bra] describe actions for select and branch. Rule [Tau]
defines internal transitions: it keeps the session environment unchanged or reduces it (Def. 2).

I Example 5. Consider environment (Γ; ∅; s :!〈!〈S〉; end(�〉; end · s′ : S) and typed value

Γ; ∅; s′ : S ·m :?(end); end ` V . !〈S〉; end(� with V = λx. x!〈s′〉.m?(z).0

We illustrate rule [SSnd] in Fig. 4. Let ∆′1 = {m :!〈end〉; end} and U =!〈S〉; end(�. Then
we can derive:

(Γ; ∅; s :!〈!〈S〉; end(�〉; end · s′ : S) (ν m)s!〈V 〉−−−−−−−→ (Γ; ∅; s : end)

Our typed LTS combines the LTSs in Fig. 3 and Fig. 4.

I Definition 6 (Typed Transition System). A typed transition relation is a typed relation
Γ; ∆1 ` P1

`−→ ∆2 ` P2 where (1) P1
`−→ P2; (2) (Γ, ∅,∆1) `−→ (Γ, ∅,∆2) with Γ; ∅; ∆i ` Pi . �



D. Kouzapas, J. A. Pérez and N. Yoshida 9

[SRv]
s /∈ dom(∆) Γ; Λ′; ∆′ ` V . U

(Γ; Λ; ∆ · s :?(U);S) s?〈V 〉−−−−→ (Γ; Λ · Λ′; ∆ ·∆′ · s : S)

[ShRv]
Γ; ∅; ∅ ` a . 〈U〉 Γ; Λ′; ∆′ ` V . U

(Γ; Λ; ∆) a?〈V 〉−−−−→ (Γ; Λ · Λ′; ∆ ·∆′)

[SSnd]

Γ · Γ′; Λ′; ∆′ ` V . U Γ′; ∅; ∆j ` mj . Uj s /∈ dom(∆)
∆′\ ∪j ∆j ⊆ (∆ · s : S) Γ′; ∅; ∆′j ` mj . U

′
j Λ′ ⊆ Λ

(Γ; Λ; ∆ · s :!〈U〉;S) (ν m̃)s!〈V 〉−−−−−−−→ (Γ · Γ′; Λ\Λ′; (∆ · s : S · ∪j∆′j)\∆′)

[ShSnd]

Γ · Γ′; Λ′; ∆′ ` V . U Γ′; ∅; ∆j ` mj . Uj Γ; ∅; ∅ ` a . 〈U〉
∆′\ ∪j ∆j ⊆ ∆ Γ′; ∅; ∆′j ` mj . U

′
j Λ′ ⊆ Λ

(Γ; Λ; ∆) (ν m̃)a!〈V 〉−−−−−−−→ (Γ · Γ′; Λ\Λ′; (∆ · ∪j∆′j)\∆′)

[Sel]
s /∈ dom(∆) j ∈ I

(Γ; Λ; ∆ · s : ⊕{li : Si}i∈I)
s⊕lj−−−→ (Γ; Λ; ∆ · s : Sj)

[Bra]
s /∈ dom(∆) j ∈ I

(Γ; Λ; ∆ · s : &{li : Ti}i∈I)
s&lj−−−→ (Γ; Λ; ∆ · s : Sj)

[Tau]
∆1 −→ ∆2 ∨∆1 = ∆2

(Γ; Λ; ∆1) τ−→ (Γ; Λ; ∆2)

Figure 4 Labelled Transition System for Typed Environments.

(i = 1, 2). We extend to =⇒ and
ˆ̀

=⇒ where we write =⇒ for the reflexive and transitive
closure of −→, `=⇒ for the transitions =⇒ `−→=⇒, and

ˆ̀
=⇒ for `=⇒ if ` 6= τ otherwise =⇒.

4.3 Reduction-Closed, Barbed Congruence (∼=)
We now define typed relations and contextual equivalence (i.e., barbed congruence). We first
define confluence over session environments ∆: we denote ∆1 
 ∆2 if there exists ∆ such
that ∆1 −→∗ ∆ and ∆2 −→∗ ∆ (here we write −→∗ for the multi-step reduction in Def. 2).

I Definition 7. We say that Γ; ∅; ∆1 ` P1 . � < Γ; ∅; ∆2 ` P2 . � is a typed relation whenever
P1 and P2 are closed; ∆1 and ∆2 are balanced; and ∆1 
 ∆2. We write Γ; ∆1 ` P1 < ∆2 ` P2
for the typed relation Γ; ∅; ∆1 ` P1 . � < Γ; ∅; ∆2 ` P2 . �.

Typed relations relate only closed terms whose session environments are balanced and
confluent. Next we define barbs [11] with respect to types.

IDefinition 8 (Barbs). Let P be a closed process. We write P ↓n if P ≡ (ν m̃)(n!〈V 〉.P2 | P3),
with n /∈ m̃. Also: P ⇓n if P −→∗↓n. Similarly, we write Γ; ∅; ∆ ` P ↓n if Γ; ∅; ∆ ` P . �
with P ↓n and n /∈ ∆. Also: Γ; ∅; ∆ ` P ⇓n if P −→∗ P ′ and Γ; ∅; ∆′ ` P ′ ↓n.

A barb ↓n is an observable on an output prefix with subject n; a weak barb ⇓n is a barb
after a number of reduction steps. Typed barbs ↓n (resp. ⇓n) occur on typed processes
Γ; ∅; ∆ ` P . �. When n is a session name we require that its dual endpoint n is not in ∆.

To define a congruence relation, we introduce the family C of contexts:

C ::= − | u!〈V 〉.C | u?(x).C | u!〈λx.C〉.P | (ν n)C(λx.C)u | µX.C
| C | P | P | C | u / l.C | u . {l1 : P1, · · · , li : C, · · · , ln : Pn}

Notation C[P ] denotes the result of substituting the hole − in C with process P .
The first behavioural relation we define is reduction-closed, barbed congruence [5].



10 Characteristic Bisimulations for Higher-Order Session Processes

I Definition 9 (Reduction-Closed, Barbed Congruence). Typed relation Γ; ∆1 ` P1 < ∆2 ` P2
is a reduction-closed, barbed congruence whenever:

1) If P1 −→ P ′1 then there exist P ′2,∆′2 such that P2 −→∗ P ′2 and Γ; ∆′1 ` P ′1 < ∆′2 ` P ′2;
2) If Γ; ∆1 ` P1 ↓n then Γ; ∆2 ` P2 ⇓n;
3) For all C, ∆′′1 , ∆′′2 we have: Γ; ∆′′1 ` C[P1] < ∆′′2 ` C[P2];
4) The symmetric cases of 1 and 2.
The largest such relation is denoted with ∼=.

4.4 Context Bisimilarity (≈)
Following Sangiorgi [16], we now define the standard (weak) context bisimilarity.

I Definition 10 (Context Bisimilarity). A typed relation < is a context bisimulation if for all
Γ; ∆1 ` P1 < ∆2 ` Q1,

1) Whenever Γ; ∆1 ` P1
(ν m̃1)n!〈V1〉−−−−−−−−→ ∆′1 ` P2, there exist Q2, V2, ∆′2 such that

Γ; ∆2 ` Q1
(ν m̃2)n!〈V2〉=⇒ ∆′2 ` Q2 and for all R with fv(R) = x:

Γ; ∆′′1 ` (ν m̃1)(P2 | R{V1/x}) < ∆′′2 ` (ν m̃2)(Q2 | R{V2/x});

2) For all Γ; ∆1 ` P1
`−→ ∆′1 ` P2 such that ` is not an output, there exist Q2, ∆′2 such that

Γ; ∆2 ` Q1
ˆ̀

=⇒ ∆′2 ` Q2 and Γ; ∆′1 ` P2 < ∆′2 ` Q2; and
3) The symmetric cases of 1 and 2.
The largest such bisimulation is called context bisimilarity and denoted by ≈.

As hinted at in the Introduction, in the general case, context bisimilarity is hard to compute.
Below we introduce characteristic bisimulations, which are meant to be a tractable proof
technique over session typed processes with higher-order communication.

4.5 Characteristic Bisimilarity (≈C)
We formalise the ideas given in the introduction. We define characteristic processes/values:

I Definition 11 (Characteristic Process and Values). Let u and U be a name and a type,
respectively. Fig. 5 defines the characteristic process [(U)]u and the characteristic value [(U)]c.

I Proposition 4.1. Let S be a session type. Then Γ; ∅; ∆ · s : S ` [(S)]s . �. Also, let 〈U〉 be
a first-order (channel) type. Then Γ · a : 〈U〉; ∅; ∆ ` [(〈U〉)]a . �.

The following example motivates the refined LTS explained in the introduction.

I Example 12 (The Need for Refined Typed LTS). We show that observing a characteristic
value input alone is not enough to define a sound bisimulation closure. Consider processes

P1 = s?(x).(x s1 | x s2) P2 = s?(x).(x s1 | s2?(y).0) (3)

where Γ; ∅; ∆ ·s :?((?(C); end)→�); end ` Pi .� (i ∈ {1, 2}). If P1 and P2 input and substitute
over x the characteristic value [((?(C); end)→�)]c =λx. x?(y).0, then they evolve into:

Γ; ∅; ∆ ` s1?(y).0 | s2?(y).0 . �



D. Kouzapas, J. A. Pérez and N. Yoshida 11

[(?(U);S)]u def= u?(x).([(S)]u | [(U)]x) [(!〈U〉;S)]u def= u!〈[(U)]c〉.[(S)]u

[(⊕{l : S})]u def= u / l.[(S)]u [(&{li : Si}i∈I)]u
def= u . {li : [(Si)]u}i∈I

[(t)]u def= Xt [(µt.S)]u def= µXt.[(S)]u

[(end)]u def= 0 [(〈S〉)]u def= u!〈[(S)]c〉.0
[(〈L〉)]u def= u!〈[(L)]c〉.0 [(U→�)]u def= [(U(�)]u def= u [(U)]c

[(S)]c
def= s (s fresh) [(〈S〉)]c

def= [(〈L〉)]c
def= a (a fresh) [(U→�)]c

def= [(U(�)]c
def= λx. [(U)]x

Figure 5 Characteristic Processes (top) and Values (bottom) as in Def. 11. For [(S)]c, [(〈S〉)]c, and
[(〈L〉)]c freshness is assumed with respect to any names in their contexts.

therefore becoming context bisimilar. However, the processes in (3) are clearly not context
bisimilar: many input actions may be used to distinguish them. For example, if P1 and P2
input λx. (ν s)(a!〈s〉.x?(y).0) with Γ; ∅; ∆ ` s . end, then their derivatives are not bisimilar.

Observing only the characteristic value results in an under-discriminating bisimulation.
However, if a trigger value λx. t?(y).(y x) is received on s, we can distinguish P1, P2 in (3):

P1
`=⇒ t?(x).(x s1) | t?(x).(x s2) and P2

`=⇒ t?(x).(x s1) | s2?(y).0

with ` = s?〈λx. t?(y).(y x)〉. One question is whether the trigger value is enough to distinguish
two processes (hence no need of characteristic values). This is not the case: the trigger value
alone also results in an under-discriminating bisimulation relation. In fact, the trigger value
can be observed on any input prefix of any type. For example, consider processes

(ν s)(n?(x).(x s) | s!〈λx.R1〉.0) and (ν s)(n?(x).(x s) | s!〈λx.R2〉.0) (4)

If these processes input the trigger value, we obtain:

(ν s)(t?(x).(x s) | s!〈λx.R1〉.0) and (ν s)(t?(x).(x s) | s!〈λx.R2〉.0)

thus we can easily derive a bisimulation closure if we assume a bisimulation definition
that allows only trigger value input. But if processes in (4) input the characteristic value
λz. z?(x).(xm), then they would become, under appropriate Γ and ∆:

Γ; ∅; ∆ ` (ν s)(s?(x).(xm) | s!〈λx.Ri〉.0) ≈ ∆ ` Ri{m/x} (i = 1, 2)

which are not bisimilar if R1{m/x} 6≈ R2{m/x}.

As explained in the introduction, we define the refined typed LTS by considering a transition
rule for input in which admitted values are trigger or characteristic values or names:

I Definition 13 (Refined Typed Labelled Transition Relation). We define the environment
transition rule for input actions using the input rules in Fig. 4:

[RRcv] (Γ1; Λ1; ∆1) n?〈V 〉−−−−→(Γ2; Λ2; ∆2) V = m ∨ V ≡ [(U)]c ∨ V ≡ λx. t?(y).(y x) t fresh

(Γ1; Λ1; ∆1) n?〈V 〉7−→ (Γ2; Λ2; ∆2)

Rule [RRcv] is defined on top of rules [SRv] and [ShRv] in Fig. 4. We use the non-receiving
rules in Fig. 4 together with rule [RRcv] to define Γ; ∆1 ` P1

`7−→ ∆2 ` P2 as in Def. 6.

Notice that Γ; ∆1 ` P1
`7−→ ∆2 ` P2 (refined transition) implies Γ; ∆1 ` P1

`−→ ∆2 ` P2

(ordinary transition). Below we sometimes write (ν m̃)n!〈V :U〉7−→ when the type of V is U .



12 Characteristic Bisimulations for Higher-Order Session Processes

Characteristic Bisimulations. We define characteristic bisimulations, a tractable bisimula-
tion for HOπ. As hinted at above, their definition uses trigger processes (cf. (2)):

t⇐ V : U def= t?(x).(ν s)([[?(U); end]]s | s!〈V 〉.0)

IDefinition 14 (Characteristic Bisimilarity). A typed relation < is a characteristic bisimulation
if for all Γ; ∆1 ` P1 < ∆2 ` Q1,

1) Whenever Γ; ∆1 ` P1
(ν m̃1)n!〈V1:U〉7−→ ∆′1 ` P2 then there exist Q2, V2, ∆′2 such that

Γ; ∆2 ` Q1
(ν m̃2)n!〈V2:U〉

Z=⇒ ∆′2 ` Q2 and, for fresh t,
Γ; ∆′′1 ` (ν m̃1)(P2 | t⇐ V1 : U1)<∆′′2 ` (ν m̃2)(Q2 | t⇐ V2 : U2)

2) For all Γ; ∆1 ` P1
`7−→ ∆′1 ` P2 such that ` is not an output, there exist Q2, ∆′2 such that

Γ; ∆2 ` Q1
ˆ̀

Z=⇒ ∆′2 ` Q2 and Γ; ∆′1 ` P2 < ∆′2 ` Q2; and
3) The symmetric cases of 1 and 2.
The largest such bisimulation is called characteristic bisimilarity and denoted by ≈C.

Internal transitions associated to session interactions or β-reductions are deterministic.

I Definition 15 (Deterministic Transition). Let Γ; ∅; ∆ ` P . � be a balanced HOπ process.
Transition Γ; ∆ ` P τ7−→ ∆′ ` P ′ is called session transition whenever the transition P τ−→ P ′

is derived using rule 〈Tau〉 (where subj(`1) and subj(`2) in the premise are dual endpoints),
possibly followed by uses of 〈Alpha〉, 〈Res〉, 〈Rec〉, or 〈ParL〉/〈ParR〉.

Transition Γ; ∆ ` P τ7−→ ∆′ ` P ′ is called β-transition whenever the transition P τ−→ P ′ is
derived using rule 〈App〉, possibly followed by uses of 〈Alpha〉, 〈Res〉, 〈Rec〉, or 〈ParL〉/〈ParR〉.
Γ; ∆ ` P τd7−→ ∆′ ` P ′ denotes either a session transition or a β-transition.

I Proposition 4.2 (τ -inertness). Let Γ; ∅; ∆ ` P . � be a balanced HOπ process. Then
Γ; ∆ ` P τd7−→ ∆′ ` P ′ implies Γ; ∆ ` P ≈C ∆′ ` P ′.

See [1] for associated proofs. Our main theorem follows: it allows us to use ≈C as a tractable
reasoning technique for higher-order processes with sessions.

I Theorem 16 (Coincidence). ∼=, ≈, and ≈C coincide in HOπ.

Proof (Sketch). We use higher-order bisimilarity (≈H), an auxiliary equivalence that is
defined as ≈C but by using trigger processes with higher-order communication (cf. (1)). We
first show that ≈C and ≈H coincide by using Prop. 4.2; then, we show that ≈H coincides
with ≈ and ∼=. A key result is a substitution lemma which simplifies reasoning for ≈H by
exploiting characteristic processes/values. See [1] for full details. J

Now we prove that processes Client1 and Client2 in Example 1 are behaviourally equivalent.

I Proposition 4.3. Let S =!〈room〉; ?(quote);⊕{accept :!〈credit〉; end, reject : end} and ∆ =
s1 :!〈S(�〉; end · s2 :!〈S(�〉; end. Then ∅; ∆ ` Client1 ≈C ∆ ` Client2.

Proof (Sketch). We show a bisimulation closure by following transitions on each Client.
See [1] for details. First, the characteristic process is given as: [(?(S(�); end)]s = s?(x).(x k).
We show that the clients can simulate each other on the first two output transitions, that



D. Kouzapas, J. A. Pérez and N. Yoshida 13

also generate the trigger processes:

∅; ∅; ∆ ` Client1
s1!〈λx. Pxy{h1/y}〉−−−−−−−−−−−−→ s2!〈λx. Pxy{h2/y}〉−−−−−−−−−−−−→

∅; ∅; k1 : S · k2 : S ` (ν h1, h2)(h1?(x).h2?(y).
if x ≤ y then (h1 / accept.h2 / reject.0;h1 / reject.h2 / accept.0)
| t1 ⇐ λx. Pxy{h1/y} : S(� | t2 ⇐ λx. Pxy{h2/y} : S(�)

∅; ∅; ∆ ` Client2
s1!〈λx.Q1{h/y}〉−−−−−−−−−−−→ s2!〈λx.Q2{h/y}〉−−−−−−−−−−−→

∅; ∅; k1 : S · k2 : S ` (ν h)(t1 ⇐ λx.Q1{h/y} : S(� | t2 ⇐ λx.Q2{h/y} : S(�)

After these transitions, we can analyse that the resulting processes are behaviourally equivalent
since they have the same visible transitions; the rest is internal deterministic transitions. J

5 Related Work

As in this work, the bisimulations in [9, 8] (binary and multiparty sessions, respectively)
are defined and characterised on an LTS which combines an untyped LTS for processes
and an LTS on session type environments. The work [14] studies typed equivalences for a
theory of binary sessions based on linear logic, without shared names. None of [9, 8, 14]
consider session processes with higher-order communication, as we do here. Our results have
important consequences in the relative expressivity of higher-order sessions; see [1] for details.

Our approach to typed equivalences builds upon techniques developed by Sangiorgi [15, 16]
and Jeffrey and Rathke [6]. As we have discussed, although contextual bisimilarity has a
satisfactory discriminative power, its use is hindered by the universal quantification on output.
To deal with this, Sangiorgi proposes normal bisimilarity, a tractable equivalence without
universal quantification. To prove that context and normal bisimilarities coincide, [15] uses
triggered processes. Triggered bisimulation is also defined on first-order labels where the
context bisimulation is restricted to arbitrary trigger substitution. This characterisation of
context bisimilarity was refined in [6] for calculi with recursive types, not addressed in [16, 15]
and quite relevant in session-based concurrency. The bisimulation in [6] is based on an
LTS extended with trigger meta-notation. As in [16, 15], the LTS in [6] observes first-order
triggered values instead of higher-order values, offering a more direct characterisation of
contextual equivalence and lifting the restriction to finite types. We briefly contrast the
approach in [6] and ours based on characteristic bisimilarity (≈C):

The LTS in [6] is enriched with extra labels for triggers; an output action transition
emits a trigger and introduces a parallel replicated trigger. Our approach retains usual
labels/transitions; in case of output, ≈C introduces a parallel non-replicated trigger.
Higher-order input in [6] involves the input of a trigger which reduces after substitution.
Rather than a trigger name, ≈C decrees the input of a trigger value λz. t?(x).(x z).
Unlike [6], ≈C treats first- and higher-order values uniformly. As the typed LTS distin-
guishes linear and shared values, replicated closures are used only for shared values.
In [6] name matching is crucial to prove completeness of bisimilarity. In our case, HOπ
lacks name matching and we use session types: a characteristic value inhabiting a type
enables the simplest form of interactions with the environment.

We have compared our approach to that in [6] using a representative example. We con-
sidered the transitions and resulting processes involved in checking bisimilarity of process
n!〈λx. x (λy. y!〈m〉.0)〉.0 with itself. This comparison, detailed in [1], reveals that our ap-
proach requires less visible transitions and replicated processes. Therefore, linearity informa-
tion does simplify analyses, as it enables simpler witnesses in coinductive proofs.



14 Characteristic Bisimulations for Higher-Order Session Processes

Environmental bisimulations [17] use a higher-order LTS to define a bisimulation that
stores the observer’s knowledge; hence, observed actions are based on this knowledge at any
given time. This approach is enhanced in [7] with a mapping from constants to higher-order
values. This allows to observe first-order values instead of higher-order values. It differs
from [16, 6] in that the mapping between higher- and first-order values is no longer implicit.

Acknowledgments This work has been partially sponsored by the The Doctoral Prize
Fellowship, EPSRC EP/K011715/1, EPSRC EP/K034413/1, and EPSRC EP/L00058X/1,
EU project FP7-612985 UpScale, and EU COST Action IC1201 BETTY. Pérez is also
affiliated to the NOVA Laboratory for Computer Science and Informatics (NOVA LINCS),
Universidade Nova de Lisboa, Portugal.

References
1 Full version of this paper. Technical report, 2015. http://arxiv.org/abs/1502.02585.
2 Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouzapas. On duality

relations for session types. In TGC 2014, volume 8902 of LNCS, pages 51–66. Springer,
2014.

3 Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous
session types. J. Funct. Program., 20(1):19–50, 2010.

4 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
disciplines for structured communication-based programming. In ESOP’98, volume 1381
of LNCS, pages 22–138, 1998.

5 Kohei Honda and Nobuko Yoshida. On reduction-based process semantics. TCS,
151(2):437–486, 1995.

6 Alan Jeffrey and Julian Rathke. Contextual equivalence for higher-order pi-calculus revis-
ited. LMCS, 1(1), 2005.

7 Vasileios Koutavas and Matthew Hennessy. First-order reasoning for higher-order concur-
rency. Computer Languages, Systems & Structures, 38(3):242–277, 2012.

8 Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. LMCS,
10(4), 2014.

9 Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda. On asynchronous
eventful session semantics. MSCS, 2015.

10 Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt. On the expressiveness
and decidability of higher-order process calculi. Inf. Comput., 209(2):198–226, 2011.

11 Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor, 19th ICALP,
volume 623 of LNCS, pages 685–695. Springer, 1992.

12 Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for higher-order mobile
processes. In TLCA, volume 4583 of LNCS, pages 321–335. Springer, 2007.

13 Dimitris Mostrous and Nobuko Yoshida. Session typing and asynchronous subtyping for
the higher-order π-calculus. Inf. Comput., 241:227–263, 2015.

14 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
and observational equivalences for session-based concurrency. Inf. Comput., 239:254–302,
2014.

15 Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher Order
Paradigms. PhD thesis, University of Edinburgh, 1992.

16 Davide Sangiorgi. Bisimulation for Higher-Order Process Calculi. Inf. & Comp., 131(2):141–
178, 1996.

17 Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations for
higher-order languages. In LICS, pages 293–302. IEEE, 2007.

http://arxiv.org/abs/1502.02585

	Introduction
	A Higher-Order Session Calculus
	Types and Typing
	Characteristic Session Bisimulation
	Labelled Transition System for Processes
	Environmental Labelled Transition System
	Reduction-Closed, Barbed Congruence
	Context Bisimilarity
	Characteristic Bisimilarity

	Related Work

