
Compiling First-Order Functions to
Session-Typed Parallel Code

David Castro-Perez
Imperial College London

London, UK

d.castro-perez@imperial.ac.uk

Nobuko Yoshida
Imperial College London

London, UK

n.yoshida@imperial.ac.uk

Abstract

Building correct and efficient message-passing parallel pro-

grams still poses many challenges. The incorrect use of

message-passing constructs can introduce deadlocks, and

a bad task decomposition will not achieve good speedups.

Current approaches focus either on correctness or efficiency,

but limited work has been done on ensuring both. In this

paper, we propose a new parallel programming framework,

PAlg, which is a first-order language with participant anno-

tations that ensures deadlock-freedom by construction. PAlg

programs are coupled with an abstraction of their communi-

cation structure, a global type from the theory of multiparty

session types (MPST). This global type serves as an output

for the programmer to assess the efficiency of their achieved

parallelisation. PAlg is implemented as an EDSL in Haskell,

from which we: 1. compile to low-level message-passing

C code; 2. compile to sequential C code, or interpret as se-

quential Haskell functions; and, 3. infer the communication

protocol followed by the compiled message-passing program.

We use the properties of global types to perform message

reordering optimisations to the compiled C code. We prove

the extensional equivalence of the compiled code, as well

as protocol compliance. We achieve linear speedups on a

shared-memory 12-core machine, and a speedup of 16 on a

2-node, 24-core NUMA.

CCSConcepts ·Computingmethodologies→Concur-

rent programming languages; Parallel programming

languages; · Software and its engineering → Parallel

programming languages; Source code generation.

Keywords multiparty session types, parallelism, arrows

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CC ’20, February 22ś23, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7120-9/20/02. . . $15.00

https://doi.org/10.1145/3377555.3377889

ACM Reference Format:

David Castro-Perez and Nobuko Yoshida. 2020. Compiling First-

Order Functions to Session-Typed Parallel Code. In Proceedings of

the 29th International Conference on Compiler Construction (CC ’20),

February 22ś23, 2020, San Diego, CA, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3377555.3377889

1 Introduction

Structured parallel programming is a technique for parallel

programming that requires the use of high-level parallel

constructs, rather than low-level send/receive operations

[51; 61]. A popular approach to structured parallelism is

the use of algorithmic skeletons [20; 35], i.e. higher-order

functions that implement common patterns of parallelism.

Programming in terms of high-level constructs rather than

low-level send/receive operations is a successful way to avoid

common concurrency bugs by construction [37]. One limita-

tion of structured parallelism is that it restricts programmers

to use a set of fixed, predefined parallel constructs. This is

problematic if a function does not match one of the avail-

able parallel constructs, or if a program needs to be ported

to an architecture where some of the skeletons have not

been implemented. Unlike previous structured parallelism

approaches, we do not require the existence of an underlying

library or implementation of common patterns of parallelism.

In this paper, we propose a structured parallel program-

ming framework whose front-end language is a first-order

language based on the algebra of programming [2; 3]. The

algebra of programming is a mathematical framework that

codifies the basic laws of algorithmics, and it has been suc-

cessfully applied to e.g. program calculation techniques [4],

datatype-generic programming [34], and parallel computing

[65]. Our framework produces message-passing parallel code

from program specifications written in the front-end lan-

guage. The programmer controls how the program is paral-

lelised by annotating the code with participant identifiers. To

make sure that the achieved parallelisation is satisfactory,

we produce as an output a formal description of the com-

munication protocol achieved by a particular parallelisation.

This formal description is a global type, introduced by Honda

et al. [41] in the theory of Multiparty Session Types (MPST).

We prove that the parallelisation, and any optimisation per-

formed to the low-level code respects the inferred protocol.

The properties of global types justify the message reordering

143

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3377555.3377889
https://doi.org/10.1145/3377555.3377889

CC ’20, February 22ś23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

done by our back-end. In particular, we permute send and

receive operations whenever sending does not depend on the

values received. This is called asynchronous optimisation [56],

and removes unnecessary synchronisation, while remaining

communication-safe.

1.1 Overview

PAlg (ğ3)

Parallel Code (ğ5) MPST (ğ4)

code generation protocol inference
typability

optimise

Figure 1. Overview

Our framework has three layers: (1) Parallel Algebraic Lan-

guage (PAlg), a point-free first-order language with partici-

pant annotations, which describe which process is in charge

of executing which part of the computation; (2) Message

Passing Monad (Mp), a monadic language that represents

low-level message-passing parallel code, from which we gen-

erate parallel C code; and (3) global types (from MPST), a

formal description of the protocol followed by the output

Mp code. Fig. 1 shows how these layers interact. PAlg, high-

lighted in green, is the input to our framework; and Mp and

global types (MPST), highlighted in yellow, are the outputs.

We prove that the generated code behaves as prescribed by

the global type, and any low-level optimisation performed on

the generated code must respect the protocol. As an example,

we show below a parallel mergesort. mergesort.

1 msort :: (CVal a, CAlg f) => Int -> f [a] [a]

2 msort n = fix n $ \ms x -> vlet (vsize x) $ \sz ->

3 if sz <= 1 then x

4 else vlet (sz / 2) $ \sz2 ->

5 vlet (par ms $ vtake sz2 x) $ \xl ->

6 vlet (par ms $ vdrop sz2 x) $ \xr ->

7 app merge $ pair (sz, pair (xl, xr))

The return type of msort, f [a] [a], is the type of first-order

programs that take lists of values [a], and return [a]. Con-

straint CAlg restricts the kind of operations that are allowed

in the function definition. The integer parameter to function

fix is used for rewriting the input programs, limiting the

depth of recursion unrolling. par is used to annotate the func-

tions that we want to run at different processes, and function

app is used to run functions at the same participant as their

inputs. In case this input comes from different participants,

first all values are gathered at any of them, and then the

function is applied. We can instantiate f either as a sequen-

tial program, as a parallel program, or as an MPST protocol.

We prove that the sequential program, and output parallel

programs are extensionally equal, and that the output parallel

program complies with the inferred protocol. For example,

interpreting msort 1 as a parallel program produces C code

that is extensionally equal to its sequential interpretation,

and behaves as the following protocol:

p1 p2

p3

p1⊕

This is a depth 1 divide-and-conquer, where p1 divides the

task, sends the sub-tasks to p2 and p3, and combines the

results. If the input is small, p1 produces the result directly.

Our prototype implementation is a tagless-final encoding

[9] in Haskell of a point-free language. Constraint CAlg is

a first-order form of arrows [44; 60], with a syntactic sugar

layer that allows us to write code closer to (point-wise) id-

iomatic Haskell. The remainder of the paper focuses on the

language underlying CAlg.

WhyMultiparty Session Types There are both practical

and theoretical advantages. On the theoretical side, the the-

ory of multiparty session types ensures deadlock-freedom and

protocol compliance. TheMPST theory guarantees that the

code that we generate complies with the inferred protocol

(Theorem 5.2), which greatly simplifies the proof of exten-

sional equivalence (Theorem 5.3), by allowing us to focus on

representative traces, instead of all possible interleavings of

actions. On the practical side, we perform message reorder-

ing optimisation based on the global types [56]. Moreover,

an explicit representation of the communication protocol is

a valuable output for programmers, since it can be used to

assess a parallelisation. (Fig. 4).

1.2 Outline and Contributions

§2 defines the Algebraic Functional Language (Alg), a lan-

guage inspired by the algebra of programming, that we use

as a basis for our work; §3 proposes the Parallel Algebraic

Language (PAlg), our front-end language, as an extension

of Alg with participant annotations; §4 introduces a proto-

col inference relation that associates PAlg expressions with

MPST protocols, specified as global types. We prove that

the inferred protocols are deadlock-free: i.e. every send has

a matching receive. Moreover, we use the global types to

justify message reordering optimisations, while preserving

communication safety; §5 develops a translation scheme

which generates message-passing code from PAlg, that we

prove to preserve the extensionality of the input programs;

§6 demonstrates our approach using a number of examples.

We will provide as an artifact our working prototype im-

plementation, and the examples that we used in ğ6, with

instructions on how to replicate our experiments.

144

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22ś23, 2020, San Diego, CA, USA

2 Algebraic Functional Language

This section describes the Algebraic Functional Language

(Alg) and its combinators. In functional programming lan-

guages, it is common to provide these combinators as ab-

stractions defined in a base language. For example, one such

combinator is the split function (△), also known as fanout, or

(&&&), in the arrow literature [44] and Control.ArrowHaskell

package [60]. Programming in terms of these combinators,

avoiding explicit mention of variables is known as point-free

programming. Another approach is to translate code writ-

ten in a pointed style, i.e. with explicit use of variables, to a

point-free style [23; 43]. This translation can be fully auto-

mated [23; 29]. In our approach, we define common point-

free combinators as syntactic constructs of Alg, and require

programs to be implemented in this style. Our implementa-

tion provides a layer of syntactic sugar for programmers to

refer to variables explicitly, as shown in msort in ğ1, but that

builds internally a point-free representation.

2.1 Syntax

F1, F2 F I | Ka | F1 + F2 | F1 × F2
a,b F 1 | int | . . . | a → b | a + b | a × b | F a | µF

e1, e2 F f | v | const e | id | e1 ◦ e2 | πi | e1 △ e2 | ιi | e1 ▽ e2
| F e | inF | outF | recF e1 e2

In our syntax, f1, f2, . . . , capture atomic functions, which

are functions of which we only know their types; v1,v2 are

values of primitive types (e.g. integer and boolean); e1, e2, . . . ,

represent expressions; F1, F2, . . . , are functors; and a, b, . . . ,

are types. The syntax and semantics are standard [33; 52].

Constant, identity functions, and function composi-

tion are const, id and ◦ respectively. Products are repre-

sented using the standard pair notation: ifx : a andy : b, then

(x,y) : a×b. The functions on product types are πi and△, and
they represent, respectively, the projections, and the split

operation: (f △ д)(x) = (f x,д x). Coproducts have two

constructors, the injections ιi , that build values of type a+b.

The▽ combinator is the case operation: (f1▽ f2)(ιi x) = fi x .

Products and coproducts can be generalised to multiple argu-

ments: a×b ×c is isomorphic to a× (b ×c), and to (a×b) ×c .
We use

∏
i ∈[1,n] ai as notation for the product of more than

two types; similarly we use
∑

for coproducts. The
∏

no-

tation binds tighter than any other construct. Whenever

∀i, j ∈ I ,ai = aj = a, we use the notation
∏

n a as a syn-

onym for
∏

i ∈[1,n] ai .

Functors are objects that take types into types, and func-

tions to functions, such that identities and compositions are

preserved. In this work, we focus on polynomial functors [31],

which are defined inductively: I is the identity functor, and

takes a type a to itself; Kb is the constant functor, and takes

any type to b; F1 × F2 is the product functor, and takes a type

a to F1 a × F2 a; F1 + F2 is the coproduct functor, and takes

a type to a coproduct type. A term F e behaves as mapping

term e to the I positions in F . For example, if F = Ka × I × I,

then applying F e to (x, y, z) yields (x, e y, e z).
Recursion is captured by combinators in, out, rec, and

type µF . We use standard isorecursive types [31; 46; 52],

where µF is isomorphic to FµF , and the isomorphism is given

by the combinators inF (roll) and outF (unroll). For any

polynomial functor F , µF , and strict functions inF and outF
are guaranteed to exist. In our implementation, inF is just

a constructor (like inji). Recursion is recF e1 e2, and it is

known as a hylomorphism [52]. A hylomorphism captures

a divide-and-conquer algorithm, with a structure described

by F , where e1 is the conquer term and e2 the divide term.

Using hylomorphisms requires us to work in a semantic

interpretation with algebraic compactness, i.e. in which car-

riers of initial F -algebras and terminal F -coalgebras coin-

cide (or are isomorphic). Hylomorphisms and exponentials

ap : (a → b) × a → b allow the definition of a general fix-

point operator [53]. Working with hylomorphisms implies

that our input programs may not terminate. We guarantee

that, given a terminating input program, we will not produce

a non-terminating parallelisation (Theorem 5.3).

Example 2.1 (MergeSort in Alg). Assume a type Ls of lists
of elements of type a. Functor T = K (Ls) + I × I captures
the recursive structure of ms : Ls → Ls. When splitting
some l : Ls, we may find one of the two cases described by
T : an empty or singleton list, Ls, or a list of size ≥ 2, that
can be split in two halves Ls × Ls. Assume that a functions
spl : Ls → T Ls, and a function mrg : T Ls → Ls. We define
ms = recT mrg spl. By the definition of rec:

ms = recT (id ▽mrg) spl = (id ▽mrg) ◦ T (recT mrg spl) ◦ spl

= (id ▽mrg) ◦ (id + (recT mrg spl) × (recT mrg spl)) ◦ spl

= (id ▽mrg ◦ (ms ×ms)) ◦ spl

Function ms first applies spl. Then, if the list was empty or

singleton, it returns the input unmodified. Otherwise, ms

applies recursively to the first and second halves. Finally,

mrg returns a pair of sorted lists.

3 Parallel Algebraic Language

In the previous section we introduced Alg, a point-free func-

tional language. In this section, we extend this language with

participant annotations. Annotations occur both at the type

and expression levels: at the type level, annotations represent

where the data of the respective type is; at the expression

level, it represents by whom the computation is performed.

This language extension is called PAlg.

The implicit dataflow of the Alg (or PAlg) constructs deter-

mines which interactions must take place to evaluate an an-

notated program. To illustrate this, we use the Cooley-Tukey

Fast-Fourier Transform algorithm [21]. The Cooley-Tukey

algorithm is based on the observation that an FFT of size n,

fftn can be described as the combination of two FFTs of size

n/2. We focus its high-level structure:

(add@p1 △ sub@p2) ◦ ((fftn/2@p3 ◦ π1)△ ((exp ◦fftn/2)@p4 ◦ π2))

145

CC ’20, February 22ś23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

Assume that the input is a pair of vectors that contain the

deinterleaved input, i.e. elements at even positions on the left,

and odd positions on the right.We first compute the fft of size

n/2 to the even and odd elements at p3 and p4 respectively.

Then, the first half of the output is produced by adding the re-

sults pairwise (at p1), and the second half by subtracting them

(at p2). In order to evaluate this expression, we need to know

where is the input data. This is specified by the programmer

as an annotated type, which we call interface. Suppose that

the interface specifies that the even elements are at p, and the

odd elements at p′. The interface that represents this scenario

is (vec× vec)@(p× p′), i.e. an annotated pair of vectors, with

the first component at p, and the second component at p′.

By keeping track of the locations of the data, we obtain type

(vec × vec)@(p1 × p2), which is the output (or codomain) in-

terface the PAlg expression. We also refer to the annotations

(e.g p1 × p2) as interfaces, whenever there is no ambiguity.

We write fftn : (vec × vec)@(p × p′) → (vec × vec)@(p1 × p2)
to represent the input and output interfaces of fftn .

Consider now e1@p1 ▽ e2@p2. The output interface of this

expression is either p1 or p2, depending on whether the input

is the result of applying ι1 or ι2. We represent such interfaces

using unions: e1@p1 ▽ e2@p2 : (a + b)@p → c@(p1 ∪ p2). Since
p contains a value of a sum type a+b, p is responsible for no-

tifying both p1 and p2 which branch needs to be taken in the

control flow. Incorrectly notifying the necessary participants

will produce incorrect parallelisations that might deadlock.

For example, consider the expression e0@p0 ◦ (e1@p1▽ e2@p2).
Assuming that the input at p, p needs to notify p0, otherwise

p0 will be stuck. To avoid such cases, and to compute the

interfaces of an expression, we define a type system for PAlg.

3.1 Syntax of PAlg

I F p | ιi I | I × I R F I | R ∪®p R P F R → R

eF e@p | [p ⊕ ®p] | id | e◦ e | πi | e△ e | ιi | e▽ e

The syntax of PAlg is that of Alg, extended with partici-

pant annotations (red). Note that certain Alg constructs can

only occur under annotations (e@p), e.g: in, out and rec. This

implies that recursive functions need to be annotated at a

single participant. To parallelise recursive functions, they

need first to be rewritten into a suitable form, and then an-

notate the resulting expression. At the moment, we support

automatic recursion unrolling up to a user-specified depth.

We provide an overview of the main syntactic constructs of

PAlg: annotations, interfaces, and annotated functions.

Annotations are ranged over by R, R′,... We define them

in two layers, I , or simple annotations that cannot contain

choices (∪), and R. This way, we ensure that choices only oc-

cur at the topmost level. Simple annotations are: participant

ids p, that identify processes; products of interfaces I1 × I2;

and tagged interfaces ιi I , that keep track of the branch of the

choice that led to I . A choice R1 ∪
®p R2 describes an scenario

that is the result of a branch in the control flow, where a

value can be found at either R1 or R2. Here, ®p = p1 · · · pn are

the participants whose behaviour depends on the path in the

control flow. Finally, arrows P of the form R1 → R2 represent

the input/output annotations of a parallel program.

Interfaces are annotated types. They range over A, B, . . . ,

and are of the form a@R, which means that values of type

a are distributed across R. We require annotated types to

be well-formed, WF(a@R), which implies that the structure

of a matches that of R. We write I to represent one-hole

contexts for interfaces, with I[p] representing the interface

that results of placing p at the hole in I.
Annotated functions are ranged over by e, e′. The anno-

tations are introduced using e@p, where e is an unannotated

Alg expression, and p is a single participant identifier. These

annotations need to be set by the programmer, but their

introduction can be also automated. Additionally, we intro-

duce the choice point annotations: [p ⊕ ®p]. This annotation
specifies that p performs a choice, and notifies ®p. Choice
points can be introduced fully automatically by collecting

all participants whose behaviour depends on the value of a

sum type.

3.2 Interfaces

An interface represents a state in a concurrent system: the

set of participants, and the types of the values that they

contain. We use mappings from participants to values to

represent such states: V ≔ [p 7→ v]p∈P . The programmer,

additionally to writing an Alg (PAlg) expression, will need

to provide an input interface, i.e. where is the input to the

parallel program. Consider, for example, the interface int@pi .

Given a concurrent system with participants po · · · pn , we
know that pi contains a value of type int: [· · · pi 7→ 42 · · ·].

An interface with a product of participants (a × b)@(p1 × p2)
represents a state in which p1 contains an element of type a,

and p2 an element of type b, e.g a possible state represented

by (int×vec)@(p1×p2) is: [· · · p1 7→ 42 · · · p2 7→ [1, 1, 2, . . .] · · ·].

An interface ιi I represents the same state as interface I , but

we statically know that this state was reached after an i-

th injection. Then, if a participant requires the value at I ,

this participant will apply the necessary injections to the

received values. Finally, an interface a@(R1∪
®pR2)means that

the state might be either R1 or R2, and that all participants ®p
should be notified of the state.

Well-formedness The above examples are of well-formed

interfaces: int@pi , (int × vec)@(p1 × p2). Well-formedness en-

sures that interfaces represent valid states. Generally, a@R

is well-formed if a matches the structure of R. For example,

int@(p1 × p2) is ill-formed, since a single integer cannot be

at two different participants. An interface a@(R1 ∪ R2) re-
quires that both a@R1 and a@R2 are well-formed. So, (vec ×
vec)@((p1 × p2) ∪ p3) is well-formed because we can have

vec@p1 and vec@p2, or (vec × vec)@p3. However, int@((p1 ×
p2) ∪ p3) is ill-formed, because int@(p1 × p2) is ill-formed.

146

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22ś23, 2020, San Diego, CA, USA

3.3 Typing of Parallel Algebraic Language

We introduce a relation that associates Alg expressions with

potential parallelisations PAlg, and their interfaces. This re-

lation can be seen as a type system for both Alg and PAlg.

As a type system for PAlg, this relation provides a way to

check or infer the output interface of some e. By using this

relation as a type system for Alg, we can explore potential

parallelisations of some input expression e . Additionally, the

type system ensures that all choice point annotations contain

every participant that depends on each particular choice.

Typing Rules A judgement of the form ⊢ e ⇒ e : A → B

means that the PAlg expression e is one potential paral-

lelisation of the Alg expression e , with domain interface

A and codomain interface B. The intuition of a judgement

⊢ e ⇒ e : a@R1 → b@R2 is that the participants in e collec-

tively apply computation e to the value of type a distributed

across R1, and produce a value of type b distributed across

R2. We sometimes omit e and write ⊢ e : A → B. We ensure

that given any e and e such that they are typeable against

interfaces a@Ra → b@Rb , then e must have type a → b.

Lemma 3.1. If e ⇒ e : a@Ra → b@Rb , then e : a → b.

The typing rules (Fig. 2) must ensure that the participants

involved in a choice are notified, and that Alg expressions

are correctly expanded. Rule Choice specifies that a choice

point may be introduced at any point when a participant

contains a value of a sum-type. In such cases p sends the

tag of the sum-type value to any other participant whose

behaviour depends on it. After the choice point, the interface

is I [ι1 p] ∪
®p I [ι2 p], with the constraint that the participants

in I[p] must be in ®p. Rule Alt specifies that e must be the

parallelisation of e , considering both A1 and A2 as input in-

terfaces. The output interface is the union of B1 and B2. Any

participant in e must be notified of the choice pids(e) ⊆ ®p,
to make sure that they perform the interactions that corre-

spond to the correct Ai . Rule Alg specifies that given any e

and participant p, e@p is a valid parallelisation, with output

interface b@p. Finally, rule Ext is crucial for exploring po-

tential parallelisations. It states that if e is the parallelisation

of e2, and e2 is extensionally equal to e1, then e is also a

parallelisation of e1. The undecidability of this rule requires

that the programmer specifies rewriting strategies both for

checking and inference.

Rewriting and Annotation Strategies We use rewrit-

ing strategies when exploring potential parallelisations of

functions. This is inference problem (2) below. Let ?i be

metavariables. The two inference problems that we are in-

terested in are: 1. Solving ⊢ e ⇒ e : A → ?0 obtains the

output interface for e, with input interface A. 2. Solutions

of ⊢ e ⇒ ?0 : A → ?1 are potential parallelisations of e ,

and their output interface. Solving (1) is straightforward.

Alg

⊢ e : a → b

⊢ e ⇒ e@p : a@I → b@p

Ext

⊢ e2 ⇒ e : a@I → B e1 =ext e2

⊢ e1 ⇒ e : a@I → B

Alt

⊢ e ⇒ e : A1 → B1 ⊢ e ⇒ e : A2 → B2 A1 , A2 pids(e) ⊆ ®r

⊢ e ⇒ e : A1 ∪
®p A2 → B1 ∪

®p B2

Choice

pids(I[p]) ⊆ ®p

WF(a@I[ιi p]), i ∈ [1, 2] ⊢ e ⇒ e : a@(I[ι1 p] ∪
®p I[ι2 p]) → B

⊢ e ⇒ e ◦ [p ⊕ ®p] : a@I[p] → B

Figure 2. Typing rules of PAlg (selected)

Problem (2) requires to decide how to introduce role annota-

tions (rule Alg), how to perform rewritings (rule Ext), and

where to introduce choice points (rule Choice). Introduc-

ing choice points is straightforward: we introduce them as

early as possible, as soon as an input interface contains a

sum-type at a participant. For introducing annotations and

doing Alg rewritings, the programmer has to specify annota-

tion and rewriting strategies. At the moment, our tool allows

the developer to introduce annotations explicitly, or to se-

lect sub-expressions that will be annotated with fresh new

participants. The rewriting strategies that our current imple-

mentation supports are unrollings of recursive definitions.

However, our tool is extensible: the equivalences used in the

rewritings are a parameter.

Example 3.2 (Mergesort). Consider the mergesort defini-

tion ms = recT mrg spl. Solutions to the inference problem

⊢ ms ⇒ ?0 : Ls@p0 → ?1 provide the alternative parallelisa-

tions ofms. By choosing a rewriting strategy that unrollsms

once, and annotates any remaining instances of ms at fresh

new participants, we produce the following PAlg expression:

⊢ (id ▽ (mrg ◦ (ms ×ms))) ◦ spl

⇒ (id ▽ (mrg@p1 ◦ (ms@p2 ◦ π1@p1) △ (ms@p3 ◦ π2@p1)))

◦[p1 ⊕ p1p2p3] ◦ spl@p1
: Ls@p0 → Ls@p1 ∪

p1p2p3 Ls@p1

4 Multiparty Session Types for PAlg

The dataflow of the PAlg constructs determine the commu-

nication protocol of the annotated expression. However, it is

hard to manually check what this communication structure

is. Recall the mergesort PAlg expression of ğ3, ms, and sup-

pose that we want to produce a parallelisation for a 32-core

machine. Then, wemight be interested in using a 5-unfolding

of ms, so that we have ms executing concurrently on all of

the cores. How do we know, for such cases, that we produced

a sensible parallelisation? As an example, suppose we use an

annotation strategy that produces the following code:

(id ▽ (mrg@p1 ◦ (ms@p2 ◦ π1@p1) △ (ms@p2 ◦ π2@p1)))

◦[p1 ⊕ p1p2] ◦ spl@p1 : Ls@p0 → Ls@p1 ∪
p1p2 Ls@p1

147

CC ’20, February 22ś23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

Notice that this example will run correctly, and produce the

expected result. However, the achieved PAlg expression is

not parallel! If we represent the implicit dataflow of this

expression as explicit communication, the reason becomes

apparent. We use global types from multiparty session types

to provide an explicit representation of the communication

structure of the program:

p0 → p1 : Ls. p1 → p2{ι1. end;

ι2. p1 → p2 : Ls. p1 → p2 : Ls.p2 → p1 : Ls × Ls. end}

This global type represents the following protocol: 1. par-

ticipant p0 sends a list to p1; 2. p1 sends to p2 either ι1 or

ι2, and if the label is ι1, the protocol ends; 3. if p1 sent ι2,

then p1 sends to p2 two lists, in two different interactions;

and 4. p2 replies with a message to p1 with a pair of lists.

It is clear from this protocol that p1 and p2 are dependent

on each others’ messages, and that p2 cannot perform any

computation in parallel. The larger the expression is, the

harder avoiding these wrong annotations will become. By

changing the annotation strategy, we produce the following

parallel structure, where p2 and p3 can operate in parallel:

p0 → p1 : Ls. p1 → {p2p3} {ι1. end;

ι2. p1 → p2 : Ls. p1 → p3 : Ls.p2 → p1 : Ls. p3 → p1 : Ls. end}

This abstraction of the communication protocol of an achieved

parallelisation is therefore useful as an output for the pro-

grammer. Additionally, these global types are a contract that

can be enforced on the generated code. We use this for prov-

ing that our back-end is correct, but also for applying low-

level code optimisations (e.g. message reordering) guided

by this global type, ensuring that they do not introduce any

run-time error. For example, when we find in a global type

p1 → p2. p2 → p3, we mark the send/receive actions for p2
as point of potential optimisation. If the messages exchanged

do not depend on each other, we permute them, performing

first the send action, so that p2 is not blocked by a receive

action. This is known as asynchronous optimisation [56].

4.1 Multiparty Session Types

Our global types are based on themost commonly used in the

literature [22]. We start with a set of participant identifiers,

p1, p2, . . . , and a set of labels, ι1, ι2, These are considered

as natural numbers: participant identifiers uniquely identify

an independent unit of computation, e.g. thread or process

ids; and labels are tags that differentiate branches in the

data/control flow. The syntax of global (G) and local (L) types

inMPST is given as:

G F p1 → p2 : a.G | p1 → {pj }j ∈[2,n] : {ιi .Gi }i ∈I
| µX .G | X | end

L F p!⟨a⟩.L | p?(a).L | p & {ιi .Li }i ∈I | {pj }j ∈[2,n] ⊕ {ιi .Li }i ∈I
| µX .L | X | end

Global type p1 → p2 : a.G denotes data interactions from

p1 to p2 with value of type a; Branching is represented by

p1 → {pj }j ∈[2,n] : {ιi .Gi }i ∈I with actions ιi from p1 to all

Choice

⊨ [p ⊕ ®p] ⇐ a[b + c]@I [p] ∼ p → {®p \ p}{ι1. end; ι2. end}

Alt

⊨ e ⇐ A1 ∼ G1 ⊨ e ⇐ A2 ∼ G2

⊨ e ⇐ A1 ∪
®p A2 ∼ G1 ∪G2

Alg

⊢ e : a → b

⊨ e@p ⇐ a@I ∼ [a@I { p]

[a@p1 { p2] = p1 → p2 : a. end, if p1 , p2; [a@p { p] = end;

[(a × b)@(Ia × Ib) { p] = [a@Ia { p] # [b@Ib { p]; and

[(a1 + a2)@(ιi I) { p] = [ai@I { p]

Figure 3. Protocol Relation (selected)

pj , j ∈ [2,n]. end represents a termination of the protocol.

µX .G represents a recursive protocol, which is equivalent to

[µX . G/X]G. We assume recursive types are guarded.

Each participant in G represents a different participant in

a parallel process. Local session types represent the commu-

nication actions performed by each participant, i.e. the role

of the participant. Since each participant has a unique role,

we sometimes refer to them interchangeably. The send type

p!⟨a⟩.L expresses the action of sending of a value of type a

to p followed by interactions specified by L. The receive type

p?(a).L is the dual, where a value with type a is received

from p. The selection type represents the transmission to all

pj of label ιi chosen in the set of labels (i ∈ I) followed by Li .

The branching type is its dual. pids(G)/pids(L) denote the
set of participants that occur in G/L.

Projection We use a standard definition of projection that

uses the full merging operator [24; 27], which allows more

well-formed global types than the original projection rules

[41]. We write G ↾ p for the projection of G onto the role

of p. We illustrate the projection with an interaction p0 →
p1 : a.G. The projection onto p0 is p1!⟨a⟩.(G ↾ p0), the pro-
jection onto p1 is p0?(a).(G ↾ p1), and the projection onto

any other role p is G ↾ p. Projection on choices is similar,

with the difference that whenever the role is not at the re-

ceiving or sending ends of the choice, the different branches

must be merged. Two local types can be merged when they

are the same, or they branch on the same role, and their

continuations can be merged.

We use a standard definition of well-formedness that states

that a global type is well formed if ts projection on all its roles

is defined. We denote:WF(G) = ∀p ∈ pids(G), ∃L,G ↾ p = L.

4.2 Protocol Relation

We introduce now the set of rules that associate a PAlg ex-

pression and domain interface with their global type (Fig.

3). We extend the syntax of global types with G1 ∪
®p G2 to

represent the external choices, i.e. Gi are the continuations

for both branches of a previous choice that affects ®p. We also

extend the local types, and projection rules (G1 ∪
®p G2) =

G1 ↾ p ∪®p G2 ↾ p, and the notion of well-formedness. We

148

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22ś23, 2020, San Diego, CA, USA

say that an external choice is well-formed, WF(G1 ∪
®p G2), if

WF(G1),WF(G2), and for all p < ®p,G1 ↾ p = G2 ↾ p. We omit

the annotation of the participants involved in the choice

whenever it is not needed. The relation ⊨ p ⇐ A ∼ (G,B)
specifies that the parallel code for p and input interface A

will behave as global type G, and output interface B (Fig. 3).

The rules are similar to the typing rules of PAlg.

Example 4.1 (Mergesort Protocol). The protocol for Exam-

ple 3.2 is obtained by solving:

⊨ (id▽ (mrg@p1 ◦ (ms@p2 ◦ π1@p1)△ (ms@p3 ◦ π2@p1))) ◦ [p1 ⊕

p1p2p3] ◦ spl@p1 ⇐ Ls@p1 ∼ ?0.

p1 → {p2p3}

{
ι1.end;

ι2.p1 → p2 : Ls.p1 → p3 : Ls.end

}
#

(
end ∪ (p2 → p1 : Ls. p3 → p1 : Ls.end)

)

= p1 → {p2p3}

ι1.end;

ι2.p1 → p2 : Ls.

p1 → p3 : Ls.

p2 → p1 : Ls.

p3 → p1 : Ls.end

p1 p2

p3

p1⊕

4.3 Correctness

We guarantee that for e s.t. ⊢ e ⇒ e : A → B, with A

and B well-formed, there exists a protocol G and that it is

well-formed and deadlock-free.

Lemma 4.2. [Existence of Associated Global Type] For all

WF(A), if ⊢ e : A → B, then there exists G s.t. ⊨ e ⇐ A ∼ G.

Lemma 4.3. [Protocol Deadlock-Freedom] For allWF(A), if
⊢ e : A → B and ⊨ e ⇐ A ∼ G, then WF(G).

Remark. Since the local type abstracts the behaviour of mul-

tiparty typed processes, a well-formed global type ensures

the end-point processes (programs) typed by that global type

are guaranteed to satisfy the properties (such as safety and

deadlock-freedom) of local types [27; 42].

5 Code Generation

This section addresses the problem of generating low-level

parallel code from PAlg expressions. We prove that the gen-

erated code complies with its inferred protocol, which has

several implications: (1) code generation does not introduce

any concurrency errors, and the parallel code is therefore

deadlock-free; and (2) we can prove that the generated code

is extensionally equal to the input expression by considering

only a representative trace, since any valid interleaving of

actions must respect this protocol. The target language of

our tool is an indexed monad, the Message Passing Monad

(Mp). From Mp, we implement our low-level C backend. We

implement an untyped version ofMp as a deep embedding

in Haskell, and session typing on top of it. This is suitable

for code generation: we only generate parallel code if the

monadic actions are typeable against the respective local

types. Our definition of Mp has significant differences to

other embeddings of session types in Haskell, such as the

Session monad by Neubauer and Thiemann [57]. First, our

Mp monad is deeply embedded in Haskell, and secondly, we

use type indices instead of an encoding of session types in

terms of type classes. Our approach is better suited for com-

pilation since we manipulate session types, and postpone

session typing until code generation.

5.1 Message Passing Monad

Mp comprises four basic operations: send, receive, choice

and branching, with a standard (asynchronous) semantics.

Additionally, for composing actions that depend on the same

choice, we introduce case expressions. Our definition of Mp

is based on the free monad construction:

v F x | (v,v) | ιi v | · · · | e v

mi F ret v | send p v m | recv p a f | sel ®p v f1 f2
| brn pm1 m2 | case f1 f2 f F λx .m

Values v are either primitive values, tagged values ιi v , pairs

of values, or the result of applying an Alg expression e to a

value. We use standard notation for the monadic unit (ret),

bind (≫=) and Kleisli composition: f1>=> f2 = λx . f1 x≫=f2.

The message-passing constructs are standard, except sel,

brn and case, which are used for performing choices, and

composing actions that depend on the same choice.

Each monadic computation f orm has a typem : Mp L a,

where a is the return type ofm, and L is the type index of

Mp, and it represents the local type that corresponds to the

behaviour of the termm. There is almost a one to one cor-

respondence between the terms L and the monadic actions

m, so we omit the full definition. The types of the constructs

that deal with choices use a new type,⊎, that is isomorphic to

sum types, but that can only be constructed and eliminated

by using the corresponding monadic constructs:

sel ®p : a + b → (a → Mp L1 c1) → (b → Mp L2 c2)

→ Mp (®p ⊕ {ι1.L1; ι2.L2}) (c1 ⊎ c2)

brn p : Mp L1 a1 → Mp L2 a2
→ Mp (p & {ι1.L1; ι2.L2}) (a1 ⊎ a2)

case : (a → Mp L1 c) → (b → Mp L2 d) → a ⊎ b

→ Mp (L1 ∪ L2) (c ⊎ d)

These constructs ensure that the tag used to build a ⊎ b

indeed corresponds to the correct branch of the right choice.

We use case to compose actions that depend on a previous

choice. While this treatment of ⊎ leads to unnecessary code

duplication, our back-end easily optimises cases where we

have case f f to avoid code duplication.

Parallel programs We define the basic constructs of PAlg

in a bottom-up way by manipulating parallel programs. Paral-

lel programs aremappings from participants to theirmonadic

action: EF [pi 7→mi]i ∈I . Ifmi : Mp Li ai for all i ∈ I , then

we write [pi 7→ mi]i ∈I : Mp [pi 7→ Li]i ∈I [pi 7→ ai]i ∈I .
The semantics of both local types and monadic actions is

defined in terms of such collections of actions or local types,

149

CC ’20, February 22ś23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

and shared queues of valuesW , or queues of types Q , e.g.

⟨E,W ⟩ {ℓ ⟨E′,W ′⟩ is a transition from E to E′, and shared

queuesW toW ′ with observable action ℓ. We prove a stan-

dard safety theorem (Theorem 5.1 below) that guarantees

that if a participant does a transition with some observable

action, then so does the type index.

Theorem 5.1. [Soundness] Assume E : Mp C A,m : Mp L a

andW : Q . Suppose ⟨E[r 7→ m],W ⟩ {ℓ ⟨E[r 7→ m′],W ′⟩.
Then there exists ⟨C[r 7→ L],Q⟩ →ℓ ⟨C[r 7→ L′],Q ′⟩ such
thatW ′ : Q ′ andm′ : Mp L′ a.

Mp code generation The translation scheme forMp code

generation is done recursively on the structure of PAlg ex-

pressions. It takes a PAlg expression e, an interface A, and

produces a mapping from all participants in e and A to their

respective monadic continuations. We write JeK (A), and
guarantee that JeK (A) : A → Mp G B, if ⊨ e ⇐ A ∼ (G,B).
This means that if e induces protocol G with interfaces

A → B, then the generated code behaves as G, with in-

terfaces A and B. Code generation follows a similar struc-

ture to global type inference, and is defined by building

PAlg constructs asMp parallel programs. For example, the

translation of e@p : a@I → B requires to define the in-

teractions from an interface I that gathers a type a at p:

La@I { pM : a@I → Mp [a@I { p] (a@p). The definition
is analogous to that of [a@I { p]. The remaining of the

translation is straightforward, so we skip the details.

We prove two main correctness results. We guarantee that

the generated code behaves as its inferred protocol (Theorem

5.2). We also guarantee that regardless of the annotations and

interfaces chosen for e, the parallel code always produces the

same result as the sequential implementation (Theorem 5.3).

Theorem 5.2. [Protocol Conformance of the Generated Code]

If ⊨ e ⇐ A ∼ G, then JeK (A) complies with protocol G.

Theorem 5.3. [Extensionality] Assume e ⇒ e : a@p → b@R

and x : a initially at p. If e x = y, then the execution of JeK (p)
also produces y, distributed across R.

Example 5.4 (MergeSort Code Generation). We show be-

low the code generation for ms (Example 3.2), with p1 as

domain interface:

p1 7→ λx . sel {p2, p3} (spl x) (λx . ret x)

(λx . send p2 (π1 x)≫=λy. send p3 (π2 x)≫=λ_.

recv p2 Ls≫=λx . recv p3 Ls≫=λy. ret (mrg (x,y)))

p2,3 7→ λx . brn p1 (ret x) (recv p1 Ls≫=λx .send p1 (ms x))

6 Parallel Algorithms and Evaluation

We evaluate our approach using a number of parallel al-

gorithms derived from Alg expressions, and the speedups

achieved. The purpose of this is twofold: (i) showing that

our approach achieves speedups for an input sequential al-

gorithm, with naïve annotation strategies, and limited opti-

misations (Fig. 5), and (ii) illustrating the practical value of

M
e
rg
e
so
rt p0 → {p1, p2} :

{ι1.p0 → p1 : 1 + int.

p1 → p0 : µL. end,

ι2.p0 → p1 : µL. p0 → p2 : µL.

p2 → p1 : µL. p1 → p0 : µL.

end

p0 p1

p2

p1 p0⊕
ι1

ι2

F
F
T

p0 → p1 : µL. p0 → p2 : µL.

p0 → p3 : µL. p0 → p4 : µL.

p1 → p3 : µL. p3 → p1 : µL.

p2 → p4 : µL. p4 → p2 : µL.

p2 → p1 : µL. p1 → p2 : µL.

p3 → p4 : µL. p4 → p3 : µL.

end

p0

p2

p1

p3

p4

p2

p1

p3

p4

p2

p1

p3

p4

D
o
t
P
ro
d
.

p0 → p1 : µL. p0 → p2 : µL.

p0 → p3 : µL. p2 → p3 : int.

p1 → p3 : int. p3 → p0 : int.

end

p0 p2

p1

p3

p3 p0

Figure 4. Benchmarks: potential parallelisations.

providing a global type that describes the parallel strategy

achieved by a particular annotation strategy (Fig. 4). We run

all our experiments on 2 NUMA nodes, 12 cores per node

and 62GB of memory, using Intel Xeon CPU E5-2650 v4 @

2.20GHz chips. We run our experiments first restricting the

execution to a single node to avoid NUMA effects, and then

on the 2 NUMA nodes.

6.1 Benchmarks

Mergesort Mergesort is the usual divide-and-conquer al-

gorithm, using a tree-like parallel reduce.

Cooley-Tukey FFT We use a recursive Cooley-Tukey al-

gorithm. The algorithm starts by splitting the elements of

the list into those that are at even and odd positions. Then, it

recursively computes the FFT of them, and finally combines

the results. To generate a butterfly pattern, we use: products

of size n, to store the results of the subsequent interleav-

ings; product associativity to produce a perfect tree; and

asynchronous optimisations.

Dot Product The dot product algorithm zips the inputs,

multiplies them pairwise, and then adds them by folding the

result. We use products of size n to derive a scatter-gather.

AdditionalAlgorithms We implemented scalar prod, that

recursively splits a matrix into sub-matrices, distributes them

to different workers, and then multiplies their elements by a

scalar, and quicksort, with a divide-and-conquer structure.

6.2 Evaluation

We translateMp monadic actions to C using pthreads and

shared buffers for communication, and we have a prelim-

inary compilation of the first-order sequential terms to C.

We compile the generated C code using gcc version 4.8.5.

We take the average of 50 repetitions for each benchmark.

Our benchmarks achieve reasonable speedups against the

sequential C implementations. Fig. 5 presents the speedups

150

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22ś23, 2020, San Diego, CA, USA
1
2
co

re
s

20 21 22 23 24 25 26

K

0

2

4

6

8

10

12 2^24
2^27
2^29
2^30

20 21 22 23

K

0

2

4

6

8

10

12 2^20
2^23
2^25
2^26

20 21 22 23

K

0

2

4

6

8

10

12 2^24
2^27
2^29
2^30

2
×
1
2
co

re
s

20 21 22 23 24 25 26

K

0

2

4

6

8

10

12

14

16

18
2^24
2^27
2^29
2^30

20 21 22 23

K

0

2

4

6

8

10

12

14

16

18
2^20
2^23
2^25
2^26

20 21 22 23

K

0

2

4

6

8

10

12

14

16

18
2^24
2^27
2^29
2^30

DotProd FFT Mergesort

Figure 5. Benchmark speedups, run in 2 NUMA nodes with 12 cores each. The X-axis is the number of workers of the parallel

program generated from a set of annotations and recursion unrolling. We show the results for 4 different input sizes.

dot fft ms qs scalar
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

S
p
e
e
d
u
p
s

12 C
2 x 12 C

Figure 6. Achieved speedups

against the number of participants for different input sizes,

and Fig. 6 present a summary of our speedups for large inputs

of size > 109. We show below an analysis of these results, by

plotting the speedups against two factors: 1. the number of

participants (threads) produced by a particular annotation

and recursion unrolling, named K ; and 2. the input size, e.g.

number of elements in the input list.

Increasing the number of threads (parameter K), increases

the speedups obtained, up to a certain value that depends on

the amount of available cores and the input size. For bench-

marks that work better with dynamic task creation, our tool

does not currently achieve good performance (e.g. quicksort).

For FFT, our tool produces the usual butterfly pattern from

a straightforward recursive definition, that we can achieve

a speedup of 12 when running on a single shared-memory

node. The rest of the examples are limited either by Amdahl’s

law (justified by their global types in Fig. 4), or by the over-

head of the communication and pthread creationwith respect

to the cost of the computations, but still achieve speedups of

up to 7 and 8 on 12 cores. We can observe that there is a slow

down after creating a much larger number of participants

than the ones required. This usually depends on how evenly

we can distribute the data amongst workers, and whether

the amount of workers can be evenly scheduled to differ-

ent cores. We observe that we can achieve further speedups

when running our benchmarks in the 2 NUMA nodes. Over-

all, we observe that our annotation strategies enable good

speedups over the sequential implementation, with relatively

little effort. Global types can be used to detect optimisation

opportunities that yield efficient parallelisations, such as the

Butterfly topology in Fig. 4. Without message-reordering

based on the session types, FFT participant p3 would need to

wait for p1’s message before sending its part to p1, i.e. p3’s lo-

cal type would be p1?(µL). p1!⟨µL⟩ This means that p3’s

local computation would only become available to p1 after

it p1 finishes its own local computation, thus sequentialising

the code. Asynchronous permutations [16; 56] allow us to

permute such actions, and still have communication safety,

i.e. p1!⟨µL⟩. p1?(µL) Global types capture the structure
of the parallelisation, which can in some cases be used to

justify the achieved speedups. For example, we can observe

151

CC ’20, February 22ś23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

that the mergesort global type contains a part that needs to

happen sequentially (p0 and the last merging point in p1),

and this will prevent us from achieving linear speedups.

7 Related Work

López et al. [49] develop a verification framework for MPI/C

inspired by MPST by translating parameterised protocol

specifications to protocols in VCC [19]. They focus on verifi-

cation, not on code or protocol generation. Ng et al. [58; 59]

use parameterised MPST [25] to generate an MPI backbone

in C that encapsulates the whole protocol (i.e., every end-

point), and merges it with user-supplied computation ker-

nels. Several authors (e.g. [10]) generate skeleton API from

extensions of Scribble (www.scribble.org). Their approach

requires the protocol to be specified beforehand, and it is

not extracted from sequential code. Unlike ours, none of the

above work formally defines code generation or proves its

correctness.

Structured parallelism includes the use of high-level con-

structs in languages with implicit/data parallelism [5; 12ś

15; 45; 63], algorithmic skeleton APIs [1; 18; 20; 35; 47], and

DSLs/APIs that compile to parallel code [8; 11; 28; 62; 68].

Besides safety, such approaches are often highly optimised.

However, most rely on using a fixed, predetermined range of

patterns, typically by design with respect to their application

domains. By contrast, our work only relies on send/receive

operations, which makes it highly portable, and can be easily

extended to support further parallel structures by extend-

ing the annotation strategies. Optimisations for structured

parallel approaches also require to study and define a set

of equivalences between patterns [6; 7; 40]. In contrast, our

approach does not require the definition of new sets of equiv-

alences, since these are derived from program equivalences.

Lift is a new language for portable parallel code genera-

tion, based on a small set of expressive parallel primitives

[39; 66; 67]. Currently, their backend focuses on generat-

ing high-performance OpenCL code, while our approach

focuses on placing computations on different participants

of a concurrent/distributed system. Both approaches could

be combined: annotations can be used to generate a high-

level message-passing layer that distributes tasks to multiple

nodes in a GPU cluster, using the global type to minimise

communication costs; then, the code at each participant can

be compiled to high-performance GPU code using Lift.

Elliott exploits the idea of giving functional programs

multiple interpretations in different categories, and shows

examples of applications to multiple domains, including par-

allelism [29; 30]. Our approach is similar in the sense that we

allow the specifications of first-order functional programs

to have multiple different interpretations, but we focus on

generating parallel code, and provide a finer-grained con-

trol over the parallelisations by adding participant anno-

tations. There is a large body of literature in using pro-

gram equivalences to derive parallel implementations, e.g.

[17; 32; 36; 38; 48; 50; 54; 55; 64; 65]. Our framework is or-

thogonal, in that we focus on tying a low-level C back-end

with global types. Our front-end, however, supports some

basic form of rewritings, and we plan to extend it in the

future with more interesting ones from the literature.

8 Conclusions and Future Work

We have presented a novel approach to protocol inference

and code generation. By using this approach, we can reason

about extensionality of the parallel programs, and alternative

mappings of computations to participants. We produce the

parallel program global type, i.e. its communication protocol,

that acts as a contract for the low-level code, can be used to

pin-point potential optimisations, or assessing the suitabil-

ity of a parallelisation. This approach has several benefits:

1. our message-passing code is deadlock-free by construc-

tion, since it follows the data-flow of the program, and the

optimisations must respect the global type; 2. we prove that

our parallelisations are extensionally equivalent to the input

function. Additionally, PAlg code could be used for further

multiple purposes, such as parallel GPU/FPGA code genera-

tion, by combining our approach with other state of the art

code generation techniques. We will study this for future

work.

Though our approach can already generate representative

parallel protocols, our framework is extensible. E.g. we can

extend our framework with dynamic participants to handle

dynamic task generation [26], and we plan to use this to

capture a wider range of communication patterns for paral-

lel computing, such as load-balancing or work-stealing. We

plan to study the extension of our back-end to heterogeneous

architectures, e.g. GPU clusters, or FPGAs. Our prototype

generates code that can achieve speedups against sequential

implementations, the optimisations that we support are very

basic, and our generated code can be very large. We plan to

introduce optimisations that reduce the amount messages

exchanged, further message reorderings guided by the global

type, and optimisations of the size of the generated code. Fi-

nally, we plan to study the instrumentation of global types to

estimate statically the speedups of different parallelisations,

and optimise communication costs.

Acknowledgements

We thank Shuhao Zhang for his contributions to the C back-

end, described in [69]. We thank Francisco Ferreira for the

helpful discussions in the early stages of this work. This

work was supported in part by EPSRC projects EP/K011715/1,

EP/K034413/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1,

and EP/T006544/1.

152

www.scribble.org

Compiling First-Order Functions to Session-Typed Parallel Code CC ’20, February 22ś23, 2020, San Diego, CA, USA

References
[1] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano

Meneghin, and Massimo Torquati. 2011. Accelerating Code on Multi-

cores with FastFlow. In Proc. of 17th International Euro-Par Conference

(Euro-Par 2011) (LNCS), Vol. 6853. Springer, 170ś181.

[2] John Backus. 1978. Can Programming Be Liberated from the Von

Neumann Style?: A Functional Style and Its Algebra of Programs.

Commun. ACM 21, 8 (Aug. 1978), 613ś641.

[3] Richard Bird and Oege De Moor. 1996. The algebra of programming.

In NATO ASI DPD. 167ś203.

[4] R. S. Bird. 1989. Algebraic Identities for Program Calculation. Comput.

J. 32, 2 (01 1989), 122ś126.

[5] Guy E. Blelloch. 1996. Programming Parallel Algorithms. Commun.

ACM 39, 3 (1996), 85ś97.

[6] Christopher Brown, Marco Danelutto, Kevin Hammond, Peter Kil-

patrick, and Archibald Elliott. 2014. Cost-Directed Refactoring for

Parallel Erlang Programs. International Journal of Parallel Program-

ming 42, 4 (01 Aug 2014), 564ś582.

[7] Christopher Brown, Kevin Hammond, Marco Danelutto, and Peter

Kilpatrick. 2012. A Language-independent Parallel Refactoring Frame-

work. In Proc. of the 5th Workshop on Refactoring Tools (WRT ’12). ACM,

New York, NY, USA, 54ś58.

[8] Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf,

Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2011. A Hetero-

geneous Parallel Framework for Domain-Specific Languages. In Proc.

of 2011 Intl. Conf. on Parallel Architectures and Compilation Techniques

(PACT’11). IEEE, 89ś100.

[9] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally

Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler

Typed Languages. J. Funct. Program. 19, 5 (2009), 509ś543.

[10] David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and

Nobuko Yoshida. 2019. Distributed Programming Using Role Paramet-

ric Session Types in Go. In 46th Symp. on Principles of Programming

Languages (POPL’19), Vol. 3. ACM, 29:1ś29:30.

[11] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,

Anand R. Atreya, and Kunle Olukotun. 2011. A Domain-Specific

Approach to Heterogeneous Parallelism. In Proc. of the 16th Symp.

on Principles and Practice of Parallel Programming (PPoPP’11). ACM,

35ś46.

[12] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton

Jones, Gabriele Keller, and Simon Marlow. 2007. Data Parallel Haskell:

a Status Report. In Proc. of the POPL 2007 Workshop on Declarative

Aspects of Multicore Programming, (DAMP’07) (2007). ACM, 10ś18.

[13] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007.

Parallel Programmability and the Chapel Language. IJHPCA 21, 3

(2007), 291ś312.

[14] Rohit Chandra. 2001. Parallel Programming in OpenMP. Morgan

Kaufmann.

[15] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher

Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and

Vivek Sarkar. 2005. X10: an Object-Oriented Approach to Non-Uniform

Cluster Computing. In Proc. of the 20th Conf. on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, (OOPSLA05). ACM,

San Diego, CA, USA, 519ś538.

[16] Tzu-chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and

Nobuko Yoshida. 2017. On the Preciseness of Subtyping in Session

Types. Logical Methods in Computer Science Volume 13, Issue 2 (June

2017).

[17] Yun-Yan Chi and Shin-Cheng Mu. 2011. Constructing List Homo-

morphisms from Proofs. In Proc. APLIAS ’11: Asian Symposium on

Programming Languages & Systems. 74ś88.

[18] Philipp Ciechanowicz and Herbert Kuchen. 2010. Enhancing Muesli’s

Data Parallel Skeletons for Multi-core Computer Architectures. In

12th Intl. Conf. on High Performance Computing and Communications,

(HPCC’10). IEEE, 108ś113.

[19] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,

Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.

2009. VCC: A Practical System for Verifying Concurrent C. In Proc. of

the 22nd Intl. Conf. on Theorem Proving in Higher Order Logics, (TPHOLs

2009) (LNCS), Vol. 5674. Springer, 23ś42.

[20] Murray Cole. 1988. Algorithmic skeletons : a structured approach to the

management of parallel computation. Ph.D. Dissertation. University of

Edinburgh, UK.

[21] James W Cooley and John W Tukey. 1965. An Algorithm for the

Machine Calculation of Complex Fourier Series. Mathematics of com-

putation 19, 90 (1965), 297ś301.

[22] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and

Nobuko Yoshida. 2015. A Gentle Introduction to Multiparty Asynchro-

nous Session Types. In 15th International School on Formal Methods for

the Design of Computer, Communication and Software Systems: Multi-

core Programming (LNCS), Vol. 9104. Springer, 146ś178.

[23] Alcino Cunha, Jorge Sousa Pinto, and José Proença. 2006. A Framework

for Point-Free Program Transformation. In Proc. of 17th Intl. Workshop

on Implementation and Application of Functional Languages (IFL 2005).

Springer, 1ś18.

[24] Romain Demangeon and Kohei Honda. 2012. Nested Protocols in

Session Types. In CONCUR 2012 ś Concurrency Theory. Springer, 272ś

286.

[25] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond

Hu. 2012. Parameterised Multiparty Session Types. Logical Methods

in Computer Science 8, 4 (2012).

[26] Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic Multirole

Session Types (POPL’11). ACM, New York, NY, USA, 435ś446.

[27] Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compati-

bility in Communicating Automata: Characterisation and Synthesis of

Global Session Types. In 40th International Colloquium on Automata,

Languages and Programming (LNCS), Vol. 7966. Springer, 174ś186.

[28] Zach DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley,

Montserrat Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex

Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso, and Pat Hanrahan.

2011. Liszt: a Domain Specific Language for Building Portable Mesh-

based PDE Solvers. In Conference on High Performance Computing

Networking, Storage and Analysis, SC 2011. ACM, 9:1ś9:12.

[29] Conal Elliott. 2017. Compiling to Categories. Proc. ACM Program.

Lang. 1, ICFP, Article 27 (Aug. 2017), 27 pages.

[30] Conal Elliott. 2017. Generic functional parallel algorithms: Scan and

FFT. Proc. ACMProgram. Lang. 1, ICFP, Article 48 (Sept. 2017), 24 pages.

[31] Maarten M. Fokkinga and Erik Meijer. 1991. Program Calculation Prop-

erties of Continuous Algebras. Number CS-R91 in Report / Department

of Computer Science. CWI.

[32] Jeremy Gibbons. 1996. Computing Downwards Accumulations on

Trees Quickly. Theoretical Computer Science 169, 1 (1996), 67ś80.

[33] Jeremy Gibbons. 2002. Calculating Functional Programs. In Algebraic

and Coalgebraic Methods in the Mathematics of Program Construction.

Springer, Chapter 5, 151ś203.

[34] Jeremy Gibbons. 2007. Datatype-Generic Programming. In Datatype-

Generic Programming. Springer, 1ś71.

[35] Horacio González-Vélez and Mario Leyton. 2010. A survey of algorith-

mic skeleton frameworks: high-level structured parallel programming

enablers. Softw., Pract. Exper. 40, 12 (2010), 1135ś1160.

[36] Sergei Gorlatch. 1999. Extracting and Implementing List Homomor-

phisms in Parallel Program Development. Science of Computer Pro-

gramming 33, 1 (1999), 1 ś 27.

[37] Sergei Gorlatch. 2004. Send-receive Considered Harmful: Myths and

Realities of Message Passing. ACM Trans. Program. Lang. Syst. 26, 1

(Jan. 2004), 47ś56.

[38] Sergei Gorlatch and Christian Lengauer. 1995. Parallelization of Divide-

and-Conquer in the Bird-Meertens Formalism. Formal Aspects of

Computing 7, 6 (1995), 663ś682.

153

CC ’20, February 22ś23, 2020, San Diego, CA, USA David Castro-Perez and Nobuko Yoshida

[39] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,

and Christophe Dubach. 2018. High Performance Stencil Code Gener-

ation with Lift. In Proc. of the 2018 Intl. Symp. on Code Generation and

Optimization (CGO 2018). ACM, New York, NY, USA, 100ś112.

[40] Kevin Hammond, Marco Aldinucci, Christopher Brown, Francesco

Cesarini, Marco Danelutto, Horacio González-Vélez, Peter Kilpatrick,

Rainer Keller, Michael Rossbory, and Gilad Shainer. 2013. The Para-

Phrase Project: Parallel Patterns for Adaptive Heterogeneous Multicore

Systems. Springer, 218ś236.

[41] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty

Asynchronous Session Types. In Proc. of 35th Symp. on Princ. of Prog.

Lang. (POPL ’08). ACM, New York, NY, USA, 273ś284.

[42] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty

Asynchronous Session Types. J. ACM 63, 1 (2016), 9:1ś9:67.

[43] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. 1996. Deriving

Structural Hylomorphisms from Recursive Definitions. In Proc. ICFP

’96: ACM Int. Conf. on Functional Programming (ICFP ’96). ACM, New

York, NY, USA, 73ś82.

[44] John Hughes. 2000. Generalising monads to arrows. Science of Com-

puter Programming 37, 1 (2000), 67 ś 111.

[45] Guy L. Steele Jr. 2005. Parallel Programming and Parallel Abstractions

in Fortress. In 14th International Conference on Parallel Architecture and

Compilation Techniques (PACT 2005), 17-21 September 2005, St. Louis,

MO, USA. IEEE Computer Society, 157.

[46] Daniel J. Lehmann andMichael B. Smyth. 1981. Algebraic Specification

of Data Types: A Synthetic Approach. Mathematical Systems Theory

14, 1 (01 Dec 1981), 97ś139.

[47] Mario Leyton and José M. Piquer. 2010. Skandium: Multi-core Program-

ming with Algorithmic Skeletons. In Proceedings of the 18th Euromicro

Conference on Parallel, Distributed and Network-based Processing, PDP

2010, Pisa, Italy, February 17-19, 2010. IEEE Computer Society, 289ś296.

[48] Yu Liu, Zhenjiang Hu, and Kiminori Matsuzaki. 2011. Towards Sys-

tematic Parallel Programming over Mapreduce. In Proc. Euro-Par 2011:

European Conference on Parallelism. 39ś50.

[49] Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas

Ng, César Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida.

2015. Protocol-Based Verification of Message-Passing Parallel Pro-

grams. In Proc. of the 2015 Intl. Conf. on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA’15). ACM, 280ś298.

[50] Frédéric Loulergue, Wadoud Bousdira, and Julien Tesson. 2017. Calcu-

lating Parallel Programs in Coq Using List Homomorphisms. Interna-

tional Journal of Parallel Programming 45, 2 (01 Apr 2017), 300ś319.

[51] Michael McCool, Arch Robison, and James Reinders. 2012. Structured

parallel programming: patterns for efficient computation. Elsevier.

[52] Erik Meijer, Maarten Fokkinga, and Ross Paterson. 1991. Functional

Programming with Bananas, Lenses, Envelopes and Barbed Wire.

In Functional Programming Languages and Computer Architecture.

Springer, 124ś144.

[53] Erik Meijer and Graham Hutton. 1995. Bananas in Space: Extending

Fold and Unfold to Exponential Types. In Proceedings of the Seventh

International Conference on Functional Programming Languages and

Computer Architecture (FPCA ’95). ACM, New York, NY, USA, 324ś333.

[54] Akimasa Morihata. 2013. A Short Cut to Parallelization Theorems. In

Proc. ICFP 2013: 18th Int. Conf. on Functional Programming. 245ś256.

[55] Akimasa Morihata and Kiminori Matsuzaki. 2010. Automatic Paral-

lelization of Recursive Functions using Quantifier Elimination. In Proc.

FLOPS ’10: Functional and Logic Programming. 321ś336.

[56] Dimitris Mostrous and Nobuko Yoshida. 2009. Session-Based Commu-

nication Optimisation for Higher-Order Mobile Processes. In Proc. of

the 9th Intl. Conf on Typed Lambda Calculi and Applications (LNCS),

Vol. 5608. Springer, 203ś218.

[57] Matthias Neubauer and Peter Thiemann. 2004. An Implementation

of Session Types. In Practical Aspects of Declarative Languages, 6th

International Symposium, PADL 2004, Dallas, TX, USA, June 18-19, 2004,
Proceedings. 56ś70.

[58] Nicholas Ng, José Gabriel de Figueiredo Coutinho, andNobuko Yoshida.

2015. Protocols by Default - Safe MPI Code Generation Based on

Session Types. In Proc. of the 24th Intl. Conf. on Compiler Construction

(LNCS), Vol. 9031. Springer, 212ś232.

[59] Nicholas Ng and Nobuko Yoshida. 2015. Pabble: parameterised Scribble.

Service Oriented Computing and Applications 9, 3-4 (2015), 269ś284.

[60] Ross Paterson. 2018. arrows: Arrow classes and transformers. http:

//hackage.haskell.org/package/arrows-0.4.4.2.

[61] Fethi A. Rabhi and Sergei Gorlatch (Eds.). 2003. Patterns and Skeletons

for Parallel and Distributed Computing. Springer.

[62] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a

Language and Compiler for Optimizing Parallelism, Locality, and

Recomputation in Image Processing Pipelines. In Proc. of Conf. on

Programming Language Design and Implementation, PLDI ’13. ACM,

519ś530.

[63] James Reinders. 2007. Intel threading building blocks - outfitting C++

for multi-core processor parallelism. O’Reilly.

[64] Rodrigo C. O. Rocha, Luís Fabrício Wanderley Góes, and Fernando

Magno Quintão Pereira. 2016. An Algebraic Framework for Paral-

lelizing Recurrence in Functional Programming. In Proc. of the 20th

Brazilian Symposium on Programming Languages, SBLP 2016 (LNCS),

Vol. 9889. Springer, 140ś155.

[65] David B Skillicorn. 1993. The Bird-Meertens Formalism as a Parallel

Model. Springer.

[66] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe

Dubach. 2015. Generating Performance Portable Code Using Rewrite

Rules. In Proc ICFP 2015: 20th ACM Conf. on Functional Prog. Lang. and

Comp. Arch. 205ś217.

[67] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017.

Lift: a functional data-parallel IR for high-performance GPU code

generation. In Proceedings of the 2017 International Symposium on Code

Generation and Optimization, CGO 2017, Austin, TX, USA, February 4-8,

2017. ACM, 74ś85.

[68] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Tiark Rompf,

Hassan Chafi, Michael Wu, Anand R. Atreya, Martin Odersky, and

Kunle Olukotun. 2011. OptiML: An Implicitly Parallel Domain-Specific

Language for Machine Learning. In Proc. of the 28th Intl. Conf. on

Machine Learning (ICML’11). Omnipress, 609ś616.

[69] Shuhao Zhang. 2019. Session Arrows: A Session-Type Based Framework

For Parallel Code Generation. Master’s thesis. Imperial College London.

154

http://hackage.haskell.org/package/arrows-0.4.4.2
http://hackage.haskell.org/package/arrows-0.4.4.2

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Outline and Contributions

	2 Algebraic Functional Language
	2.1 Syntax

	3 Parallel Algebraic Language
	3.1 Syntax of PAlg
	3.2 Interfaces
	3.3 Typing of Parallel Algebraic Language

	4 Multiparty Session Types for PAlg
	4.1 Multiparty Session Types
	4.2 Protocol Relation
	4.3 Correctness

	5 Code Generation
	5.1 Message Passing Monad

	6 Parallel Algorithms and Evaluation
	6.1 Benchmarks
	6.2 Evaluation

	7 Related Work
	8 Conclusions and Future Work
	References

