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Abstract. Session types provide a typing discipline for message-passing systems. However,
their theory often assumes an ideal world: one in which everything is reliable and without
failures. Yet this is in stark contrast with distributed systems in the real world. To address
this limitation, we introduce a new asynchronous multiparty session types (MPST) theory
with crash-stop failures, where processes may crash arbitrarily and cease to interact after
crashing. We augment asynchronous MPST and processes with crash handling branches,
and integrate crash-stop failure semantics into types and processes. Our approach requires
no user-level syntax extensions for global types, and features a formalisation of global
semantics, which captures complex behaviours induced by crashed/crash handling processes.

Our new theory covers the entire spectrum of unreliability, ranging from the ideal world of
total reliability to entirely unreliable scenarios where any process may crash, using optional
reliability assumptions. Under these assumptions, we demonstrate the sound and complete
correspondence between global and local type semantics, which guarantee deadlock-freedom,
protocol conformance, and liveness of well-typed processes by construction, even in the
presence of crashes.

1. Introduction

Background. As distributed programming grows increasingly prevalent, significant research
effort has been devoted to improve the reliability of distributed systems. A key aspect of
this research focuses on studying unreliability (or, more specifically, failures). Modelling
unreliability and failures enables a distributed system to be designed to be more tolerant of
failures, and thus more resilient.

In pursuit of methods to achieve fundamental reliability – safety in distributed commu-
nication systems – session types [HVK98] provide a lightweight, type system–based approach
to message-passing concurrency. In particular, Multiparty Session Types (MPST) [HYC08]
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facilitate the specification and verification of communication between message-passing pro-
cesses in concurrent and distributed systems. The typing discipline prevents common
communication-based errors, e.g. deadlocks and communication mismatches [HYC16,SY19].

Nevertheless, the challenge to account for unreliability and failures persists for session
types: most session type systems assume that both participants and message transmissions
are reliable, i.e. without failures. In a real-world setting, however, participants may crash,
communication channels may fail, and messages may be lost. The lack of failure modelling
in session type theories prevents their application to large-scale distributed systems.

Recent works [VHEZ21,PNW22,LNY22,LBD23,BSYZ22] address the gap in failure
modelling within session types with various techniques. Viering et al. [VHEZ21] introduce
failure suspicion, where a participant may suspect their communication partner has failed,
and act accordingly. Peters et al. [PNW22] introduce reliability annotations at type level,
and fall back to a given default value in case of failures. Lagaillardie et al. [LNY22] propose
a framework of affine multiparty session types, where a session can terminate prematurely,
e.g. in case of failures. Barwell et al. [BSYZ22] incorporate crash-stop failures in session
types, where a generalised type system validates safety and liveness properties. Le Brun
and Dardha [LBD23] adopt a similar approach but extend it to include additional failure
types, e.g. message losses, reordering, and delays.

This Paper. Unlike the aforementioned approaches, we advance failure modelling in session
types by introducing a new asynchronous multiparty session type theory that incorporates
crash-stop failures [CGR11, §2.2], where a process may crash and cease to interact with
others. This model is standard in distributed systems, and is used in related work on
session types with error-handling capabilities [VCE+18,VHEZ21]. However, unlike previous
work, we allow any process to crash arbitrarily, and support optional assumptions on non-
crashing processes. Our extended asynchronous MPST theory effectively models failures
with crash-stop semantics, and demonstrates that the usual session type guarantees remain
valid, i.e. communication safety, deadlock-freedom, and liveness.

In our new theory, we add crashing and crash handling semantics to processes and
types. With minimal changes to the standard surface syntax compared with the original
MPST theory, we model a variety of subtle, complex behaviours arising from unreliable
communicating processes. An active process P may crash arbitrarily, and a process Q
interacting with P might need to be prepared to handle possible crashes. Messages sent
from Q to a crashed P are lost – but if Q tries to receive from P , then Q can detect that P
has crashed, and take a crash handling branch. Meanwhile, another process R may (or may
not) have detected P ’s crash, and may be handling it – and in either case, any interaction
between Q and R should remain correct.

A key design feature of our framework is to support optional reliability assumptions: a
programmer may declare that some peers will never crash for the duration of the protocol.
Such optional assumptions allow for simplifying protocols and programs: if a participant
is declared reliable, its peers can interact with it without implementing crash detection
and handling. Moreover, by making such assumptions explicit and customisable, our
theory supports a spectrum of assumptions ranging from only having sessions with reliable
participants (as in classic MPST works [HYC16,SY19]), to having no reliable participants
at all.

Another fundamental aspect of our theory is its adherence to a top-down methodology,
which stems from the original MPST theory [HYC08]. This approach starts the design of
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multiparty session types with a given global type (top), and processes rely on local types
(bottom) obtained from the global type. The global and local types reflect the global
and local communication behaviours respectively. Well-typed processes that conform to a
global type are guaranteed to be correct by construction, enjoying full guarantees (safety,
deadlock-freedom, and liveness) from the theory.

The use of global types in our design for handling failures in multiparty session types
presents three distinct advantages: (1) there is no user-level syntax extension of global
types compared with the original MPST global types, apart from a special label to signify
crash handling branches; (2) global types provide a simple, high-level means to both
specify a protocol abstractly and automatically derive local types; and, (3) under (optional)
reliability assumptions, desirable behavioural properties such as communication safety,
deadlock-freedom, and liveness are guaranteed by construction.

In contrast to the synchronous semantics used by Barwell et al. [BSYZ22], we model
asynchronous semantics, where messages can be buffered whilst in transit. We focus on
asynchronous systems since most communication in the real distributed world is asynchro-
nous. Although Le Brun and Dardha [LBD23] develop a generic typing system incorporating
asynchronous semantics, their approach results in type-level properties becoming undecid-
able [LBD23, §4.4]. With global types, we restore decidability at a minor cost to expressivity.

Outline. This article represents an extended rendition of the work on asynchronous multi-
party session type theory with crash-stop failures as initially introduced in [BHYZ23]. Our
enhanced version provides a more comprehensive and refined presentation, offering detailed
definitions, an in-depth exploration of related work, and additional examples. Moreover, we
incorporate a new section (Section 6) that illustrates our approach through an extensive
case study of the Non-Blocking Atomic Commits abstraction, described in [CGR11]. In
contrast to [BHYZ23], we have omitted the implementation of our theory, as our primary
focus is on the theoretical aspects.

Note that, for clarity and simplicity, our framework does not support delegation (session
passing), as our primary focus is on developing a top-down methodology for handling failures
in multiparty session types. However, all the results presented in the paper are applicable
to systems that do incorporate delegation. For readers interested in the generalised MPST
theory that includes both crash-stop failures and delegation, please refer to [BSYZ22].

Section 2 We begin with an overview of our methodology.
Section 3 Addressing the challenge of defining the semantics of crashing and crash handling
within the context of the crash-stop model, we introduce an asynchronous multiparty session
calculus with minimal syntax changes.
Section 4 We introduce an extended theory of asynchronous multiparty session types with
semantic modelling of crash-stop failures. The challenges here involve capturing the non-
trivial crash-stop semantics of global and local types under optional reliability assumptions,
as well as demonstrating that the sound and complete operational correspondence between
the two semantics (Theorems 4.20 and 4.21) can ensure desirable global type properties such
as communication safety, deadlock-freedom, and liveness in local types through projection,
even in the presence of crashes (Theorem 4.31).
Section 5 We present a typing system for our asynchronous multiparty session calculus.
The challenges comprise proving behavioural properties for typed sessions: subject reduction,
session fidelity, deadlock-freedom, and liveness, in corresponding theorems (Theorems 5.2,
5.3, 5.5, and 5.7).
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A Global Type G with crash

projection (↾)

Local Type for L T L Local Type for I with crash T I Local Type for C T C

typing (⊢)
Process for L PL Process for I with crash PI Process for C PC

Figure 1. Top-down view of MPST with crash.

Section 6 We provide a case study on the Non-Blocking Atomic Commits abstraction,
which facilitates the reliable execution of transactions in distributed database systems.

We discuss related work in Section 7 and conclude in Section 8.

2. Overview

In this work, we follow a standard top-down design approach enabling correctness by
construction, but enrich asynchronous MPST with crash-stop semantics. As depicted
in Fig. 1, we formalise (asynchronous) multiparty protocols with crash-stop failures as global
types with crash handling branches (crash). These are projected onto local types, which may
similarly contain crash handling branches (crash). The projected local types are, in turn,
used to type-check processes (also with crash handling branches (crash)) that are written
in a session calculus. As an example, we consider a simple distributed logging scenario,
which is inspired by the logging-management protocol [LNY22], but extended with a third
participant.

The Simpler Logging protocol consists of a logger (L) that controls the logging services,
an interface (I) that provides communications between logger and client, and a client (C)
that requires logging services via interface. Initially, the logger process L sends a heartbeat
message trigger to the interface process I. Then the client C sends a command to the
interface to read the logs (read). When a read request is sent, it is forwarded to the logger,
and the logger responds with a report, which is then forwarded onto the client. When all
participants (i.e. logger, interface, and client) are assumed reliable, i.e. without failures or
crashes, this logging behaviour can be represented by the global type G0:

G0 = L→I:trigger.C→I:read.I→L:read.L→I:report(log).I→C:report(log).end

Here, G0 is a specification of the Simpler Logging protocol between multiple roles from a
global perspective.

In the real distributed world, all participants in the Simpler Logging system may fail.
Ergo, we may need to model protocols with failures or crashes and handling behaviour
thereof, e.g. should the client fail after the logging has started, the interface will inform the
logger to stop and exit. We follow [CGR11, §2.2] to model a crash-stop semantics, where we
assume that roles can crash at any time unless assumed reliable (never fail or crash). For
simplicity, we assume the interface I and the logger L to be reliable. The above logging
behaviour, incorporating crash-stop failures, can be represented by extending G0 with a
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branch handling crashes of C:

G = L→I:trigger.C→I:

{
read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}
(2.1)

We model crash detection on receiving roles: when a role I is waiting to receive a
message from role C, the receiving role I is able to detect whether C has crashed. Since
crashes are detected only by the receiving role, we do not require a crash handling branch
on the communication step between I and C – nor do we require them on any interaction
between L and I (since we are assuming that L and I are reliable). Note that our global
type syntax has minimal changes from the standard syntax, with additional crashing and
crash handling semantics. We give details in Section 4.

Following the MPST top-down methodology, a global type is then projected onto local
types, which describe communications from the perspective of a single role. In our unreliable
Simpler Logging example, G is projected onto three local types (one for each role C, L, I):

TC = I⊕read.I&report(log).end TL = I⊕trigger.I&
{
read.I⊕report(log).end
fatal.end

}
TI = L&trigger.C&

{
read.L⊕read.L&report(log).C⊕report(log).end
crash.L⊕fatal.end

}
Here, TI states that the interface I first receives a trigger message from the logger L; then
I either expects a read request from the client C, or detects the crash of C and handles
it (in crash) by sending the fatal message to notify the logger L. Again, the syntax of
local types does not depart from the standard, but we add additional crash modelling and
introduce a stop type for crashed endpoints, explained in Section 4. We show the operational
correspondence between global and local type semantics in Theorems 4.20 and 4.21, and
demonstrate that a projectable global type always produces a safe, deadlock-free, and live
typing context in Theorem 4.31.

The next step in this top-down methodology is to use local types to type-check processes
Pi executed by role pi in our session calculus. For example, TI can be used to type check
the interface I that executes the process:

L?trigger.
∑{

C?read.L!read.L?report(x).C!report⟨x⟩.0
C?crash.L!fatal.0

}
In our operational semantics (Section 3), we allow active processes executed by unreliable
roles to crash arbitrarily. Therefore, the role executing the crashed process also crashes, and is
assigned the local type stop. To ensure that a communicating process is type-safe even in the
presence of crashes, we require that its typing context satisfies a safety property accounting
for possible crashes (Definition 4.24), which is preserved by projection (Theorem 4.31).
Despite minor changes in the surface syntax of types and processes, additional semantics
surrounding crashes adds subtleties even in standard results. We prove subject reduction
and session fidelity results, accounting for crashes and sets of reliable roles, in Theorems 5.2
and 5.3.

3. Asynchronous Multiparty Session Calculus with Crash-Stop Semantics

In this section, we formalise the syntax (Section 3.1) and operational semantics (Section 3.2)
of our asynchronous multiparty session calculus with process failures and crash detection.
For clarity of presentation, delegation is not supported in our system.
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v ::= n
∣∣ i

∣∣ true
∣∣ false

∣∣ ""
∣∣ ()

∣∣ · · ·
e ::= x

∣∣ v
∣∣ succ(e)

∣∣ neg(e)
∣∣ ¬e

∣∣ e < e′
∣∣ · · ·

P ,Q ::= Processes∑
i∈I p?mi(xi).P i external choice∣∣ p!m⟨e⟩.P (where m ̸= crash) output∣∣ if e thenP elseQ conditional∣∣ X process variable∣∣ µX.P recursion∣∣ 0 inaction∣∣  crashed

M ::= Sessions
p ◁ P | p ◁ h participant∣∣ M |M parallel

h ::= Queues
ϵ empty∣∣ ⊘ unavailable∣∣ (p, m(v)) message∣∣ h · h concatenation

Figure 2. Syntax of values, expressions, sessions, processes, and queues.
Appreciable changes w.r.t. the standard session calculus [GPP+21] are
highlighted.

3.1. Syntax of Session Calculus with Crash-Stop Failures. Our asynchronous mul-
tiparty session calculus models processes that may crash arbitrarily. Our formalisation is
based on [GPP+21] – but additionally follows the fail-stop model in [CGR11, §2.7], where
processes may crash and never recover, and where process failures can be detected by failure
detectors [CGR11, §2.6.2] [CT96] when attempting to receive messages.

The syntax of our calculus is presented in Fig. 2. Values and expressions are standard:
a value, ranged over by v, v′, . . ., can be a natural number n, an integer i, a boolean true or
false, a string "", a unit () (often omitted for brevity), or any other specifically tailored
value; an expression, ranged over by e, e′, . . ., can be a variable, a value, or a term built
from expressions by applying operators, such as succ, neg,¬, and <. We fix a set of roles
R, ranged over by p, q, r, . . ..

A process, ranged over by P ,Q, . . ., is a communication agent within a session. An
output process p!m⟨e⟩.P sends a message to another role p in the session, where the message
is labelled m, and carries a payload expression e, then the process continues as P . An
external choice (input) process

∑
i∈I p?mi(xi).P i receives a message from another role p in

the session, among a finite set of indices I, if the message is labelled mi, then the payload
would be received as xi, and the process continues as Pi. Note that our calculus uses crash
as a special message label denoting that a participant (role) has crashed. Such a label
cannot be sent by any process, but a process can implement crash detection and handling by
receiving it. Consequently, an output process cannot send a crash message (side condition
m ̸= crash), whereas an input process may include a crash handling branch of the form
crash.P ′ meaning that P ′ is executed when the sending role has crashed. A conditional
process if e thenP elseQ continues as either P or Q depending on the evaluation of e (which
is detailed later in Section 3.2). We allow recursion at the process level using µX.P and X,
requiring process recursion variables to be guarded by an input or output action. Finally, we
write 0 for an inactive process, representing a successful termination; and  for a crashed
process, representing a termination due to failure.

An incoming queue1, ranged over by h, h′, hi, . . ., is a sequence of messages tagged with
their origin. We write ϵ for an empty queue; ⊘ for an unavailable queue; and (p, m(v)) for
a message sent from p, labelled m, and containing a payload value v. We write h1 · h2 to
denote the concatenation of two queues h1 and h2. When describing incoming queues, we
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consider two messages from different origins as swappable: h1 · (q1, m1(v1)) · (q2, m2(v2)) · h2
is structurally equivalent to h1 · (q2, m2(v2)) · (q1, m1(v1)) · h2 whenever q1 ̸= q2. Moreover,
we consider concatenation (·) as associative, and the empty queue ϵ as the identity element
for concatenation.

A session, ranged over by M,M′,Mi, . . ., consists of processes and their respective
incoming queue, indexed by their roles. A single entry for a role p is denoted p ◁ P | p ◁ h,
where P is the process for p and h is the incoming queue. Entries are composed together in
parallel as M |M′, where the roles in M and M′ are disjoint. We consider parallel composition
as commutative and associative, with p ◁ 0 | p ◁ ϵ as a neutral element of the operator. We
write

∏
i∈I(pi ◁ Pi | pi ◁ hi) for the parallel composition of multiple entries in a set.

3.2. Operational Semantics of Session Calculus with Crash-Stop Failures. The
evaluation of an expression is illustrated in Fig. 3, where e ↓ v indicates that the expression
e evaluates to the value v, and an evaluation context E is an expression containing exactly
one hole. The successor operation succ is defined only for natural numbers, the negation
neg is defined for integers, the logical negation ¬ is defined only for boolean values, and the
less-than operator < is applied only to integers.

We give the operational semantics of our session calculus in Definition 3.1, using a
structural precongruence ⇛ defined in Fig. 5. Structural precongruence is a preorder that
relates sessions based on inconsequential structural modifications. A standard structural
congruence ≡ can be defined as the symmetric closure of ⇛: ⇛ ∪⇛−.

Our semantics parameterises on a (possibly empty) set of reliable roles R, i.e. roles
assumed to never crash. This approach enables us to model optional reliability, allowing for
the representation of a spectrum of reliability assumptions that range from total process
reliability (as seen in standard session types work, i.e. R = R) to total unreliability (i.e.
R = ∅).

Definition 3.1 (Session Reductions). The session reduction relation →R is inductively
defined by the rules in Fig. 4, parameterised by a fixed set R of reliable roles. We write
→ whenever R is not significant. We write →∗

R (resp. →∗) for the reflexive and transitive
closure of →R (resp. →).

Our operational semantics retains the basic rules in [GPP+21], but also includes
(highlighted) rules for crash-stop failures and crash handling, adapted from [BSYZ22].
Rules [r-send] and [r-rcv] model ordinary message delivery and reception: an output process
located at p sending to q would append a message to the incoming queue of q; and an
input process located at p receiving from q would consume the first message from the
incoming queue. Rules [r-cond-T] and [r-cond-F] model the conditional process; and rule
[r-struct] permits reductions up to structural precongruence.

With regard to crashes and related behaviour, rule [r- ] models process crashes: an
active (P ̸= 0) process located at an unreliable role (p /∈ R) may reduce to a crashed process
p ◁  , with its incoming queue becoming unavailable p ◁⊘. Rule [r-send- ] models a message
delivery to a crashed role (and thus an unavailable queue), and the message becomes lost
and would not be added to the queue. Rule [r-rcv-⊙] models crash detection, which activates
as a ‘last resort’: an input process at p receiving from q would first attempt find a message

1In [GPP+21], the queues are outgoing instead of incoming. We use incoming queues to model our crashing
semantics more easily.
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v ↓ v succ(n) ↓ (n+ 1) neg(i) ↓ (−i) ¬true ↓ false ¬false ↓ true

i1 < i2 ↓
{
true if i1 < i2

false otherwise

e ↓ v E(v) ↓ v′

E(e) ↓ v′

Figure 3. Expression evaluation.

[r- ] p ◁ P | p ◁ hp |M →R p ◁  | p ◁⊘ |M (P ̸= 0, p /∈ R)
[r-send] p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁ Q | q ◁ hq |M

→ p ◁ P | p ◁ hp | q ◁ Q | q ◁ hq · (p, m(v)) |M (e ↓ v, hq ̸= ⊘)

[r-send- ] p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁  | q ◁⊘ |M → p ◁ P | p ◁ hp | q ◁  | q ◁⊘ |M
[r-rcv] p ◁

∑
i∈I q?mi(xi).P i | p ◁ (q, mk(v)) · hp |M → p ◁ P k{v/xk} | p ◁ hp |M (k ∈ I)

[r-rcv-⊙] p ◁
∑

i∈I q?mi(xi).P i | p ◁ hp | q ◁  | q ◁⊘ |M
→ p ◁ P k | p ◁ hp | q ◁  | q ◁⊘ |M (k ∈ I, mk = crash,∄m, v : (q, m(v)) ∈ hp)

[r-cond-T] p ◁ if e thenP elseQ | p ◁ h |M → p ◁ P | p ◁ h |M (e ↓ true)
[r-cond-F] p ◁ if e thenP elseQ | p ◁ h |M → p ◁ Q | p ◁ h |M (e ↓ false)
[r-struct] M1 ⇛M′

1 and M′
1 → M′

2 and M′
2 ⇛M2 =⇒ M1 → M2

Figure 4. Reduction relation on sessions with crash-stop failures.

h1 · (qi, mi(vi)) · (qj , mj(vj)) · h2 ⇛ h1 · (qj , mj(vj)) · (qi, mi(vi)) · h2
(if i ̸= j, i, j ∈ {1, 2}, q1 ̸= q2)

ϵ · h⇛ h h · ϵ⇛ h h1 · (h2 · h3)⇛ (h1 · h2) · h3 (h1 · h2) · h3 ⇛ h1 · (h2 · h3)
p ◁ 0 | p ◁ ϵ |M⇛M µX.P ⇛ P{µX.P/X} M⇛M′ and M′ ⇛M′′ =⇒ M⇛M′′∏

i∈I(pi ◁ Pi | pi ◁ hi)⇛
∏

j∈J(pj ◁ Pj | pj ◁ hj) (if I is a permutation of J)

P ⇛ Q and h1 ⇛ h2 =⇒ p ◁ P | p ◁ h1 |M⇛ p ◁ Q | p ◁ h2 |M

Figure 5. Structural precongruence rules for queues, processes, and sessions.

from q in the incoming queue, which engages the usual rule [r-recv]; if none exists and q has
crashed (q ◁  ), then the crash handling branch in the input process at p can activate. We
draw attention to the interesting fact that [r-recv] may engage even if q has crashed, in cases
where a message from q in the incoming queue may be consumed.

Example 3.2. We now illustrate our operational semantics of sessions with an example.
Consider the session:

p ◁ P | p ◁ ϵ | q ◁ Q | q ◁ ϵ

where P = q!m⟨“abc”⟩.P ′ with P ′ =
∑{

q?m′(x).0
q?crash.0

}
, and Q =

∑{
p?m(x).Q′

p?crash.0

}
with

Q′ = p!m′⟨42⟩.0.
In this session, the process Q for q receives a message sent from p to q; the process P

for p sends a message from p to q, and then receives a message sent from q to p.
On a successful reduction (without crashes), we have:
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B ::= nat
∣∣ int

∣∣ bool
∣∣ str

∣∣ unit
∣∣ . . . Basic types

G ::= p→q†: {mi(Bi).Gi}i∈I Transmission∣∣ p†⇝q:j {mi(Bi).Gi}i∈I (j ∈ I) Transmission en route (Runtime)∣∣ µt.G
∣∣ t

∣∣ end Recursion, Type variable, Termination

† ::= ·
∣∣  Crash annotation (Runtime)

S, T ::= p&{mi(Bi).Ti}i∈I External choice (Receive)∣∣ p⊕{mi(Bi).Ti}i∈I Internal choice (Send)∣∣ µt.T
∣∣ t Recursion, Type variable∣∣ end

∣∣ stop Termination, Crash (Runtime)

Figure 6. Syntax of basic types, global types, and local types. Runtime
types are shaded.

p ◁ P | p ◁ ϵ | q ◁ Q | q ◁ ϵ → p ◁ P ′ | p ◁ ϵ | q ◁ Q | q ◁ (p, m(“abc”))
→ p ◁ P ′ | p ◁ ϵ | q ◁ Q′ | q ◁ ϵ
→ p ◁ P ′ | p ◁ (q, m′(42)) | q ◁ 0 | q ◁ ϵ
→ p ◁ 0 | p ◁ ϵ | q ◁ 0 | q ◁ ϵ

Let R = ∅ (i.e. each role is unreliable). Suppose that P crashes before sending, which leads
to the reduction:

p ◁ P | p ◁ ϵ | q ◁ Q | q ◁ ϵ →R p ◁  | p ◁⊘ | q ◁ Q | q ◁ ϵ
→ p ◁  | p ◁⊘ | q ◁ 0 | q ◁ ϵ

We can observe that when the output (sending) process P located at an unreliable role p

crashes (by [r- ]), p also crashes (p ◁ ), with an unavailable incoming message queue (p ◁⊘).
Subsequently, the input (receiving) process Q located at q can detect and handle the crash
by [r-rcv-⊙] via its handling branch.

4. Asynchronous Multiparty Session Types with Crash-Stop Semantics

In this section, we present our asynchronous multiparty session types with crash-stop
semantics. We give an overview of global and local types with crashes in Section 4.1,
including syntax, projection, and subtyping. Our key additions to the classic theory are
crash handling branches in both global and local types, and a special local type stop to denote
crashed processes. We give a Labelled Transition System (LTS) semantics to both global
types (Section 4.2) and configurations (i.e. a collection of local types and point-to-point
communication queues, Section 4.3). We discuss alternative design options of modelling
crash-stop failures in Section 4.4. We relate the two semantics in Section 4.5, and show that
a configuration obtained via projection is safe, deadlock-free, and live in Section 4.6.

4.1. Global and Local Types with Crash-Stop Failures. The top-down methodology
begins with global types to provide an overview of the communication between a number of
roles (p, q, s, t, . . .), belonging to a (fixed) set R. On the other end, we use local types to
describe how a single role communicates with other roles from a local perspective, and they
are obtained via projection from a global type. We give the syntax of both global and local
types in Fig. 6, which are similar to syntax used in [SY19,BSYZ22].
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Basic Types. Basic types (types for payloads) are taken from a set B, and describe the
types of values such as natural numbers, integers, booleans, strings, and units.

Global Types. Global types are ranged over G,G′, Gi, . . ., and describe the behaviour for all
roles from a bird’s eye view. The syntactic constructs shown in shade are runtime constructs,
which are not used for describing a system at design-time, but for describing the state of a
system during execution.

We explain each global type syntactic construct: a transmission p→q†: {mi(Bi).Gi}i∈I
denotes a message from role p to role q (with possible crash annotations), with labels mi,
payload types Bi, and continuations Gi, where i is taken from an index set I. We require
that the index set be non-empty (I ̸= ∅), labels mi be pair-wise distinct and taken from a
fixed set of labels M, and self receptions be excluded (i.e. p ̸= q), as is standard in session
type literature. Additionally, we require that the special crash label (explained later) not
be the only label in a transmission, i.e. {mi | i ∈ I} ≠ {crash}. A transmission en route
p†⇝q:j {mi(Bi).Gi}i∈I is a runtime construct representing a message mj (index j) sent by
p, and yet to be received by q. Recursive types are represented via µt.G and t, where
contractive requirements apply [Pie02, §21.8]. The type end describes a terminated type
(omitted where unambiguous).

To model crashes and crash handling, we use crash annotations  and crash handling
branches: a crash annotation  , a new addition in this work, marks a crashed role (only
used in the runtime syntax ), and we omit annotations for live (or active) roles, i.e. p is a
live role, p is a crashed role, and p† represents a possibly crashed role, namely either p or
p . We use a special label crash for handling crashes: this continuation denotes the protocol
to follow when the sender of a message is detected to have crashed by the receiver. The
special label acts as a ‘pseudo’-message: when a sender role crashes, the receiver can select
the ‘pseudo’-message to enter crash handling.

Definition 4.1 (Set of Live and Crashed Roles). The set of live roles in a global type G,

denoted roles(G), and the set of crashed roles, denoted roles (G), are defined inductively as:

roles(p→q: {mi(Bi).Gi}i∈I) = {p, q} ∪
⋃
i∈I

roles(Gi) roles (p→q: {mi(Bi).Gi}i∈I) =
⋃
i∈I

roles (Gi)

roles(p→q : {mi(Bi).Gi}i∈I) = {p} ∪
⋃
i∈I

roles(Gi) roles (p→q : {mi(Bi).Gi}i∈I) = {q} ∪
⋃
i∈I

roles (Gi)

roles(p†⇝q:j {mi(Bi).Gi}i∈I) = {q} ∪
⋃
i∈I

roles(Gi) roles (p†⇝q:j {mi(Bi).Gi}i∈I) =
⋃
i∈I

roles (Gi)

roles(end) = roles(t) = ∅ roles (end) = roles (t) = ∅
roles(µt.G) = roles(G{µt.G/t}) roles (µt.G) = roles (G{µt.G/t})

Remark 4.2. Even if the sender p occurs as crashed during a communication in transit, it
is not considered as crashed unless it appears crashed in a continuation:

roles (p ⇝q:j {mi(Bi).Gi}i∈I) =
⋃
i∈I

roles (Gi).

Local Types. Local types (or session types) are ranged over by S, T , U, . . ., and describe
the behaviour of a single role. An internal choice (selection) p⊕{mi(Bi).Ti}i∈I (resp. an
external choice (branching) p&{mi(Bi).Ti}i∈I) indicates that the current role is to send to
(resp. receive from) the role p. Similarly to global types, we require pairwise-distinct, non-
empty labels in local types. Moreover, we require that the crash label not appear in internal
choices, reflecting that a crash ‘pseudo’-message can never be sent; and that singleton crash
labels are not permitted in external choices. The type end indicates a successful termination
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(omitted where unambiguous), and recursive types follow a similar fashion to global types.
We use a new runtime type stop to denote crashes.

Typographical Conventions. Whenever a payload type B is insignificant, we choose
to omit it from the global or local type. This is frequently the case when we discuss the
branches with crash (in a global type) or crash (in a local types) labels, where the payload
type is irrelevant.

Projection. Projection gives the local type of a participating role in a global type, defined
as a partial function that takes a global type G and a role p to project on, and returns a
local type, given by Definition 4.3.

Definition 4.3 (Global Type Projection). The projection of a global type G onto a role p,
with respect to a set of reliable roles R, written G ↾R p, is:

(
q→r†: {mi(Bi).Gi}i∈I

)
↾R p =


r⊕{mi(Bi).(Gi ↾R p)}i∈{j∈I | mj ̸=crash} if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I

if p = r, and q /∈ R implies

∃k ∈ I : mk = crash
d

i∈I Gi ↾R p if p ̸= q, and p ̸= r

(
q†⇝r:j {mi(Bi).Gi}i∈I

)
↾R p =


Gj ↾R p if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I

if p = r, and q /∈ R implies

∃k ∈ I : mk = crash
d

i∈I Gi ↾R p if p ̸= q, and p ̸= r

(µt.G) ↾R p =

{
µt.(G ↾R p) if p ∈ G or fv(µt.G) ̸= ∅
end otherwise

t ↾R p = t
end ↾R p = end

where
d

is the merge operator for session types (full merging):

p&{mi(Bi).S
′
i}i∈I⊓p&

{
mj(Bj).T

′
j

}
j∈J

= p&{mk(Bk).(S
′
k⊓T ′

k)}k∈I∩J & p&{mi(Bi).S
′
i}i∈I\J & p&

{
mj(Bj).T

′
j

}
j∈J\I

p⊕{mi(Bi).S
′
i}i∈I ⊓ p⊕{mi(Bi).T

′
i}i∈I = p⊕{mi(Bi).(S

′
i ⊓ T ′

i )}i∈I

µt.S ⊓ µt.T = µt.(S ⊓ T ) t ⊓ t = t end ⊓ end = end

We parameterise our theory on a (fixed) set of reliable roles R, i.e. roles assumed to
never crash, for modelling optional reliability assumptions: if R = ∅, we assume every role
to be unreliable and susceptible to crash; if roles(G) ⊆ R, we assume every role in G to
be reliable, and we simulate the results from the original MPST theory without crashes2.
We base our definition of projection on the standard definition [SY19], but include more
(highlighted) cases to account for reliable roles, crash branches, and runtime global types.

When projecting a transmission from q to r, we remove the crash label from the internal
choice at q, reflecting our model that a crash ‘pseudo’-message cannot be sent. Dually,
we require a crash label to be present in the external choice at r – unless the sender
role q is assumed to be reliable. Our definition of projection enforces that transmissions,
whenever an unreliable role is the sender (q /∈ R), must include a crash handling branch
(∃k ∈ I : mk = crash). This requirement ensures that the receiving role r can always handle
crashes whenever it happens, so that processes are not stuck when crashes occur. We

2Here we consider the original MPST theory without delegation (session passing).
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explain how these requirements help us achieve various properties by projection, such as
safety, deadlock-freedom, and liveness, in Section 4.6. The rest of the rules, including the
definition of the merge operator, are taken from the literature [SY19, vGHH21], without
much modification.

Subtyping. We define a subtyping relation ⩽ on local types in Definition 4.4, which will
be used later to relate the semantics of global types and configurations in Section 4.5. Our
subtyping relation is mostly standard [SY19, Def. 2.5], except for the (highlighted) addition
of the rule [Sub-stop] and extra requirements in [Sub-&]. In [Sub-&], we add two additional
requirements: (1) the supertype cannot be a ‘pure’ crash handling branch; and (2) if the
subtype has a crash handling branch, then the supertype must also have one. For simplicity,
we do not consider subtyping on basic types B.

Definition 4.4 (Subtyping). The subtyping relation ⩽ is coinductively defined:

end ⩽ end
[Sub-end]

∀i ∈ I Ti ⩽ T ′
i {mk | k ∈ I} ≠ {crash} ∄j ∈ J : mj = crash

p&{mi(Bi).Ti}i∈I∪J ⩽ p&{mi(Bi).T
′
i}i∈I

[Sub-&]

stop ⩽ stop
[Sub-stop]

∀i ∈ I Ti ⩽ T ′
i

p⊕{mi(Bi).Ti}i∈I ⩽ p⊕{mi(Bi).T
′
i}i∈I∪J

[Sub-⊕]

T{µt.T/t} ⩽ T ′

µt.T ⩽ T ′ [Sub-µL]
T ⩽ T ′{µt.T ′/t}

T ⩽ µt.T ′ [Sub-µR]

As standard, our subtyping relation is reflexive and transitive. Additionally, the
properties of subtyping related to merges are demonstrated in Lemmas 4.6, 4.7, and 4.8.
The proofs are available in Appendix A.2.

Lemma 4.5 (Reflexivity and Transitivity of Subtyping). The subtyping relation ⩽ is reflexive
and transitive.

Lemma 4.6. Given a collection of mergable local types Ti (i ∈ I). For all j ∈ I,
d

i∈I Ti ⩽ Tj

holds.

Lemma 4.7. Given a collection of mergable local types Ti (i ∈ I). If for all i ∈ I, S ⩽ Ti

for some local type S, then S ⩽
d

i∈I Ti.

Lemma 4.8. Given two collections of mergable local types Si, Ti (i ∈ I). If for all i ∈ I,
Si ⩽ Ti, then

d
i∈I Si ⩽

d
i∈I Ti.

4.2. Crash-Stop Semantics of Global Types. We now give a Labelled Transition System
(LTS) semantics to global types, with crash-stop semantics. To this end, we first introduce
some auxiliary definitions. We define the transition labels in Definition 4.9, which are also
used in the LTS semantics of configurations (later in Section 4.3).

Definition 4.9 (Transition Labels). Let α be a transition label of the form:

α ::= p&q :m(B) (p receives m(B) from q)
∣∣ p⊕q :m(B) (p sends m(B) to q)∣∣ p (p crashes)
∣∣ p⊙q (p detects the crash of q)

The subject of a transition label, written subj(α), is defined as:

subj(p&q :m(B)) = subj(p⊕q :m(B)) = subj(p ) = subj(p⊙q) = p.
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The labels p⊕q :m(B) and p&q :m(B) describe sending and receiving actions respectively.
The crash of a role p is denoted by the label p , and the detection of a crash by label p⊙q:
we model crash detection at reception, the label contains a detecting role p and a crashed
role q. We use these labels when giving the semantics for global types and configurations.

We then define an operator to remove a role from a global type in Definition 4.10: the
intuition is to remove any interaction of a crashed role from the given global type. When a
role has crashed, we remove it by attaching a crashed annotation, and removing infeasible
actions, e.g. when the sender and receiver of a transmission have both crashed. The removal
operator is a partial function that takes a global type G and a live role r (r ∈ roles(G)) and
gives a global type G r.
Definition 4.10 (Role Removal). The removal of a live role p in a global type G, written
G p, is defined as follows:

(p→q: {mi(Bi).Gi}i∈I) r =

p ⇝q:j {mi(Bi).(Gi r)}i∈I if p = r and ∃j ∈ I : mj = crash
p→q : {mi(Bi).(Gi r)}i∈I if q = r

p→q: {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(p⇝q:j {mi(Bi).Gi}i∈I) r =

p ⇝q:j {mi(Bi).(Gi r)}i∈I if p = r

Gj  r if q = r

p⇝q:j {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(p→q : {mi(Bi).Gi}i∈I) r =

{
Gj  r if p = r and ∃j ∈ I : mj = crash
p→q : {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(p ⇝q:j {mi(Bi).Gi}i∈I) r =

{
Gj  r if q = r

p ⇝q:j {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(µt.G) r =

{
µt.(G r) if fv(µt.G) ̸= ∅ or roles(G r) ̸= ∅
end otherwise

t r = t end r = end

We now explain the definition in detail. For simple cases, the removal of a role G r
attaches crash annotations  on all occurrences of the removed role r throughout global
type G inductively.

We draw attention to some interesting cases: when we remove the sender role p from
a transmission prefix p→q, the result is a ‘pseudo’-transmission en route prefix p ⇝q : j
where mj = crash. This enables the receiver q to ‘receive’ the special crash after the crash
of p, hence triggering the crash handling branch. Recall that our definition of projection
requires that a crash handling branch be present whenever a crash may occur (q /∈ R).

When we remove the sender role p from a transmission en route prefix p⇝q : j, the
result retains the index j that was selected by p, instead of the index associated with crash
handling. This is crucial to our crash modelling: when a role crashes, the messages that
the role has sent to other roles are still available. We discuss alternative models later in
Section 4.4.

In other cases, where removing the role r would render a transmission (regardless of
being en route or not) meaningless, e.g. both sender and receiver have crashed, we simply
remove the prefix entirely.

Example 4.11. We remove role C in the global type G in Equation (2.1) (defined in
Section 2).
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p /∈ R p ∈ roles(G) G ̸= µt.G′

⟨C ;G⟩ p −→R ⟨C ∪ {p};G p⟩
[GR- ] ⟨C ;G{µt.G/t}⟩ α−→R ⟨C ′;G′⟩

⟨C ;µt.G⟩ α−→R ⟨C ′;G′⟩
[GR-µ]

j ∈ I mj ̸= crash

⟨C ; p→q: {mi(Bi).G
′
i}i∈I⟩

p⊕q:mj(Bj)−−−−−−−→R ⟨C ; p⇝q:j {mi(Bi).G
′
i}i∈I⟩

[GR-⊕]

j ∈ I mj ̸= crash

⟨C ; p†⇝q:j {mi(Bi).G
′
i}i∈I⟩

q&p:mj(Bj)−−−−−−−→R ⟨C ;G′
j⟩

[GR-&]

j ∈ I mj = crash

⟨C ; p ⇝q:j {mi(Bi).G
′
i}i∈I⟩

q⊙p−−→R ⟨C ;G′
j⟩

[GR-⊙]

j ∈ I mj ̸= crash

⟨C ; p→q : {mi(Bi).G
′
i}i∈I⟩

p⊕q:mj(Bj)−−−−−−−→R ⟨C ;G′
j⟩

[GR- m]

∀i ∈ I : ⟨C ;G′
i⟩

α−→R ⟨C ′;G′′
i ⟩ subj(α) /∈ {p, q}

⟨C ; p→q†: {mi(Bi).G
′
i}i∈I⟩

α−→R ⟨C ′; p→q†: {mi(Bi).G
′′
i }i∈I⟩

[GR-Ctx-i]

∀i ∈ I : ⟨C ;G′
i⟩

α−→R ⟨C ′;G′′
i ⟩ subj(α) ̸= q

⟨C ; p†⇝q:j {mi(Bi).G
′
i}i∈I⟩

α−→R ⟨C ′; p†⇝q:j {mi(Bi).G
′′
i }i∈I⟩

[GR-Ctx-ii]

Figure 7. Global type reduction rules.

G C = L→I:trigger.C ⇝I:crash.I→L:fatal.end

Role C now carries a crash annotation  in the resulting global type, denoting it has crashed.
Crash annotations change the reductions available for global types.

We now give a Labelled Transition System (LTS) semantics to a global type G, by
defining the semantics with a tuple ⟨C ;G⟩, where C is a set of crashed roles, with all roles
in C belonging to the fixed role set R, i.e. C ⊆ R. The transition system is parameterised
by reliability assumptions, in the form of a fixed set of reliable roles R. Where it is not
ambiguous, we write G as an abbreviation of ⟨∅;G⟩. We define the reduction rules of global
types in Definition 4.12.

Definition 4.12 (Global Type Reductions). The global type (annotated with a set of crashed

roles C ) transition relation
α−→R is inductively defined by the rules in Fig. 7, parameterised

by a fixed set R of reliable roles. We write ⟨C ;G⟩ −→R ⟨C ′;G′⟩ if there exists α such

that ⟨C ;G⟩ α−→R ⟨C ′;G′⟩; we write ⟨C ;G⟩ −→R if there exists C ′, G′, and α such that

⟨C ;G⟩ α−→R ⟨C ′;G′⟩, and −→∗
R for the transitive and reflexive closure of −→R .

Rules [GR-⊕] and [GR-&] model sending and receiving messages respectively, as are
standard in existing works [DY13]. We add a (highlighted) extra condition that the message
exchanged not be a ‘pseudo’-message carrying the crash label. [GR-µ] is a standard rule that
deals with recursion.

We introduce (highlighted) rules to account for crash and consequential behaviour.
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• Rule [GR- ] models crashes, where a live (p ∈ roles(G)), but unreliable (p /∈ R) role p may
crash. The crashed role p is added into the set of crashed roles (C ∪ {p}), and removed
from the global type, resulting in a global type G p.

• Rule [GR-⊙] is for crash detection, where a live role q may detect that p has crashed at
reception, and then continues with the crash handling continuation labelled crash. This
rule only applies when the message en route is a ‘pseudo’-message, since otherwise a
message rests in the queue of the receiver and can be received despite the crash of the
sender (cf. [GR-&]).

• Rule [GR- m] models the orphaning of a message sent from a live role p to a crashed role q.
Similar to the requirement in [GR-⊕], we add the side condition that the message sent is
not a ‘pseudo’-message.
Finally, rules [GR-Ctx-i] and [GR-Ctx-ii] allow non-interfering reductions of (intermediate)

global types under prefix, provided that all of the continuations can be reduced by that
label.

Remark 4.13 (Necessity of C in Semantics). While we can obtain the set of crashed roles

in any global type G via roles (G), we need a separate C for bookkeeping purposes.
Let G = p→q:{m.end, crash.end}, we can have the following reductions:

⟨∅;G⟩ q −→∅ ⟨{q}; p→q :{m.end, crash.end}⟩ p⊕q:m−−−→∅ ⟨{q}; end⟩
While we can deduce q is a crashed role in the interim global type, the same information
cannot be recovered from the final global type end.

Both live and crashed roles in a global type remain consistent throughout a transi-
tion, except for those directly involved in the crash transition action, as demonstrated
in Lemma 4.14.

Lemma 4.14 (No Revival Or Unexpected Crashes). Assume ⟨C ;G⟩ α−→R ⟨C ′;G′⟩.
(1) If p ∈ roles (G′) and α ̸= p , then p ∈ roles (G);
(2) If p ∈ roles(G′) and α ̸= p , then p ∈ roles(G);

(3) If p ∈ roles (G′) and α = p , then p ∈ roles(G).

Proof. By induction on global type reductions. See Appendix A.3 for details.

We introduce an auxiliary concept of well-annotated global types in Definition 4.15,
as a consistency requirement for crash annotations  in a global type G, and the set of
crashed roles C , and a fixed set of reliable roles R. We show that well-annotatedness w.r.t.
R is preserved by global type reductions in Lemma 4.16. It follows that, a global type G
without runtime constructs is trivially well-annotated, and all reducta G −→∗

R ⟨C ;G′⟩ are
also well-annotated.

Definition 4.15 (Well-Annotated Global Types). A global type G with crashed roles C is
well-annotated w.r.t. a (fixed) set of reliable roles R, iff:

(WA1) No reliable roles are crashed, roles (G) ∩ R = ∅; and,

(WA2) All roles with crash annotations are in the crashed set, roles (G) ⊆ C ; and,

(WA3) A role cannot be live and crashed simultaneously, roles(G) ∩ roles (G) = ∅.

Lemma 4.16 (Preservation of Well-Annotated Global Types). If ⟨C ;G⟩ α−→R ⟨C ′;G′⟩, and
⟨C ;G⟩ is well-annotated w.r.t. R, then ⟨C ′;G′⟩ is also well-annotated w.r.t. R.
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Proof. By induction on global type reductions (Definition 4.12). See Appendix A.3 for
details.

4.3. Crash-Stop Semantics of Configurations. After giving semantics to global types, we
now give an LTS semantics to configurations, i.e. a collection of local types and communication
queues across roles. We first give a definition of configurations in Definition 4.17, followed
by their reduction rules in Definition 4.18.

Definition 4.17 (Configurations). A configuration is a tuple Γ;∆, where Γ is a typing
context, denoting a partial mapping from roles to local types, defined as:

Γ ::= ∅
∣∣ Γ, p▷T

The context composition Γ1,Γ2 is defined iff dom(Γ1) ∩ dom(Γ2) = ∅. A typing context Γ
can be decomposed (or split) into sub-contexts Γ1 and Γ2, written Γ = Γ1,Γ2, if dom(Γ) =
dom(Γ1) ∪ dom(Γ2), and ∀p ∈ dom(Γ), Γ(p) = (Γ1,Γ2)(p). We write Γ[p 7→ T ] for typing
context updates, namely Γ[p 7→ T ](p) = T and Γ[p 7→ T ](q) = Γ(q) (where p ̸= q).

A queue, denoted τ , is either a (possibly empty) sequence of messages M1·M2· · · · ·Mn,
or an unavailable queue ⊘. We write ϵ for an empty queue, and M ·τ ′ for a non-empty
queue with message M at the beginning. A queue message M is of form m(B), denoting
a message with label m and payload B. We sometimes omit B when the payload is not of
specific interest.

We write ∆ to denote a queue environment, a collection of peer-to-peer queues. A queue
from p to q at environment ∆ is denoted ∆(p, q). We define queue environment updates
∆[p, q 7→ τ ] similarly.

We also write τ ′ ·M for appending a message at the end of a queue: the message is
appended to the sequence when τ ′ is available, or discarded when τ ′ is unavailable (i.e.
⊘·M = ⊘). Additionally, we write ∆[·, q 7→ ⊘] for making all the queues to q unavailable:
i.e. ∆[p1, q 7→ ⊘][p2, q 7→ ⊘] · · · [pn, q 7→ ⊘].

We write ∆ϵ to denote an empty queue environment, where ∆ϵ(p, q) = ϵ for any p and
q in the domain.

We give an LTS semantics of configurations in Definition 4.18. Similar to that of global
types, we model the semantics of configurations in an asynchronous (a.k.a. message-passing)
fashion, using a queue environment to represent the communication queues among all roles.

Definition 4.18 (Configuration Semantics). The configuration transition relation
α−→ is

defined in Fig. 8. We write Γ;∆
α−→ iff Γ;∆

α−→Γ′; ∆′ for some Γ′ and ∆′. We define two
reductions → and →R (where R is a fixed set of reliable roles) as follows.

• We write Γ;∆→Γ′; ∆′ for Γ;∆
α−→ Γ′; ∆′ with α∈{p&q : m(B), p⊕q : m(B), p⊙q}. We

write Γ;∆→ iff Γ;∆→Γ′;∆′ for some Γ′;∆′, and Γ;∆ ̸→ for its negation, and →∗

for the reflexive and transitive closure of →;

• We write Γ;∆→R Γ′; ∆′ for Γ;∆
α−→ Γ′; ∆′ with α /∈{r | r∈R}. We write Γ;∆→R iff

Γ;∆→R Γ′;∆′ for some Γ′;∆′, and Γ;∆′ ̸→R for its negation. We define →∗
R as the

reflexive and transitive closure of →R .

We first explain the standard rules: rule [Γ-⊕] (resp. [Γ-&]) says that a role can perform
an output (resp. input) transition by appending (resp. consuming) a message at the corre-
sponding queue. Recall that whenever a queue is unavailable, the resulting queue remains
unavailable after appending (⊘·M = ⊘). Therefore, the rule [Γ-⊕] covers delivery to both
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Γ(p) = q⊕{mi(Bi).Ti}i∈I k ∈ I

Γ;∆
p⊕q:mk(Bk)−−−−−−−→ Γ[p 7→ Tk]; ∆[p, q 7→ ∆(p, q)·mk(Bk)]

[Γ-⊕]

Γ(p) = q&{mi(Bi).Ti}i∈I k ∈ I ∆(q, p) = mk(Bk)·τ ′ ̸= ⊘

Γ;∆
p&q:mk(Bk)−−−−−−−→ Γ[p 7→ Tk]; ∆[q, p 7→ τ ′]

[Γ-&]

Γ(p) = µt.T Γ[p 7→ T{µt.T/t}]; ∆ α−→ Γ′; ∆′

Γ;∆
α−→ Γ′; ∆′

[Γ-µ]

Γ(p) ̸= end Γ(p) ̸= stop

Γ;∆
p −→ Γ[p 7→ stop]; ∆[·, p 7→ ⊘]

[Γ- ]

Γ(q) = p&{mi(Bi).Ti}i∈I Γ(p) = stop k ∈ I mk = crash ∆(p, q) = ϵ

Γ;∆
q⊙p−−→ Γ[q 7→ Tk]; ∆

[Γ-⊙]

Figure 8. Configuration semantics.

crashed and live roles, whereas two separate rules are used in modelling global type semantics
([GR-⊕] and [GR- m]). We also include a standard rule [Γ-µ] for recursive types.

The key innovations are the (highlighted) rules modelling crashes and crash detection:
by rule [Γ- ], a role p may crash and become stop at any time (unless it is already ended or
stopped). All of p’s receiving queues become unavailable ⊘, so that future messages to p

would be discarded. Note that any pending messages in the receiving queue are discarded
(since the queue becomes unavailable ⊘), since the messages cannot be processed after the
crash.

Rule [Γ-⊙] models crash detection and handling: if p is crashed and stopped, another role
q attempting to receive from p can then take its crash handling branch. However, this rule
only applies when the corresponding queue is empty: it is still possible to receive messages
sent before crashing via [Γ-&].

4.4. Alternative Modellings for Crash-Stop Failures. Before we dive into the relation
between two semantics, let us have a short digression to discuss our modelling choices and
alternatives. In this work, we mostly follow the assumptions laid out in [BSYZ22], where
a crash is detected at reception. However, they opt to use a synchronous (rendez-vous)
semantics, whereas we give an asynchronous (message-passing) semantics, which entails
interesting scenarios that would not arise in a synchronous semantics.

Specifically, consider the case where a role p sends a message to q, and then p crashes
after sending, but before q receives the message. The situation does not arise under a
synchronous semantics, since sending and receiving actions are combined into a single
transmission action.

Intuitively, there are two possibilities to handle this scenario. The questions are whether
the message sent immediately before crashing is deliverable to q, and consequentially, at
what time q detects the crash of p.

In our semantics (Figs. 7 and 8), we opt to answer the first question positively: we argue
that this model is more consistent with our ‘passive’ crash detection design. For example,
if a role p never receives from another role q, then p does not need to react in the event
of q’s crash. Following a similar line of reasoning, if the message sent by p arrives in the
receiving queue of q, then q should be able to receive the message, without triggering a crash
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detection (although it may be triggered later). As a consequence, we require in [Γ-⊙] that
the queue ∆(p, q) be empty, to reflect the idea that crash detection should be a ‘last resort’.

For an alternative model, we can opt to detect the crash after it has occurred. This is
possibly better modelled with using outgoing queues (cf. [DY15]), instead of incoming queues
in the semantics presented. Practically, this may be the scenario that a TCP connection
is closed (or reset) when a peer has crashed, and the content in the queue is lost. It is
worth noting that this kind of alternative model will not affect our main theoretical results:
the operational correspondence between global and local type semantics, and furthermore,
global type properties guaranteed by projection.

4.5. Relating Global Type and Configuration Semantics. We have given LTS seman-
tics for both global types (Definition 4.12) and configurations (Definition 4.18). We will now
relate these two semantics with the help of the projection operator ↾ (Definition 4.3) and
the subtyping relation ⩽ (Definition 4.4).

We associate configurations Γ;∆ with global types G (as annotated with a set of crashed
roles C ) by projection, written Γ;∆ ⊑R ⟨C ;G⟩. Naturally, there are two components of the
association: (1) the local types in Γ need to correspond to the projections of the global type
G and the set of crashed roles C ; and (2) the queues in ∆ corresponds to the transmissions
en route in the global type G and also the set of crashed roles C .

Definition 4.19 (Association of Global Types and Configurations). A configuration Γ;∆
is associated to a (well-annotated w.r.t. R) global type ⟨C ;G⟩, written Γ;∆ ⊑R ⟨C ;G⟩,
iff
(1) Γ can be split into disjoint (possibly empty) sub-contexts Γ = ΓG,Γ ,Γend where:

(A1) ΓG contains projections of G: dom(ΓG) = roles(G), and ∀p ∈ dom(ΓG) :
Γ(p) ⩽ G ↾R p;

(A2) Γ contains crashed roles: dom(Γ ) = C , and ∀p ∈ dom(Γ ) : Γ(p) = stop;
(A3) Γend contains only end endpoints: ∀p ∈ Γend : Γ(p) = end.

(2) (A4) ∆ is associated with global type ⟨C ;G⟩, given as follows:
(i) Receiving queues for a role is unavailable if and only if it has crashed: ∀q :

q ∈ C ⇐⇒ ∆(·, q) = ⊘;
(ii) If G = end or G = µt.G′, then queues between all roles are empty (expect

receiving queue for crashed roles): ∀p, q : q /∈ C =⇒ ∆(p, q) = ϵ;
(iii) If G = p→q†: {mi(Bi).G

′
i}i∈I , or G = p†⇝q:j {mi(Bi).G

′
i}i∈I with mj = crash

(i.e. a ‘pseudo’-message is en route), then (i) if q is live, then the queue from p

to q is empty: q† ̸= q =⇒ ∆(p, q) = ϵ, and (ii) ∀i ∈ I : ∆ is associated with
⟨C ;G′

i⟩; and,
(iv) If G = p†⇝q:j {mi(Bi).G

′
i}i∈I with mj ̸= crash, then (i) the queue from p to q

begins with the message mj(Bj): ∆(p, q) = mj(Bj)·τ ; (ii) ∀i ∈ I : removing the
message from the head of the queue, ∆[p, q 7→ τ ] is associated with ⟨C ;G′

i⟩.
We write Γ ⊑R G as an abbreviation of Γ;∆ϵ ⊑R ⟨∅;G⟩. We sometimes say a Γ (resp. ∆)
is associated with ⟨C ;G⟩ for stating Item 1 (resp. Item 2) is satisfied.

We demonstrate the relation between the two semantics via association, by showing two
main theorems: all possible reductions of a configuration have a corresponding action in
reductions of the associated global type (Theorem 4.20); and the reducibility of a global
type is the same as its associated configuration (Theorem 4.21).
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Theorem 4.20 (Completeness of Association). Given associated global type G and configu-

ration Γ;∆: Γ;∆ ⊑R ⟨C ;G⟩. If Γ;∆
α−→ Γ′; ∆′, where α ≠ p for all p ∈ R, then there

exists ⟨C ′;G′⟩ such that Γ′; ∆′ ⊑R ⟨C ′;G′⟩ and ⟨C ;G⟩ α−→R ⟨C ′;G′⟩.

Proof. By induction on configuration reductions (Definition 4.18). See Appendix A.5 for
details.

Theorem 4.21 (Soundness of Association). Given associated global type G and configuration
Γ;∆: Γ;∆ ⊑R ⟨C ;G⟩. If ⟨C ;G⟩ −→R, then there exists Γ′;∆′, α and ⟨C ′;G′⟩, such

that ⟨C ;G⟩ α−→R ⟨C ′;G′⟩, Γ′; ∆′ ⊑R ⟨C ′;G′⟩, and Γ;∆
α−→ Γ′; ∆′.

Proof. By induction on global type reductions (Definition 4.12). See Appendix A.5 for
details.

By Theorems 4.20 and 4.21, we obtain, as a corollary, that a global type G is in
operational correspondence with the typing context Γ = {p▷G ↾R p}p∈roles(G), which contains

the projections of all roles in G.

Remark 4.22 (Sufficiency of Soundness Theorem). Curious readers may wonder why we
proved a soundness theorem that is not the dual of the completeness theorem, e.g. as seen in
the literature [DY13]. This is a consequence of using ‘full’ subtyping (Definition 4.4, notably
[Sub-⊕]). A local type in the typing context may have fewer branches to choose from than
the projected local type, resulting in uninhabited sending actions in the global type.

For example, let G = p→q: {m1 .end; m2 .end}. An associated typing context Γ (assuming
p reliable) may have Γ(p) = q⊕{m1 .end} ⩽ q⊕{m1 .end; m2 .end} (via [Sub-⊕]). The global
type G may make a transition p⊕q : m2, where an associated configuration Γ;∆ϵ cannot.

Our soundness theorem is nevertheless sufficient for concluding that desired properties
are guaranteed via association, e.g. safety, deadlock-freedom, and liveness, as illustrated in
Section 4.6.

Remark 4.23 (Relation between Well-Annotated and Well-Formed Global Types). In the
multiparty session type literature, a global type is well-formed if it can be projected onto
every declared protocol participant. Readers may wonder how well-formedness is applied to
the global type in this paper and how well-annotated global types (Definition 4.15) relate to
well-formed ones. Our definition of association (Definition 4.19) ensures that a global type
associated with a configuration, with respect to a set of reliable roles R, is also well-formed
with respect to R. This is because: (1) every global type is closed, i.e. it has no free type
variables; (2) every global type is contractive; and (3) condition (A1) in Definition 4.19
ensures that the associated global type is projectable onto all roles with respect to a set of
reliable roles, which is a key requirement for well-formedness.

Since the soundness (Theorem 4.21) and completeness (Theorem 4.20) of association,
along with the results on typed session properties (discussed in Section 5), depend on the
concept of association, it follows that all involved global types are well-formed.

Furthermore, there is no direct relationship between well-formedness and well-annotation;
a well-annotated global type may not be well-formed, and vice versa. All main results apply
to global types that are both well-formed and well-annotated.
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4.6. Properties Guaranteed by Projection. A key benefit of our top-down approach of
multiparty protocol design is that desirable properties are guaranteed by the methodology.
As a consequence, processes following the local types obtained from projections are correct
by construction. In this subsection, we focus on three properties: communication safety,
deadlock-freedom, and liveness, and show that the three properties are guaranteed from
configurations associated with global types.

Communication Safety. We begin by defining communication safety for configurations
(Definition 4.24). We focus on the following two safety requirements: (i) each role must be
able to handle any message that may end up in their receiving queue (so that there are no
label mismatches); and (ii) each receiver must be able to handle the potential crash of the
sender, unless the sender is reliable.

Definition 4.24 (Configuration Safety). Given a fixed set of reliable roles R, we say that
φ is an R-safety property of configurations iff, whenever φ(Γ;∆), we have:

[S-⊕&] Γ(q) = p&{mi(Bi).S
′
i}i∈I and ∆(p, q) ̸= ⊘ and ∆(p, q) ̸= ϵ implies Γ;∆

q&p:m′(B′)−−−−−−→;

[S- &] Γ(p) = stop and Γ(q) = p&{mi(Si).S
′
i}i∈I and ∆(p, q) = ϵ implies Γ;∆

q⊙p−−→;

[S-µ] Γ(p) = µt.S implies φ(Γ[p 7→ S{µt.S/t}]; ∆);

[S-→ ] Γ;∆ →R Γ′; ∆′ implies φ(Γ′; ∆′).

We say Γ;∆ is R-safe, if φ(Γ;∆) holds for some R-safety property φ.

We use a coinductive view of the safety property [San11], where the predicate of R-safe
configurations is the largest R-safety property, by taking the union of all safety properties φ.
For a configuration Γ;∆ to be R-safe, it has to satisfy all clauses defined in Definition 4.24.

By clause [S-⊕&], whenever a role q receives from another role p, and a message is present
in the queue, the receiving action must be possible for some label m′, i.e. the receiver q must
support all output messages that may appear at the head of the queue sent from p.

Clause [S- &] states that if a role q receives from a crashed role p, and there is nothing
in the queue, then q must have a crash branch, and a crash detection action can be fired.
(Note that [S-⊕&] applies when the queue is non-empty, despite the crash of sender p.)

Finally, clause [S-µ] extends the previous clauses by unfolding any recursive entries; and
clause [S-→ ] states that any configuration Γ′;∆′ which Γ;∆ transitions to must also be
R-safe. By using transition →R , we ignore crash transitions p for any reliable role p ∈ R.

Example 4.25. Recall the local types of the Simpler Logging example in Section 2:

TC = I⊕read.T ′
C

T ′
C = I&report(log).end

TL = I⊕trigger.T ′
L

T ′
L = I&

{
fatal.end
read.I⊕report(log).end

}
TI = L&trigger.T ′

I

T ′
I = C&

{
read.L⊕read.L&report(log).C⊕report(log).end
crash.T ′′

I

}
T ′′
I = L⊕fatal.end

The configuration Γ;∆, where Γ = C▷TC, L▷TL, I▷TI and ∆ = ∆ϵ, is {L, I}-safe. This can
be verified by checking its possible reductions. For example, in the case where C crashes
immediately, we have:
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Γ;∆
C −→ Γ[C 7→ stop]; ∆[·, C 7→ ⊘]

L⊕I:trigger−−−−−−−→ Γ[C 7→ stop][L 7→ T ′
L]; ∆[·, C 7→ ⊘][L, I 7→ trigger]

I&L:trigger−−−−−−−→ Γ[C 7→ stop][L 7→ T ′
L][I 7→ T ′

I]; ∆[·, C 7→ ⊘]
I⊙C−−→ Γ[C 7→ stop][L 7→ T ′

L][I 7→ T ′′
I ]; ∆[·, C 7→ ⊘]

I⊕L:fatal−−−−−−→ Γ[C 7→ stop][L 7→ T ′
L][I 7→ end]; ∆[·, C 7→ ⊘][I, L 7→ fatal]

L&I:fatal−−−−−−→ Γ[C 7→ stop][L 7→ end][I 7→ end]; ∆[·, C 7→ ⊘]

and each reductum satisfies all clauses of Definition 4.24. The cases where C crashes after
sending the reading message to I are similar. There are no other crash reductions to
consider, since both L and I are assumed to be reliable. The cases where no crashes occur
are similar as well, except that [Γ-⊙] and [Γ- ] are not applied in the non-crash reductions.

Deadlock-Freedom. The property of deadlock-freedom, sometimes also known as progress,
describes whether a configuration can keep reducing unless it is a terminal configuration.
We give its formal definition in Definition 4.26.

Definition 4.26 (Configuration Deadlock-Freedom). Given a set of reliable roles R, we say
that a configuration Γ;∆ is R-deadlock-free iff:
(1) Γ;∆ is R-safe; and,
(2) If Γ;∆ can reduce to a configuration Γ′;∆′ without further reductions: Γ;∆→∗

R
Γ′; ∆′ ̸→R , then:
(a) Γ′ can be split into two disjoint contexts, one with only end entries, and one

with only stop entries: Γ′ = Γ′
end,Γ

′
 , where dom(Γ′

end) = {p |Γ′(p) = end} and

dom
(
Γ′
 

)
= {p |Γ′(p) = stop}; and,

(b) ∆′ is empty for all pairs of roles, except for the receiving queues of crashed roles,
which are unavailable: ∀p, q : ∆′(·, q) = ⊘ if Γ′(q) = stop, and ∆′(p, q) = ϵ,
otherwise.

It is worth noting that a (safe) configuration that reduces infinitely satisfies deadlock-
freedom, as Item 2 in the premise does not hold. Otherwise, whenever a terminal configuration
is reached, it must satisfy Item 2a that all local types in the typing context be terminated
(either successfully end, or crashed stop), and Item 2b that all queues be empty (unless
unavailable due to crash). As a consequence, a deadlock-free configuration Γ;∆ either does
not stop reducing, or terminates in a stable configuration.

Liveness. The property of liveness describes that every pending internal/external choice is
eventually triggered by means of a message transmission or crash detection. Our liveness
property is based on fairness, which guarantees that every enabled message transmission,
including crash detection, is performed successfully. We give the definitions of non-crashing,
fair, and live paths of configurations respectively in Definition 4.27, and use these paths to
formalise the liveness for configurations in Definition 4.28.

Definition 4.27 (Non-crashing, Fair, Live Paths). A non-crashing path is a possibly infinite
sequence of configurations (Γn;∆n)n∈N , where N = {0, 1, 2, . . .} is a set of consecutive
natural numbers, and ∀n ∈ N , Γn; ∆n→Γn+1; ∆n+1.

We say that a non-crashing path (Γn; ∆n)n∈N is fair iff, ∀n ∈ N :

(F1) Γn;∆n
p⊕q:m(B)−−−−−−→ implies ∃k, m′, B′ such that n ≤ k ∈ N and Γk;∆k

p⊕q:m′(B′)−−−−−−→
Γk+1; ∆k+1;
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(F2) Γn; ∆n
p&q:m(B)−−−−−−→ implies ∃k such that n ≤ k ∈ N and Γk; ∆k

p&q:m(B)−−−−−−→ Γk+1; ∆k+1;

(F3) Γn; ∆n
p⊙q−−→ implies ∃k such that n ≤ k ∈ N and Γk; ∆k

p⊙q−−→ Γk+1; ∆k+1.
We say that a non-crashing path (Γn; ∆n)n∈N is live iff, ∀n ∈ N :

(L1) ∆n(p, q) = m(B)·τ ̸= ⊘ and m ̸= crash implies ∃k such that n ≤ k ∈ N and

Γk; ∆k
q&p:m(B)−−−−−−→ Γk+1; ∆k+1;

(L2) Γn(p) = q&{mi(Bi).Ti}i∈I implies ∃k, m′, B′ such that n ≤ k ∈ N and

Γk; ∆k
p&q:m′(B′)−−−−−−→ Γk+1; ∆k+1 or Γk; ∆k

p⊙q−−→ Γk+1; ∆k+1.

A non-crashing path is a (possibly infinite) sequence of reductions of a configuration
without crashes. A non-crashing path is fair if along the path, every internal choice eventually
sends a message (F1), every external choice eventually receives a message (F2), and every
crash detection is eventually performed (F3). A non-crashing path is live if along the path,
every non-crash message in the queue is eventually consumed (L1), and every hanging
external choice eventually consumes a message or performs a crash detection (L2).

Definition 4.28 (Configuration Liveness). Given a set of reliable roles R, we say that a
configuration Γ;∆ is R-live iff: (1) Γ;∆ is R-safe; and, (2) Γ;∆ →∗

R Γ′;∆′ implies all
non-crashing paths starting with Γ′; ∆′ that are fair are also live.

A configuration Γ;∆ is R-live when it is R-safe and any reductum of Γ;∆ (via transition
→∗

R) consistently leads to a live path if it is fair.

Example 4.29. We illustrate safety, deadlock-freedom, and liveness over configurations via
a series of small examples. We consider the configuration ΓA; ∆A, where ΓA = ΓAp,ΓAq,ΓAr

and ∆A = ∆ϵ with:

ΓAp = p▷µtp.q⊕
{
ok.q&

{
ok.tp, ko.end, crash.end

}
, ko.end

}
ΓAq = q▷µtq.p&

{
ok.p⊕

{
ok.tq, ko.end

}
, ko.end, crash.r⊕ok.end

}
ΓAr = r▷p& {crash.q& {ok.end, crash.end}}

If we assume that all roles are unreliable, i.e. R = ∅, ΓA; ∆A is ∅-safe since the inputs/outputs
in the typing context ΓA are dual and the queue environment ∆A is empty. However, ΓA; ∆A

is neither ∅-deadlock-free nor ∅-live since it is possible for p to crash immediately before
q sends ko to p. In such cases, q will not detect that p has crashed (since we only detect
crashes on receive actions) and terminate without sending a message to the backup process
r. This results in a deadlock because r will detect that p has crashed, and will expect a
message from q.

We observe that changing the reliability assumptions, without changing the configuration,
may influence whether a configuration property holds. For example, in the case of ΓA; ∆A,
we can obtain liveness by adjusting the reliability assumptions: in fact, if we assume r ∈ R,
then ΓA; ∆A is both R-deadlock-free and R-live.

Then consider the configuration ΓB; ∆B, where ΓB = ΓBp,ΓBq,ΓBr and ∆B = ∆ϵ with:

ΓBp = p▷µtp.q⊕ok.tp
ΓBq = q▷µtq.p&

{
ok.tq, crash.µt

′
q.r&

{
ok.t′q, crash.end

}}
ΓBr = r▷µtr.q⊕ok.tr

If we assume that all roles are unreliable, i.e. R = ∅, ΓB;∆B is ∅-safe and ∅-deadlock-free
but not ∅-live – because p may never crash, and in this case, r’s outputs are never received
by q. Notice that, in the case of ΓB;∆B, we are unable to make liveness hold purely via
combinations of reliable roles: this is because (unless p crashes) r’s output will never be
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received by q, irrespective of reliability assumptions. The configuration itself must instead
be adapted accordingly, e.g. in ΓB, r should be permitted to send only once it has detected
that p has crashed.

Finally, consider the configuration ΓC ;∆C , where ΓC = ΓCp,ΓCq,ΓCr and ∆C = ∆ϵ

with:
ΓCp = p▷q⊕m1 .q&

{
m2 .end, crash.µtp.r⊕ok.tp

}
ΓCq = q▷p& {m1 .p⊕m2 .end}
ΓCr = r▷p&

{
crash.µtq.p&

{
ok.tq

}}
When all roles are assumed to be reliable, i.e. R = {p, q, r}, ΓC ; ∆C satisfies {p, q, r}-safety
and {p, q, r}-deadlock-freedom. However, should we instead assume that no roles are reliable,
i.e. R = ∅, ΓC ; ∆C satisfies only ∅-safety since external choices in ΓC do not feature a crash
handling branch when receiving from p.

Properties by Projection. We conclude by showing the guarantee of safety, deadlock-
freedom, and liveness in configurations associated with global types in Lemma 4.30. Fur-
thermore, as a corollary, Theorem 4.31 demonstrates that a typing context projected from
a global type (without runtime constructs) is inherently safe, deadlock-free, and live by
construction.

Lemma 4.30. If Γ;∆ ⊑R ⟨C ;G⟩, then Γ;∆ is R-safe, R-deadlock-free, and R-live.

Proof. The results follow from the operational correspondence between global types and
configurations (Theorems 4.20 and 4.21), and the respective definitions for each property (Def-
initions 4.24, 4.26, and 4.28). See Appendix A.6, A.7, and A.8 for details.

Theorem 4.31 (Safety, Deadlock-Freedom, and Liveness by Projection). Let G be a global
type without runtime constructs, and R be a set of reliable roles. If Γ is a typing context
associated with the global type G: Γ ⊑R G, then Γ;∆ϵ is R-safe, R-deadlock-free, and R-live.

Proof. Note Γ ⊑R G is an abbreviation of Γ;∆ϵ ⊑R ⟨∅;G⟩, apply Lemma 4.30.

5. A Type System with Crash-Stop Semantics

In this section, we present a type system for our asynchronous multiparty session calculus.
Our typing system extends the one in [GPP+21] with crash-stop failures – typing rules
for crashed process and unavailable queues, respectively. We introduce the typing rules in
Section 5.1, and show various properties of typed sessions: subject reduction (Theorem 5.2),
session fidelity (Theorem 5.3), deadlock-freedom (Theorem 5.5), and liveness (Theorem 5.7)
in Section 5.2.

5.1. Typing Rules. Our type system involves four kinds of typing judgements: (1) for
expressions; (2) for processes; (3) for queues; and (4) for sessions, and is defined inductively
by the typing rules in Fig. 9.

Typing judgments for expressions and processes take the forms Θ ⊢ e : B and Θ ⊢ P : T ,
respectively, where Θ is a typing context for expression and process variables, defined as
Θ ::= ∅

∣∣ Θ, x : B
∣∣ Θ, X : T .

With regard to queues, we use judgments of form ⊢ h : δ, where we use δ denote a
partially applied queue lookup function. We write δ = ∆(−, p) to describe the incoming
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Θ ⊢ n : nat Θ ⊢ i : int Θ ⊢ true : bool Θ ⊢ false : bool Θ ⊢ "" : str

Θ ⊢ () : unit Θ, x : B ⊢ x : B
Θ ⊢ e : nat

Θ ⊢ succ(e) : nat
Θ ⊢ e : int

Θ ⊢ neg(e) : int

Θ ⊢ e : bool
Θ ⊢ ¬e : bool

Θ ⊢ e1 : int Θ ⊢ e2 : int
Θ ⊢ e1 < e2 : bool

⊢ ϵ : ϵ
[t-ϵ]

⊢ ⊘ : ⊘
[t-⊘]

⊢ h1 : δ1 ⊢ h2 : δ2
⊢ h1 · h2 : δ1 · δ2

[t-·]

⊢ v : B δ(q) = m(B) ∀r ̸= q : δ(r) = ϵ

⊢ (q, m(v)) : δ
[t-msg]

Θ ⊢  : stop
[t- ]

Θ ⊢ 0 : end
[t-0]

Θ ⊢ e : B Θ ⊢ P : T
Θ ⊢ q!m⟨e⟩.P : q⊕m(B).T

[t-out]

∀i ∈ I Θ, xi : Bi ⊢ P i : T i

Θ ⊢
∑

i∈I q?mi(xi).P i : q&{mi(Bi).T i}i∈I
[t-ext]

Θ ⊢ e : bool Θ ⊢ P i : T (i = 1, 2)

Θ ⊢ if e thenP 1 elseP 2 : T
[t-cond]

Θ, X : T ⊢ P : T

Θ ⊢ µX.P : T
[t-rec]

Θ, X : T ⊢ X : T
[t-var]

Θ ⊢ P : T T ⩽ T ′

Θ ⊢ P : T ′ [t-sub]

Γ;∆ ⊑R ⟨C ;G⟩ ∀i ∈ I ⊢ P i : Γ(pi) ⊢ hi : ∆(−, pi) dom(Γ) ⊆ {pi | i ∈ I}
⟨C ;G⟩ ⊢

∏
i∈I(pi ◁ Pi | pi ◁ hi)

[t-sess]

Figure 9. Typing rules for expressions, queues, processes, and sessions.

queue for a role p, as a partially applied function δ = ∆(−, p) such that δ(q) = ∆(q, p).
We write δ1 · δ2 to denote the point-wise application of concatenation. We lift the process-
level constructs for empty queues (ϵ), unavailable queues (⊘), queue concatenations (·),
and the structural precongruence relation (⇛) on queues to their corresponding type-level
counterparts. For a singleton message (q, m(v)), the appropriate partial queue δ would be a
singleton of m(B) (where B is the type of v) for q, and an empty queue (ϵ) for any other role.

Finally, we use judgments of form ⟨C ;G⟩ ⊢ M for sessions. We use a global type-guided
judgment, effectively asserting that all participants in the session respect the prescribed
global type, as is the case in [GJP+19]. As highlighted, the global type with crashed roles
⟨C ;G⟩ must have some associated configuration Γ;∆, which are used to type the processes
and the queues respectively. Moreover, all the entries in the configuration must be present
in the session.

We explain the rules in Fig. 9 that assign session types based on process behaviour (other
rules are mostly self-explanatory). Rule [t-⊘] (highlighted) assigns the unavailable queue
type ⊘ to an unavailable queue ⊘. Rules [t-out] and [t-ext] assign internal and external
choice types to input and output processes, respectively. Additionally, rule [t- ] (highlighted)
assigns the crash termination stop to a crashed process  , while rule [t-0] assigns the successful
termination end to an inactive process 0.

Example 5.1. Consider our Simpler Logging example (Section 2 and Example 4.25).
Specifically, consider the processes that act as the roles C, L, and I respectively:
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PC = I!read.I?report(x).0 PL = I!trigger.
∑{

I?fatal.0
I?read.I!report⟨log⟩.0

}
PI = L?trigger.

∑{
C?read.L!read.L?report(x).C!report⟨log⟩.0
C?crash.L!fatal.0

}
and message queues hC = hL = hI = ϵ, and the configuration Γ;∆ as in Example 4.25.

Process PC (resp. PL, PI) has the type Γ(C) (resp. Γ(L), Γ(I)), and queue hC (resp. hL,
hI) has the type ∆(−, C) (resp. ∆(−, L), ∆(−, I)), which can be verified in the standard
way. Then, together with the association Γ;∆ ⊑{L,I} ⟨∅;Gs⟩, we can use [t-sess] to assert
that the session C ◁ PC | C ◁ hC | L ◁ PL | L ◁ hL | I ◁ PI | I ◁ hI is governed by the global
type ⟨∅;Gs⟩. If we follow a crash reduction, e.g. by the rule [r- ], the session evolves as
C ◁ PC | C ◁ hC | L ◁ PL | L ◁ hL | I ◁ PI | I ◁ hI →R C ◁  | C ◁⊘ | L ◁ PL | L ◁ hL | I ◁ PI | I ◁ hI,
where, by [t- ], PC is typed by stop, and hC is typed by ⊘.

5.2. Properties of Typed Sessions. We present the main properties of typed sessions: sub-
ject reduction (Theorem 5.2), session fidelity (Theorem 5.3), deadlock-freedom (Theorem 5.5),
and liveness (Theorem 5.7).

Subject reduction states that well-typedness of sessions is preserved by reduction, i.e. a
session that is governed by a global type continues to be governed by a global type.

Theorem 5.2 (Subject Reduction). If ⟨C ;G⟩ ⊢ M and M →R M′, then either ⟨C ;G⟩ ⊢
M′, or there exists ⟨C ′;G′⟩ such that ⟨C ;G⟩ −→R ⟨C ′;G′⟩ and ⟨C ′;G′⟩ ⊢ M′.

Proof. By induction on the derivation of M →R M′. See Appendix B for details.

Session fidelity states the opposite implication with regard to subject reduction: sessions
respect the progress of the governing global type.

Theorem 5.3 (Session Fidelity). If ⟨C ;G⟩ ⊢ M and ⟨C ;G⟩ −→R, then there exists M′

and ⟨C ′;G′⟩ such that ⟨C ;G⟩ −→R ⟨C ′;G′⟩, M →∗
R M′ and ⟨C ′;G′⟩ ⊢ M′.

Proof. By induction on the derivation of ⟨C ;G⟩ −→R . See Appendix B for details.

Session deadlock-freedom means that the ‘successful’ termination of a session may include
crashed processes and their respective unavailable incoming queues – but reliable roles (which
cannot crash) can only successfully terminate by reaching inactive processes with empty
incoming queues. We formalise the definition of deadlock-free sessions in Definition 5.4 and
show that a well-typed session is deadlock-free in Theorem 5.5.

Definition 5.4 (Deadlock-Free Sessions). A session M is deadlock-free iff M →∗
R M′ ↛R

implies either M′ ⇛ p ◁ 0 | p ◁ ϵ for some p, or M′ ⇛
∏

i∈I(pi ◁  | pi ◁⊘) with I ̸= ∅.

Theorem 5.5 (Session Deadlock-Freedom). If ⟨C ;G⟩ ⊢ M, then M is deadlock-free.

Proof. The result follows by Lemma 4.30 (deadlock-freedom by projection), Theorem 5.2 (sub-
ject reduction), and Theorem 5.3 (session fidelity). See Appendix B for details.

Finally, we show that well-typed sessions guarantee the property of liveness: a session
is live when all its input processes will be performed eventually, and all its queued messages
will be consumed eventually. We formalise the definition of live sessions in Definition 5.6
and conclude by showing that a well-typed session is live in Theorem 5.7.



26 A.D. BARWELL, P. HOU, N. YOSHIDA, AND F. ZHOU

G = µt.c→l, m1, m2:req.m1→l:



accept.m2→l:


accept.l→c:


accept.G1

reject.G2

crash.G3

reject.l→c:

{
reject.G2

crash.G5

reject.m2→l:


accept.l→c:

{
reject.G2

crash.G4

reject.l→c:

{
reject.G2

crash.G5

G1 = c→l, m1, m2:enact.t
G2 = c→l, m1, m2:abort.t
G3 = c→m1:promote.c→m2:retry.m2→m1:accept.m1→c:accept.c→m1, m2:enact.end
G4 = c→m1:promote.c→m2:retry.m2→m1:accept.m1→c:reject.c→m1, m2:abort.end
G5 = c→m1:promote.c→m2:retry.m2→m1:reject.m1→c:reject.c→m1, m2:abort.end

Figure 10. A global type G for a variant of the NBAC abstraction.

Definition 5.6 (Live Sessions). A session M is live iff M →∗
R M′ ⇛ p ◁ P | p ◁ hp | M′′

implies:

(i) if hp = (q, m(v)) · h′p, then ∃P ′,M′′′ : M′ →∗
R p ◁ P ′ | p ◁ h′p |M′′′;

(ii) if P =
∑

i∈I q?mi(xi).P i, then ∃k ∈ I, w, h′p,M′′′ : M′ →∗
R p ◁ P k{w/xk} | p ◁ h′p |M′′′.

Theorem 5.7 (Session Liveness). If ⟨C ;G⟩ ⊢ M, then M is live.

Proof. The result follows by Lemma 4.30 (liveness by projection), Theorem 5.2 (subject
reduction), and Theorem 5.3 (session fidelity). See Appendix B for details.

6. Case Study: Non-Blocking Atomic Commits

We demonstrate our approach via the Non-Blocking Atomic Commits (NBAC) abstrac-
tion [CGR11], which enables consistent application of transactions in distributed database
systems. The abstraction is straightforward: a given transaction is applied iff all data
managers – each representing part of the database – accept the transaction. We present a
variant of this abstraction via the global type G in Fig. 10, which involves a co-ordinator c,
two data managers m1, m2, and one unreliable leading data manager l. The protocol exhibits
failover behaviour, where m1 is the failover role for l. For clarity, we opt to eliminate the
right-hand braces from global types.

The recursive protocol in Fig. 10 begins with the co-ordinator c broadcasting a trans-
action proposal, denoted req, to all three data managers. For brevity, we omit payload
types and write c→l, m1, m2:req.G

′ for c→l:req.c→m1:req.c→m2:req.G
′. Data managers

m1 and m2 send their votes to the leading data manager l. In cases where l does not crash,
it sends reject to c when it receives a rejection from its peers, or if l itself rejects
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Tc = µt.l, m1, m2⊕req.l&


accept.l, m1, m2⊕enact.t
reject.l, m1, m2⊕abort.t
crash.Sc

Sc = m1⊕promote.m2⊕retry.m1&

{
accept.m1, m2⊕enact.end
reject.m1, m2⊕abort.end

Tl = µt.c&req.m1&


accept.m2&

accept.c⊕

{
accept.c&enact.t

reject.c&abort.t

reject.c⊕reject.c&abort.t

reject.m2&

{
accept.c⊕reject.c&abort.t
reject.c⊕reject.c&abort.t

Tm1 = µt.c&req.l⊕

{
accept.c&{abort.t, enact.t, promote.Sm1}
reject.c&

{
abort.t, enact.t, promote.S′

m1

}
Sm1 = m2&

{
accept.c⊕accept.c&enact.end
reject.c⊕reject.c&abort.end

S′
m1 = m2&

{
accept.c⊕reject.c&abort.end
reject.c⊕reject.c&abort.end

Tm2 = µt.c&req.l⊕



accept.c&


abort.t

enact.t

retry.m1⊕accept.c&

{
abort.end

enact.end

reject.c&

{
abort.t

retry.m1⊕reject.c&abort.end

Figure 11. Projected local types for the NBAC abstraction G.

the transaction; c subsequently broadcasts an abort message (in G2) prior to the protocol
recursing. In cases where l, m1, and m2 all vote to accept the transaction, c broadcasts a
success message (in G1). In cases where c detects that l has crashed, it promotes m1 to
leader. Once promoted, m1 receives a vote from m2, and informs c of the data managers’
decision. Should the transaction be rejected (resp. accepted), c broadcasts an abort (resp. a
success) message to all live data managers, before the protocol terminates. The global types
G3, G4, and G5 define this crash handling behaviour.

All projected local types for the NBAC protocol G are listed in Fig. 11. The type
obtained by projecting onto c, Tc, is the sole local type that contains a crash handling
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Pc = µX.l, m1, m2!req.
∑ l?accept.l, m1, m2!enact.X

l?reject.l, m1, m2!abort.X
l?crash.Qc


Qc = m1!promote.m2!retry.

∑{
m1?accept.m1, m2!enact.0
m1?reject.m1, m2!abort.0

}
Pm1 = µX.c?req.l!accept.

∑{
c?enact.X, c?abort.X, c?promote.Qm1

}
Qm1 =

∑{
m2?accept.c!accept.c?enact.0
m2?reject.c!reject.c?abort.0

}

Figure 12. Process definitions for roles c and m1 in G.

branch since l is the only unreliable role, and both m1 and m2 do not receive messages from
l. Its crash handling branch is defined by Sc. Similarly to the global type above, broadcast
operations are denoted as p1, . . . , pn⊕m, and stand for p1⊕m . · · · .pn⊕m. Additionally, we
remove the right-hand braces from local types as well. Projections for roles l, m1, and m2
are as standard, where labels promote and retry trigger the crash handling behaviour in m1
and m2 respectively.

Let Γ;∆ be the {c, m1, m2}-safe configuration, where Γ = c▷Tc, l▷Tl, m1▷Tm1 , m2▷Tm2 ,
and ∆ = ∆ϵ. The processes Pc and Pm1 in Fig. 12, with message queues hc = hm1 = ϵ act
as roles c and m1 in G. The former, Pc, has type Γ(c); the latter, Pm1 will always accept a
proposed transaction, and has type Γ(m1). Processes Pl and Pm2 can be defined similarly
such that Pl has type Γ(l), and Pm2 has type Γ(m2). Since the local types in Γ are derived
via projection from G, we have the association Γ;∆ ⊑{c,m1,m2} ⟨∅;G⟩. This allows us to assert
that the session c ◁ Pc | c ◁ hc | l ◁ Pl | l ◁ hl | m1 ◁ Pm1 | m1 ◁ hm1 | m2 ◁ Pm2 | m2 ◁ hm2 , where
hl = hm2 = ϵ, is governed by the global type ⟨∅;G⟩. Consequently, this session is both
deadlock-free (by Theorem 5.5) and live (by Theorem 5.7).

7. Related Work

We summarise related work on session types with failure handling. While most of the
literature discussed includes delegation, our framework does not. However, this distinction
does not impact the core comparison, which focuses on failure handling within session types.
The discussion starts with the closest related work [VHEZ21,PNW22,BSYZ22,LBD23] in
which multiparty session types are extended to model crashes or failures.

Multiparty Session Types with Failures. Peters et al. [PNW22] propose an MPST
framework to model fine-grained unreliability. In their work, each transmission in a global
type is parameterised by a reliability annotation, which can be unreliable (sender/receiver
can crash, and messages can be lost), weakly reliable (sender/receiver can crash, messages
are not lost), or reliable (no crashes or message losses). The design choice taken in our work
roughly falls under weakly reliable in their work, where a crash handling branch (in their
work, a default branch) needs to be present to handle failures. In our work, the reliability
assumptions operate on a coarse level, but nonetheless are consistent within a given global
type – if a role p is assumed reliable, p ∈ R, then it does not crash for the duration of the
protocol, and vice versa. Therefore, in a transmission p → q, our model allows one of the
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two roles to be unreliable, whereas their work does not permit the ‘mixing’ of reliability of
sending and receiving roles.

Viering et al. [VHEZ21] utilise MPST as a guidance for fault-tolerant distributed systems
with recovery mechanisms. Their framework includes various features, such as sub-sessions,
event-driven programming, dynamic role assignments, and most importantly failure handling.
Our work handles unreliability in distributed programming, with the following differences.

(1) Failure detection assumptions and models are different: in our work, we assume a
perfect failure detector, where all detected crashes are genuine. Their work uses a
less strict assumption to allow false suspicions. This difference subsequently gives rise
to how failures are handled in both approaches: in our work, we use a special crash
handling branch in global types to specify how the global protocol should progress
after a crash has been detected. In contrast, they use a try-catch construct in global
types. In such a try-catch construct, crash detection within a sub-session G1 is specified
G1 with p@q . G2, where G2 is a global type for failure handling (where p cannot occur),
and q is a monitor that monitors p for possible failures. Moreover, the well-formedness
condition (2) in [VHEZ21, §4.1] requires the first message in G2 to be a message broadcast
of failure notification from the monitor q to all roles participating in the sub-session
(except the crashed role p).

On this matter, we consider our framework more flexible when detecting and handling
crashes: every communication construct can have a crash handling branch (when the
sender is not assumed reliable), and the failure broadcast is not necessary (failure
detection only occurs when receiving from a crashed role).

(2) The merge operators, used when projecting global types to obtain local types, are
different: we use a more expressive full merge operator (Definition 4.3), whereas they
use a plain merge operator, i.e. requiring all continuations to project to the same local
type.

(3) Reliability assumptions are different: in our work, we support a range of assumptions
from every role being unreliable, to totally reliable (as in the literature). In their work,
they require at least one reliable role, because they use a monitoring tree for detecting
crashes. Our work allows a role to detect the crash of its communication partner during
reception, thus requiring neither such trees nor reliable roles.

Barwell et al. [BSYZ22] develop a theory of multiparty session types with crash-stop
failures. Their theory models crash-stop failures in the semantics of processes and session
types, where the type system uses a model checker to validate type safety. Our theory
follows a similar model of crash-stop failures, but differs in the following ways.

(1) We model an asynchronous (message-passing) semantics, whereas they model a synchro-
nous (rendez-vous) semantics. We focus on asynchronous systems, where a message can
be buffered while in transit, since most of the interactions in the real distributed world
are asynchronous.

(2) We follow a top-down methodology, beginning with protocol specification using global
types, whereas they follow [SY19] to analyse only local types. Our method dispenses
with the need to use a model checker. More specifically, it is not feasible to model check
asynchronous systems with buffers, since the model may be infinite [SY19, Appendix
§G].

Le Brun and Dardha [LBD23] follow a similar framework to [BSYZ22]. They model
an asynchronous semantics, and support more patterns of failure, including message losses,



30 A.D. BARWELL, P. HOU, N. YOSHIDA, AND F. ZHOU

delays, reordering, as well as link failures and network partitioning. However, their typing
system suffers from its genericity, when type-level properties become undecidable [LBD23,
§4.4]. Our work uses global types for guidance, and recovers decidability of properties at a
small expense of expressivity.

Other Session Types with Failures. Most other session type works on modelling failures
can be briefly categorised into two: using affine types or exceptions [LNY22,MV18,FLMD19],
and using coordinators or supervision [APN17,VCE+18]. The former adapts session types
to an affine representation, in which endpoints may cease prematurely; the latter, instead,
are usually reliant on one or more reliable processes that coordinate in the event of failure.

Affine Failure Handling . Mostrous and Vasconcelos [MV18] first proposed the affine approach
to failure handling. They present a π-calculus with affine binary sessions (i.e. limited to two
participants) and concomitant reduction rules that represent a minimal extension to standard
(binary) session types. Their extension is primarily comprised of a cancel operator, which
is semantically similar to our crash construct: it represents a process that has terminated
early. Besides these similarities, our work differs from [MV18] in several ways.

(1) We address multiparty protocols and sessions rather than binary session types.
(2) In [MV18], a cancel operator can have an arbitrary session type; consequently, crashes

are not visible at the type level. Instead, we type crashed session endpoints with the
special type stop, which lets us model crashes in the type semantics, and helps us in
ensuring that a process implements its failure handling as expected in its (global or
local) type.

(3) The reduction rules of [MV18] do not permit a process to terminate early arbitrar-
ily: cancellations must be raised explicitly by the programmer (or automatically by
attempting to receive messages from crashed endpoints).

(4) Finally, cancellations in [MV18] may be caught and handled via a do-catch construct.
This construct catches only the first cancellation and cannot be nested, thus providing
little help in handling failure across multiple roles. Our global and local types seamlessly
support protocols where the failure of a role is detected (and handled) while handling
the failure of another role.

Fowler et al. [FLMD19] present a concurrent λ-calculus, EGV, with asynchronous
session-typed communication and exception handling. Their approach is based on [MV18],
and therefore shares many of the same differences to our approach: the use of the cancel
operator and binary session types, and the lack of a reduction rule enabling a process to
crash arbitrarily; the cancel operator used in EGV takes an arbitrary session type – whereas
we reflect the crashed status with the dedicated stop type. Similar to our work, [FLMD19]
has asynchronous communication channels: messages are queued when sent, and delivered
at a later stage.

Lagaillardie et al. [LNY22] propose a framework of affine multiparty session types.
They utilise the affine type system to enforce that failures are handled. In their system, a
multiparty session can terminate prematurely. While their theory can be used to model
crash-stop failures, such failures are not built into the semantics, so manual encoding of
failures is necessary. Moreover, there is no way to recover from a cancellation (i.e. failure)
besides propagating the cancellation. In our work, we provide the ability to follow a different
protocol when a crash is detected, which gives rise to more flexibility and expressivity.
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There are some other works adopting exception-based approaches, e.g. Capecchi et
al. [CGY16] and Carbone et al. [CHY08] model failure at the application level (similar
to [MV18,FLMD19]) by equipping processes with constructs to actively produce or catch
failures. Conversely, our approach models arbitrary failures (such as hardware failures).

Coordinator Model Failure Handling . Coordinator model approaches find their roots in work
by Demangeon et al. [DHH+15]. In their model, global types are extended by interrupt
blocks wherein one role may interrupt the protocol. Interruptions are broadcast to all
active roles within the block, and, once interrupted, the roles follow a continuation specified
separately. Although their original intention was primarily to interrupt streaming behaviour,
interrupt blocks (or similar constructs) have been used to model crashes and failure handling
in [APN17,VCE+18].

Adameit et al. [APN17] extend the standard MPST syntax with optional blocks, rep-
resenting regions of a protocol that are susceptible to communication failures. In their
approach, if a process P expects a value from an optional block which fails, then a default
value is provided to P , so P can continue running. This ensures termination and deadlock-
freedom. Although this approach does not feature an explicit reliable coordinator process,
we describe it here due to the inherent coordination required for multiple processes to start
and end an optional block. Our approach differs in three key ways.

(1) We model crash-stop process failures instead of impermanent link failures.
(2) We extend the semantics of communications in lieu of introducing a new syntactic

construct to enclose the potentially crashing regions of a protocol – our global type
projections and typing context safety ensure that crash detection is performed at every
pertinent communication point.

(3) We allow crashes to significantly affect the evolution of protocols: our global and local
types can have crash detection branches specifying significantly different behaviours w.r.t.
non-crashing executions. Conversely, the approach in [APN17] does not discriminate
between the presence and absence of failures: both have the same protocol in the optional
block’s continuation.

Viering et al. [VCE+18] similarly extend the standard global type syntax with a try-
handle construct, which is facilitated by the presence of a reliable coordinator process, and
via a construct to specify reliable processes. When the coordinator detects a failure, it
broadcasts notifications to all remaining live processes; then, the protocol proceeds according
to the failure handling continuation specified as part of the try-handle construct. Our
approach and [VCE+18] share several modelling choices: crash-stop semantics, perfect links,
and the possibility of specifying reliable processes. However, unlike [VCE+18], our approach
does not depend on a reliable coordinator that broadcasts failure notifications: all roles in a
protocol can be unreliable, all processes may crash.

Besides the differences discussed above, we decided not to adopt coordinator processes nor
failure broadcasts in order to avoid their inherent drawbacks. The use of a coordinator requires
additional run-time resources and increases the overall complexity of a distributed system.
Furthermore, the broadcasting of failure notifications introduces an effective synchronisation
point for all roles, with additional overheads. Such synchronisation points may also make it
harder to extend the theory to support scenarios with unreliable communication.
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Alternative Session Types with Failure Handling . Caires and Pérez [CP17] present a linearly-
typed calculus that supports non-determinism and process failures. They present a core
calculus with binary session types (based on linear logic), extended with constructs permitting
non-determinism and control effects (e.g. exceptions). Failure is simulated via a non-
deterministic choice operator. The main difference is that we model arbitrary failures, and
support multiparty sessions.

Neykova and Yoshida [NY17] build upon the Let it Crash and supervisor-based design of
the Erlang programming language. Using an MPST specification, they build a dependency
graph between the processes interacting in a system; in case of failure, this information
is then used by supervisor processes to determine which subset of processes should be
restarted, and which messages should be re-sent. As in the coordinator model approaches
above, Erlang supervisors result in additional overhead compared with our approach.
Furthermore, as in the affine session types approach [MV18,FLMD19], failure states are not
reflected in the type system. Instead, there is an underlying assumption that the supervisors
will restart (a subset of) the system until it terminates successfully.

Chen et al. [CVB+16] handle partial failures in MPST by transforming programs to
include synchronisation points, at which failures can be detected and handled. Our approach
is less rigid due to the handling of failures: synchronisation points are not needed (unless
required by the protocol), and the original protocols do not need to meet certain criteria to
permit their transformation.

8. Conclusion and Future Work

To overcome the challenge of accounting for failure handling in distributed systems using
session types, we present an asynchronous multiparty session type framework with the ability
to model and handle crash-stop failures, e.g. caused by hardware faults. In our session
calculus, processes may crash arbitrarily, and other processes can detect their crash and
handle the event. Additionally, our system supports the specification of optional reliability
assumptions: by influencing type-checking, they allow our approach to cover the spectrum
between idealised scenarios where no process ever fails (as typically assumed in standard
session type works), and more realistic scenarios where any process can fail at any time. With
only minimal changes to the syntax of standard asynchronous MPST in our theory, desirable
global type properties such as deadlock-freedom, protocol conformance, and liveness are
preserved by construction in typed processes, even in the presence of crashes.

This work is a new step towards modelling and handling real-world failures by utilising
session types, effectively bridging the gap between session type theory and applications. As
future work, we plan to study different crash models (e.g. crash-recover) and failures of other
components (e.g. link failures). These further steps would lead us to our longer term goal,
i.e. to eventually model and type-check implementations of well-known consensus algorithms
used in large-scale distributed systems.

Acknowledgments. We thank the reviewers for their detailed and helpful comments. Additionally, we

thank Yoshinori Kamegai for highlighting an issue related to structural congruence. The work is par-

tially supported by EPSRC grants EP/T006544/2, EP/K011715/1, EP/K034413/1, EP/L00058X/1,

EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1, EP/Y005244/1,

NCSS/EPSRC VeTSS, Horizon EU TaRDIS 101093006, Advanced Research and Invention Agency

(ARIA) Safeguarded AI, and a grant from the Simons Foundation.



CRASH-STOP FAILURES IN ASYNCHRONOUS MULTIPARTY SESSION TYPES 33

References

[APN17] Manuel Adameit, Kirstin Peters, and Uwe Nestmann. Session types for link failures. In Ahmed
Bouajjani and Alexandra Silva, editors, Formal Techniques for Distributed Objects, Components,
and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of
the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec
2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, volume 10321 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2017. doi:10.1007/978-3-319-60225-7\_1.

[BHYZ23] Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Designing asynchronous
multiparty protocols with crash-stop failures. In Karim Ali and Guido Salvaneschi, editors,
37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,
Seattle, Washington, United States, volume 263 of LIPIcs, pages 1:1–1:30. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ECOOP.2023.1.

[BSYZ22] Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. Generalised Multiparty
Session Types with Crash-Stop Failures. In Bartek Klin, S lawomir Lasota, and Anca Muscholl,
editors, 33rd International Conference on Concurrency Theory (CONCUR 2022), volume 243 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:25, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/
opus/volltexte/2022/17098, doi:10.4230/LIPIcs.CONCUR.2022.35.

[CGR11] Christian Cachin, Rachid Guerraoui, and Lúıs E. T. Rodrigues. Introduction to Reliable and
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Appendix A. Proofs for Section 4

With regard to recursive global types, we define their unfolding as unf(µt.G) = unf(G{µt.G/t}),
and unf(G) = G otherwise. A recursive type µt.G must be guarded (or contractive), i.e. the
unfolding leads to a progressive prefix, e.g. a transmission. Unguarded types, such as µt.t
and µt.µt′.t, are excluded. Similar definitions and requirements apply for local types.

A.1. Live and Crashed Roles.

Lemma A.1. If p ∈ roles(G), then p /∈ roles(G p) and roles(G p) ⊆ roles(G).

Proof. By induction on Definition 4.10. We detail interesting cases here:

(1)

roles((p→q: {mi(Bi).Gi}i∈I) p) = roles(p ⇝q:j {mi(Bi).(Gi p)}i∈I) = {q}∪
⋃
i∈I

roles(Gi p).

The required result follows by inductive hypothesis that p /∈ roles(Gi p), and
roles(Gi p) ⊆ roles(Gi).

(2)

roles((p ⇝q:j {mi(Bi).Gi}i∈I) q) = roles(Gj q)
The required result follows by inductive hypothesis that q /∈ roles(Gj q), and
roles(Gj q) ⊆ roles(Gj).

The rest of the cases are similar or straightforward.

Lemma A.2. If p ∈ roles(G), then roles (G p) \ {p} ⊆ roles (G).

Proof. By induction on Definition 4.10. We detail interesting cases here:

(1)

roles ((p→q: {mi(Bi).Gi}i∈I) p) = roles (p ⇝q:j {mi(Bi).(Gi p)}i∈I) =
⋃
i∈I

roles (Gi p).

The required result follows by inductive hypothesis that roles (Gi p) \ {p} ⊆ roles (Gi).
(2)

roles ((p ⇝q:j {mi(Bi).Gi}i∈I) q) = roles (Gj q)
The required result follows by inductive hypothesis that roles (Gj q)\{q} ⊆ roles (Gj).

The rest of the cases are similar or straightforward.
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Lemma A.3. If G ̸= µt.G′ and p ∈ roles(G), then G ↾R p ̸= end.

Proof. We know that G ̸= end; otherwise, we may have roles(G) = ∅, a contradiction to
p ∈ roles(G). By induction on the structure of G:

• Case G = q→r: {mi(Bi).Gi}i∈I :
We perform case analysis on p:

– p = q: we have G ↾R p = r⊕{mi(Bi).(Gi ↾R p)}i∈{j∈I | mj ̸=crash} ̸= end.

– p = r: we have G ↾R p = q&{mi(Bi).(Gi ↾R p)}i∈I ̸= end.
– p ̸= q and p ≠ r: we have G ↾R p =

d
i∈I Gi ↾R p. Since p ∈ roles(G), p ≠ q,

and p ≠ r, there exists j ∈ I such that p ∈ roles(Gj). Then, by applying induc-
tive hypothesis, Gj ↾R p ≠ end, and therefore, we have G ↾R p =

d
i∈I Gi ↾R p =

Gj ↾R p ⊓
d

i∈I\{j}Gi ↾R p ̸= end.

• Case G = q⇝r:j {mi(Bi).Gi}i∈I :
We perform case analysis on p:

– p ≠ q and p ≠ r: we have G ↾R p =
d

i∈I Gi ↾R p. Since p ∈ roles(G), p ≠ q,
and p ̸= r, there exists k ∈ I such that p ∈ roles(Gk). Then, by applying induc-
tive hypothesis, Gk ↾R p ̸= end, and therefore, we have G ↾R p =

d
i∈I Gi ↾R p =

Gk ↾R p ⊓
d

i∈I\{k}Gi ↾R p ≠ end, as desired. Meanwhile, we obtain that ∀l ∈ I :

Gl ↾R p ̸= end.
– p = q: we have G ↾R p = Gj ↾R p, which follows that G ↾R p ≠ end by the fact that

∀l ∈ I : Gl ↾R p ̸= end.
– p = r: we have G ↾R p = q&{mi(Bi).(Gi ↾R p)}i∈I ̸= end.

Other cases are similar.

Lemma A.4. If p /∈ roles(G) and p /∈ roles (G), then G ↾R p = end.

Proof. By induction on the structure of G:

• Case G = q→r: {mi(Bi).Gi}i∈I : since p /∈ roles(G) and p /∈ roles (G), we have p ̸= q,

p ̸= r, and for all i ∈ I, p /∈ roles(Gi) and p /∈ roles (Gi) by Definition 4.1. Thus,
G ↾R p =

d
i∈I Gi ↾R p = end by applying inductive hypothesis and end ⊓ end = end.

• Case G = µt.G′: since p /∈ roles(G) and p /∈ roles (G), we have p /∈ roles(G′) and

p /∈ roles (G′) by Definition 4.1. We have two further subcases to consider:
– If fv(µt.G′) ̸= ∅, we have G ↾R p = µt.(G′ ↾R p) = µt.end = end by applying inductive

hypothesis.
– Otherwise, we have G ↾R p = end immediately.

Other cases are similar or trivial.

A.2. Subtyping.

Lemma A.5 (Subtyping is Reflexive). For any closed, well-guarded local type T , T ⩽ T
holds.

Proof. We construct a relation R = {(T , T )}. It is straightforward that R satisfies all clauses
of Definition 4.4. Hence, since ⩽ is the largest relation satisfying such rules, R ⊆⩽.

Lemma A.6 (Subtyping is Transitive). For any closed, well-guarded local type S, T , U , if
S ⩽ T and T ⩽ U hold, then S ⩽ U holds.
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Proof. We construct a relation R = {(S,U) | ∃T such that S ⩽ T and T ⩽ U}. By showing
that R satisfies all clauses of Definition 4.4, it follows that R ⊆⩽.

Lemma 4.5 (Reflexivity and Transitivity of Subtyping). The subtyping relation ⩽ is reflexive
and transitive.

Proof. Immediate consequence of Lemma A.5 and Lemma A.6.

Lemma A.7. For any closed, well-guarded local type T , (1) unf(T ) ⩽ T ; and (2) T ⩽ unf(T ).

Proof. (1) If T = µt.T ′, unf(T ) ⩽ T holds by [Sub-µR]. Otherwise, by Lemma A.5. (2) If
T = µt.T ′, T ⩽ unf(T ) holds by [Sub-µL]. Otherwise, by Lemma A.5.

Lemma 4.6. Given a collection of mergable local types Ti (i ∈ I). For all j ∈ I,
d

i∈I Ti ⩽ Tj

holds.

Proof. By constructing a relation R =
{
(
d

i∈I Ti, Tj)
∣∣ j ∈ I

}
, and showing that R satisfies

all clauses of Definition 4.4.

Lemma 4.7. Given a collection of mergable local types Ti (i ∈ I). If for all i ∈ I, S ⩽ Ti

for some local type S, then S ⩽
d

i∈I Ti.

Proof. By constructing a relation R =
{
(S,

d
i∈I Ti)

}
, and showing that R satisfies all clauses

of Definition 4.4.

Lemma 4.8. Given two collections of mergable local types Si, Ti (i ∈ I). If for all i ∈ I,
Si ⩽ Ti, then

d
i∈I Si ⩽

d
i∈I Ti.

Proof. By constructing a relation R =
{
(
d

i∈I Si,
d

i∈I Ti)
}
, and showing that R satisfies all

clauses of Definition 4.4.

Lemma A.8. If p, q ∈ roles(G) with p ̸= q and q /∈ R, then G ↾R p ⩽ (G q) ↾R p.

Proof. We construct a relation R = {(G ↾R p, (G q) ↾R p) | p, q ∈ R, p ̸= q, q ∈ R}, and
show that R ⊆ ⩽. Consider all possible shapes of G:

• Case G = p→q: {mi(Bi).Gi}i∈I :
We perform case analysis on the role being projected upon:

– On LHS, we have G ↾R p = q⊕{mi(Bi).(Gi ↾R p)}i∈{j∈I | mj ̸=crash}.

On RHS, we perform case analysis on the role being removed:
(1) we have G q = p→q : {mi(Bi).(Gi q)}i∈I , and thus (G q) ↾R p =

q⊕{mi(Bi).((Gi q) ↾R p)}i∈{j∈I | mj ̸=crash}, apply [Sub-⊕] and coinductive hypothe-

sis.
(2) (r ̸= q) we have G r = p→q: {mi(Bi).(Gi r)}i∈I , and thus (G r) ↾R p =

q⊕{mi(Bi).((Gi r) ↾R p)}i∈{j∈I | mj ̸=crash}, apply [Sub-⊕] and coinductive hypothe-

sis.
– On LHS, we have G ↾R q = p&{mi(Bi).(Gi ↾R q)}i∈I .

On RHS, we perform case analysis on the role being removed:
(1) we have G p = p ⇝q:j {mi(Bi).(Gi p)}i∈I , and thus (G p) ↾R q =

p&{mi(Bi).((Gi p) ↾R q)}i∈I , apply [Sub-&] and coinductive hypothesis.
(2) (r ̸= p) we have G r = p→q: {mi(Bi).(Gi r)}i∈I , and thus (G r) ↾R q =

p&{mi(Bi).((Gi r) ↾R q)}i∈I , apply [Sub-&] and coinductive hypothesis.
– (r /∈ {p, q}) On LHS, we have G ↾R r =

d
i∈I Gi ↾R r.

On RHS, we perform case analysis on the role being removed:
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(1) we have G p = p ⇝q:j {mi(Bi).(Gi p)}i∈I , and thus (G p) ↾R r =d
i∈I ((Gi p) ↾R r), apply Lemma 4.8 and coinductive hypothesis.

(2) we have G q = p→q : {mi(Bi).(Gi q)}i∈I , and thus (G q) ↾R r =d
i∈I ((Gi q) ↾R r), apply Lemma 4.8 and coinductive hypothesis.

(3) (s /∈ {p, q, r}) we have G s = p→q: {mi(Bi).(Gi s)}i∈I , and thus (G s) ↾R r =d
i∈I ((Gi s) ↾R r), apply Lemma 4.8 and coinductive hypothesis.

• Case G = µt.G′:
By coinductive hypothesis.

Other cases are similar or trivial.

Lemma A.9 (Inversion of Subtyping).

(1) If S ⩽ p⊕{mi(Bi).Ti}i∈I , then unf(S) = p⊕
{
m′j(B

′
j).T

′
j

}
j∈J

, and J ⊆ I, and ∀i ∈ J :

mi = m′i, Bi = B′
i and T ′

i ⩽ Ti.

(2) If S ⩽ p&{mi(Bi).Ti}i∈I , then unf(S) = p&
{
m′j(B

′
j).T

′
j

}
j∈J

, and I ⊆ J , and ∀i ∈ I :

mi = m′i, Bi = B′
i and T ′

i ⩽ Ti.

Proof. By Lemma A.7, the transitivity of subtyping, and Definition 4.4 ([Sub-&], [Sub-⊕]).

A.3. Semantics of Global Types.

Lemma 4.14 (No Revival Or Unexpected Crashes). Assume ⟨C ;G⟩ α−→R ⟨C ′;G′⟩.
(1) If p ∈ roles (G′) and α ̸= p , then p ∈ roles (G);
(2) If p ∈ roles(G′) and α ̸= p , then p ∈ roles(G);

(3) If p ∈ roles (G′) and α = p , then p ∈ roles(G).

Proof. (1) By induction on global type reductions: since α ̸= p , we start from [GR-µ].

• Case [GR-µ]: we have G = µt.G′′ and ⟨C ;G′′{µt.G′′/t}⟩ α−→R ⟨C ′;G′⟩ by [GR-µ] and

its inversion. Hence, by ⟨C ;G′′{µt.G′′/t}⟩ α−→R ⟨C ′;G′⟩, p ∈ roles (G′), and induc-

tive hypothesis, we have p ∈ roles (G′′{µt.G′′/t}). Therefore, by roles (µt.G′′) =

roles (G′′{µt.G′′/t}), we conclude with p ∈ roles (G), as desired.
• Case [GR-&]: we have G = p†⇝q:j {mi(Bi).G

′
i}i∈I and G′ = G′

j by [GR-&]. It follows

that roles (G) =
⋃
i∈I

roles (G′
i) and roles (G′) = roles (G′

j) with j ∈ I, and hence,

roles (G′) ⊆ roles (G). Therefore, by p ∈ roles (G′), we conclude with p ∈ roles (G),
as desired.

• Case [GR-Ctx-i]: we have G = p→q†: {mi(Bi).G
′
i}i∈I , G′ = p→q†: {mi(Bi).G

′′
i }i∈I ,

∀i ∈ I : ⟨C ;G′
i⟩

α−→R ⟨C ′;G′′
i ⟩, and subj(α) /∈ {p, q} by [GR-Ctx-i] and its inversion.

It follows that roles (G) =
⋃
i∈I

roles (G′
i), roles

 (G′) =
⋃
i∈I

roles (G′′
i ), and α ≠ p .

Then by ∀i ∈ I : ⟨C ;G′
i⟩

α−→R ⟨C ′;G′′
i ⟩, α ̸= p , and inductive hypothesis, we have

∀i ∈ I : if p ∈ roles (G′′
i ), then p ∈ roles (G′

i). Therefore, by p ∈
⋃
i∈I

roles (G′′
i ), we

conclude with p ∈
⋃
i∈I

roles (G′
i) = roles (G), as desired.

Other cases are similar.
(2) Similar to the proof of (1).
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(3) The proof is trivial by [GR- ] and its inversion.

Lemma 4.16 (Preservation of Well-Annotated Global Types). If ⟨C ;G⟩ α−→R ⟨C ′;G′⟩, and
⟨C ;G⟩ is well-annotated w.r.t. R, then ⟨C ′;G′⟩ is also well-annotated w.r.t. R.

Proof. By induction on global type reductions:

• Case [GR- ]: we have C ′ = C ∪ {p}, G′ = G p, p /∈ R, p ∈ roles(G), and G ̸= µt.G′ by
[GR- ] and its inversion.

Item (WA1): from the premise, we have roles (G) ∩ R = ∅. Since p ∈ roles(G), by

Lemma A.2, we have roles (G p) \ {p} ⊆ roles (G). Then we consider two cases:

– if p ∈ roles (G p), then roles (G p) = {p} ∪ (roles (G p) \ {p}). Hence, by p /∈ R,

roles (G p) \ {p} ⊆ roles (G), and roles (G) ∩ R = ∅, we have roles (G p) ∩ R = ∅.
– if p /∈ roles (G p), then roles (G p) = roles (G p) \ {p}. Hence, by

roles (G p) \ {p} ⊆ roles (G) and roles (G) ∩ R = ∅, we have roles (G p) ∩ R = ∅.
Therefore, by G′ = G p, we conclude with roles (G′) ∩ R = ∅, as desired.

Item (WA2): from the premise, we have roles (G) ⊆ C . Since p ∈ roles(G), by

Lemma A.2, we have roles (G p) \ {p} ⊆ roles (G). Then we consider two cases:

– if p ∈ roles (G p), then roles (G p) = {p} ∪ (roles (G p) \ {p}). Hence, by

roles (G p) \ {p} ⊆ roles (G) and roles (G) ⊆ C , we have roles (G p) ⊆ C ∪ {p}.
– if p /∈ roles (G p), then roles (G p) = roles (G p) \ {p}. Hence, by

roles (G p) \ {p} ⊆ roles (G) and roles (G) ⊆ C , we have roles (G p) ⊆ C ∪ {p}.
Therefore, by G′ = G p and C ′ = C ∪ {p}, we conclude with roles (G′) ⊆ C ′, as desired.

Item (WA3): from the premise, we have roles(G) ∩ roles (G) = ∅. Since p ∈ roles(G),
by Lemma A.1, Lemma A.2, we have roles(G p) ⊆ roles(G), p /∈ roles(G p), and

roles (G p) \ {p} ⊆ roles (G). Then we consider two cases:

– if p ∈ roles (G p), then roles (G p) = {p} ∪ (roles (G p) \ {p}). Hence, by

roles(G) ∩ roles (G) = ∅, p /∈ roles(G p), roles (G p) \ {p} ⊆ roles (G), and

roles(G p) ⊆ roles(G), we have roles (G p) ∩ roles(G p) = ∅.
– if p /∈ roles (G p), then roles (G p) = roles (G p) \ {p}. Hence, by

roles(G) ∩ roles (G) = ∅, roles (G p) \ {p} ⊆ roles (G), and roles(G p) ⊆ roles(G),

we have roles (G p) ∩ roles(G p) = ∅.
Therefore, by G′ = G p, we conclude with roles(G′) ∩ roles (G′) = ∅, as desired.

• Case [GR-µ]: we have G = µt.G′′ and ⟨C ;G′′{µt.G′′/t}⟩ α−→R ⟨C ′;G′⟩ by [GR-µ] and its
inversion. From the premise, we also have ⟨C ;µt.G′′⟩ is well-annotated. Hence, by

roles (µt.G′′) = roles (G′′{µt.G′′/t}), roles(µt.G′′) = roles(G′′{µt.G′′/t}), and ⟨C ;µt.G′′⟩
is well-annotated, we have roles (G′′{µt.G′′/t}) ∩ R = ∅, roles (G′′{µt.G′′/t}) ⊆ C , and

roles(G′′{µt.G′′/t}) ∩ roles (G′′{µt.G′′/t}) = ∅. It follows directly that ⟨C ;G′′{µt.G′′/t}⟩ is
well-annotated. Therefore, by ⟨C ;G′′{µt.G′′/t}⟩ α−→R ⟨C ′;G′⟩ and inductive hypothesis, we
conclude with ⟨C ′;G′⟩ is well-annotated, as desired.

Other cases are similar.

Lemma A.10. ⟨C ;G⟩ α−→R ⟨C ′;G′⟩, iff ⟨C ; unf(G)⟩ α−→R ⟨C ′;G′⟩.

Proof. By inverting or applying [GR-µ] when necessary.

Lemma A.11 (Progress of Global Types). If ⟨C ;G⟩ (where G is a projectable global type)

is well-annotated, and G ̸= end, then there exists G′,C ′ such that ⟨C ;G⟩ −→R ⟨C ′;G′⟩.
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Proof. By Lemma A.10, we only consider unfoldings.

• Case unf(G) = end: the premise does not hold.
• Case unf(G) = p→q: {mi(Bi).Gi}i∈I : apply [GR-⊕]. We can pick any mi ̸= crash to reduce
the global type (note that our syntax prohibits singleton crash branches).

• Case unf(G) = p→q : {mi(Bi).Gi}i∈I : apply [GR- m]. We can pick any mi ̸= crash to
reduce the global type (note that our syntax prohibits singleton crash branches).

• Case unf(G) = p†⇝q:j {mi(Bi).Gi}i∈I : if mj = crash, then it p must have crashed, apply
[GR-⊙]. Otherwise, apply [GR-&].

A.4. Semantics of Configurations.

Lemma A.12. If Γ;∆ → Γ′; ∆′ with Γ;∆
α−→ Γ′; ∆′, then

(1) dom(Γ) = dom(Γ′); and
(2) for all p ∈ dom(Γ) with p ̸= subj(α), we have Γ(p) = Γ′(p).

Proof. Trivial by induction on reductions of configuration.

Lemma A.13. If Γ;∆
α−→ Γ′;∆′, then for any p, q ∈ dom(Γ) with subj(α) /∈ {p, q}, we

have ∆(p, q) = ∆′(p, q).

Proof. Trivial by induction on reductions of configuration.

Lemma A.14 (Inversion of Typing Context Reduction).

(1) If Γ;∆
p⊕q:mk(Bk)−−−−−−−→ Γ′;∆′ , then unf(Γ(p)) = q⊕{mi(Bi).Ti}i∈I , k ∈ I , and Γ′(p) =

Tk;

(2) If Γ;∆
q&p:mk(Bk)−−−−−−−→ Γ′;∆′ , then unf(Γ(q)) = p&{mi(Bi).Ti}i∈I , k ∈ I , and Γ′(q) =

Tk.

Proof. By applying and inverting [Γ-⊕] and [Γ-&].

Lemma A.15 (Determinism of Configuration Reduction). If Γ;∆
α−→ Γ′;∆′ and

Γ;∆
α−→ Γ′′; ∆′′, then Γ′ = Γ′′ and ∆′ = ∆′′.

Proof. Trivial by induction on reductions of configuration.

Lemma A.16. If Γ1; ∆
α−→ Γ′

1; ∆
′
1 and Γ2; ∆

α−→ Γ′
2; ∆

′
2, then ∆′

1 = ∆′
2.

Proof. Trivial by induction on reductions of configuration.

A.5. Relating Semantics.

Proposition A.17. Γ;∆ ⊑R ⟨C ;µt.G⟩ if and only if Γ;∆ ⊑R ⟨C ;G{µt.G/t}⟩.

Proof. By Lemma A.7.

Proposition A.18. If Γ;∆ ⊑R ⟨C ;G⟩ and Γ(p) = µt.T , then we have
Γ[p 7→ T{µt.T/t}]; ∆ ⊑R ⟨C ;G⟩.

Proof. By Lemma A.7.

Proposition A.19. Γ;∆ ⊑R ⟨C ;G⟩ if and only if Γ;∆ ⊑R ⟨C ; unf(G)⟩.
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Proof. By applying Proposition A.17 as many times as necessary.

Lemma A.20 (Inversion of Projection). Given a local type S, which is a subtype of projection
from a global type G on a role p with respect to a set of reliable roles R, i.e. S ⩽ (G ↾R p),
then:

(1) If unf(S) = q⊕{mi(Bi).S
′
i}i∈I , then either

(a) unf(G) = p→q†: {mi(B′
i).Gi}i∈I′, where I ⊆ I ′, and for all i ∈ I: mi = mi,

S′
i ⩽ (Gi ↾R p), and Bi = B′

i; or,

(b) unf(G) = s→t†:
{
mj(B

′
j).Gj

}
j∈J , or unf(G) = s†⇝t:k

{
mj(B

′
j).Gj

}
j∈J , where

for all j ∈ J : S ⩽ (Gj ↾R p), with p ̸= s and p ̸= t.
(2) If unf(S) = q&{mi(Bi).S

′
i}i∈I , then either

(a) unf(G) = q→p†: {mi(B′
i).Gi}i∈I′, or unf(G) = q†⇝p:j {mi(B′

i).Gi}i∈I′, where
I ′ ⊆ I, and for all i ∈ I ′: mi = mi, S′

i ⩽ (Gi ↾R p), B′
i = Bi, and q /∈ R im-

plies ∃k ∈ I ′ : mk = crash; or,

(b) unf(G) = s→t†:
{
mj(B

′
j).Gj

}
j∈J , or unf(G) = s†⇝t:k

{
mj(B

′
j).Gj

}
j∈J , where

for all j ∈ J : S ⩽ (Gj ↾R p), with p ̸= s and p ̸= t.
(3) If S = end, then p /∈ roles(G).

Proof. By the definition of global type projection (Definition 4.3).

Lemma A.21 (Existence of Crash Handling Branch Under Projection). If role q is
unreliable, q /∈ R, and a global type projects onto p with an external choice from q,
unf(G ↾R p) = q&{mi(Si).S

′
i}i∈I , then there must be a crash handling branch, ∃j ∈ I :

mj = crash.

Proof. By induction on Item 2 of Lemma A.20.

Lemma A.22. If a local type T is a subtype of an external choice with a matching role,
obtained via projection from a global type G, i.e., T = p&{mi(Bi).Ti}i∈I ⩽ G ↾R q, unf(G) is

of the form s→t†:
{
mj(B

′
j).Gj

}
j∈J or s†⇝t:k

{
mj(B

′
j).Gj

}
j∈J , and a queue environment

∆ is associated with ⟨C ;G⟩, then there exists a global type ⟨C ′;G′⟩ and a queue environ-
ment ∆′ such that G ↾R q ⩽ G′ ↾R q, unf(G′) is of the form p†⇝q:j {mi(B′

i).Gi}i∈I′ or
p→q†: {mi(B′

i).Gi}i∈I′, and ∆′ is associated with ⟨C ′;G′⟩ with ∆′(p, q) = ∆(p, q).

Proof. Apply Item 2 of Lemma A.20 on the premise, we have ∀j ∈ J : T = p&{mi(Bi).Ti}i∈I ⩽
Gj ↾R q with q ̸= s and q ̸= t, which follows that G ↾R q =

d
j∈J Gj ↾R q. Then, by

Lemma 4.6, we get ∀j ∈ J : G ↾R q ⩽ Gj ↾R q. We take an arbitrary Gj with j ∈ J . By
applying Item 2 of Lemma A.20 again, we have two cases.

• Case (1): unf(Gj) = p†⇝q:l {mi(B′
i).Gi}i∈I′ or unf(Gj) = p→q†: {mi(B′

i).Gi}i∈I′ .
Since G ↾R q ⩽ Gj ↾R q, we only need to show that there exists ∆′ such that ∆′ is

associated with ⟨C ;Gj⟩ and ∆′(p, q) = ∆(p, q). We consider two subcases:

– unf(G) = s→t†:
{
mj(B

′
j).Gj

}
j∈J : by Definition 4.19, we have that ∆ is associated

with Gj . We take ∆′ as ∆.

– unf(G) = s†⇝t:k
{
mj(B

′
j).Gj

}
j∈J , we perform case analysis on mk = crash and

mk ̸= crash:
∗ mk = crash: by Definition 4.19, we have that ∆ is associated with ⟨C ;Gj⟩. We take
∆′ as ∆.
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∗ mk ̸= crash: by Definition 4.19, we have that ∆(s, t) = mk(B
′
k)·τ and ∆[s, t 7→ τ ] is

associated with ⟨C ;Gj⟩. We take ∆′ = ∆[s, t 7→ τ ]. Since q ̸= s and q ≠ t, it is
straightforward that ∆′(p, q) = ∆(p, q), as required.

• Case (2): unf(Gj) = r→u†: {ml(B′
l).Gl}l∈L or r†⇝u:k {ml(B′

l).Gl}l∈L.
We can construct a queue environment ∆′ as in case (1), which is associated with

⟨C ;Gj⟩. The thesis is then proved by applying inductive hypothesis on ⟨C ;Gj⟩ and
∆′.

Lemma A.23. If ∆ is associated with ⟨C ;G⟩ and p ∈ roles(G), then ∆[·, p 7→ ⊘] is associ-
ated with ⟨C ∪ {p};G p⟩.

Proof. We denote ∆′ = ∆[·, p 7→ ⊘] in the subsequent proof. To show association, there are
two parts: namely a shape-dependent part, and a shape-independent part.

We first show shape-independent part, which shared for all cases: that a crashed role r
is in C ∪ {p} iff ∆′(·, r) = ⊘. It follows that the roles r ∈ C have the requirements satisfied
from the premise, and we set ∆′ = ∆[·, p 7→ ⊘], and that p is in the new set of crashed roles.

Shape-dependent part are by induction on the definition of G p:
• Case (p→q: {mi(Bi).Gi}i∈I) p = p ⇝q:j {mi(Bi).(Gi p)}i∈I where j ∈ I and mj = crash.

Since ∆ is associated with ⟨C ;G⟩, we that ∀i ∈ I : ∆ is associated with ⟨C ;G′
i⟩, and

∆(p, q) = ϵ.
By inductive hypothesis, we have ∆′ is associated with ⟨C ; (Gi p)⟩. Moreover, since

mj = crash, we can show that ∆′(p, q) = ∆(p, q) = ϵ.
• Case (p⇝q:j {mi(Bi).Gi}i∈I) q = Gj q.

Subcase mj = crash:
By inductive hypothesis, we know ∆′ is associated with ⟨C ∪ {q};G′

j⟩, as required.
Subcase mj ̸= crash:
From association, we have ∆(p, q) = mj(Bj)·τ and ∆[p, q 7→ τ ] is associated with

⟨C ;G′
j⟩.

By inductive hypothesis, we know ∆[p, q 7→ τ ][·, q 7→ ⊘] is associated with ⟨C ∪ {q};G′
j q⟩.

Since ∆[p, q 7→ τ ][·, q 7→ ⊘] = ∆[·, q 7→ ⊘] = ∆′, so ∆′ is associated with ⟨C ∪ {q};G′
j q⟩.

• Case (p→q : {mi(Bi).Gi}i∈I) p = Gj p, where j ∈ I and mj = crash.
Since ∆ is associated with ⟨C ;G⟩, we have that ∆ is associated with ⟨C ;Gj⟩.
By inductive hypothesis, we have ∆′ is associated with ⟨C ∪ {p};Gj p⟩, as required.
Other cases follows directly by inductive hypothesis or trivially.

Lemma A.24. If Γ;∆
α−→ Γ′;∆′, Γ;∆ ⊑R ⟨C ;G⟩, Γ1; ∆ ⊑R ⟨C ;G1⟩, Γ(subj(α)) =

Γ1(subj(α)), and Γ′
1 = Γ1[subj(α) 7→ Γ′(subj(α))], then Γ1; ∆

α−→ Γ′
1; ∆

′.

Proof. By induction on reductions of configuration.

• Case [Γ-⊕]: α = p⊕q : mk(Bk). We apply and invert [Γ-⊕] on Γ;∆
α−→ Γ′;∆′ to get

Γ(p) = q⊕{mi(Bi).Ti}i∈I , k ∈ I, Γ′ = Γ[p 7→ Tk], and ∆′ = ∆[p, q 7→ ∆(p, q)·mk(Bk)].
Then by applying [Γ-⊕] on Γ1(p) = Γ(p) = q⊕{mi(Bi).Ti}i∈I and k ∈ I, we obtain that

Γ1; ∆
α−→ Γ1[p 7→ Tk]; ∆

′, which follows that Γ1; ∆
α−→ Γ′

1; ∆
′, as desired.

• Case [Γ-&]: α = p&q : mk(Bk). We apply and invert [Γ-&] on Γ;∆
α−→ Γ′;∆′ to get Γ(p) =

q&{mi(Bi).Ti}i∈I , k ∈ I, ∆(q, p) = mk(Bk)·τ , Γ′ = Γ[p 7→ Tk], and ∆′ = ∆[q, p 7→ τ ].
Then by applying [Γ-&] on Γ1(p) = Γ(p) = q&{mi(Bi).Ti}i∈I , k ∈ I, and ∆(q, p) =

mk(Bk)·τ , we obtain that Γ1;∆
α−→ Γ1[p 7→ Tk];∆

′, which follows that Γ1;∆
α−→ Γ′

1;∆
′, as

desired.
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• Case [Γ- ]: α = p . We apply and invert [Γ- ] on Γ;∆
α−→ Γ′;∆′ to get Γ(p) ̸= stop,

Γ(p) ̸= end, Γ′ = Γ[p 7→ stop], and ∆′ = ∆[·, p 7→ ⊘]. Then by applying [Γ- ] on Γ1(p) =

Γ(p) ̸= stop and Γ1(p) = Γ(p) ≠ end, we obtain that Γ1;∆
α−→ Γ1[p 7→ stop];∆′, which

follows that Γ1; ∆
α−→ Γ′

1; ∆
′, as desired.

• Case [Γ-⊙]: α = q⊙p. We apply and invert [Γ-⊙] on Γ;∆
α−→ Γ′;∆′ to get Γ(q) =

p&{mi(Bi).Ti}i∈I , Γ(p) = stop, k ∈ I, mk = crash, ∆(p, q) = ϵ, and Γ′ = Γ[q 7→ Tk].
Since Γ;∆ ⊑R ⟨C ;G⟩ and Γ(p) = stop, it holds that p ∈ C . Then by Γ1; ∆ ⊑R ⟨C ;G1⟩,
Γ1(p) = stop. We apply [Γ-⊙] on Γ1(q) = Γ(q) = p&{mi(Bi).Ti}i∈I , Γ1(p) = stop, k ∈ I,

mk = crash, and ∆(p, q) = ϵ to obtain Γ1;∆
α−→ Γ1[q 7→ Tk];∆

′, which follows that

Γ1; ∆
α−→ Γ′

1; ∆
′, as desired.

• Case [Γ-µ]: by inductive hypothesis.

We define Imi\crash to be an index set with the special label crash removed, i.e. Imi\crash =
{i ∈ I | mi ̸= crash}.

Theorem 4.21 (Soundness of Association). Given associated global type G and configuration
Γ;∆: Γ;∆ ⊑R ⟨C ;G⟩. If ⟨C ;G⟩ −→R, then there exists Γ′;∆′, α and ⟨C ′;G′⟩, such

that ⟨C ;G⟩ α−→R ⟨C ′;G′⟩, Γ′; ∆′ ⊑R ⟨C ′;G′⟩, and Γ;∆
α−→ Γ′; ∆′.

Proof. By induction on reductions of global type ⟨C ;G⟩ α−→R ⟨C ′;G′⟩.
• Case [GR- ]:

From the premise we have

Γ;∆ ⊑R ⟨C ;G⟩ (A.1)

⟨C ;G⟩ −→R (A.2)

p /∈ R (A.3)

p ∈ roles(G) (A.4)

G ̸= µt.G′ (A.5)

α = p (A.6)

C ′ = C ∪ {p} (A.7)

G′ = G p (A.8)

Let Γ′;∆′ = Γ[p 7→ stop];∆[·, p 7→ ⊘]. We show Γ′; ∆′ ⊑R ⟨C ′′;G′′⟩ and Γ;∆
α−→

Γ′; ∆′.
For the first part: By association (A.1), we know that Γ(p) ⩽ G ↾R p. By G ̸= µt.G′,

p ∈ roles(G), and Lemma A.3, we know that G ↾R p ̸= end, which gives Γ(p) ̸= end. By
p ∈ roles(G), we also know that p /∈ C , which gives Γ(p) ̸= stop. Thus we apply [Γ- ] to
obtain the thesis.

For the second part:
(A1) From association (A.1), we know that ∀q ∈ roles(G) : Γ(q) ⩽ G ↾R q.

By Lemma A.1, we know roles(G p) ⊆ roles(G).
For any q ∈ roles(G p), we apply Lemma A.8, to obtain G ↾R q ⩽ (G p) ↾R q

Thus we have, by transitivity of subtyping, ∀q ∈ roles(G p) : Γ(q) ⩽ G ↾R q ⩽
(G p) ↾R q, as required.

(A2) From association (A.1), we know that ∀q ∈ C : Γ(q) = stop, and they are unchanged
in Γ′.
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Moreover, we have updated Γ′(p) = stop.
This completes the consideration of the set C ′ (A.7).

(A3) No change here.
(A4) By Lemma A.23.

• Case [GR-µ]:
From the premise we have

Γ;∆ ⊑R ⟨C ;G⟩ (A.9)

G = µt.G0 (A.10)

⟨C ;G⟩ −→R (A.11)

⟨C ;G0{µt.G0/t}⟩ α−→R ⟨C ′;G′⟩ (A.12)

By Proposition A.17, we have Γ;∆ ⊑R ⟨C ;G0{µt.G0/t}⟩, and we can apply inductive
hypothesis to obtain the desired result.

• Case [GR-⊕]:
From the premise we have

Γ;∆ ⊑R ⟨C ;G⟩ (A.13)

G = p→q: {mi(Bi).Gi}i∈I (A.14)

⟨C ;G⟩ −→R (A.15)

j ∈ I (A.16)

mj ̸= crash (A.17)

α = p⊕q : mj(Bj) (A.18)

C ′ = C (A.19)

G′ = p⇝q:j {mi(Bi).Gi}i∈I (A.20)

By association (A.13) and p ∈ roles(G), we know that Γ(p) ⩽ G ↾R p =
q⊕{mi(Bi).(Gi ↾R p)}i∈Imi\crash . Then by Lemma A.9, we obtain that Γ(p) =

q⊕{mi(Bi).Ti}i∈I′ , where I ′ ⊆ Imi\crash and ∀i ∈ I ′ : Ti ⩽ Gi ↾R p. Note that here
for any i ∈ I ′ : mi = mi.

Since the crash label cannot appear in the internal choices, it holds that for any i ∈ I ′,
mi ̸= crash. Therefore, with ∀i ∈ I ′ : mi = mi, we can set j ∈ I ′ with mj = mj ̸= crash and
α = p⊕q : mj(Bj) = p⊕q : mj(Bj).

Let Γ′;∆′ = Γ[p 7→ Tj ];∆[p, q 7→ ∆(p, q)·mj(Bj)]. We show that Γ;∆
α−→ Γ′;∆′ and

Γ′; ∆′ ⊑R ⟨C ′;G′⟩.
For the first part: we apply [Γ-⊕] on those we have: Γ(p) = q⊕{mi(Bi).Ti}i∈I′ and

j ∈ I ′, to obtain the thesis.
For the second part:

(A1) We want to show ∀r ∈ roles(G′) : Γ′(r) ⩽ G′ ↾R r. We consider three subcases:
– r = p: since Γ′(p) = Tj , j ∈ I ′, and ∀i ∈ I ′ : Ti ⩽ Gi ↾R p, we have Γ′(p) ⩽

Gj ↾R p = G′ ↾R p, as desired.
– r = q: by association (A.13), we have that Γ′(q) = Γ(q) ⩽ G ↾R q =
p&{mi(Bi).(Gi ↾R q)}i∈I = G′ ↾R q, as desired.

– r ̸= q and r ̸= p: by association (A.13), it holds that Γ′(r) = Γ(r) ⩽ G ↾R r =d
i∈I Gi ↾R r = G′ ↾R r, as desired.
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(A2) No change here.
(A3) No change here.
(A4) We are left to show that ∆′ = ∆[p, q 7→ ∆(p, q)·mj(Bj)] is associated with

⟨C ; p⇝q:j {mi(Bi).Gi}i∈I⟩.
Since ∆ is associated with ⟨C ; p→q: {mi(Bi).Gi}i∈I⟩, by Definition 4.19, we have
∆(p, q) = ϵ and
∀i ∈ I : ∆ is associated with ⟨C ;Gi⟩.
Since mj ≠ crash, we just need to show that ∆′(p, q) = mj(Bj), which follows
directly from ∆′ = ∆[p, q 7→ ∆(p, q)·mj(Bj)], mj = mj , and ∆(p, q) = ϵ, and ∀i ∈
I : ∆′[p, q 7→ ϵ] is associated with ⟨C ;Gi⟩, which follows from ∆′[p, q 7→ ϵ] = ∆ and
∀i ∈ I : ∆ is associated with ⟨C ;Gi⟩.

• Case [GR-&]:
From the premise we have

Γ;∆ ⊑R ⟨C ;G⟩ (A.21)

G = p†⇝q:j {mi(Bi).Gi}i∈I (A.22)

⟨C ;G⟩ −→R (A.23)

j ∈ I (A.24)

mj ̸= crash (A.25)

α = q&p : mj(Bj) (A.26)

C ′ = C (A.27)

G′ = Gj (A.28)

By association (A.21) and q ∈ roles(G), we know that Γ(q) ⩽ G ↾R q =
p&{mi(Bi).(Gi ↾R q)}i∈I . Note that here for any i ∈ I : mi = mi. Furthermore,
by Lemma A.9, we obtain that Γ(q) = p&{mi(Bi).Ti}i∈I′ , where I ⊆ I ′ and ∀i ∈ I :
Ti ⩽ Gi ↾R q. From association (A.21), we also get that ∆(p, q) = mj(Bj)·τ = mj(Bj)·τ .

Let Γ′; ∆′ = Γ[q 7→ Tj ]; ∆[p, q 7→ τ ]. We show Γ;∆
α−→ Γ′; ∆′ and Γ′; ∆′ ⊑R ⟨C ′;G′⟩.

For the first part: we apply [Γ-&] on those we have: Γ(q) = p&{mi(B′
i).Ti}i∈I′ , j ∈ I ⊆ I ′,

mj = mj , and ∆(p, q) = mj(Bj)·τ , to obtain the thesis.
For the second part:

(A1) We want to show ∀r ∈ roles(Gj) : Γ
′(r) ⩽ Gj ↾R r. We consider three subcases:

– r = q (meaning that q ∈ roles(Gj)): since Γ′(q) = Tj and ∀i ∈ I : Ti ⩽ Gi ↾R q,
we have Γ′(q) ⩽ Gj ↾R q, as desired.

– r = p (meaning that p† = p and p ∈ roles(Gj)): by association (A.21), we have
Γ′(p) = Γ(p) ⩽ G ↾R p = Gj ↾R p, as desired.

– r ̸= q and r ̸= p: by association (A.21), it holds that Γ′(r) = Γ(r) ⩽ G ↾R r =d
i∈I Gi ↾R r. Then, by applying Lemma 4.6 and transitivity of subtyping, we

conclude with Γ′(r) ⩽ Gj ↾R r, as desired.
(A2) No change here.
(A3) No change here if q ∈ roles(Gj) and p ∈ roles(Gj). Otherwise, if q /∈ roles(Gj): with

q /∈ roles (Gj), by Lemma A.4, we have Gj ↾R q = end. Furthermore, by the fact
that ∀i ∈ I : Ti ⩽ Gi ↾R q, it holds that Tj = end, and thus, Γ′(q) = end, as desired.
The argument for p /∈ roles(Gj) and p† = p follows similarly.
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(A4) Since ∆ is associated with ⟨C ; p†⇝q:j {mi(Bi).Gi}i∈I⟩ and mj ̸= crash, by Defini-
tion 4.19, we have that ∆(p, q) = mj(Bj)·τ and ∀i ∈ I : ∆[p, q 7→ τ ] is associated with
⟨C ;Gi⟩, which follows that ∆′ = ∆[p, q 7→ τ ] is associated with ⟨C ;Gj⟩, as desired.

• Case [GR-⊙]:
From the premise we have

Γ;∆ ⊑R ⟨C ;G⟩ (A.29)

G = p ⇝q:j {mi(Bi).Gi}i∈I (A.30)

⟨C ;G⟩ −→R (A.31)

j ∈ I (A.32)

mj = crash (A.33)

α = q⊙p (A.34)

C ′ = C (A.35)

G′ = Gj (A.36)

By association (A.29) and q ∈ roles(G), we know that Γ(q) ⩽ G ↾R q =
p&{mi(Bi).(Gi ↾R q)}i∈I . Note that here for any i ∈ I : mi = mi. Furthermore,
by Lemma A.9, we obtain that Γ(q) = p&{mi(B′

i).Ti}i∈I′ , where I ⊆ I ′ and ∀i ∈ I :
Bi = B′

i and Ti ⩽ Gi ↾R q.

Let Γ′; ∆′ = Γ[q 7→ Tj ]; ∆. We show Γ;∆
α−→ Γ′; ∆′ and Γ′; ∆′ ⊑R ⟨C ′;G′⟩.

For the first part: By association (A.29), p ∈ C , and mj = crash (A.33), we know that
Γ(p) = stop and ∆(p, q) = ϵ. Since j ∈ I (A.32), mj = crash (A.33), and ∀i ∈ I : mi = mi,
we have mj = crash. We also get j ∈ I ′ from j ∈ I and I ⊆ I ′. Thus, together with
Γ(q) = p&{mi(B′

i).Ti}i∈I′ , we apply [Γ-⊙] to obtain the thesis.
For the second part:

(A1) We want to show ∀r ∈ roles(Gj) : Γ
′(r) ⩽ Gj ↾R r. We consider two subcases:

– r = q (meaning that q ∈ roles(Gj)): since Γ′(q) = Tj , ∀i ∈ I : Ti ⩽ Gi ↾R q, and
j ∈ I (A.32), we have Γ′(q) ⩽ Gj ↾R q, as desired.

– r ̸= q: since p ∈ C , we know p /∈ roles(Gj), and thus, r ̸= p. Furthermore, by
association (A.29), it holds that Γ′(r) = Γ(r) ⩽ G ↾R r =

d
i∈I Gi ↾R r. Then,

by applying Lemma 4.6 and transitivity of subtyping, we can conclude with
Γ′(r) ⩽ Gj ↾R r, as desired.

(A2) No change here.

(A3) No change here if q ∈ roles(Gj). Otherwise, if q /∈ roles(Gj): with q /∈ roles (Gj),
by Lemma A.4, we have Gj ↾R q = end. Furthermore, by the fact that ∀i ∈ I : Ti ⩽
Gi ↾R q, it holds that Tj = end, and thus, Γ′(q) = end, as desired.

(A4) Since ∆ is associated with ⟨C ; p ⇝q:j {mi(Bi).Gi}i∈I⟩ and mj = crash, by Defini-
tion 4.19, we have that ∀i ∈ I : ∆ is associated with ⟨C ;Gi⟩, which follows that
∆′ = ∆ is associated with ⟨C ;Gj⟩, as desired.

• Case [GR- m]:
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From the premise we have

Γ;∆ ⊑R ⟨C ;G⟩ (A.37)

G = p→q : {mi(Bi).Gi}i∈I (A.38)

⟨C ;G⟩ −→R (A.39)

j ∈ I (A.40)

mj ̸= crash (A.41)

α = p⊕q : mj(Bj) (A.42)

C ′ = C (A.43)

G′ = Gj (A.44)

By association (A.37) and p ∈ roles(G), we know that Γ(p) ⩽ G ↾R p =
q⊕{mi(Bi).(Gi ↾R p)}i∈Imi\crash . Then by Lemma A.9, we obtain that Γ(p) =

q⊕{mi(Bi).Ti}i∈I′ , where I ′ ⊆ Imi\crash and ∀i ∈ I ′ : Ti ⩽ Gi ↾R p. Note that here
for any i ∈ I ′ : mi = mi.

Since the crash label cannot appear in the internal choices, it holds that for any i ∈ I ′,
mi ̸= crash. Therefore, with ∀i ∈ I ′ : mi = mi, we can set j ∈ I ′ with mj = mj ̸= crash and
α = p⊕q : mj(Bj) = p⊕q : mj(Bj).

Let Γ′;∆′ = Γ[p 7→ Tj ];∆[p, q 7→ ∆(p, q)·mj(Bj)]. We show that Γ;∆
α−→ Γ′;∆′ and

Γ′; ∆′ ⊑R ⟨C ′;G′⟩.
For the first part: we apply [Γ-⊕] on those we have: Γ(p) = q⊕{mi(Bi).Ti}i∈I′ and

j ∈ I ′, to obtain the thesis.
For the second part:

(A1) We want to show ∀r ∈ roles(G′) : Γ′(r) ⩽ G′ ↾R r. We consider two subcases:
– r = p (meaning that p ∈ roles(Gj)): since Γ′(p) = Tj , ∀i ∈ I ′ : Ti ⩽ Gi ↾R p, and

j ∈ I ′, we have Γ′(p) ⩽ Gj ↾R p, as desired.
– r ̸= p: since q ∈ C , we know q /∈ roles(Gj), and thus, r ̸= q. Furthermore, by

association (A.37), it holds that Γ′(r) = Γ(r) ⩽ G ↾R r =
d

i∈I Gi ↾R r. Then,
by applying Lemma 4.6 and transitivity of subtyping, we can conclude with
Γ′(r) ⩽ Gj ↾R r, as desired.

(A2) No change here.

(A3) No change here if p ∈ roles(Gj). Otherwise, if p /∈ roles(Gj): with p /∈ roles (Gj),
by Lemma A.4, we have Gj ↾R p = end. Furthermore, by the fact that ∀i ∈ I ′ : Ti ⩽
Gi ↾R p, it holds that Tj = end, and thus, Γ′(p) = end, as desired.

(A4) We are left to show ∆′ = ∆[p, q 7→ ∆(p, q)·mj(Bj)] is associated with ⟨C ;Gj⟩.
Since ∆ is associated with ⟨C ; p→q : {mi(Bi).Gi}i∈I⟩, by Definition 4.19, we have
∆(p, q) = ⊘ and ∀i ∈ I : ∆ is associated with ⟨C ;Gi⟩. It follows from ∆(p, q) = ⊘
that ∆′ = ∆[p, q 7→ ∆(p, q)·mj(Bj)] = ∆[p, q 7→ ⊘·mj(Bj)] = ∆[p, q 7→ ⊘] = ∆.
Hence, with ∀i ∈ I : ∆ is associated with ⟨C ;Gi⟩, we conclude that ∆′ = ∆ is
associated with ⟨C ;Gj⟩, as desired.

• Case [GR-Ctx-i]:
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From the premise we have

Γ;∆ ⊑R ⟨C ;G⟩ (A.45)

G = p→q†: {mi(Bi).Gi}i∈I (A.46)

⟨C ;G⟩ −→R (A.47)

∀i ∈ I : ⟨C ;Gi⟩
α−→R ⟨C ′;G′

i⟩ (A.48)

subj(α) /∈ {p, q} (A.49)

G′ = p→q†:
{
mi(Bi).G

′
i

}
i∈I (A.50)

We consider two subcases depending on whether q has crashed.
– q† = q:

For p, we have that G ↾R p = q⊕{mi(Bi).(Gi ↾R p)}i∈Imi\crash and that G′ ↾R p =
q⊕{mi(Bi).(G

′
i ↾R p)}i∈Imi\crash . For q, we have G ↾R q = p&{mi(Bi).(Gi ↾R q)}i∈I

and G′ ↾R q = p&{mi(Bi).(G
′
i ↾R q)}i∈I . Take an arbitrary j ∈ I. Let Γj(p) =

Gj ↾R p, Γj(q) = Gj ↾R q, Γj(r) = Γ(r) for r ∈ dom(Γ) \ {p, q}, ∆j = ∆. We show
Γj ; ∆j ⊑R ⟨C ;Gj⟩.
(A1) We want to show ∀s ∈ roles(Gj) : Γj(s) ⩽ Gj ↾R s. We consider three subcases:

∗ s = p (meaning that p ∈ roles(Gj)): trivial by Γj(p) = Gj ↾R p and the
reflexivity of subtyping.

∗ s = q (meaning that q ∈ roles(Gj)): trivial by Γj(q) = Gj ↾R q and the
reflexivity of subtyping.

∗ s ̸= p and s ≠ q: by association (A.45) and Γj(s) = Γ(s), we have Γj(s) ⩽d
i∈I Gi ↾R s. Then, by Lemma 4.6 and transitivity of subtyping, we conclude

Γj(s) ⩽ Gj ↾R s, as desired.
(A2) No change here.
(A3) No change here if p ∈ roles(Gj) and q ∈ roles(Gj). Otherwise, consider the case

that p /∈ roles(Gj): with p /∈ roles (Gj), by Lemma A.4, we have Gj ↾R p = end.
Therefore, we know from Γj(p) = Gj ↾R p that Γj(p) = end, as required. The
argument for q /∈ roles(Gj) follows similarly.

(A4) Trivial by association (A.45), Definition 4.19, and ∆j = ∆.

By inductive hypothesis, there exists Γ′
j ;∆

′
j such that Γj ;∆j

α−→ Γ′
j ;∆

′
j and

Γ′
j ; ∆

′
j ⊑R ⟨C ′;G′

j⟩. Since subj(α) /∈ {p, q}, we apply Lemma A.12, which gives

Γj(p) = Γ′
j(p) and Γj(q) = Γ′

j(q).

We now construct a configuration Γ′; ∆′ and show Γ;∆
α−→ Γ′; ∆′ and Γ′; ∆′ ⊑R ⟨C ′;G′⟩.

Let Γ′(p) = Γ(p), Γ′(q) = Γ(q), Γ′(r) =
d

i∈I Γ
′
i(r) for r ∈ dom(Γ) \ {p, q}, ∆′ = ∆′

j

with an arbitrary j ∈ I.

For the first part that Γ;∆
α−→ Γ′; ∆′:

We know that for any i ∈ I, Γ′
i is obtained from Γi by updating subj(α) to a fixed type

T . It follows that for any i, k ∈ I and for any r /∈ {p, q}, Γ′
i(r) = Γ′

k(r), and hence,d
i∈I Γ

′
i(r) = Γ′

j(r) with an arbitrary j ∈ J . Therefore, we have that Γ′ is obtained

from Γ by updating subj(α) to Γ′
j(subj(α)), i.e., Γ

′ = Γ[subj(α) 7→ Γ′
j(subj(α))].

We apply Lemma A.24 on Γj ;∆j
α−→ Γ′

j ;∆
′
j , Γ;∆ ⊑R ⟨C ;G⟩, Γj ; ∆j ⊑R ⟨C ;Gj⟩,

Γ(subj(α)) = Γj(subj(α)), and Γ′ = Γ[subj(α) 7→ Γ′
j(subj(α))] to get the thesis.

For the second part that Γ′; ∆′ ⊑R ⟨C ′;G′⟩:
(A1) We want to show ∀r ∈ roles(G′) : Γ′(r) ⩽ G′ ↾R r. We consider three subcases:
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∗ r = p: by association (A.45) and Lemma A.9, we obtain Γ(p) = q⊕{mi(Bi).Ti}i∈I′
where I ′ ⊆ Imi\crash and ∀i ∈ I ′ : Ti ⩽ Gi ↾R p. Since Γi(p) = Gi ↾R p = Γ′

i(p)
for each i ∈ I, with association Γ′

i; ∆
′
i ⊑R ⟨C ′;G′

i⟩, we get Gi ↾R p = Γ′
i(p) ⩽

G′
i ↾R p. Then by transitivity of subtyping, it holds that ∀i ∈ I ′ : Ti ⩽ G′

i ↾R p,
which follows that q⊕{mi(Bi).Ti}i∈I′ ⩽ q⊕{mi(Bi).(G

′
i ↾R p)}i∈Imi\crash , as de-

sired.
∗ r = q: by association (A.45) and Lemma A.9, we obtain Γ(q) = p&{mi(Bi).Ti}i∈I′
where I ⊆ I ′ and ∀i ∈ I : Ti ⩽ Gi ↾R q. Since Γi(q) = Gi ↾R q = Γ′

i(q) for each
i ∈ I, with association Γ′

i; ∆
′
i ⊑R ⟨C ′;G′

i⟩, we get Gi ↾R q = Γ′
i(q) ⩽ G′

i ↾R q.
Then by transitivity of subtyping, it holds that ∀i ∈ I : Ti ⩽ G′

i ↾R q, which
follows that p&{mi(Bi).Ti}i∈I′ ⩽ p&{mi(Bi).(G

′
i ↾R q)}i∈I , as desired.

∗ r ̸= p and r ̸= q: by association Γ′
i; ∆

′
i ⊑R ⟨C ′;G′

i⟩ for each i ∈ I, it holds that
Γ′
i(r) ⩽ G′

i ↾R r for each i ∈ I. Then by applying Lemma 4.8, we conclude with
Γ′(r) =

d
i∈I Γ

′
i(r) ⩽

d
i∈I G

′
i ↾R r = G′ ↾R r, as desired.

(A2) By association Γ′
i; ∆

′
i ⊑R ⟨C ′;G′

i⟩ for each i ∈ I, it holds that ∀r ∈ C ′ : Γ′
i(r) =

stop, which follows that for any r ∈ C ′, Γ′(r) =
d

i∈I Γ
′
i(r) = stop, as desired.

(A3) For any endpoint r in G′, r is an endpoint in each G′
i with i ∈ I. Then by associa-

tion Γ′
i; ∆

′
i ⊑R ⟨C ′;G′

i⟩, we have Γ′
i(r) = end, which follows Γ′(r) =

d
i∈I Γ

′
i(r) =

end, as desired.
(A4) By Lemma A.16, it holds that for any i, j ∈ I, ∆′

i = ∆′
j . Take an arbitrary

∆′
j with j ∈ I. Note here ∆′ = ∆′

j . With the fact that ∆′
i is associated with

G′
i for any i ∈ I, we have that ∀i ∈ I : ∆′

j is associated with G′
i, and hence,

∀i ∈ I : ∆′ is associated with G′
i. We are left to show that ∆′(p, q) = ϵ, which

is obtained by applying Lemma A.13 on ∆(p, q) = ϵ and Γj ;∆
α−→ Γ′

j ;∆
′
j with

subj(α) /∈ {p, q}.
– q† = q :

Note that q ∈ C . For p, we have G ↾R p = q⊕{mi(Bi).(Gi ↾R p)}i∈Imi\crash and
G′ ↾R p = q⊕{mi(Bi).(G

′
i ↾R p)}i∈Imi\crash . Take an arbitrary j ∈ I. Let Γj(p) =

Gj ↾R p, Γj(q) = stop, Γj(r) = Γ(r) for r ∈ dom(Γ) \ {p, q}, ∆j = ∆. We show
Γj ; ∆j ⊑R ⟨C ;Gj⟩.
(A1) We want to show ∀s ∈ roles(Gj) : Γj(s) ⩽ Gj ↾R s. We consider two subcases:

∗ s = p (meaning that p ∈ roles(Gj)): trivial by Γj(p) = Gj ↾R p and the
reflexivity of subtyping.

∗ s ̸= p: since q ∈ C , we have s ̸= q. By association (A.45) and Γj(s) = Γ(s), we
have Γj(s) ⩽

d
i∈I Gi ↾R s. Then, by Lemma 4.6 and transitivity of subtyping,

we conclude Γj(s) ⩽ Gj ↾R s, as desired.
(A2) No change here.
(A3) No change here if p ∈ roles(Gj). Otherwise, consider the case that p /∈ roles(Gj):

with p /∈ roles (Gj), by Lemma A.4, we have Gj ↾R p = end. Therefore, we know
from Γj(p) = Gj ↾R p that Γj(p) = end, as required.

(A4) Trivial by association (A.45), Definition 4.19, and ∆j = ∆.

By inductive hypothesis, there exists Γ′
j ;∆

′
j such that Γj ;∆j

α−→ Γ′
j ;∆

′
j and

Γ′
j ; ∆

′
j ⊑R ⟨C ′;G′

j⟩. Since subj(α) /∈ {p, q}, we apply Lemma A.12, which gives Γj(p) =

Γ′
j(p) and Γj(q) = Γ′

j(q) = stop. We know from Γ′
j(q) = stop and Γ′

j ; ∆
′
j ⊑R ⟨C ′;G′

j⟩
that q ∈ C ′.

We now construct a configuration Γ′; ∆′ and show Γ;∆
α−→ Γ′; ∆′ and Γ′; ∆′ ⊑R ⟨C ′;G′⟩.
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Let Γ′(p) = Γ(p), Γ′(q) = Γ(q) = stop, Γ′(r) =
d

i∈I Γ
′
i(r) for r ∈ dom(Γ) \ {p, q},

∆′ = ∆′
j with an arbitrary j ∈ I.

For the first part that Γ;∆
α−→ Γ′; ∆′:

We know that for any i ∈ I, Γ′
i is obtained from Γi by updating subj(α) to a fixed type

T . It follows that for any i, k ∈ I and for any r /∈ {p, q}, Γ′
i(r) = Γ′

k(r), and hence,d
i∈I Γ

′
i(r) = Γ′

j(r) with an arbitrary j ∈ J . Therefore, we have that Γ′ is obtained

from Γ by updating subj(α) to Γ′
j(subj(α)), i.e., Γ

′ = Γ[subj(α) 7→ Γ′
j(subj(α))].

We apply Lemma A.24 on Γj ;∆j
α−→ Γ′

j ;∆
′
j , Γ;∆ ⊑R ⟨C ;G⟩,

Γj ; ∆j ⊑R ⟨C ;Gj⟩, Γ(subj(α)) = Γj(subj(α)), and Γ′ = Γ[subj(α) 7→ Γ′
j(subj(α))] to

get the thesis.
For the second part that Γ′; ∆′ ⊑R ⟨C ′;G′⟩:
(A1) We want to show ∀r ∈ roles(G′) : Γ′(r) ⩽ G′ ↾R r. We consider two subcases:

∗ r = p: by association (A.45) and Lemma A.9, we obtain Γ(p) = q⊕{mi(Bi).Ti}i∈I′
where I ′ ⊆ Imi\crash and ∀i ∈ I ′ : Ti ⩽ Gi ↾R p. Since Γi(p) = Gi ↾R p = Γ′

i(p)
for each i ∈ I, with association Γ′

i; ∆
′
i ⊑R ⟨C ′;G′

i⟩, we get Gi ↾R p = Γ′
i(p) ⩽

G′
i ↾R p. Then by transitivity of subtyping, it holds that ∀i ∈ I ′ : Ti ⩽ G′

i ↾R p,
which follows that q⊕{mi(Bi).Ti}i∈I′ ⩽ q⊕{mi(Bi).(G

′
i ↾R p)}i∈Imi\crash , as de-

sired.
∗ r ̸= p: since q ∈ C ′, we have r ̸= q. By association Γ′

i; ∆
′
i ⊑R ⟨C ′;G′

i⟩ for each
i ∈ I, it holds that Γ′

i(r) ⩽ G′
i ↾R r for each i ∈ I. Then by applying Lemma 4.8,

we conclude with Γ′(r) =
d

i∈I Γ
′
i(r) ⩽

d
i∈I G

′
i ↾R r = G′ ↾R r, as desired.

(A2) We want to show ∀r ∈ C ′ : Γ′(r) = stop. We consider two subcases:
∗ r = q: trivial by Γ′(q) = stop.
∗ r ̸= q: by association Γ′

i; ∆
′
i ⊑R ⟨C ′;G′

i⟩ for each i ∈ I, it holds that ∀r ∈
C ′ : Γ′

i(r) = stop, which follows that for any r ∈ C ′ with r ̸= q, Γ′(r) =d
i∈I Γ

′
i(r) = stop, as desired.

(A3) For any endpoint r in G′, r is an endpoint in each G′
i with i ∈ I. Then by associa-

tion Γ′
i; ∆

′
i ⊑R ⟨C ′;G′

i⟩, we have Γ′
i(r) = end, which follows Γ′(r) =

d
i∈I Γ

′
i(r) =

end, as desired.
(A4) By Lemma A.16, it holds that for any i, j ∈ I, ∆′

i = ∆′
j . Take an arbitrary

∆′
j with j ∈ I. Note here ∆′ = ∆′

j . With the fact that ∆′
i is associated with

G′
i for any i ∈ I, we have that ∀i ∈ I : ∆′

j is associated with G′
i, and hence,

∀i ∈ I : ∆′ is associated with G′
i. We are left to show that ∆′(p, q) = ⊘, which

is obtained by applying Lemma A.13 on ∆(p, q) = ⊘ and Γj ;∆
α−→ Γ′

j ;∆
′
j with

subj(α) /∈ {p, q}.
• Case [GR-Ctx-ii]:

Similar to the case [GR-Ctx-i].

Theorem 4.20 (Completeness of Association). Given associated global type G and configu-

ration Γ;∆: Γ;∆ ⊑R ⟨C ;G⟩. If Γ;∆
α−→ Γ′; ∆′, where α ≠ p for all p ∈ R, then there

exists ⟨C ′;G′⟩ such that Γ′; ∆′ ⊑R ⟨C ′;G′⟩ and ⟨C ;G⟩ α−→R ⟨C ′;G′⟩.

Proof. By induction on reductions of configuration Γ;∆
α−→ Γ′; ∆′.

• Case [Γ-⊕]:
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From the premise, we have:

Γ;∆ ⊑R ⟨C ;G⟩ (A.51)

Γ(p) = q⊕{mi(Bi).Ti}i∈I (A.52)

α = p⊕q : mk(Bk) (A.53)

k ∈ I (A.54)

Γ′ = Γ[p 7→ Tk] (A.55)

∆′ = ∆[p, q 7→ ∆(p, q)·mk(Bk)] (A.56)

Apply Lemma A.20 Item 1 on (A.52), we have two cases.
– Case (1):

unf(G) = p→q†:
{
mi(B

′
i).Gi

}
i∈I′ (A.57)

I ⊆ I ′ (A.58)

∀i ∈ I : mi = mi, Ti ⩽ (Gi ↾R p), Bi = B′
i (A.59)

We have two further subcases here: namely q† = q and q† = q .
∗ In the case of q† = q, we have k ∈ I ⊆ I ′ and crash does not appear in internal
choices, we apply [GR-⊕] (via Lemma A.10) to get:

⟨C ;G⟩ α−→R ⟨C ; p⇝q:k
{
mi(B

′
i).Gi

}
i∈I′⟩ (A.60)

We are now left to show Γ′; ∆′ ⊑R ⟨C ; p⇝q:k {mi(B′
i).Gi}i∈I′⟩.

Note that G′ = p⇝q:k {mi(B′
i).Gi}i∈I′ here. By Definition 4.1, we have roles(G) =

roles(G′) and roles (G) = roles (G′). Furthermore, with dom(Γ) = dom(Γ′) and
p ∈ roles(G), we can set Γ′ = ΓG[p 7→ Tk],Γ ,Γend.
(A1) First, we want to show that dom(ΓG[p 7→ Tk]) = {p | p ∈ roles(G′))}, which

follows directly from the fact that dom(ΓG) = {p | p ∈ roles(G))}, roles(G) =
roles(G′), and dom(ΓG[p 7→ Tk]) = dom(ΓG).
Then, we are left to show ∀r ∈ roles(G′) : ΓG[p 7→ Tk](r) ⩽ G′ ↾R r. We
consider two cases:
· r = p: we haveG′ ↾R p = Gk ↾R p. By (A.59), we obtain that ΓG[p 7→ Tk](p) =
Tk ⩽ Gk ↾R p = G′ ↾R p, as desired.

· r ̸= p: since Γ;∆ ⊑R ⟨C ;G⟩, we have that ΓG(r) ⩽ G ↾R r =
d

i∈I′ Gi ↾R r.
Furthermore, by ΓG[p 7→ Tk](r) = ΓG(r) and G′ ↾R r =

d
i∈I′ Gi ↾R r, we

have that ΓG[p 7→ Tk](r) ⩽ G′ ↾R r, as desired.
(A2) Trivial by Γ;∆ ⊑R ⟨C ;G⟩.
(A3) Trivial by Γ;∆ ⊑R ⟨C ;G⟩.
(A4) By (A.56), we have ∆′(p, q) = ∆(p, q)·mk(Bk). Then we only need to show that

∀i ∈ I ′ : ∆′[p, q 7→ ∆(p, q)] (note that ∆′[p, q 7→ ∆(p, q)] = ∆) is associated
with ⟨C ;Gi⟩, which follows directly from the fact that ∆ is associated with
⟨C ;G⟩ and Definition 4.19.

∗ In the case of q† = q , we have k ∈ I ⊆ I ′, q ∈ C , and crash does not appear in
internal choices. We apply [GR- m] (via Lemma A.10) to get:

⟨C ;G⟩ α−→R ⟨C ;Gk⟩ (A.61)

We are now left to show Γ′; ∆′ ⊑R ⟨C ;Gk⟩.
Note that G′ = Gk here.
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(A1) We need to show that ∀r ∈ roles(Gk) : Γ′(r) ⩽ Gk ↾R r. We consider two
subcases:
· r = p, which means that p ∈ roles(Gk): by (A.55) and (A.59), we have
Γ′(p) = Tk ⩽ Gk ↾R p, as desired.

· r ̸= p: with q /∈ roles(Gk), we have r ̸= q, and hence, G ↾R r =
d

i∈I′ Gi ↾R r.
Furthermore, by (A.55) and Γ;∆ ⊑R ⟨C ;G⟩, it holds that Γ′(r) = Γ(r) ⩽
G ↾R r =

d
i∈I′ Gi ↾R r. Then, by Lemma 4.6 and transitivity of subtyping,

we can conclude that Γ′(r) ⩽ Gk ↾R r, as desired.
(A2) Trivial by Γ;∆ ⊑R ⟨C ;G⟩.
(A3) Trivial by Γ;∆ ⊑R ⟨C ;G⟩ and the fact that if p /∈ roles(Gk), then Γ′(p) = end:

with p /∈ roles (Gk), by Lemma A.4, we have Gk ↾R p = end. Furthermore, by
(A.59), it holds that Tk = end, and thus, Γ′(p) = end, as desired.

(A4) Since q ∈ C , by Definition 4.19, we have ∆(·, q) = ⊘. Hence, ∆′ =
∆[p, q 7→ ∆(p, q)·mk(Bk)] = ∆[p, q 7→ ⊘·mk(Bk)] = ∆[p, q 7→ ⊘] = ∆. Then
we only need to show that ∆ is associated with ⟨C ;Gk⟩, which follows directly
from the fact that ∆ is associated with ⟨C ;G⟩ and Definition 4.19.

– Case (2):

unf(G) = s→t†:
{
mj(B

′
j).Gj

}
j∈J or unf(G) = s†⇝t:k

{
mj(B

′
j).Gj

}
j∈J (A.62)

∀j ∈ J : Γ(p) ⩽ Gj ↾R p (A.63)

p ̸= s and p ̸= t (A.64)

We consider two subcases: unf(G) = s→t†:
{
mj(B

′
j).Gj

}
j∈J and unf(G) =

s†⇝t:k
{
mj(B

′
j).Gj

}
j∈J .

∗ In the case of unf(G) = s→t†:
{
mj(B

′
j).Gj

}
j∈J :

First, we take an arbitrary index j ∈ J and construct a configuration Γj ;∆j such

that Γj ; ∆j
p⊕q:mk(Bk)−−−−−−−→ Γ′

j ; ∆
′
j and Γj ; ∆j ⊑R ⟨C ;Gj⟩.

We know from s ∈ roles(G) and Γ;∆ ⊑R ⟨C ;G⟩, that Γ(s) ⩽ unf(G) ↾R s and

unf(G) ↾R s = t⊕
{
mj(B

′
j).(Gj ↾R s)

}
j∈Jmj\crash

. By inverting [Sub-⊕] (applying

Lemma A.7 where necessary), we have unf(Γ(s)) = t⊕
{
mj(B

′′
j ).T

′′
j

}
j∈Js

, where

Js ⊆ Jmj\crash, and ∀j ∈ Js : T
′′
j ⩽ (Gj ↾R s).

To construct Γj , let Γj(s) = T ′′
j if j ∈ Js and Γj(s) = Gj ↾R s otherwise. In either

case, we have Γj(s) ⩽ Gj ↾R s, as required.

We have two further subcases here: namely t† = t and t† = t .
· If t† = t, we know from t ∈ roles(G) and Γ;∆ ⊑R ⟨C ;G⟩, that Γ(t) ⩽ unf(G) ↾R t

= s&
{
mj(B

′
j).(Gj ↾R t)

}
j∈J

. By inverting [Sub-&] (applying Lemma A.7 where

necessary), we have unf(Γ(t)) = s&
{
mj(B

′′
j ).U

′′
j

}
j∈Jt

, where J ⊆ Jt, and ∀j ∈ J :

U ′′
j ⩽ (Gj ↾R t).

To construct Γj , let Γj(t) = U ′′
j , and we have Γj(t) ⩽ Gj ↾R t, as required.

· If t† = t , let Γj(t) = Γ(t) = stop, as required.
For roles r ∈ (roles(Gj) ∪ C ), where r /∈ {s, t}, their typing context entry do not
change, i.e. Γj(r) = Γ(r). For crashed roles r ∈ C , we have stop = Γ(r) = Γj(r) =
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stop, as required. For non-crashed roles r ∈ roles(Gj), we have Γj(r) = Γ(r) ⩽
G ↾R r =

d
j∈J (Gj ↾R r) ⩽ Gj ↾R r (applying Lemma 4.6).

We know from Γ;∆ ⊑R ⟨C ;G⟩ and unf(G) = s→t†:
{
mj(B

′
j).Gj

}
j∈J , that ∆ is asso-

ciated with Gj . Hence, to construct ∆j , just let ∆j = ∆. Notice that
{p, q} ∈ roles(Gj), so they are still able to perform the communication action

Γj ; ∆j
p⊕q:mk(Bk)−−−−−−−→ Γ′

j ; ∆
′
j .

We apply inductive hypothesis on Γj ;∆j , and obtain ⟨C ;Gj⟩
p⊕q:mk(Bk)−−−−−−−→R ⟨C ;G′

j⟩
and Γ′

j ; ∆
′
j ⊑R ⟨C ;G′

j⟩.
We apply [GR-Ctx-i] (via Lemma A.10) to get:

⟨C ;G⟩ p⊕q:mk(Bk)−−−−−−−→R ⟨C ; s→t†:
{
mj(B

′
j).G

′
j

}
j∈J⟩ (A.65)

We are now left to show Γ′; ∆′ ⊑R ⟨C ; s→t†:
{
mj(B

′
j).G

′
j

}
j∈J⟩.

Note that G′ = s→t†:
{
mj(B

′
j).G

′
j

}
j∈J here.

(A1) For role s, we know that unf(Γ(s)) = t⊕
{
mj(B

′′
j ).T

′′
j

}
j∈Js

, where Js ⊆ Jmj\crash,

∀j ∈ Js : T
′′
j ⩽ (Gj ↾R s), and B′′

j = B′
j .

Since s /∈ subj(p⊕q : mk(Bk)), we apply Lemma A.12 on Γ and Γj for all
j ∈ Js. For all j ∈ Js, we have T ′′

j = Γj(s) = Γ′
j(s) (from Lemma A.12) and

Γ′
j(s) ⩽ G′

j ↾R s (from inductive hypothesis). Therefore, we have T ′′
j ⩽ G′

j ↾R s.

We now apply Lemma A.12 on Γ, which gives unf(Γ(s[s])) = unf(Γ′(s[s])) =

t⊕
{
mj(B

′′
j ).T

′′
j

}
j∈Js

. We can now apply [Sub-⊕] to conclude Γ′(s) ⩽ G′ ↾R s, as

required.

For role t (where t† = t), we know that unf(Γ(t)) = s&
{
mj(B

′′
j ).U

′′
j

}
j∈Jt

,

where J ⊆ Jt, ∀j ∈ J : U ′′
j ⩽ (Gj ↾R t), and B′

j = B′′
j . Since t /∈

subj(p⊕q : mk(Bk)), we apply Lemma A.12 on Γ and Γj for all j ∈ J . For
all j ∈ J , we have U ′′

j = Γj(t) = Γ′
j(t) (from Lemma A.12) and Γ′

j(t) ⩽
G′

j ↾R t (from inductive hypothesis). Therefore, we have U ′′
j ⩽ G′

j ↾R t.

We now apply Lemma A.12 on Γ, which gives unf(Γ(t)) = unf(Γ′(t)) =

s&
{
mj(B

′′
j ).U

′′
j

}
j∈Jt

. We can now apply [Sub-&] to conclude Γ′(t) ⩽ G′ ↾R t, as

required.
For other role r ∈ roles(G′) (where r /∈ {s, t}), we need to show Γ′(r) ⩽ G′ ↾R r.
We know that G′ ↾R r =

d
j∈J G

′
j ↾R r. If r /∈ {p, q}, we apply Lemma A.12 on

Γj , obtaining Γj(r) = Γ′
j(r). The inductive hypothesis gives Γ′

j(r) ⩽ G′
j ↾R r,

we apply Lemma 4.7 to obtain Γ′
j(r) ⩽ G′ ↾R r =

d
j∈J G

′
j ↾R r. Note that

Γ′
j(r) = Γj(r) by Lemma A.12, and Γj(r) = Γ(r) by construction. Therefore,

we have Γ′(r) = Γ(r) ⩽ G′ ↾R r, as required.
We are left to consider the cases of p and q. We know what G′ ↾R p =d

j∈J G
′
j ↾R p and {p, q} ⊆ roles(G′). The inductive hypothesis gives Γ′

j(p) ⩽
G′

j ↾R p, we apply Lemma 4.7 to obtain Γ′
j(p) ⩽ G′ ↾R p =

d
j∈J G

′
j ↾R p. We

now apply Lemma A.15 on Γ and all Γj , which gives Γ′
j = Γ′ for all j. Therefore,
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we have Γ′(p) ⩽ G′ ↾R p. Note that Γ′(p) = Γ′
j(p) = Tk (as in (A.55)). The

argument q follows similarly.
(A2) For crashed roles r ∈ C , we have Γ′(r) = Γ(r) = stop (applying Lemma A.12).

Note that if t† = t , t ∈ C .
(A3) Trivial by Γ;∆ ⊑R ⟨C ;G⟩.
(A4) We know from ∆j = ∆ and Γj ;∆j

p⊕q:mk(Bk)−−−−−−−→ Γ′
j ;∆

′
j , that ∆′

j =

∆j [p, q 7→ ∆j(p, q)·mk(Bk)] = ∆[p, q 7→ ∆(p, q)·mk(Bk)] = ∆′. Furthermore,
by inductive hypothesis, ∆′

j is associated with ⟨C ;G′
j⟩, which follows that

∀j ∈ J : ∆′ is associated with ⟨C ;G′
j⟩. We are left to show that if t† ̸= t , then

∆′(s, t) = ϵ, which follows directly from Γ;∆ ⊑R ⟨C ;G⟩ and ∆′(s, t) = ∆(s, t).

– In the case of unf(G) = s†⇝t:k
{
mj(B

′
j).Gj

}
j∈J :

Similar to that of the previous subcase that unf(G) = s→t†:
{
mj(B

′
j).Gj

}
j∈J , applying

[GR-Ctx-ii] instead.
• Case [Γ-&]:

From the premise, we have:

Γ;∆ ⊑R ⟨C ;G⟩ (A.66)

Γ(p) = q&{mi(Bi).Ti}i∈I (A.67)

α = p&q : mk(Bk) (A.68)

k ∈ I (A.69)

∆(q, p) = mk(Bk)·τ ′ ̸= ⊘ (A.70)

Γ′ = Γ[p 7→ Tk] (A.71)

∆′ = ∆[q, p 7→ τ ′] (A.72)

Apply Lemma A.20 Item 2 on (A.67), we have two cases.
– Case (1):

unf(G) = q†⇝p:j
{
mi(B

′
i).Gi

}
i∈I′ or unf(G) = q→p†:

{
mi(B

′
i).Gi

}
i∈I′ (A.73)

I ′ ⊆ I (A.74)

∀i ∈ I ′ : mi = mi, Ti ⩽ (Gi ↾R p), B′
i = Bi (A.75)

q /∈ R implies ∃l ∈ I ′ : ml = crash (A.76)

First, we show that in this case, unf(G) cannot be of the form q→p†: {mi(B′
i).Gi}i∈I′ .

There are two subcases to be considered: p† = p and p† = p .
∗ In the case of p† = p , we have p ∈ C . Hence, by applying Definition 4.19 on (A.66),
we have that ∆(·, p) = ⊘, a desired contradiction to (A.70).

∗ In the case of p† = p, by association, it holds that ∆(q, p) = ϵ, a desired contradiction
to (A.70).

Therefore, we only need to consider the case that unf(G) = q†⇝p:j {mi(B′
i).Gi}i∈I′ .

Then we want to show that mj ̸= crash, which is proved by contradiction. Assume
that mj = crash, by association, we have that ∆(q, p) = ϵ, a desired contradiction to
(A.70). Moreover, we want to show that j = k. By association and mj ̸= crash, we
have ∆(q, p) = mj(Bj)·τ = mk(Bk)·τ ′. Then by (A.75), it holds that mj = mj = mk.
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Furthermore, by j, k ∈ I and the requirement that labels in local types must be pair-wise
distinct, we have j = k, as required. Note that k ∈ I ′ here.
We can now apply [GR-&] (via Lemma A.10) to get:

⟨C ;G⟩ α−→R ⟨C ;Gk⟩ (A.77)

We are left to show Γ′; ∆′ ⊑R ⟨C ;Gk⟩.
(A1) We need to show that ∀r ∈ roles(Gk) : Γ′(r) ⩽ Gk ↾R r. We consider three

subcases:
∗ r = q, which means that q† = q and q ∈ roles(Gk): by (A.71), Γ′(q) = Γ(q).
Then by association, we have Γ(q) ⩽ G ↾R q = Gk ↾R q, as desired.

∗ r = p, which means that p ∈ roles(Gk): by (A.71) and (A.75), we have
Γ′(p) = Tk ⩽ Gk ↾R p, as desired.

∗ r ̸= q and r ̸= p: G ↾R r =
d

i∈I′ Gi ↾R r. Furthermore, by (A.71) and
Γ;∆ ⊑R ⟨C ;G⟩, it holds that Γ′(r) = Γ(r) ⩽ G ↾R r =

d
i∈I′ Gi ↾R r. Then,

by Lemma 4.6 and transitivity of subtyping, we can conclude that Γ′(r) ⩽
Gk ↾R r, as desired.

(A2) Trivial by Γ;∆ ⊑R ⟨C ;G⟩. Note that in the case of q† = q , we have q ∈ C , and
hence, Γ′(q) = Γ(q) = stop.

(A3) Trivial by Γ;∆ ⊑R ⟨C ;G⟩ and the fact that if p /∈ roles(Gk), then Γ′(p) = end:
with p /∈ roles (Gk), by Lemma A.4, we have Gk ↾R p = end. Furthermore, by
(A.75), it holds that Tk = end, and thus, Γ′(p) = end, as desired. The argument
for the case that q† = q and q /∈ roles(Gk) follows similarly.

(A4) Since ∆ is associated with ⟨C ; q†⇝p:j {mi(B′
i).Gi}i∈I′⟩ and mj ̸= crash, by Defini-

tion 4.19, we have that ∆(q, p) = mj(Bj)·τ and ∀i ∈ I ′ : ∆[q, p 7→ τ ] is associated
with ⟨C ;Gi⟩, which follows that τ = τ ′ (in (A.70)) and ∆′ = ∆[q, p 7→ τ ′] =
∆[q, p 7→ τ ] is associated with ⟨C ;Gk⟩, as required.

– Case (2): similar to the case (2) in Case [Γ-⊕].
• Case [Γ- ]:

From the premise, we have:

Γ;∆ ⊑R ⟨C ;G⟩ (A.78)

Γ(p) ̸= end (A.79)

Γ(p) ̸= stop (A.80)

α = p (A.81)

Γ′ = Γ[p 7→ stop] (A.82)

∆′ = ∆[·, p 7→ ⊘] (A.83)

By (A.80), we know that p /∈ C and p ∈ roles(G). The premise requires that α ̸= p 
for all p ∈ R, therefore, p /∈ R. We apply [GR- ] (via Lemma A.10) to get:

⟨C ;G⟩ α−→R ⟨C ∪ {p};G p⟩ (A.84)

We are now left to show Γ′; ∆′ ⊑R ⟨C ∪ {p};G p⟩.
Note that G′ = G p and C ′ = C ∪ {p} here. By (A.82), we can set Γ′ = Γ′

G′ ,Γ′
 ,Γ

′
end,

where dom
(
Γ′
G′
)
= {q | q ∈ roles(G p)} = {q | q ∈ roles(G)} \ {p} = dom(ΓG) \ {p},

dom
(
Γ′
 

)
= C ∪ {p} = dom(Γ ) ∪ {p}, and dom(Γ′

end) = dom(Γend). Meanwhile, we

have Γ′(q) = Γ(q) if q ̸= p.
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(A1) We want to show that for any q ∈ roles(G p), we have Γ′(q) = Γ(q) ⩽ G ↾R q ⩽
(G p) ↾R q by Lemma A.8 and Γ;∆ ⊑R ⟨C ;G⟩.

(A2) Trivial by Γ;∆ ⊑R ⟨C ;G⟩ and (A.82), i.e., Γ′(p) = stop.
(A3) Trivial by Γ;∆ ⊑R ⟨C ;G⟩.
(A4) Since ∆ is associated with ⟨C ;G⟩, by Definition 4.19, we have that for any q ∈ C ,

∆(·, q) = ⊘. Then, with (A.83), we have that for any q ∈ C ∪ {p}, ∆′(·, q) =
∆[·, p 7→ ⊘](·, q) = ⊘, which follows directly that ∆′ is associated with ⟨C ∪ {p};G p⟩.

• Case [Γ-⊙]:
From the premise, we have:

Γ;∆ ⊑R ⟨C ;G⟩ (A.85)

Γ(q) = p&{mi(Bi).Ti}i∈I (A.86)

Γ(p) = stop (A.87)

α = q⊙p (A.88)

k ∈ I (A.89)

mk = crash (A.90)

∆(p, q) = ϵ (A.91)

Γ′ = Γ[q 7→ Tk] (A.92)

∆′ = ∆ (A.93)

Since Γ(p) = stop, we have p ∈ C and p /∈ R. Apply Lemma A.20 Item 2 on (A.86), we
have two cases.
– Case (1):

unf(G) = p ⇝q:j
{
mi(B

′
i).Gi

}
i∈I′ (A.94)

I ′ ⊆ I (A.95)

∀i ∈ I ′ : mi = mi, Ti ⩽ (Gi ↾R q), B′
i = Bi (A.96)

p /∈ R implies ∃l ∈ I ′ : ml = crash (A.97)

Then we want to show that mj = crash, which is proved by contradiction. Assume that
mj ̸= crash, by association, we have that ∆(p, q) = mj(Bj)·τ , a desired contradiction
to (A.91). Moreover, we want to show that j = k. By (A.96), we have mj = mj , which
means that mj = crash. Since mj = mk = crash and j, k ∈ I, by the requirement that
labels in local types must be pair-wise distinct, we have j = k, as required. Note that
k ∈ I ′ here.
We can now apply [GR-⊙] (via Lemma A.10) to get:

⟨C ;G⟩ α−→R ⟨C ;Gk⟩ (A.98)

We are left to show Γ′; ∆′ ⊑R ⟨C ;Gk⟩.
(A1) We need to show that ∀r ∈ roles(Gk) : Γ

′(r) ⩽ Gk ↾R r. We consider two subcases:
∗ r = q, which means that q ∈ roles(Gk): by (A.92) and (A.96), we have
Γ′(q) = Tk ⩽ Gk ↾R q, as desired.

∗ r ̸= q: with p /∈ roles(Gk), we have r ̸= p, and hence, G ↾R r =
d

i∈I′ Gi ↾R r.
Furthermore, by (A.92) and Γ;∆ ⊑R ⟨C ;G⟩, it holds that Γ′(r) = Γ(r) ⩽
G ↾R r =

d
i∈I′ Gi ↾R r. Then, by Lemma 4.6 and transitivity of subtyping, we

can conclude that Γ′(r) ⩽ Gk ↾R r, as desired.
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(A2) Trivial by Γ;∆ ⊑R ⟨C ;G⟩.
(A3) Trivial by Γ;∆ ⊑R ⟨C ;G⟩ and the fact that if q /∈ roles(Gk), then Γ′(q) = end:

with q /∈ roles (Gk), by Lemma A.4, we have Gk ↾R q = end. Furthermore, by
(A.96), it holds that Tk = end, and thus, Γ′(q) = end, as desired.

(A4) Since ∆ is associated with ⟨C ; p ⇝q:j {mi(B′
i).Gi}i∈I′⟩ and mj = crash, by Defini-

tion 4.19, we have that ∀i ∈ I ′ : ∆ is associated with ⟨C ;Gi⟩, which follows that
∆′ = ∆ is associated with ⟨C ;Gk⟩, as required.

– Case (2): similar to the case (2) in Case [Γ-⊕].
• Case [Γ-µ]:

By induction hypothesis and Proposition A.19.

A.6. Safety by Projection.

Lemma A.25. If Γ;∆ ⊑R ⟨C ;G⟩, then Γ;∆ is R-safe.

Proof. Let φ =
{
Γ′; ∆′ ∣∣∃C ′, G′ : ⟨C ;G⟩ −→∗

R ⟨C ′;G′⟩ and Γ′; ∆′ ⊑R ⟨C ′;G′⟩
}
. Take any

Γ′; ∆′ ∈ φ, we show that Γ′; ∆′ satisfies all clauses in Definition 4.24, which means that φ is
an R-safety property. Then we can conclude that, since φ(Γ;∆) holds, Γ;∆ is R-safe.

By definition of φ, there exists ⟨C ′;G′⟩ with ⟨C ;G⟩ −→∗
R ⟨C ′;G′⟩ and Γ′; ∆′ ⊑R ⟨C ′;G′⟩.

• [S-⊕&]: from the premise, we have

Γ′; ∆′ ⊑R ⟨C ′;G′⟩ (A.99)

Γ′(q) = p&{mi(Bi).Ti}i∈I (A.100)

∆′(p, q) ̸= ⊘ (A.101)

∆′(p, q) ̸= ϵ (A.102)

Apply Item 2 of Lemma A.20 on (A.100), we have two cases.
– Case (1):

unf
(
G′) = p†⇝q:j

{
mi(B

′
i).Gi

}
i∈I′ or unf

(
G′) = p→q†:

{
mi(B

′
i).Gi

}
i∈I′ (A.103)

I ′ ⊆ I (A.104)

∀i ∈ I ′ : mi = mi, Ti ⩽ (Gi ↾R q), B′
i = Bi (A.105)

First, we show that unf(G′) cannot be the form of p→q†: {mi(B′
i).Gi}i∈I′ . We prove

this by contradiction on two subcases: q† = q and q† = q :
∗ q† = q: by association (A.99), we have ∆′(p, q) = ϵ, a desired contradiction to
(A.102).

∗ q† = q : we have q ∈ C . Hence, by association (A.99), we have ∆′(·, q) = ⊘, a
desired contradiction to (A.101).

It follows that unf(G′) = p†⇝q:j {mi(B′
i).Gi}i∈I′ . We are left to show that j ∈ I,

B′
j = Bj , and ∆′(p, q) = mj(B

′
j)·τ , and then by applying [Γ-&], we can conclude with

Γ′; ∆′ q&p:mj(Bj)−−−−−−−→. We consider two subcases: mj = crash and mj ̸= crash:
∗ mj = crash: by association, ∆′(p, q) = ϵ, a desired contradiction to (A.102).
∗ mj ̸= crash: by association, ∆′(p, q) = mj(B

′
j)·τ . Moreover, with (A.104) and (A.105),

we obtain that j ∈ I, B′
j = Bj , and mj = mj , which follows that ∆′(p, q) = mj(B

′
j)·τ ,

as desired.
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– Case (2): unf(G′) = s→t†:
{
mj(B

′
j).Gj

}
j∈J , or unf(G′) = s†⇝t:k

{
mj(B

′
j).Gj

}
j∈J ,

where for all j ∈ J : Γ′(q) ⩽ (Gj ↾R q), with q ̸= s and q ̸= t.
We apply Lemma A.22 to get that there exists a global type ⟨C ′′;G′′⟩ and a queue envi-
ronment ∆′′ such that Γ′(q) ⩽ G′′ ↾R q, unf(G′′) is of the form p†⇝q:j {mi(B′

i).Gi}i∈I′
or p→q†: {mi(B′

i).Gi}i∈I′ , and ∆′′ is associated with ⟨C ′′;G′′⟩ with ∆′′(p, q) = ∆′(p, q).
The following proof argument is similar to that for Case (1).

• [S- &]: from the premise, we have Γ′(q) = p&{mi(Bi).Ti}i∈I ,Γ′(p) = stop, and ∆′(p, q) = ϵ.
We just need to show that there exists k ∈ I with mk = crash, and then by applying [Γ-⊙],

we can conclude with Γ′; ∆′ q⊙p−−→. By the association that Γ′; ∆′ ⊑R ⟨C ′;G′⟩, we have
Γ′(q) = p&{mi(Bi).Ti}i∈I ⩽ G′ ↾R q. Moreover, with p /∈ R, which follows directly from
Γ′(p) = stop, we can apply Lemma A.21 to get ∃k ∈ I : mk = crash, as desired.

• [S-µ]: let Γ′′; ∆′′ be constructed from Γ′; ∆′ with Γ′′ = Γ′[p 7→ S{µt.S/t}] and ∆′′ = ∆′. We
want to show that Γ′′; ∆′′ ⊑R ⟨C ′;G′⟩. From the premise, we have Γ′(p) = µt.S. Then
by association that Γ′; ∆′ ⊑R ⟨C ′;G′⟩, it holds that Γ′(p) = µt.S ⩽ G′ ↾R p. Hence, by
inverting [Sub-µL], we have Γ′′(p) = S{µt.S/t} ⩽ G′ ↾R p. Therefore, by Definition 4.19, we
conclude with Γ′′; ∆′′ ⊑R ⟨C ′;G′⟩, as desired.

• [S-→ ]: from the premise, we have Γ′; ∆′ →R Γ′′; ∆′′. Hence, by Theorem 4.20, there exists

⟨C ′′;G′′⟩ with ⟨C ′;G′⟩ α−→R ⟨C ′′;G′′⟩, where α ≠ p for all p ∈ R, and Γ′′; ∆′′ ⊑R ⟨C ′′;G′′⟩.
By definition of φ, the configuration after transition Γ′′; ∆′′ is in φ, as desired.

A.7. Deadlock Freedom by Projection.

Lemma A.26. If Γ;∆ ⊑R ⟨C ;G⟩, then Γ;∆ is R-deadlock-free.

Proof. Since Γ;∆ ⊑R ⟨C ;G⟩, by Lemma A.25, we have that Γ;∆ is R-safe. By operational
correspondence of global type ⟨C ;G⟩ and configuration Γ;∆ (Theorem 4.20 and Theo-
rem 4.21), there exists a global type ⟨C ′;G′⟩ such that ⟨C ;G⟩ −→∗

R ⟨C ′;G′⟩ ̸−→R , with
associated configurations Γ;∆→∗

R Γ′;∆′ ̸→R . Since no further reductions are possible for
the global type, the global type ⟨C ′;G′⟩ must be of the form ⟨C ′; end⟩. By applying Defini-
tion 4.19 on Γ′; ∆′ ⊑R ⟨C ′; end⟩, we have Γ′ = Γ′

end,Γ
′
 , where dom(Γ′

end) = {p |Γ′(p) = end}
and dom

(
Γ′
 

)
= C ′ = {p |Γ′(p) = stop}, as required. By association again, we have that, for

any p, q, if q ∈ C ′(= dom
(
Γ′
 

)
),∆′(·, q) = ⊘, and otherwise, ∆′(p, q) = ϵ, as required.

A.8. Liveness by Projection.

Lemma A.27. If Γ;∆ ⊑R ⟨C ;G⟩, then Γ;∆ is R-live.

Proof. Since Γ;∆ ⊑R ⟨C ;G⟩, by Lemma A.25, we have that Γ;∆ is R-safe.
We are left to show that if Γ;∆ →∗

R Γ′;∆′, then any non-crashing path starting with
Γ′;∆′ which is fair is also live. By operational correspondence of global type ⟨C ;G⟩ and
configuration Γ;∆ (Theorem 4.20 and Theorem 4.21), there exists a global type ⟨C ′;G′⟩
such that ⟨C ;G⟩−→∗

R ⟨C ′;G′⟩ and Γ′; ∆′ ⊑R ⟨C ′;G′⟩. We construct a non-crashing fair path
(Γ′

n; ∆
′
n)n∈N , where N = {0, 1, 2, . . .}, Γ′

0 = Γ′, ∆′
0 = ∆′, and ∀n ∈ N , Γ′

n; ∆
′
n→Γ′

n+1; ∆
′
n+1.

Then we just need to show that (Γ′
n; ∆

′
n)n∈N is live.
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(L1) Suppose that ∆′
n(p, q) = m(B)·τ ̸= ⊘ and m ̸= crash. By operational correspondence

of ⟨C ′;G′⟩ and configuration Γ′
0;∆

′
0, and ∀n ∈ N , Γ′

n;∆
′
n→Γ′

n+1;∆
′
n+1, there exists

⟨C ′
n ;G

′
n⟩ such that Γ′

n; ∆
′
n ⊑R ⟨C ′

n ;G
′
n⟩. By Lemma A.22 and Definition 4.19, we only

need to consider the case that G′
n = p†⇝q:j {mi(Bi).G

′′
i }i∈I with m = mj ̸= crash

and Bj = B. By applying [GR-&], ⟨C ′
n ;G

′
n⟩

q&p:mj(Bj)−−−−−−−→R ⟨C ′
n ;G

′′
j ⟩. Hence, by the

soundness of association, it holds that Γ′
n;∆

′
n

q&p:m(B)−−−−−−→. Finally, combining the fact

that (Γ′
n;∆

′
n)n∈N is fair with Γ′

n;∆
′
n

q&p:m(B)−−−−−−→, we can conclude that there exists k

such that n ≤ k ∈ N and Γ′
k; ∆

′
k

q&p:m(B)−−−−−−→ Γ′
k+1; ∆

′
k+1, as desired.

(L2) Suppose that Γ′
n(p) = q&{mi(Bi).Ti}i∈I . By operational correspondence of ⟨C ′;G′⟩

and configuration Γ′
0; ∆

′
0, and ∀n ∈ N , Γ′

n; ∆
′
n→Γ′

n+1; ∆
′
n+1, there exists ⟨C ′

n ;G
′
n⟩ such

that Γ′
n; ∆

′
n ⊑R ⟨C ′

n ;G
′
n⟩. By Definition 4.19, Lemma A.20, and Lemma A.22, we only

have to consider thatG′
n is of the form q→p†: {mi(B′

i).G
′′
i }i∈I′ or q†⇝p:j {mi(B′

i).G
′′
i }i∈I′ ,

where I ′ ⊆ I, and for all i ∈ I ′: mi = mi, B
′
i = Bi, and q /∈ R implies ∃k ∈ I ′ : mk =

crash.
• G′

n = q→p†: {mi(B′
i).G

′′
i }i∈I′ : we first show that p† = p. Since Γ′

n(p) ̸= stop,
by Definition 4.19, we have that p /∈ C ′

n , and hence, p† ̸= p . Given that
G′

n = q→p: {mi(B′
i).G

′′
i }i∈I′ , by association, Definition 4.19, and inversion of sub-

typing, Γ′
n(q) is of the form p⊕{mi(B′

i).T
′
i}i∈I′′ where I ′′ ⊆ I ′. Then applying [Γ-⊕],

Γ′
n; ∆

′
n

q⊕p:mj(B′
j)−−−−−−−→ for some j ∈ I ′′. Then together with the fairness of (Γ′

n; ∆
′
n)n∈N ,

we have that there exists k, m′, B′′ such that n ≤ k ∈ N and Γ′
k;∆

′
k

q⊕p:m′(B′′)−−−−−−−→
Γ′
k+1;∆

′
k+1, which follows that ∆′

k+1(q, p) = ∆′
k[q, p 7→ ∆′

k(q, p)·m′(B′′)]. Finally,
by the previous case (L1), we can conclude that there exists k′, m′′, B′′′ such that

k + 1 ≤ k′ ∈ N and Γ′
k′ ; ∆

′
k′

p&q:m′′(B′′′)−−−−−−−−→ Γ′
k′+1; ∆

′
k′+1, as desired.

• G′
n = q†⇝p:j {mi(B′

i).G
′′
i }i∈I′ : we consider two subcases:

– mj ≠ crash: by applying [GR-&], ⟨C ′
n ;G

′
n⟩

p&q:mj(B′
j)−−−−−−−→R ⟨C ′

n ;G
′′
j ⟩. Hence, by the

soundness association, we have that Γ′
n;∆

′
n

p&q:mj(B′
j)−−−−−−−→. Finally, combining the

fact that (Γ′
n;∆

′
n)n∈N is fair with Γ′

n;∆
′
n

p&q:mj(B′
j)−−−−−−−→, we can conclude that there

exists k such that n ≤ k ∈ N and Γ′
k; ∆

′
k

p&q:mj(B′
j)−−−−−−−→ Γ′

k+1; ∆
′
k+1, as desired.

– mj = crash: consider the following two subcases:

∗ q† = q : Γ′
n(q) = stop by q ∈ C ′

n . By Definition 4.19, ∆′
n(q, p) = ϵ. Now

applying [Γ-⊙] on Γ′
n(p) = q&{mi(Bi).Ti}i∈I ,Γ′

n(q) = stop,∆′
n(q, p) = ϵ and

mj = mj = crash with j ∈ I ′ ⊆ I, we have that Γ′
n;∆

′
n

p⊙q−−→. Then together
with the fairness of (Γ′

n; ∆
′
n)n∈N , we can conclude that there exists k such that

n ≤ k ∈ N and Γ′
k; ∆

′
k

p⊙q−−→ Γ′
k+1; ∆

′
k+1.

∗ q† ≠ q : since mj = crash, together with ⟨C ;G⟩ −→∗
R ⟨C ′;G′⟩, we know that

q† ̸= q holds, a desired contradiction.

Appendix B. Proofs for Section 5

Lemma B.1 (Typing Inversion). Let Θ ⊢ P : T ′. Then, there exists T ⩽ T ′ such that:
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(1) P = 0 implies T = end;
(2) P =  implies T = stop;
(3) P = q!m⟨e⟩.P1 implies

(a1) T = q⊕m(B).T1, and
(a2) Θ ⊢ P1 : T1, and
(a3) Θ ⊢ e : B;

(4) P =
∑

i∈I q?mi(xi).P i implies
(a1) T = q&{mi(Bi).T i}i∈I , and
(a2) ∀i ∈ I Θ, xi : Bi ⊢ P i : T i;

(5) P = if e thenP 1 elseP 2 implies
(a1) Θ ⊢ e : bool, and
(a2) Θ ⊢ P 1 : T , and
(a3) Θ ⊢ P 2 : T ;

(6) P = µX.P1 implies Θ, X : T ⊢ P1 : T ;

Let ⊢ h : δ. Then:

(7) h = ϵ implies δ = ϵ;
(8) h = ⊘ implies δ = ⊘;
(9) h = (q, m(v)) implies ⊢ v : B and δ(q) = m(B);
(10) h = h1 · h2 implies ⊢ h1 : δ1, and ⊢ h2 : δ2, and δ = δ1 · δ2;
Let ⟨C ;G⟩ ⊢

∏
i∈I(pi ◁ Pi | pi ◁ hi). Then:

(a1) ∃Γ;∆ such that Γ;∆ ⊑R ⟨C ;G⟩, and
(a2) dom(Γ) ⊆ {pi | i ∈ I}, and
(a3) ∀i ∈ I : ⊢ P i : Γ(pi), and
(a4) ∀i ∈ I : ⊢ hi : ∆(−, pi).

Proof. By inverting the rules in Fig. 9.

Lemma B.2 (Typing Precongruence). (1) If Θ ⊢ P : T and P ⇛ Q, then Θ ⊢ Q : T .
(2) If ⊢ h1 : δ1 and h1 ⇛ h2, then there exists δ2 such that δ1⇛ δ2 and ⊢ h2 : δ2.
(3) If ⟨C ;G⟩ ⊢ M and M⇛M′, then ⟨C ;G⟩ ⊢ M′.

Proof. (1) By induction on the precongruence rules for P ⇛ Q.
(2) By induction on the precongruence rules for h1 ⇛ h2.
(3) By induction on the precongruence rules for M⇛M′.

Lemma B.3 (Substitution). If Θ, x : B ⊢ P : T and Θ ⊢ v : B, then Θ ⊢ P{v/x} : T .

Proof. By induction on the structure of P .

Lemma B.4. If ∅ ⊢ e : B and e ↓ v, then ∅ ⊢ v : B.

Proof. By induction on the derivation of ∅ ⊢ e : B.

Lemma B.5. ⟨C ;µt.G⟩ ⊢ M if and only if ⟨C ;G{µt.G/t}⟩ ⊢ M.

Proof. The thesis follows directly by applying [t-sess] and Proposition A.17.

Theorem 5.2 (Subject Reduction). If ⟨C ;G⟩ ⊢ M and M →R M′, then either ⟨C ;G⟩ ⊢
M′, or there exists ⟨C ′;G′⟩ such that ⟨C ;G⟩ −→R ⟨C ′;G′⟩ and ⟨C ′;G′⟩ ⊢ M′.
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Proof. Let us recap the assumptions:

⟨C ;G⟩ ⊢ M (B.1)

M →R M′ (B.2)

The proof proceeds by induction on the derivation of M →R M′. Most cases hold by typing
inversion (Lemma B.1), and by applying the induction hypothesis.

• Case [r-send]: we have

M = p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁ Q | q ◁ hq |M1 (B.3)

M′ = p ◁ P | p ◁ hp | q ◁ Q | q ◁ hq · (p, m(v)) |M1 (B.4)

e ↓ v (B.5)

hq ̸= ⊘ (B.6)

M1 =
∏
i∈I

(pi ◁ Pi | pi ◁ hi) (B.7)

By (B.1) and Lemma B.1, we have that there exists Γ;∆ such that

Γ;∆ ⊑R ⟨C ;G⟩ (B.8)

⊢ q!m⟨e⟩.P : Γ(p) (B.9)

⊢ hp : ∆(−, p) (B.10)

⊢ Q : Γ(q) (B.11)

⊢ hq : ∆(−, q) (B.12)

∀i ∈ I : ⊢ P i : Γ(pi) (B.13)

∀i ∈ I : ⊢ hi : ∆(−, pi) (B.14)

By (B.9) and 3 of Lemma B.1, we have that

Γ(p) = q⊕m(B).T (B.15)

T1 ⩽ T (B.16)

⊢ P : T1 (B.17)

⊢ e : B (B.18)

We now let

Γ′ = Γ[p 7→ T ] (B.19)

∆′ = ∆[p, q 7→ ∆(p, q)·m(B)] (B.20)

Then by [Γ-⊕] in Fig. 8, we have

Γ;∆→R Γ′; ∆′ (B.21)

Hence, using Theorem 4.20, we have that there exists ⟨C ′;G′⟩ such that

Γ′; ∆′ ⊑R ⟨C ′;G′⟩ (B.22)

⟨C ;G⟩ −→R ⟨C ′;G′⟩ (B.23)
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Combine (B.22), (B.23) with

⊢ P : Γ′(p) (by (B.19), (B.16), (B.17) and [t-sub]) (B.24)

⊢ hp : ∆
′(−, p) (by (B.20) and (B.10)) (B.25)

⊢ Q : Γ′(q) (by (B.11) and (B.19)) (B.26)

⊢ hq · (p, m(v)) : ∆′(−, q) (by (B.20), (B.12), (B.5), (B.18),Lemma B.4, [t-msg], and [t-·])
(B.27)

∀i ∈ I : ⊢ P i : Γ
′(pi) (by (B.13) and (B.19)) (B.28)

∀i ∈ I : ⊢ hi : ∆
′(−, pi) (by (B.14) and (B.20)) (B.29)

We conclude that ⟨C ′;G′⟩ ⊢ M′.
• Case [r-rcv]: similar to case [r-send] above, except that we proceed by [r-rcv], inversion of

[t-ext] (4 of Lemma B.1), and Lemma B.3.
• Case [r-send- ]: we have

M = p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁  | q ◁⊘ |M1 (B.30)

M′ = p ◁ P | p ◁ hp | q ◁  | q ◁⊘ |M1 (B.31)

(B.32)

M1 =
∏
i∈I

(pi ◁ Pi | pi ◁ hi) (B.33)

By (B.1) and Lemma B.1, we have that there exists Γ;∆ such that

Γ;∆ ⊑R ⟨C ;G⟩ (B.34)

⊢ q!m⟨e⟩.P : Γ(p) (B.35)

⊢ hp : ∆(−, p) (B.36)

⊢  : Γ(q) (B.37)

⊢ ⊘ : ∆(−, q) (B.38)

∀i ∈ I : ⊢ P i : Γ(pi) (B.39)

∀i ∈ I : ⊢ hi : ∆(−, pi) (B.40)

It follows directly that

Γ(q) = stop (B.41)

∆(−, q) = ⊘ (B.42)

By (B.35) and 3 of Lemma B.1, we have that

Γ(p) = q⊕m(B).T (B.43)

T1 ⩽ T (B.44)

⊢ P : T1 (B.45)

⊢ e : B (B.46)

We now let

Γ′ = Γ[p 7→ T ] (B.47)

∆′ = ∆[p, q 7→ ∆(p, q)·m(B)] (B.48)
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Then by [Γ-⊕] in Fig. 8, we have

Γ;∆→R Γ′; ∆′ (B.49)

Hence, using Theorem 4.20, we have that there exists ⟨C ′;G′⟩ such that

Γ′; ∆′ ⊑R ⟨C ′;G′⟩ (B.50)

⟨C ;G⟩ −→R ⟨C ′;G′⟩ (B.51)

Combine (B.50), (B.51) with

⊢ P : Γ′(p) (by (B.47), (B.44), (B.45) and [t-sub]) (B.52)

⊢ hp : ∆
′(−, p) (by (B.48) and (B.36)) (B.53)

⊢  : Γ′(q) (by (B.37), (B.41) and (B.47)) (B.54)

⊢ ⊘ : ∆′(−, q) (by (B.48), (B.38) and (B.42)) (B.55)

∀i ∈ I : ⊢ P i : Γ
′(pi) (by (B.39) and (B.47)) (B.56)

∀i ∈ I : ⊢ hi : ∆
′(−, pi) (by (B.40) and (B.48)) (B.57)

We conclude that ⟨C ′;G′⟩ ⊢ M′.
• Case [r-rcv-⊙]: we have

M = p ◁
∑
i∈I

q?mi(xi).P i | p ◁ hp | q ◁  | q ◁⊘ |M1 (B.58)

M′ = p ◁ P k | p ◁ hp | q ◁  | q ◁⊘ |M1 (B.59)

M1 =
∏
i∈I

(pi ◁ Pi | pi ◁ hi) (B.60)

k ∈ I (B.61)

mk = crash (B.62)

∄m, v : (q, m(v)) ∈ hp (B.63)

By (B.1) and Lemma B.1, we have that there exists Γ;∆ such that

Γ;∆ ⊑R ⟨C ;G⟩ (B.64)

⊢
∑
i∈I

q?mi(xi).P i : Γ(p) (B.65)

⊢ hp : ∆(−, p) (B.66)

⊢  : Γ(q) (B.67)

⊢ ⊘ : ∆(−, q) (B.68)

∀i ∈ I : ⊢ P i : Γ(pi) (B.69)

∀i ∈ I : ⊢ hi : ∆(−, pi) (B.70)

It follows directly that

Γ(q) = stop (B.71)

∆(−, q) = ⊘ (B.72)
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By (B.65), 4 of Lemma B.1, and [Sub-&], we have that

Γ(p) = q&
{
mi(Bi).T

′
i

}
i∈J (B.73)

J ⊆ I (B.74)

∀i ∈ J : Ti ⩽ T ′
i (B.75)

{ml | l ∈ I} ≠ {crash} (B.76)

∄j ∈ I \ J : mj = crash (B.77)

∀i ∈ I : xi : Bi ⊢ Pi : Ti (B.78)

From (B.77) and (B.62), we get

k ∈ J (B.79)

By (B.66) and (B.63), we also know

∆(q, p) = ϵ (B.80)

We now let

Γ′ = Γ[p 7→ T ′
k] (B.81)

∆′ = ∆ (B.82)

Then by [Γ-⊙] in Fig. 8, we have

Γ;∆→R Γ′; ∆′ (B.83)

Hence, using Theorem 4.20, we have that there exists ⟨C ′;G′⟩ such that

Γ′; ∆′ ⊑R ⟨C ′;G′⟩ (B.84)

⟨C ;G⟩ −→R ⟨C ′;G′⟩ (B.85)

Combine (B.84), (B.85) with

⊢ Pk : Γ′(p) (by (B.81), (B.75), (B.78) and [t-sub]) (B.86)

⊢ hp : ∆
′(−, p) (by (B.82) and (B.66)) (B.87)

⊢  : Γ′(q) (by (B.67), (B.71) and (B.81)) (B.88)

⊢ ⊘ : ∆′(−, q) (by (B.82), (B.68) and (B.72)) (B.89)

∀i ∈ I : ⊢ P i : Γ
′(pi) (by (B.69) and (B.81)) (B.90)

∀i ∈ I : ⊢ hi : ∆
′(−, pi) (by (B.70) and (B.82)) (B.91)

We conclude that ⟨C ′;G′⟩ ⊢ M′.
• Case [r- ]: we have

M = p ◁ P | p ◁ hp |M1 (B.92)

M′ = p ◁  | p ◁⊘ |M (B.93)

P ̸= 0 (B.94)

p /∈ R (B.95)

M1 =
∏
i∈I

(pi ◁ Pi | pi ◁ hi) (B.96)
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By (B.1) and Lemma B.1, we have that there exists Γ;∆ such that

Γ;∆ ⊑R ⟨C ;G⟩ (B.97)

⊢ P : Γ(p) (B.98)

⊢ hp : ∆(−, p) (B.99)

∀i ∈ I : ⊢ P i : Γ(pi) (B.100)

∀i ∈ I : ⊢ hi : ∆(−, pi) (B.101)

By (B.94), (B.95), and (B.98), we have that

Γ(p) ̸= stop (B.102)

Γ(p) ̸= end (B.103)

We now let

Γ′ = Γ[p 7→ stop] (B.104)

∆′ = ∆[·, p 7→ ⊘] (B.105)

Then by [Γ- ] in Fig. 8, we have

Γ;∆→R Γ′; ∆′ (B.106)

Hence, using Theorem 4.20, we have that there exists ⟨C ′;G′⟩ such that

Γ′; ∆′ ⊑R ⟨C ′;G′⟩ (B.107)

⟨C ;G⟩ −→R ⟨C ′;G′⟩ (B.108)

Combine (B.107), (B.108) with

⊢  : Γ′(p) (by (B.104)) (B.109)

⊢ ⊘ : ∆′(−, p) (by (B.105)) (B.110)

∀i ∈ I : ⊢ P i : Γ
′(pi) (by (B.100) and (B.104)) (B.111)

∀i ∈ I : ⊢ hi : ∆
′(−, pi) (by (B.101) and (B.105)) (B.112)

We conclude that ⟨C ′;G′⟩ ⊢ M′.
• Case [r-cond-T]: we have

M = p ◁ if e thenP elseQ | p ◁ h |M1 (B.113)

M′ = p ◁ P | p ◁ h |M1 (B.114)

e ↓ true (B.115)

M1 =
∏
i∈I

(pi ◁ Pi | pi ◁ hi) (B.116)

By (B.1) and Lemma B.1, we have that there exists Γ;∆ such that

Γ;∆ ⊑R ⟨C ;G⟩ (B.117)

⊢ if e thenP elseQ : Γ(p) (B.118)

⊢ h : ∆(−, p) (B.119)

∀i ∈ I : ⊢ P i : Γ(pi) (B.120)

∀i ∈ I : ⊢ hi : ∆(−, pi) (B.121)
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By (B.115), (B.118), 5 of Lemma B.1 and [t-sub], we have that

⊢ e : bool (B.122)

⊢ P : Γ(p) (B.123)

⊢ Q : Γ(p) (B.124)

Combine (B.123) with (B.119), (B.120), and (B.121), we can conclude that ⟨C ;G⟩ ⊢ M′,
as desired.

• Case [r-cond-F]: similar to the case [r-cond-T].
• Case [r-struct]: assume that M → M′ is derived from

M⇛M1 (B.125)

M1 → M′
1 (B.126)

M′
1 ⇛M′ (B.127)

From (B.125), (B.1), by (3) of Lemma B.2, we have that ⟨C ;G⟩ ⊢ M1. By induction

hypothesis, either ⟨C ;G⟩ ⊢ M′
1 or there exists ⟨C ′;G′⟩ such that ⟨C ;G⟩ −→R ⟨C ′;G′⟩ and

⟨C ′;G′⟩ ⊢ M′
1. Now by (B.127) and (3) of Lemma B.2, we have that either ⟨C ;G⟩ ⊢ M′

or ⟨C ′;G′⟩ ⊢ M′, as desired.

Theorem 5.3 (Session Fidelity). If ⟨C ;G⟩ ⊢ M and ⟨C ;G⟩ −→R, then there exists M′

and ⟨C ′;G′⟩ such that ⟨C ;G⟩ −→R ⟨C ′;G′⟩, M →∗
R M′ and ⟨C ′;G′⟩ ⊢ M′.

Proof. Let us recap the assumptions:

⟨C ;G⟩ ⊢ M (B.128)

⟨C ;G⟩ −→R (B.129)

The proof proceeds by induction on the derivation of ⟨C ;G⟩ −→R .

• Case [GR- ]: by inversion of [GR- ], we have

p /∈ R (B.130)

p ∈ roles(G) (B.131)

⟨C ;G⟩ p −→R ⟨C ∪ {p};G p⟩ (B.132)

We can assume that M is of the form

p ◁ P | p ◁ hp |M1 (B.133)

M1 =
∏
i∈I

(pi ◁ Pi | pi ◁ hi) (B.134)

P ̸= 0 (B.135)

p /∈ R (B.136)
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Then by (B.128) and Lemma B.1, there exists Γ;∆ such that

Γ;∆ ⊑R ⟨C ;G⟩ (B.137)

⊢ P : Γ(p) (B.138)

⊢ hp : ∆(−, p) (B.139)

∀i ∈ I : ⊢ P i : Γ(pi) (B.140)

∀i ∈ I : ⊢ hi : ∆(−, pi) (B.141)

From (B.132), by Theorem 4.21, there is Γ′; ∆′ such that

Γ′; ∆′ ⊑R ⟨C ∪ {p};G p⟩ (B.142)

Γ;∆
p −→ Γ′; ∆′ (B.143)

Using (B.135), (B.136), (B.138) and [Γ- ] in Fig. 8, we get

Γ′ = Γ[p 7→ stop] (B.144)

∆′ = ∆[·, p 7→ ⊘] (B.145)

It follows that

⊢  : Γ′(p) (by (B.144)) (B.146)

⊢ ⊘ : ∆′(−, p) (by (B.145)) (B.147)

∀i ∈ I : ⊢ P i : Γ
′(pi) (by (B.140) and (B.144)) (B.148)

∀i ∈ I : ⊢ hi : ∆
′(−, pi) (by (B.141) and (B.145)) (B.149)

Therefore, by [r- ] and [t-sess], we can conclude that there exists M′ = p ◁ | p ◁⊘ |M1 and

⟨C ′;G′⟩ = ⟨C ∪ {p};G p⟩ such that ⟨C ;G⟩ p −→R ⟨C ′;G′⟩, M →R M′, and ⟨C ′;G′⟩ ⊢ M′.
• Case [GR-⊕]: by inversion of [GR-⊕], we have

j ∈ I (B.150)

mj ̸= crash (B.151)

⟨C ; p→q:
{
mi(Bi).G

′
i

}
i∈I⟩

p⊕q:mj(Bj)−−−−−−−→R ⟨C ; p⇝q:j
{
mi(Bi).G

′
i

}
i∈I⟩ (B.152)

We can assume that M is of the form

p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁ Q | q ◁ hq |M1 (B.153)

M1 =
∏
i∈I

(pi ◁ Pi | pi ◁ hi) (B.154)

e ↓ v (B.155)

hq ̸= ⊘ (B.156)
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Then by (B.128) and Lemma B.1, there exists Γ;∆ such that

Γ;∆ ⊑R ⟨C ;G⟩ (B.157)

⊢ q!m⟨e⟩.P : Γ(p) (B.158)

⊢ hp : ∆(−, p) (B.159)

⊢ Q : Γ(q) (B.160)

⊢ hq : ∆(−, q) (B.161)

∀i ∈ I : ⊢ P i : Γ(pi) (B.162)

∀i ∈ I : ⊢ hi : ∆(−, pi) (B.163)

By (B.158) and 3 of Lemma B.1, we have that

Γ(p) = q⊕m(B).T (B.164)

T1 ⩽ T (B.165)

⊢ P : T1 (B.166)

⊢ e : B (B.167)

From (B.152), by Theorem 4.21, there are Γ′; ∆′ and α = p⊕q : mk(Bk) such that

k ∈ I (B.168)

Γ′; ∆′ ⊑R ⟨C ; p⇝q:j
{
mi(Bi).G

′
i

}
i∈I⟩ (B.169)

Γ;∆
p⊕q:mk(Bk)−−−−−−−→ Γ′; ∆′ (B.170)

Using (B.164), (B.168), and [Γ-⊕] in Fig. 8, we get

Γ′ = Γ[p 7→ T ] (B.171)

∆′ = ∆[p, q 7→ ∆(p, q)·m(B)] (B.172)

It follows that

⊢ P : Γ′(p) (by (B.171), (B.165), (B.166) and [t-sub]) (B.173)

⊢ hp : ∆
′(−, p) (by (B.172) and (B.159)) (B.174)

⊢ Q : Γ′(q) (by (B.160) and (B.171)) (B.175)

⊢ hq : ∆
′(−, q) (by (B.172), (B.161) and 9, 10 of Lemma B.1) (B.176)

∀i ∈ I : ⊢ P i : Γ
′(pi) (by (B.162) and (B.171)) (B.177)

∀i ∈ I : ⊢ hi : ∆
′(−, pi) (by (B.163) and (B.172)) (B.178)

Therefore, by [r-send] and [t-sess], we can conclude that there exists M′ = p ◁ P | p ◁
hp | q ◁ Q | q ◁ hq · (p, m(v)) | M1 and ⟨C ′;G′⟩ = ⟨C ; p⇝q:j {mi(Bi).G

′
i}i∈I⟩ such that

⟨C ;G⟩
p⊕q:mj(Bj)−−−−−−−→R ⟨C ′;G′⟩, M → M′, and ⟨C ′;G′⟩ ⊢ M′.

• Case [GR-&]: similar to case [GR-⊕] above, except that we proceed by [GR-&], [r-rcv], inversion
of [t-ext] (4 of Lemma B.1), and Lemma B.3.
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• Case [GR- m]: by inversion of [GR-⊕], we have

j ∈ I (B.179)

mj ̸= crash (B.180)

⟨C ; p→q :
{
mi(Bi).G

′
i

}
i∈I⟩

p⊕q:mj(Bj)−−−−−−−→R ⟨C ;G′
j⟩ (B.181)

We can assume that M is of the form

p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁  | q ◁⊘ |M1 (B.182)

M1 =
∏
i∈I

(pi ◁ Pi | pi ◁ hi) (B.183)

Then by (B.128) and Lemma B.1, there exists Γ;∆ such that

Γ;∆ ⊑R ⟨C ;G⟩ (B.184)

⊢ q!m⟨e⟩.P : Γ(p) (B.185)

⊢ hp : ∆(−, p) (B.186)

⊢  : Γ(q) (B.187)

⊢ ⊘ : ∆(−, q) (B.188)

∀i ∈ I : ⊢ P i : Γ(pi) (B.189)

∀i ∈ I : ⊢ hi : ∆(−, pi) (B.190)

By (B.185) and 3 of Lemma B.1, we have that

Γ(p) = q⊕m(B).T (B.191)

T1 ⩽ T (B.192)

⊢ P : T1 (B.193)

From (B.181), by Theorem 4.21, there are Γ′; ∆′ and α = p⊕q : mk(Bk) such that

k ∈ I (B.194)

Γ′; ∆′ ⊑R ⟨C ;G′
j⟩ (B.195)

Γ;∆
p⊕q:mk(Bk)−−−−−−−→ Γ′; ∆′ (B.196)

Using (B.191), (B.194), and [Γ-⊕] in Fig. 8, we get

Γ′ = Γ[p 7→ T ] (B.197)

∆′ = ∆[p, q 7→ ∆(p, q)·m(B)] (B.198)

It follows that

⊢ P : Γ′(p) (by (B.197), (B.192), (B.193) and [t-sub]) (B.199)

⊢ hp : ∆
′(−, p) (by (B.198) and (B.186)) (B.200)

⊢  : Γ′(q) (by (B.187) and (B.197)) (B.201)

⊢ ⊘ : ∆′(−, q) (by (B.198) and (B.188)) (B.202)

∀i ∈ I : ⊢ P i : Γ
′(pi) (by (B.189) and (B.197)) (B.203)

∀i ∈ I : ⊢ hi : ∆
′(−, pi) (by (B.190) and (B.198)) (B.204)
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Therefore, by [r-send- ] and [t-sess], we can conclude that there exists M′ = p ◁ P | p ◁ hp |

q ◁  | q ◁⊘ |M1 and ⟨C ′;G′⟩ = ⟨C ;G′
j⟩ such that ⟨C ;G⟩

p⊕q:mj(Bj)−−−−−−−→R ⟨C ′;G′⟩, M → M′,

and ⟨C ′;G′⟩ ⊢ M′.
• Case [GR-⊙]: by inversion of [GR-⊙], we have

j ∈ I (B.205)

mj = crash (B.206)

⟨C ; q ⇝p:j
{
mi(Bi).G

′
i

}
i∈I⟩

p⊙q−−→R ⟨C ;G′
j⟩ (B.207)

We can assume that M is of the form

p ◁
∑
i∈I

q?mi(xi).P i | p ◁ hp | q ◁  | q ◁⊘ |M1 (B.208)

M1 =
∏
i∈I

(pi ◁ Pi | pi ◁ hi) (B.209)

k ∈ I (B.210)

mk = crash (B.211)

∄m, v : (q, m(v)) ∈ hp (B.212)

Then by (B.128) and Lemma B.1, there exists Γ;∆ such that

Γ;∆ ⊑R ⟨C ;G⟩ (B.213)

⊢
∑
i∈I

q?mi(xi).P i : Γ(p) (B.214)

⊢ hp : ∆(−, p) (B.215)

⊢  : Γ(q) (B.216)

⊢ ⊘ : ∆(−, q) (B.217)

∀i ∈ I : ⊢ P i : Γ(pi) (B.218)

∀i ∈ I : ⊢ hi : ∆(−, pi) (B.219)

It follows directly that

Γ(q) = stop (B.220)

∆(−, q) = ⊘ (B.221)

By (B.214), 4 of Lemma B.1, and [Sub-&], we have that

Γ(p) = q&
{
mi(Bi).T

′
i

}
i∈J (B.222)

J ⊆ I (B.223)

∀i ∈ J : Ti ⩽ T ′
i (B.224)

{ml | l ∈ I} ≠ {crash} (B.225)

∄j ∈ I \ J : mj = crash (B.226)

∀i ∈ I : xi : Bi ⊢ Pi : Ti (B.227)

From (B.226) and (B.211), we get

k ∈ J (B.228)
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By (B.215) and (B.212), we also know

∆(q, p) = ϵ (B.229)

From (B.207), by Theorem 4.21, there is Γ′; ∆′ such that

Γ′; ∆′ ⊑R ⟨C ;G′
j⟩ (B.230)

Γ;∆
p⊙q−−→ Γ′; ∆′ (B.231)

Using (B.222), (B.220), (B.228), (B.211), (B.229), and [Γ-⊙] in Fig. 8, we get

Γ′ = Γ[p 7→ T ′
k] (B.232)

∆′ = ∆ (B.233)

It follows that

⊢ Pk : Γ′(p) (by (B.232), (B.224), (B.227) and [t-sub]) (B.234)

⊢ hp : ∆
′(−, p) (by (B.233) and (B.215)) (B.235)

⊢  : Γ′(q) (by (B.216), (B.220) and (B.232)) (B.236)

⊢ ⊘ : ∆′(−, q) (by (B.233), (B.217) and (B.221)) (B.237)

∀i ∈ I : ⊢ P i : Γ
′(pi) (by (B.218) and (B.232)) (B.238)

∀i ∈ I : ⊢ hi : ∆
′(−, pi) (by (B.219) and (B.233)) (B.239)

Therefore, by [r-rcv-⊙] and [t-sess], we can conclude that there exists M′ = p ◁ P k | p ◁ hp |
q ◁  | q ◁⊘ |M1 and ⟨C ′;G′⟩ = ⟨C ;G′

j⟩ such that ⟨C ;G⟩ p⊙q−−→R ⟨C ′;G′⟩, M → M′, and

⟨C ′;G′⟩ ⊢ M′.
• Case [GR-µ]: follows by Lemma B.5 and inductive hypothesis.
• Cases [GR-Ctx-i] and [GR-Ctx-ii]: these two cases do not need to be considered, as the

reduction ⟨C ;G⟩ −→R can always be triggered by the preceding cases.

Theorem 5.5 (Session Deadlock-Freedom). If ⟨C ;G⟩ ⊢ M, then M is deadlock-free.

Proof. Assume that ⟨C ;G⟩ ⊢ M and M →∗
R M′ ↛R , we need to prove that either M′ ⇛

p ◁ 0 | p ◁ ϵ for some p, or M′ ⇛
∏

i∈I(pi ◁  | pi ◁⊘) with I ̸= ∅.
By applying Theorem 5.2 (subject reduction) repeatedly as needed, there exists a global

type ⟨C ′;G′⟩ such that ⟨C ;G⟩−→∗
R ⟨C ′;G′⟩ and ⟨C ′;G′⟩ ⊢ M′. Since no further reductions

are possible for M′, by Theorem 5.3 (session fidelity), the global type ⟨C ′;G′⟩ cannot be
reduced further either, implying that ⟨C ′;G′⟩ must be of the form ⟨C ′; end⟩.

Furthermore, using [t-sess] and the proof for Lemma A.26, we can conclude that M′ is
of the form

∏
i∈I(pi ◁ P ′

i | pi ◁ h′i) such that ∀i ∈ I :⊢ P ′
i : Γ′(pi), ⊢ h′i : ∆

′(−, pi), where

Γ′ = Γ′
end,Γ

′
 , with ∀p ∈ dom(Γ′

end) : Γ
′(p) = end, ∀p ∈ dom

(
Γ′
 

)
: Γ′(p) = stop, and for

any p, q, if q ∈ dom
(
Γ′
 

)
,∆′(·, q) = ⊘, and otherwise, ∆′(p, q) = ϵ.

Then, by applying [t-ϵ], [t-⊘], [t- ], [t-0], and the precongruence rules p ◁ 0 | p ◁ ϵ |M⇛M
and M⇛M′ and M′ ⇛M′′ =⇒ M⇛M′′, the thesis follows.

Theorem 5.7 (Session Liveness). If ⟨C ;G⟩ ⊢ M, then M is live.

Proof. The proof follows the same structure as Theorem 5.5, but instead uses the definition
of live sessions (Definition 5.6), the proof for Lemma A.27, and the relevant typing rules
in Fig. 9.
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