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Abstract. We provide the first denotational semantics for asynchro-
nous multiparty session types with precise asynchronous subtyping. Our
semantics enables us to reason about asynchronous message-passing,
in which message-sending is non-blocking. It enables us to prove the
correctness of communication optimisations, in particular, those involv-
ing reordering of messages. Our development crucially relies on mod-
elling message-passing as a computational effect. We apply grading, a
paradigm for tracking computational effects, to asynchronous message-
passing, demonstrating that multiparty session typing can be viewed
as an instance of grading. We demonstrate the utility of our model by
showing that it forms an adequate denotational semantics for a call-by-
value asynchronous message-passing calculus, that ensures communica-
tion safety, deadlock-freedom and liveness in the presence of communi-
cation optimisations.

Keywords: multiparty session type · asynchronous subtyping · denota-
tional semantics · graded monad

1 Introduction

Multiparty session types (MPST) provide a typing discipline for ensuring that
multiple participants communicating via message-passing conform to a multi-
party protocol, satisfying desired safety and liveness properties such as (1) com-
munication safety (aka type-safety) (no participant will receive a message with
a value of an unexpected type or unexpected label); (2) deadlock-freedom (the
participants will never get stuck because they are waiting for each other to send
a message); (3) liveness (aka progress [8,11,10]) (if one participant wishes to
communicate with another, then that communication will eventually happen
following the protocol). Deadlock-freedom implies that two participants p and q
cannot both be blocked waiting for messages from each other (wait-free), while
liveness requires that, if either of p and q wants to communicate with the other,
then that communication will eventually happen. The theory of MPST can guar-
antee these properties for multiple participants either by taking the top-down
approach [21,44,17], which uses a global type to specify a global protocol, or by
taking the bottom-up approach [38,18], which model-checks a set of local types
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to ensure a desired property. A vast number of session type theories have been
proposed, but one simple question has been left open: while several semantic
studies have been made for binary (2-party) session types based on, e.g., logi-
cal relations [1] and game semantics [9], no extensional denotational semantics
for an expressive MPST calculus exists (see Section 8). Our challenge is to find
a simple but effective denotational semantics for MPST, one that is useful for
proving properties of message-passing programs.

We address this challenge by constructing a denotational semantics for MPST
that is extensional in the sense that it hides non-observable behaviours of pro-
grams (e.g. internal reductions), but still captures observable behaviours (e.g.
sending a message to another participant). This enables us to reason about sys-
tems, without non-observable details getting in the way. For programming lan-
guages without message-passing, extensional denotational semantics have been
successfully used for program reasoning, for instance, proofs of equivalences be-
tween syntactically distinct programs (e.g. [23]). We do the same, but for MPST;
we can use our semantics to prove the validity of simple optimizations of MPST
systems (e.g. Example 13 below).

Specifically, we introduce a simple notion of computation tree, and show
that it provides a model of asynchronous message-passing. We introduce SafeMP,
an idealised call-by-value programming language with a type system based on
session types. SafeMP features asynchronous message-passing, in which messages
are buffered into queues so that sending a message does not block. We show
that our computation trees form a denotational semantics for SafeMP, and this
semantics is adequate with respect to a typed notion of bisimilarity for SafeMP.
This notion of bisimilarity accounts for asynchrony, and thus our model can
reason about program equivalences that rely on asynchrony.

We design SafeMP, and its interpretation using computation trees, by fol-
lowing the key insight that sending and receiving of messages are computational
effects, analogous to mutating state or raising an exception. Recent work [24,32]
has established grading as the key technique of tracking computational effects
compositionally, and thus we design SafeMP as a graded type system (aka an
effect system). A graded type system assigns both a type and a grade to each
computation; here the grades are multiparty session types, which provide enough
information to enforce our desired safety and liveness properties. Our type sys-
tem is not based on linear logic, unlike previous session type systems (see Sec-
tion 8). Integrating session types into a call-by-value λ-calculus elucidates the
connection between effects and session types, and enables us to apply techniques
from the computational effects literature to session types. This insight is crucial
to the design of our semantics: the standard way of modelling a graded type sys-
tems is to use a graded monad [4,39,31,24], so we show that computation trees
form a graded monad that can be used to model SafeMP.

Asynchronous message-passing is more widely adopted in distributed systems
than synchronous message-passing, where a computation that sends a message
has to wait until that message is received before making any further progress.
We give an operational semantics for SafeMP, accounting for asynchrony in the
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usual way, namely by buffering messages into a notion of queue. For our denota-
tional semantics, we can use a simpler setup that does not involve queues, but
is still asynchronous. We also account for asynchrony in our types, using the
sound and complete (precise) asynchronous multiparty session subtyp-
ing of Ghilezan et al. [18]. Asynchrony enables a more permissive subtyping,
and hence a more permissive type system, than synchronous message-passing,
because some deadlocks that occur with synchronous semantics do not occur with
an asynchronous semantics. The precise asynchronous subtyping enables prac-
tically useful communication optimisations. Several sound algorithms have been
developed [12,13,3] and implemented in programming languages such as Rust,
MPI and C. Asynchronous subtyping has also been mechanised in Rocq [16].

In this paper, instead of taking the definition of subtyping from [18], we refor-
mulate the definition from the ground up. Our definition of subtyping improves
on [18] in that it only involves session types (not their infinite unfoldings as ses-
sion trees), and also enables subtyping for session types with free type variables
(which are used in SafeMP). Nevertheless, we show for closed session types that
our definition is equivalent to [18].

Contributions. This paper provides an effective denotational semantics for
MPST, based on the observation that message-passing is a computational ef-
fect. Section 2 introduces our calculus SafeMP, the subsequent sections provide
the main contributions of the paper. Section 3 introduces our new formulation
of asynchronous session subtyping. This is the first sound and complete defini-
tion of asynchronous session subtyping that permits subtyping in the presence
of type variables, and the first that does not rely on session trees. Section 4
introduces our session type system for SafeMP. This is the first session type
system for a call-by-value language based on grading instead of linearity, and
demonstrates the connection between session types and computational effects.
Section 5 introduces computation trees as a simple representation of asynch-
ronous message-passing computation. It demonstrates how to account for asyn-
chrony without using queues, and defines a graded monad for asynchronous
message-passing. Section 6 shows that computation trees provide a model of
asynchronous message-passing, in the form of an adequate denotational seman-
tics for SafeMP. Section 7 demonstrates the utility of our model, by using the
model to prove safety and liveness properties of SafeMP.

2 A call-by-value message-passing calculus

We begin by introducing the syntax and operational semantics of our message-
passing calculus SafeMP, and giving a few examples. The purpose of SafeMP is
to demonstrate our denotational semantics, and as such we only include enough
features to have non-trivial message-passing programs. As such we do not focus
on the practicality of SafeMP, neither for writing programs in SafeMP, nor for
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implementing SafeMP itself.1 Since we want to emphasize the connection with
computational effects, we base SafeMP on an existing effectful calculus, namely
the fine-grain call-by-value calculus [29]. We take a simplified2 fine-grain call-by-
value, and add asynchronous message-passing as an effect, along with first-order
guarded recursive functions.

First, we start with some basic terminology. A message m = (ℓ, v) is a pair
of a label ℓ and a payload v. We assume throughout the paper that there is some
fixed set L of labels; ℓ ranges over elements of L. A payload value is a constant
value, for concreteness, we consider three ground types b, namely unit, bool, int,
and require a message payload to be a constant v of one of those types, i.e. either
⋆ (of type unit), an integer n (of type int) or one of the booleans true and false (of
type bool). We write v : b for the typing relation between constants and ground
types. We also assume there is a fixed set of participants p, q, r, . . . . The idea is
that the participants perform tasks in parallel and communicate by exchanging
messages between each other. They could, for instance, be implemented as sep-
arate programs running on separate servers, with messages being sent across a
network.

Terms of SafeMP are stratified into values v, w and computations t, u. They
are generated inductively by the following grammar, subject to the constraints
discussed below.

v, w ::= x | ⋆ | n | true | false

t, u ::= return v | let x = t in u | v + w | v < w | if v then t1 else t2

| send (ℓ, v) to p then t | recv p {ℓi⟨xi : bi⟩. ti}i∈I

| let rec f(x1, . . . , xn) = t in u | f(v1, . . . , vn)

A value v is either a variable x, or one of the constants ⋆, n, true or false.
The first part of the grammar of computations is the core of fine-grain call-by-

value: a computation can return a value v, or it can be a sequence let x = t in u of
computations. The latter first evaluates t and then, if t returns a result, evaluates
u with x bound to the result of t. Computations also include integer addition
v + w, integer comparison v < w, and conditionals if v then t1 else t2. These

1 In particular, we do not consider decidability. Indeed, asynchronous session subtyping
is known to be undecidable [5], so an implementation would be of a sound and
decidable approximation of subtyping, as discussed in [3]. An implementation would
also have grade polymorphism, as implemented for instance in Granule [32].

2 We designed our calculus so that deadlock-freedom and liveness are non-trivial,
while the calculus is otherwise as simple as possible. In particular, compared to fine-
grain call-by-value, we do not have higher-order functions. This is not because they
would be difficult to handle, indeed an advantage of the graded approach is that it
easily takes care of higher-order functions, at the cost of a little extra complexity.
Compared to some works on session types, we also do not have session delegation.
For our session types we targeted the same level of expressiveness as Ghilezan et al.
[18], who also do not have delegation (precise asynchronous subtyping with session
delegation is an open problem).
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operate on values; thus to e.g. compare two integer-returning computations one
would first use let to first evaluate the operands.

The computation send (ℓ, v) to p then t sends the message (ℓ, v) to participant
p, and then continues as the computation t. The value v could for instance be
the result of a computation evaluated using let. Since we use an asynchronous
semantics, sending a message does not block; the computation does not have
to wait for the message to be received before continuing as t. The computation
recv p {ℓ1⟨x1 : b1⟩. t1, . . . , ℓn⟨xn : bn⟩. tn} receives one message from the partic-
ipant p; if that message has label ℓi, it continues as ti, with xi bound to the
message payload. If the message label is not one of the ℓi, or the payload does
not have the corresponding type bi, then this is a communication error ; in our
operational semantics below, reduction gets stuck. The message labels ℓi are
drawn from our fixed set L. We require the labels ℓi to be distinct from each
other, and we require n > 0. We typically write recv p {ℓi⟨xi : bi⟩. ti}i∈I where
I is a finite non-empty set, but we do not consider I to be part of the syntax.
This computation blocks until the corresponding message is received.

Computations also include recursive function definitions, which are written
as let rec f(x1, . . . , xn) = t in u, and applications f(v1, . . . , vn) of these functions
to arguments. Function names f are distinct from variables x, and they are not
values. We require every recursive definition to be guarded, in the sense that
every occurrence of f in t appears inside a send or a recv. This means that to
do a recursive call, one first has to send or receive a message; this ensures that
a computation cannot simply diverge, it eventually has to do something.

A value or computation is closed when it has no free variables x and no free
function names f (though we permit it to have free participants).

We define an operational semantics3 for SafeMP, in the form of a transition
system labelled by local actions α.

α ::= τ (internal action)
| p!m (send message m to participant p)
| p?m (receive message m from participant p)

We define our operational semantics in two steps. First, we define a synchronous
notion of reduction t

α
u for closed computations, one that does not incorporate

any form of reordering of messages from different participants. This is generated
by the rules in the first part of Fig. 1. We use a notion of reduction context
R[□] for congruence rules; such a context is a computation with a single hole
□, indicating the position of the computation to reduce. We write R[t] for the
replacement of the hole with a computation t.

The second step is to use queues to model asynchronous message-passing. A
queue σ is a function that assigns, to every participant p, a finite ordered list of
messages, such that this list is empty for all but finitely many p (so each queue
only contains a finite number of messages). We write ∅ for the empty queue
(which maps every participant to the empty list), write (p ◁m) :: σ for adding

3 We extend this to an operational semantics for a notion of session in Section 7 below.
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Computation reduction t
α

u

Reduction contexts R[□] ::= □ | let x = R[□] in u
| let rec f(x1, . . . , xn) = t in R[□]

[Cong]
t

α
u

R[t]
α R[u]

[LetR]
let x = return v in u

τ
u[x 7→ v]

[IfT]
if true then t1 else t2

τ
t1

[IfF]
if false then t1 else t2

τ
t2

[Sub]
m = n1 − n2

(n1−n2)
τ

returnm
[LeT]

n1 < n2

(n1<n2)
τ

return true
[LeF]

n1 ≥ n2

(n1<n2)
τ

return false

[Send]

send (ℓ, v) to p then t
p!(ℓ,v)

t

[Recv]
v : bj

recv p {ℓi⟨xi : bi⟩. ti}i∈I

p?(ℓj ,v)

tj [xj 7→v]

[Apply]
let rec f(x1, . . . , xn) = t in R[f(v1, . . . , vn)]

τ
let rec f(x1, . . . , xn) = t in R[t[x1 7→ v1, . . . , xn 7→ vn]]

(Asynchronous) configuration reduction (ρ, t, σ)
α

(ρ, u, σ)

[CInt]

t
τ

u

(ρ, t, σ)
τ

(ρ, u, σ)

[CProd]

t
p!m

u

(ρ, t, σ)
τ

(ρ, u, (p◁m) :: σ)

[CCons]

t
p?m

u

(ρ :: (p◁m), t, σ)
τ

(ρ, u, σ)

[CSend]

(ρ, t, σ :: (p◁m))
p!m

(ρ, t, σ)

[CRecv]

(ρ, t, σ)
p?m

((p◁m) :: ρ, t, σ)

Fig. 1. Operational semantics of SafeMP.

a message m to the front of p’s list, and write σ :: (p◁m) for adding m to the
back of p’s list. Thus, if m and m′ have distinct labels or payloads, the queues
(p◁m) :: (q◁m′) :: σ and (q◁m′) :: (p◁m) :: σ are equal exactly when p ̸= q; the
ordering of messages between different participants does not matter. A SafeMP
configuration C = (ρ, t, σ) consists of a (receive) queue ρ, closed computation t,
and a (send) queue σ. The queue ρ contains messages yet to be consumed by t,
while the queue σ contains messages that have been produced by t.

Our operational semantics is defined at the bottom of Fig. 1; it consists
of a reduction relation (ρ, t, σ)

α
(ρ′, u, σ′) for configurations. This essentially

reduces t synchronously as above, except that all messages are buffered into
one of the queues. A configuration of the form (∅,R[return v], ∅), where R has no
non-recursive lets, does not reduce; we consider this to be a completed execution,
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with result v. We define a partial function Result from configurations to values,
with Result(∅,R[return v], ∅) = v and Result undefined otherwise.

Example 1 (modified from an example of [18]). The following computation t
receives the outcome of a computation from a participant p, then tells q whether
to continue with some other computation, or stop. The result of t is a boolean,
indicating whether it sent a stop message to q.

t = recv p {success⟨x : int⟩. let y = 0 < x in
if y then send (cont, x) to q then return false

else send (stop, true) to q then return true
error⟨x : bool⟩. send (stop, false) to q then return true}

For instance, if p’s computation fails, then t will send (stop, false) to q. We have
computation reductions, and hence configuration reductions, as follows (omitting
the intermediate configurations).

t
p?(error,true)

send (stop, false) to q then return true
q!(stop,false)

return true

(∅, t, ∅)
p?(error,true) τ τ q!(stop,false)

(∅, return true, ∅)

The above reductions do not require asynchrony. To demonstrate asynchronous
message-passing, consider a computation u that decides which message to send
to q, without first waiting for the message from p.

u = if y then send (cont, 0) to q thenu′(false)
else send (stop, false) to q thenu′(true)

where u′(v) = recv p {ℓ⟨x : b⟩. return v}ℓ⟨b⟩∈{success⟨int⟩,error⟨bool⟩}

Since we buffer messages into queues, we have the following reductions, in which
a message is received from p first – just like in the reduction of (∅, t, ∅) above.
Here ρ = (p◁ (error, true)) :: ∅ and σ = (q◁ (stop, false)) :: ∅.

(∅, let y = return false in u, ∅)
p?(error,true)

(ρ, let y = return false in u, ∅)
τ τ τ

(ρ, u′(true), σ)

τ q!(stop, false)
(∅, return true, ∅)

Example 2 (Global state). Our second example shows that we can emulate other
computational effects via message-passing, in a manner reminiscent of effect han-
dlers [35]. Specifically, we focus on mutable state. For concreteness, we assume
the state consists of a single integer.

Consider two participants s (for state) and c (for client). Tracking the state
is the role of s, which waits for a message from c: a get message indicates it
should send the value of the state back to c, as the payload of a st message;
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a put message indicates it should update the current value of the state; and a
done message indicates that the interaction is finished, the state is no longer
needed. A possible implementation of s would be the following computation ts,
where x is the current value of the state (initially 0).

ts = let rec fx = recv c {
get⟨z : unit⟩. send (st, x) to c then f x,
put⟨y : int⟩. f y,
done⟨z : unit⟩. return ⋆

} in f 0

tc,1 = send (get, ⋆) to s then
recv s {st⟨x : int⟩.
send (put, 0) to s then returnx}

tc,2 = send (get, ⋆) to s then
send (put, 0) to s then
recv s {st⟨x : int⟩.returnx}

On the right above, we also give two partial implementations of the client; each
gets the value of the state, and then sets the state to 0. One waits for the st

message before sending put; the other eagerly sends the put message, which is
valid because of asynchrony. The latter can be thought of an optimisation of the
former. Neither sends a done message; one example of a complete implementation
of c is let x = tc,1 in send (done, ⋆) to s then returnx.

3 Asynchronous multiparty session types

Our type system for SafeMP is based around (multiparty) session types. A session
type T describes a protocol that must be followed by a given participant in a
distributed system. They are generated as follows, where X ranges over session
type variables.

T,U ::= end | p⊕i∈I ℓi⟨bi⟩.Ti | p&i∈I ℓi⟨bi⟩.Ti | X | µX.T

end denotes the end of the protocol, it requires that there are no further inter-
actions with the other participants. An internal choice p ⊕i∈I ℓi⟨bi⟩.Ti means
send some message (ℓi, v), where v : bi, to participant p, and continue according
to Ti. Sending a message p with a label not in {ℓi | i ∈ I}, or with the wrong
payload type, is not permitted. We require the labels ℓi to be distinct from each
other, and that I is non-empty. An external choice p &i∈I ℓi⟨bi⟩.Ti means re-
ceive a message (ℓi, v) from participant p, and then continue according to Ti.
The participant p chooses the message, but is required to ensure that the label is
one of the labels ℓi, and that the payload has the corresponding type bi. Similar
syntactic constraints apply, in particular distinctness of message labels. Finally,
µX.T is a recursive protocol, binding the type variable X; the session type µX.T
is equivalent to T[X 7→ µX.T]. Recursion is required to be guarded, in the sense
that every occurrence of X in T is inside an internal or external choice.

The (single-step) unfolding U(T) of a session type T is defined as follows.
The unfolding is an equivalent session type to T, but due to guardedness, U(T)
is always either end, or an internal or external choice, or a type variable.

U(µX.T) = U(T)[X 7→ µX.T] U(T) = T if T is not a recursive type
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If Θ is a set containing all of the free type variables of a session type T, we will
refer to T as a session type over Θ. A session type is closed when it has no free
type variables.

Example 3. Recall the computations t and u from Example 1, where t first re-
ceives a message from p, but u first sends a message to q. The computations
t and u follow the protocols described by T and U respectively, and our type
system in Section 4 assigns these session types to the computations.

T = p&

{
success⟨int⟩.T′

error⟨bool⟩.T′ where T′ = q⊕

{
cont⟨int⟩. end
stop⟨bool⟩. end

U = q⊕

{
cont⟨int⟩.U′

stop⟨bool⟩.U′ where U′ = p&

{
success⟨int⟩. end
error⟨bool⟩. end

The computation u is also a valid implementation of T; indeed, under the defi-
nition of subtyping below (Definition 4), we have U<: T (but not T<: U).

Both of T and U permit sending a message to q, without necessarily waiting
for a message from p; in the case of T this relies on asynchrony. Similarly, they
both require the implementation to accept a message from p. On the other hand,
an implementation of U is required to send a message to q, without waiting for
one from p, while an implementation of T is permitted to wait.

3.1 Asynchronous multiparty session subtyping

Subtyping is a crucial aspect of session type systems. The intuition is that T<:U
holds whenever each implementation of T can be used as an implementation of
U, without causing any safety or liveness issues. Ghilezan et al. [18] provide
a definition of T <: U, for closed session types, that is precise for asynchronous
message-passing, in the sense that it exactly captures this intuition. By this met-
ric, it is the best possible notion of subtyping, and so we adopt it here. However,
their definition is inconvenient for several reasons: the definition relies on session
trees (which are infinite data structures, unlike session types), and they do not
provide a definition of subtyping for non-closed session types (which we rely on
to type Example 2 above). We therefore provide a more convenient reformula-
tion of asynchronous session typing. For closed session types, our definition of
subtyping is equivalent to that of [18].

As Example 3 demonstrates, in the presence of asynchrony, determining
whether an implementation is permitted or required to send or receive a message
is non-trivial. We define relations and predicates on session types that capture
exactly when these are the case; these are key to our definition of subtyping.

For sending, the relation U
p!ℓ⟨b⟩
↪−−−→ U′ means an implementation of U is per-

mitted to send a message (ℓ, v) with v : b, to p, and then follow U′. (But it does
not necessarily have to send such a message.) The predicate Sendsp(T) means an
implementation of T is required to send a message to p, and it is not permitted
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to wait for a message before doing so. These are both defined inductively, the
rules are at the top of Fig. 2.

The two base cases [
!

↪−→-base] and [Sends-base] are self-explanatory. The rule
[

!
↪−→-⊕] encodes the fact that asynchrony does not impose any ordering between
messages sent to different participants; since p ̸= q, the two messages will be
placed into different parts of the send queue, and can be removed from the queue
in any order. Thus, if we know that the implementation is permitted to send a
message to p in some branch of the internal choice on q, then it is permitted
to send a message to p. The implementation gets to choose which branches
of the internal choice on q wishes to keep, because it is an internal choice.
[Sends-⊕] similarly enables us to reorder messages in session types. For instance,
a participant of type q⊕ ℓ′⟨b′⟩. p⊕ ℓ⟨b⟩. end may send a message to p first (the
session types q⊕ ℓ′⟨b′⟩. p⊕ ℓ⟨b⟩. end and p⊕ ℓ⟨b⟩. q⊕ ℓ′⟨b′⟩. end are asynchronous
subtypes of each other). For [

!
↪−→-&], even though the implementation is required

to accept a message from q, that does not prevent it from eagerly sending a
message to p, even if p = q. This is the case because sending a message will
not block; after sending the message to p, the implementation will immediately
be ready to accept a message from q. However, note that we cannot discard
branches of the external choice: the implementation does not get to choose to
disallow certain messages from q just because it is sending a message to p. There
is no analogous rule for Sendsp, because Sendsp forbids waiting for a message.
Finally, the two recursion rules [

!
↪−→-rec] and [Sends-rec] ensure that every session

type T is treated as equivalent to its unfolding U(T).

For receiving, the relation T
p?ℓ⟨b⟩
↪−−−→ T′ means an implementation of T is

required to accept a message (ℓ, v) with v : b, from p, if p chooses to send
one; after doing so, the implementation is required to follow T′. The predicate
Recvsp(T) means an implementation of T is permitted to wait for a message
from p, in particular, it is not required to send any messages before such a
message from p arrives. These are again defined inductively, the rules (bottom
half of Fig. 2) are exactly the duals of the sending rules (i.e. we obtain them by
swapping sending and receiving).

These relations and predicates provide the bulk of our subtyping definition.
Definition 4. Let Θ be a set of session type variables. Asynchronous subtyping
is the largest binary relation <:Θ between session types over Θ, such that the
following hold when T<:Θ U. (When Θ is empty, we write just T<: U.)
1. If U(T) = p⊕i∈I ℓi⟨bi⟩.Ti, then for every i ∈ I, there is some Ui such that

U
p!ℓi⟨bi⟩
↪−−−−→ Ui and Ti <:Θ Ui.

2. If U(T) = p&i∈I ℓi⟨bi⟩.Ti, then Recvsp(U).
3. If U(U) = p⊕i∈I ℓi⟨bi⟩.Ui, then Sendsp(T).
4. If U(U) = p&i∈I ℓi⟨bi⟩.Ui, then for every i ∈ I, there is some Ti such that

T
p?ℓi⟨bi⟩
↪−−−−−→ Ti and Ti <:Θ Ui.

5. For every X ∈ Θ, we have U(T) = X if and only if U(U) = X.

This is a coinductive definition, and as is usual for coinductive definitions, we
can construct <:Θ as the union over all relations satisfying the above conditions.
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U
p!ℓ⟨b⟩
↪−−−→ U′

[
!

↪−→-base]
p⊕i∈I ℓi⟨bi⟩.Ui

p!ℓi⟨bi⟩
↪−−−−→ Ui

[
!

↪−→-⊕]
p ̸= q J ⊆ I Ui

p!ℓ⟨b⟩
↪−−−→ U′

i for all i ∈ J

q⊕i∈I ℓ
′
i⟨b′i⟩.Ui

p!ℓ⟨b⟩
↪−−−→ q⊕i∈J ℓ′i⟨b′i⟩.U′

i

[
!

↪−→-&]
Ui

p!ℓ⟨b⟩
↪−−−→ U′

i for all i ∈ I

q&i∈I ℓ
′
i⟨b′i⟩.Ui

p!ℓ⟨b⟩
↪−−−→ q&i∈I ℓ

′
i⟨b′i⟩.U′

i

[
!

↪−→-rec]
U[X 7→ µX.U]

p!ℓ⟨b⟩
↪−−−→ U′

µX.U
p!ℓ⟨b⟩
↪−−−→ U′

Sendsp(T)

[Sends-base]

Sendsp(p⊕i∈I ℓi⟨bi⟩.Ti)

[Sends-⊕]

Sendsp(Tj) for all j ∈ J

Sendsp(q⊕j∈J ℓj⟨bi⟩.Tj)

[Sends-rec]

Sendsp(T)

Sendsp(µX.T)

T
p?ℓ⟨b⟩
↪−−−→ T′

[
?
↪−→-base]

p&i∈I ℓi⟨bi⟩.Ti

p?ℓi⟨bi⟩
↪−−−−−→ Ti

[
?
↪−→-&]

p ̸= q J ⊆ I Ti

p?ℓ⟨b⟩
↪−−−→ T′

i for all i ∈ J

q&i∈I ℓ
′
i⟨b′i⟩.Ti

p?ℓ⟨b⟩
↪−−−→ q&i∈J ℓ′i⟨b′i⟩.T′

i

[
?
↪−→-⊕]

Ti

p?ℓ⟨b⟩
↪−−−→ T′

i for all i ∈ I

q⊕i∈I ℓ
′
i⟨b′i⟩.Ti

p?ℓ⟨b⟩
↪−−−→ q⊕i∈I ℓ

′
i⟨b′i⟩.T′

i

[
?
↪−→-rec]

T[X 7→ µX.T]
p?ℓ⟨b⟩
↪−−−→ T′

µX.T
p?ℓ⟨b⟩
↪−−−→ T′

Recvsp(U)

[Recvs-base]

Recvsp(p&i∈I ℓi⟨bi⟩.Ui)

[Recvs-&]

Recvsp(Uj) for all j ∈ J

Recvsp(q&j∈J ℓj⟨bi⟩.Uj)

[Recvs-rec]

Recvsp(U)

Recvsp(µX.U)

Fig. 2. Four inductively defined relations and predicates on multiparty session types

Example 5. Consider the session types of Example 3. We do not have T<:U; (2)
and (3) do not hold, because Recvsp(U) and Sendsq(T) are both false. However,
we do have U <: T. This is because we have T′ <: T′ and U′ <: U′ (subtyping
is reflexive by Lemma 7 below). To satisfy (1), it is therefore enough to note

that T
q!cont⟨int⟩
↪−−−−−−→ U′ and T

q!stop⟨bool⟩
↪−−−−−−−→ U′. To satisfy (4), it enough to note that

U
p?success⟨int⟩
↪−−−−−−−−→ T′ and U

p?error⟨bool⟩
↪−−−−−−−−→ T′. (2), (3) and (5) are trivial.

Example 6. Asynchronous subtyping requires us to take great care with infinite
protocols; the following example demonstrates one of the subtleties. Consider
the following closed session types, where p ̸= q.

U = µX. q&

{
ℓ1⟨b1⟩. p& ℓ⟨b⟩. end
ℓ2⟨b2⟩.X

U′ = p& ℓ⟨b⟩. µX. q&

{
ℓ1⟨b1⟩. end
ℓ2⟨b2⟩.X
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We have neither U <: U′ nor U′ <: U; we first explain informally why these
instances of subtyping should not hold. Suppose that q only sends messages
with label ℓ2; this is permitted by both U and U′. In this case, U′ <: U would
lead to a failure of liveness: a participant implementing U′ is permitted to wait
for a message from p, but according to U, no such message will ever come. The
converse U<: U′ would lead to a different liveness failure: U′ permits p to send
a message, but a participant implementing U will not consume that message; it
will keep waiting for more messages from q instead.

Proving that U′ <:U does not hold is easy: it would imply Recvsp(U), which
is false. To see why U<: U′ does not hold, consider the following closed session
types, where k ranges over natural numbers.

T0 = q& ℓ1⟨b1⟩. end Tk+1 = q&

{
ℓ1⟨b1⟩. end
ℓ2⟨b2⟩.Tk

T∞ = µX. q&

{
ℓ1⟨b1⟩. end
ℓ2⟨b2⟩.X

We have Tk+1

q?ℓ2⟨b2⟩
↪−−−−−→ Tk and T∞

q?ℓ2⟨b2⟩
↪−−−−−→ T∞; indeed T∞ <: Tk for all k.

However, there is no k such that Tk <: T∞; this would imply, by an induc-
tive argument, that T0 <: T∞, which is false because there is no T′ such that

T0

q?ℓ2⟨b2⟩
↪−−−−−→ T′. We have U

p?ℓ⟨b⟩
↪−−−→ Tk for every k, and in fact U

p?ℓ⟨b⟩
↪−−−→ T′ im-

plies T′ is a supertype of some Tk. In particular, we do not have U
p?ℓ⟨b⟩
↪−−−→ T∞;

informally this is because, while an implementation of U is required to receive a
message from p, it is not then required to implement T∞. We therefore do not

have U<:U′: this subtyping would imply U
p?ℓ⟨b⟩
↪−−−→ T′ for some T′ <: T∞, which

cannot exist by the above and transitivity of <: (Lemma 7 below).

Subtyping is reflexive, transitive, a congruence, and respects substitution:

Lemma 7. Each of the following rules is admissible (if the premises hold, then
so does the conclusion):

T<:Θ T
S<:Θ T T<:Θ U

S<:Θ U
J ⊆ I Ti <:Θ Ui for all i ∈ J

(p⊕i∈J ℓi⟨bi⟩.Ti)<:Θ (p⊕i∈I ℓi⟨bi⟩.Ui)

J ⊆ I Ti <:Θ Ui for all i ∈ J

(p&i∈I ℓi⟨bi⟩.Ti)<:Θ (p&i∈J ℓi⟨bi⟩.Ui)

X ̸∈ Θ T<:Θ,X U

µX.T<:Θ µX.U

T<:X1,...,Xn
U T1 <:Θ U1 · · · Tn <:Θ Un

T[X1 7→ T1, . . . ,Xn 7→ Tn]<:Θ U[X1 7→ U1, . . . ,Xn 7→ Un]

3.2 Sequencing

Unlike in previous works on session types, we have a notion of sequencing of
computations, namely let x = t in u. To assign a type to a sequence, we use
a multiplication operation T · T′ on session types. This essentially replaces end
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with T′ in T (once t is done, we run u). The definition is by recursion on T:

end · T′ = T′

X · T′ = X

(µX.T) · T′ = µX. (T · T′) if X not free in T′

(p⊕i∈I ℓi⟨bi⟩.Ti) · T′ = p⊕i∈I ℓi⟨bi⟩. (Ti · T′)
(p&i∈I ℓi⟨bi⟩.Ti) · T′ = p&i∈I ℓi⟨bi⟩. (Ti · T′)

The set of closed session types forms a preordered monoid: the preorder is the
asynchronous subtyping relation T <: U; the monoid operation is our multipli-
cation T ·U; and the unit of the monoid is end. Multiplication (·) is associative,
and also monotone (if T<: U and T′ <: U′ then T · T′ <: U · U′).

In general, following Katsumata [24], a preordered monoid of grades is the
basic structure required to give a graded type system; in particular, the multi-
plication operation is required to give a graded typing rule for sequencing. The
grades in this paper are session types, and thus the fact that we can organize
session types into a preordered monoid is crucial. We use the multiplication
operation in the typing rule [Let] of the following section.

4 Session-type-graded type system for SafeMP

We now come to our type system for SafeMP. The goal is to assign, to each
configuration, a type b and a session type T, but to do so in such a way that
we can prove safety and liveness properties. This is a graded type system in the
terminology of for instance [32]; the grades here are the session types. Indeed,
the typing rules for sequencing, returning and for subtyping are standard from
graded type systems. This section demonstrates that we can view session types
as an instance of grading.

We first define a typing judgement for values. This has the form Γ ⊢v v : b,
where the typing context Γ assigns types b′ to variables x. The rules for value
typing are at the top of Fig. 3.

We then define a typing judgement for computations, of the form Θ#Ψ #Γ ⊢ t :
b #T. The session type T describes the behaviour of the computation t, in terms
of the protocol it follows. Here Θ is a finite set of type variables; this contains
all of the free type variables in the other components of the judgement. The
function typing context Ψ tracks the recursive function definitions that are in
scope. It maps function names f to triples of the form (b1, . . . , bn)

U−→ b′, where
(b1, . . . , bn) is a possibly empty list of (argument) types, U is a session type over
Θ, and b′ is a (result) type. The session type U describes the protocol followed
by an application f (v1, . . . , vn). Annotating function types with a grade in this
way is standard from the grading literature, the annotation is sometimes called
the latent effect of the function. The symbol # separates the different components
of the judgement, it has no meaning by itself.

The computation typing judgement is defined inductively, by the rules in
the middle of Fig. 3. We include a session subtyping rule [<:], using the above
definition of subtyping; this is useful for typing conditionals, because [If] requires
the two branches to have the same type. The [Send] and [Recv] rules record the



14 D. McDermott and N. Yoshida

Value typing Γ ⊢v v : b

(x : b) ∈ Γ

Γ ⊢v x : b Γ ⊢v ⋆ : unit Γ ⊢v n : int Γ ⊢v true : bool Γ ⊢v false : bool

Computation typing Θ # Ψ # Γ ⊢ t : b # T

[<:]
Θ # Ψ # Γ ⊢ t : b # T T<:Θ U

Θ # Ψ # Γ ⊢ t : b # U
[Ret]

Γ ⊢v v : b

Θ # Ψ # Γ ⊢ return v : b # end

[Let]
Θ # Ψ # Γ ⊢ t : b # T Θ # Ψ # Γ, x : b ⊢ u : b′ # T′

Θ # Ψ # Γ ⊢ let x = t in u : b′ # T · T′ [+]
Γ ⊢v v : int Γ ⊢v w : int

Θ # Ψ # Γ ⊢ v + w : int # end

[<]
Γ ⊢v v : int Γ ⊢v w : int

Θ # Ψ # Γ ⊢ v < w : bool # end
[If]

Γ ⊢v v : bool Θ # Ψ # Γ ⊢ ti : b # T for all i ∈ {1, 2}
Θ # Ψ # Γ ⊢ if v then t1 else t2 : b # T

[Send]
Γ ⊢v v : b Θ # Ψ # Γ ⊢ t : b′ # T

Θ # Ψ # Γ ⊢ send (ℓ, v) to p then t : b′ # (p⊕ ℓ⟨b⟩.T)

[Recv]
Θ # Ψ # Γ, xi : bi ⊢ ti : b

′ # Ti for all i ∈ I

Θ # Ψ # Γ ⊢ recv p {ℓi⟨xi : bi⟩. ti}i∈I : b′ # (p&i∈I ℓi⟨bi⟩.Ti)

[LetRec]

Θ,X # Ψ, f : (b1, . . . , bn)
X−→ b′ # Γ, x1 : b1, . . . , xn : bn ⊢ t : b′ # T

Θ # Ψ, f : (b1, . . . , bn)
µX. T−−−→ b′ # Γ ⊢ u : b′′ # T′

Θ # Ψ # Γ ⊢ let rec f(x1, . . . , xn) = t in u : b′′ # T′

[App]
(f : (b1, . . . , bn)

T−→ b′) ∈ Ψ Γ ⊢v v1 : b1 · · · Γ ⊢v vn : bn
Θ # Ψ # Γ ⊢ f(v1, . . . , vn) : b′ # T

Configuration typing ⊢ (ρ, t, σ) : b # T

[CBase]

· # · # · ⊢ t : b # T
⊢ (∅, t, ∅) : b # T

[CSend]

v : b′ U
p!ℓ⟨b′⟩
↪−−−−→ T

⊢ (ρ, t, σ) : b # T
⊢ (ρ, t, σ :: (p◁ (ℓ, v))) : b # U

[CRecv]

v : b′ T
p?ℓ⟨b′⟩
↪−−−−→ U

⊢ (ρ, t, σ) : b # T
⊢ ((p◁ (ℓ, v)) :: ρ, t, σ) : b # U

Fig. 3. Typing of values, computations, and configurations in SafeMP

send/receive in the session type assigned to the computation. The [LetRec] rule
requires the body of the recursive function to have type T under the assumption
that a recursive call will have type X; it then assigns the recursive session type
µX.T to the recursive function.

Finally, the typing judgement for configurations has the form ⊢ (ρ, t, σ) : b#T,
and is defined inductively by the rules at the bottom of Fig. 3. There are no
contexts because t is a closed computation; the rules ensure that T is a closed
session type. The [CBase] rule uses our computation typing judgement with empty
contexts (we write · for an empty context). The intuition for [CSend] is that the
configuration in the conclusion is sending a message to p; we therefore need to
ensure that the type U permits it to do so, and we do this using our relation
!

↪−→. For [CRecv], the conclusion is only well-typed if the configuration in the
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assumption is able to receive a message from p; we ensure this is the case using
?
↪−→. We do not explicitly include a subtyping rule for configurations, but such a
rule is admissible: if ⊢ (ρ, t, σ) : b # T and T<: U, then ⊢ (ρ, t, σ) : b # U.

Example 8. Recall the computations and session types from Example 1 and Ex-
ample 3. We have ⊢ (∅, t, ∅) : bool # T, and · # · # y : bool ⊢ u : bool # U. Both of
these use subtyping to type the conditionals. Since U<:T, we therefore also have
· # · # y : bool ⊢ u : bool #T, so for instance we can assign to (∅, let y = false in u, ∅)
the same type as (∅, t, ∅).

Example 9. Recall our global state example, from Example 2. Consider the fol-
lowing session types, where X is a type variable.

Ts = c&


get⟨unit⟩. c⊕ st⟨int⟩.X
put⟨int⟩.X
done⟨unit⟩. end

Tc = s⊕


get⟨unit⟩. s& st⟨int⟩.X
put⟨int⟩.X
done⟨unit⟩. end

We have ⊢ Cs : unit #µX.Ts, and ⊢ Cc,1 : int #µX.Tc and ⊢ Cc,2 : int #µX.Tc, where

Cs = (∅, ts, ∅)
Cc,i = (∅, let x = tc,i in send (done, ⋆) to s then returnx, ∅) (i ∈ {1, 2})

The derivation for Cs involves a derivation of

X # f : int X−→ unit # x : int ⊢ recv c {. . . } : unit # Ts

where recv c {. . . } is the body of the recursive function in ts.

The subject reduction theorem uses the inductive relations of Fig. 2.

Theorem 10 (Subject reduction). Assume that ⊢ (ρ, t, σ) : b # T, and that
(ρ, t, σ)

α
(ρ′, t′, σ′). If α = τ , then ⊢ (ρ′, t′, σ′) : b #T. If α = p!(ℓ, v) with v : b′,

then ⊢ (ρ′, t′, σ′) : b # U for some U such that T
p!ℓ⟨b′⟩
↪−−−−→ U. If α = p?(ℓ, v) with

v : b′, then ⊢ (ρ′, t′, σ′) : b # U for every U such that T
p?ℓ⟨b′⟩
↪−−−−→ U.

4.1 Typed bisimulation

To compare a configuration to its interpretation in our denotational seman-
tics below, we use a notion of equivalence between states of transition sys-
tems. Our notion of equivalence is based on bisimulation. However, in the con-
text of session types, the appropriate notion of equivalence is one that is in-
formed by the type. To see why, consider Example 8. The configurations (∅, t, ∅)
and (∅, let y = false in u, ∅) do not have the same behaviour; for instance, if
p sends (success, 1), then they send different messages to q. However, if we
know that p cannot send success, then they are equivalent. In particular, since
T<: (p& error⟨bool⟩.T′), we can assign the session type p& error⟨bool⟩.T′ to
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both configurations; by doing so, we are requiring p to send an error message
and not success. The aforementioned configurations have the same behaviour
when considered as configurations of type p& error⟨bool⟩.T′. We define a gen-
eral notion of typed bisimulation for typed transition systems, to account for the
session types.

Definition 11. A typed transition system (S,⇝,Result,◀) with result set X,
consists of a set S of states, a binary relation α on S for each local action α, a
partial function Result from S to X, and a relation ◀ between states and closed
session types. We require that s ◀ T implies s ◀ U whenever T<: U.

We write s
α ∗ s′ when there is a finite sequence of reductions ending in action

α, where all the reductions before the last have action τ . When α = τ we permit
the sequence of reductions to be empty (s = s′), while for every other α we
require there to be at least one reduction.

For each b, we obtain a typed transition system with result set {v | v : b}:
states are configurations, ⇝ and Result are as defined in Section 2, and the
typing relation (ρ, t, σ) ◀ T holds when ⊢ (ρ, t, σ) : b # T. Our notion of typed
bisimulation is as follows.

Definition 12. Let (S,⇝,Result,◀) and (S′,⇝,Result,◀) be typed transition
systems. A family of relations RS ⊆ S×S′, indexed by closed session types S, is
a typed bisimulation when sRSs

′ implies s ◀ S, s′ ◀ S, and also the following.

1. (a) s
τ

t implies there exists t′ such that s′ τ ∗ t′ and tRSt
′; and (b) s′

τ
t′

implies there exists t such that s τ ∗ t and tRSt
′.

2. If U(S) = end, then (a) Result(s) = x implies there exists t′ such that s′ τ ∗t′

and Result(t′) = x; and (b) Result(s′) = x implies there exists t such that
s

τ ∗ t and Result(t) = x.

3. If Sendsp(S) and v : b, then (a) s
p!(ℓ,v)

t implies there exist T, t′ such

that S
p!ℓ⟨b⟩
↪−−−→ T, s′

p!(ℓ,v) ∗ t′ and tRTt
′; and (b) s′

p!(ℓ,v)
t′ implies there

exist T, t such that S
p!ℓ⟨b⟩
↪−−−→ T, s

p!(ℓ,v) ∗ t and tRTt
′.

4. If S
p?ℓ⟨b⟩
↪−−−→ T and v : b, then (a) s

p?(ℓ,v)
t ◀ T implies there exists T, t′

such that s′
p?(ℓ,v) ∗ t′ and tRTt

′; and (b) s′
p?(ℓ,v)

t′ ◀ T implies there

exists t such that s
p?(ℓ,v) ∗ t and tRTt

′.

We write ∼ for the largest typed bisimulation.

The crucial points to note are that in (3), we only impose requirements on
messages sent to p when Sendsp holds, because p can only consume a message
when that is the case; and that in (4) we only impose requirements on a message
received from p when the session type requires that message to be accepted.
As is usual for a coinductive definition, ∼ is equal to the union of all typed
bisimulations.
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Example 13. Returning to Example 8, we have (∅, t, ∅) ∼S (∅, let y = false in u, ∅)
for S = p & error⟨bool⟩.T′, but not for S = T. The difference is that, while

T
p?success⟨int⟩
↪−−−−−−−−→ T′ holds, no S′ satisfies (p& error⟨bool⟩.T′)

p?success⟨int⟩
↪−−−−−−−−→ S′.

In the setting of Example 9, we have (∅, tc,1, ∅) ∼S (∅, tc,2, ∅) where S =
s ⊕ get⟨unit⟩. s & st⟨int⟩. s ⊕ put⟨int⟩. end, even though tc,1 cannot send a put

message until it receives a message from s. As a consequence, we can view tc,2
as a sound optimisation of tc,1. Our denotational semantics for SafeMP provides
a sound and complete technique for proving this bisimilarity; see Example 21
below. This bisimilarity does not rely in any way on the implementation of s.

Lemma 14. For every S, the relation ∼S is transitive and symmetric. Moreover,
if s ∼S s′, and S<: T, then s ∼T s′.

5 Computation trees

A session type describes the protocol that a given participant p must follow, in
terms of the interactions it is meant to have with other participants in a system.
The purpose of this section is to give some semantic meaning to this. We do this
by introducing computation trees as a notion of asynchronous message-passing
computation, and discussing how they relate to session trees.

Definition 15. Computation trees, over a set X of results, are generated coin-
ductively by the following grammar, where x ranges over elements of X, m ranges
over messages, and M ranges over sets of messages.

t ::= return(x) | sendp,m(t) | recvp(tm)m∈M

Our first task is to show that these support asynchronous message-passing,
without the use of queues. To do this, we make them into a transition system
labelled by local actions α. Reduction t

α
u is defined inductively by the fol-

lowing rules (there are no τ transitions). The base cases [Send] and [Recv] are
obvious, while the congruence rules make this notion of reduction an asynchro-
nous one. In particular, to receive a message from p, we do not need the root
of the tree to be a recvp. The congruence rules enable us to reduce occurences
of recvp appearing inside deeper in the tree, potentially discarding branches of
other recvs (which might not contain recvp).

[Send]
sendp,m(t)

p!m
t

[Recv]

m ∈ M

recvp(tm′)m′∈M
p?m

tm

[SendSend]
p ̸= q t

p!m
u

sendq,m′(t)
p!m

sendq,m′(u)

[RecvSend]
t

p?m
u

sendq,m′(t)
p?m

sendq,m′(u)

[RecvRecv]
p ̸= q M ′ ⊆ M tm′

p?m
um′ for all m′ ∈ M ′

recvq(tm′)m′∈M
p?m

recvq(um′)m′∈M ′
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To make this into a typed transition system, we define Result(return(x)) =
x, with Result(t) undefined otherwise. The typing relation for computation trees
is defined coinductively, in a similar manner to our definition of subtyping.

Definition 16. We define a typing relation t ◀ T between computation trees
t and closed session types T coinductively, as the largest relation such that the
following hold when t ◀ T.

1. If t = sendp,(ℓ,v)(u), with v : b, then there is some U such that T
p!ℓ⟨b⟩
↪−−−→ U

and u ◀ U.
2. If t = recvp(tm)m∈M , then Recvsp(T).

3. If U(T) = p⊕i∈I ℓi⟨bi⟩.Ti, then there exist m,u such that t
p!m

u.
4. If U(T) = p &i∈I ℓi⟨bi⟩.Ti, then there is some natural number h such that,

for every i ∈ I and v : bi, there is some u ◀ Ti such that t
p?(ℓi,v)

u,
where the derivation of the latter has height at most h.4

(1) and (2) permit t to be a send or a recv only when this is permitted by
the session type T. (3) and (4) require t to send or receive a message, when the
session type T says it must do so. We can construct ◀ concretely as a union of
relations.

The definition of ◀ respects subtyping, in the sense that t ◀ T implies
t ◀ U when T<: U. Moreover, t ∼T t holds whenever t ◀ T, where ∼T is typed
bisimilarity between computation trees. Typed bisimilarity for computation trees
is non-trivial, in that t ∼T t′ does not generally imply t = t′. One might therefore
expect us to need to consider equivalence classes of computation trees instead
of just computation trees. However, we can do better than this: up to typed
bisimilarity, every typed computation tree has a normal form. It is these normal
forms we will use in our model; this avoids the need for any quotient. The normal
forms of type T, with result set X, are the elements of the set N (X)T defined
coinductively as follows. (Concretely, we can construct N (X) as a union.)

Definition 17. We write N (X) for the largest family of sets, indexed by closed
session types T, such that t ∈ N (X)T implies the following.

1. If U(T) = end, then t = return(x) for some x ∈ X.
2. If U(T) = p ⊕i∈I ℓi⟨bi⟩.Ti, then t = sendp,(ℓi,v)(t

′) for some i ∈ I, some
v : bi, and some t′ ∈ N (X)Ti .

3. If U(T) = p&i∈Iℓi⟨bi⟩.Ti, then t = recvp(tm)m∈M for some family (tm)m∈M ,
where M = {(ℓi, v) | i ∈ I ∧ v : bi}, and t(ℓi,v) ∈ N (X)Ti

for all (ℓi, v) ∈ M .

Lemma 18 (Normalization of typed computation trees). Let T be a
closed session type. We have u ◀ T for every u ∈ N (X)T. If t is a computation
tree such that t ◀ T, then there is a unique u ∈ N (X)T such that t ∼T u.
4 We need such an h to exist for the same reason that we do not want U <: U′ in

Example 6: if there were no such h, then that would mean there is an infinite reduc-
tion sequence beginning with t, that never involves receiving a message from p; this
would lead to a failure of liveness.
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5.1 Returning, sequencing, and subtyping

As noticed by Katsumata [24], the appropriate structure for interpreting graded
computational effects is a graded monad [4,39,31,24]. Specifically, when we give
our denotational semantics in Section 6 below, we specify an interpretation of
each of our typing rules; a graded monad provides the structure needed to in-
terpret the typing rules [<:], [Ret], and [Let].

To interpret SafeMP, we therefore make normal forms of computation trees
into a graded monad N . This is the appropriate graded monad for interpreting
asynchronous message-passing viewed as a computational effect. To do this, we
provide three classes of functions involving computation trees.

– [<:]: To interpret subtyping, we need a function N (X)T<:U : N (X)T → N (X)U
for each set X and pair of closed session types such that T<: U. We define
these functions by N (X)T<:U(t) = u, where u is the unique u ∈ N (X)U
such that t ∼U u. (This exists by Lemma 18 and the fact that ◀ respects
subtyping.)

– [Ret]: To interpret returning a value, we need a unit function returnX : X →
N (X)end for each X. We define returnX(x) = return(x).

– [Let]: To interpret sequencing, we need a bind function (
T,T′

≫=): N (X)T×(X →

N (Y )T′) → N (Y )T·T′ for each X,Y,T,T′. We define t
T,T′

≫= f coinductively
by inspecting t, using the following clauses.

(return(x)) ≫= f = f x
(sendp,m(t)) ≫= f = sendp,m(t ≫= f)

(recvp(tm)m∈M ) ≫= f = recvp(tm ≫= f)m∈M

6 Denotational semantics of SafeMP

We now demonstrate that computation trees, and specifically the graded monad
N defined in the previous section, form the basis of a model of SafeMP. The aim is
to interpret each SafeMP configuration as an equivalent computation tree, where
the notion of equivalence is our typed bisimulation. This equivalence provides
our adequacy result (Corollary 20 below).

We first explain how to interpret SafeMP values. We define the interpretation
of a ground type b to be the set JbK = {v | v : b} of constants of that type. If
Γ is a typing context, then a variable environment γ is a function that assigns,
to every (x : b) ∈ Γ , a constant γ(x) ∈ JbK; we write JΓ K for the set of such
functions. We interpret each typed value Γ ⊢v v : b as a function JvK : JΓ K → JbK,
as in Fig. 4.

For computations, we interpret the judgement Θ # Φ # Γ ⊢ t : b # T as follows.
A session type environment θ, for the set Θ of type variables, is a function
from Θ to closed session types. Given such a θ, if T is a session type over
Θ, then we write T[θ] for the session type that results from substituting the
free type variables according to θ. For a function context Φ over Θ, a function
environment ϕ is a function that assigns, to every (f : (b1, . . . , bn)

T−→ b′) ∈ Φ,
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JvK : JΓ K → JbK where Γ ⊢v v : b JxK(γ) = γ(x) JvK(γ) = v if v is a constant

JtKθ : JΦKθ × JΓ K → N (JbK)T[θ] where Θ # Φ # Γ ⊢ t : b # T

[<:]
t′ = JtKθ(ϕ, γ) T<:Θ U

JtKθ(ϕ, γ) = N (JbK)T[θ]<:U[θ](t′)
[Ret]

v′ = JvK(γ)
Jreturn vKθ(ϕ, γ) = return(v′)

[Let]
t′ = JtKθ(ϕ, γ) f = λx′. JuKθ(ϕ, (γ, x 7→ x′))

Jlet x = t in uKθ(ϕ, γ) = (t′ ≫= f)
[+]

v′ = JvK(γ) w′ = JwK(γ)
Jv + wKθ(ϕ, γ) = return(v′+w′)

[<]
v′ = JvK(γ) w′ = JwK(γ)

Jv < wKθ(ϕ, γ) = return(if v′<w′ then true else false)

[If]
v′ = JvK(γ) t′1 = Jt1Kθ(ϕ, γ) t′2 = Jt2Kθ(ϕ, γ)

Jif v then t1 else t2Kθ(ϕ, γ) = (if v′ then t′1 else t′2)

[Send]
v′ = JvK(γ) t′ = JtKθ(ϕ, γ)

Jsend (ℓ, v) to p then tKθ(ϕ, γ) = sendp,(ℓ,v′)(t′)

[Recv]
fi = λx′

i. JtiKθ(ϕ, (γ, xi 7→ x′
i)) for all i ∈ I

Jrecv p {ℓi⟨xi⟩. ti}i∈IKθ(ϕ, γ) = recvp(fi(v))(ℓi,v)∈{(ℓi,v)|i∈I∧v:bi}

[LetRec]

f ′ = λ(x′
1, . . . , x

′
n). JtKθ,X 7→(µX. T)((ϕ, f 7→ f ′), (γ, x1 7→ x′

1, . . . , xn 7→ x′
n))

g′ = λf ′′. JuKθ((ϕ, f 7→ f ′′), γ)

Jlet rec f(x1, . . . , xn) = t in uKθ(ϕ, γ) = g′(f ′)

[App]
v′1 = Jv1K(γ) · · · v′n = JvnK(γ)

Jf(v1, . . . , vn)Kθ(ϕ, γ) = ϕ(f)(v′1, . . . , v
′
n)

J(ρ, t, σ)K ∈ N (b)T where ⊢ (ρ, t, σ) : b # T

[CBase]
t′ = JtK·(·, ·)
J(∅, t, ∅)K = t′

[CSend]

U
p!ℓ⟨b′⟩
↪−−−−→ T

N (b)U ∋ u
p!(ℓ,v)

J(ρ, t, σ)K
J(ρ, t, σ :: (p◁ (ℓ, v)))K = u

[CRecv]

T
p?ℓ⟨b′⟩
↪−−−−→ U

J(ρ, t, σ)K
p?(ℓ,v)

u ∈ N (b)U

J((p◁ (ℓ, v)) :: ρ, t, σ)K = u

Fig. 4. Interpretation of SafeMP values, computations and configurations

a function ϕ(f) : Jb1K × · · · × JbnK → N (Jb′K)T[θ]; we write JΦKθ for the set of
such function environments. For computations, we interpret each derivation of
Θ #Φ #Γ ⊢ t : b #T as a function JtKθ : JΦKθ × JΓ K → N (JbK)T[θ]. This is defined in
Fig. 4. The definition is by induction on the derivation, not on the computatation
t, and hence a priori the computation t will have several interpretations – one
for each derivation. It turns out this is not the case; we show below that any
two derivations of Θ # Φ # Γ ⊢ t : b # T necessarily have the same interpretation.
The interpretations of subtyping, return and sequencing use the graded monad
structure. The interpretations of send and recv are the obvious computation trees.
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Finally, for configurations, we interpret every derivation of ⊢ (ρ, t, σ) : b#T as
a computation tree J(ρ, t, σ)K ∈ N (JbK)T. Rule [CBase] uses the interpretation of
computations. Rule [CSend] interprets a configuration with a message to send as
a computation tree u that reduces by sending such a message; since we consider
normal forms of computation trees, there is a unique such u. Rule [CRecv] inter-
prets a configuration that has received a message by reducing J(ρ, t, σ)K; again,
since we are dealing with normal forms, there is a unique such reduct.

Our main result about our denotational semantics is the following theorem,
which establishes that computation trees correctly interpret configurations. It is
this result that we appeal to when using our semantics to reason about SafeMP.

Theorem 19 (Correctness of the denotational semantics). We have
(ρ, t, σ) ∼T J(ρ, t, σ)K for every derivation of ⊢ (ρ, t, σ) : b # T.

A corollary is that the denotational semantics is sound and complete with
respect to typed bisimilarity; this is adequacy of the denotational semantics.

Corollary 20 (Adequacy). Let ⊢ (ρ, t, σ) : b # T and ⊢ (ρ′, t′, σ′) : b # T be
two configurations of the same type. We have (ρ, t, σ) ∼T (ρ′, t′, σ′) if and only
if J(ρ, t, σ)K = J(ρ′, t′, σ′)K.

Proof. By Theorem 19 and transitivity of ∼T, we have (ρ, t, σ) ∼T (ρ′, t′, σ′) iff
J(ρ, t, σ)K ∼T J(ρ′, t′, σ′)K. The latter bisimulation is an equality by Lemma 18.

Adequacy also establishes that the interpretation of a configuration does not
depend on the choice of type derivation.

Example 21. We return to our global state example (Example 2), and specif-
ically to the bisimilarity (∅, tc,1, ∅) ∼S (∅, tc,2, ∅) claimed in Example 13. Due
to adequacy, this bisimilarity is equivalent to the two configurations having the
same interpretation in our denotational semantics. Indeed they do have the same
interpretation; their interpretation is the following element of N (JintK)S.

sends,(get,⋆)(recvs(sends,(put,0)(return(n)))(st,n))

7 Deadlock-freedom and liveness

A session is a collection of participants running in parallel. Deadlock-freedom
and liveness are properties of sessions. In this section, we define a notion of
SafeMP session, and then prove our desired safety and liveness properties. We do
this as an application of our denotational semantics; we use the computation-tree
interpretation of SafeMP to prove these properties.

Definition 22. A session M is a finite list (r1◁ C1, r2◁ C2, . . . , rn◁ Cn), where
r1, . . . , rn are distinct participant names, and each Ci is a configuration involving
(at most) the participants in {r1, . . . , rn} \ {ri}.
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We use our asynchronous operational semantics of SafeMP to define a notion

of reduction M
β

M′ for sessions. This notion of reduction in particular in-
cludes a rule for one participant sending a message to another. A global action
β is either τp (denoting an internal action made by participant p), or a triple
(p → q : m) with p ̸= q (denoting that p sends message m to q). Reduction

M
β

M′ of sessions is defined, using reduction of configurations, by two rules:

Ci = Di for all i ̸= j Cj
τ Dj

(r1 ◁ C1, r2 ◁ C2, . . . , rn ◁ Cn)
τrj

(r1 ◁D1, r2 ◁D2, . . . , rn ◁Dn)

Ci = Di for all i ̸∈ {j, k} Cj
rk!m Dj Ck

rj?m Dk

(r1 ◁ C1, r2 ◁ C2, . . . , rn ◁ Cn)
rj→rk:m

(r1 ◁D1, r2 ◁D2, . . . , rn ◁Dn)

Our type system for SafeMP assigns session types Ti to the individual con-
figurations Ci of a session. By itself, this does not ensure that the Ti are in any
way compatible with each other. We ensure the latter by following the top-down
approach for MPST [21,44,17], in which there is a global protocol, and each par-
ticipant p is required to follow the local projection of that protocol onto p. Global
protocols are described by global types, which are generated inductively by the
following grammar.

G ::= end | p → q : {ℓi⟨bi⟩.Gi}i∈I | X | µX.G

The global type end denotes that no further communication between participants
will happen. p → q : {ℓi⟨bi⟩.Gi}i∈I denotes that p sends a single message to q;
that message will have the form (ℓi, v) with v : bi for some i ∈ I, and then the
protocol will continue as Gi. As for internal and external choices, we require
I to be non-empty and finite, and we require the labels ℓi to be distinct from
each other. We also require p ̸= q. A recursive protocol µX.G binds the type
variable X; we require that every occurence of X is under some communication
p → q. Just as for local types, we define a notion of single-step unfolding for
global types:

U(µX.G) = U(G)[X 7→ µX.G] U(G) = G if G is not a recursive type

A global type G is closed when it has no free type variables.
In the top-down approach, we determine each participant’s (local) session

type by projecting it from the global type G. Projection is a partial function that
maps a global type G and participant r to a session type G ↾ r. The definition
is by recursion on G, and is given in Fig. 5. In the case of a communication not
involving r, we merge the projections of the branches. Merging is a partial binary
operation T ⊓ T′ on session types. We use full merging, as defined in [38]. The
case split in the projection from a recursive global type ensures guardedness.
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end ↾ r = end (p → q : {ℓi⟨bi⟩.Gi}i∈I) ↾ r =


q⊕i∈I ℓi⟨bi⟩. (Gi ↾ r) if p = r

p&i∈I ℓi⟨bi⟩. (Gi ↾ r) if q = r
d

i∈I(Gi ↾ r) if r ̸∈ {p, q}

X ↾ r = X (µX.G) ↾ r =


end if G ↾ r = X

X′ if G ↾ r = X′ ̸= X

µX. (G ↾ r) otherwise

end ⊓ end = end (p⊕i∈I ℓi⟨bi⟩.Ti) ⊓ (p⊕i∈I ℓi⟨bi⟩.T′
i) = (p⊕i∈I ℓi⟨bi⟩.Ti ⊓ T′

i)

(p&i∈I ℓi⟨bi⟩.Ti)
⊓ (p&i∈J ℓi⟨bi⟩.T′

i)
=

(p&i∈I∩J ℓi⟨bi⟩.Ti ⊓ T′
i)

& (p&i∈I\J ℓi⟨bi⟩.Ti) & (p&i∈J\I ℓi⟨bi⟩.T′
i)

X ⊓ X = X (µX.T) ⊓ (µX.T′) = µX. (T ⊓ T′)

Fig. 5. Definitions of projection and of full merging of multiparty session types

Example 23. In the context of Example 1, the computation t implements a par-
ticipant r as part of a global protocol described by the following global type G;
we can associate to t the session type G ↾ r.

G = p → r :

success⟨int⟩.r→q :

{
cont⟨int⟩. end
stop⟨bool⟩. end

error⟨bool⟩. r→q : stop⟨bool⟩. end
G↾p = r ⊕

{
success⟨int⟩.end
error⟨bool⟩. end

G ↾ q = r &

{
cont⟨int⟩. end
stop⟨bool⟩. end

G ↾ r = p&

success⟨int⟩.q⊕

{
cont⟨int⟩. end
stop⟨bool⟩. end

error⟨bool⟩.q⊕ stop⟨bool⟩. end

Definition 24. A session (r1 ◁ C1, r2 ◁ C2, . . . , rn ◁ Cn) has type G if (1) G
is closed and contains only the participants in {r1, . . . , rn}, (2) the projections
G ↾ ri are all defined, and (3) ⊢ Ci : bi # G ↾ ri for each i. When this is the case,
we say that the session is well-typed.

Example 25. We define a global type G for our global state example. The pro-
jections are the session types from Example 9.

G = µX. c → s :


get⟨unit⟩. s → c : st⟨int⟩.X
put⟨int⟩.X
done⟨unit⟩. end

G ↾ s = µX.Ts

G ↾ c = µX.Tc

The configurations of Example 9 form a session M = (s◁Cs, c◁Cc,2) of type G.

Subject reduction for configurations provides a similar theorem for sessions.

Theorem 26 (Subject reduction for sessions). If M is well-typed and

M
β

M′, then M′ is also well-typed.
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We now come to our desired safety and liveness properties, which hold for
all well-typed sessions. The proofs of these use our denotational semantics.
Deadlock-freedom means that reduction cannot get stuck; either the session ter-
minates (with every configuration returning a result), or some communication
will happen. As stated this theorem only applies to the initial session M0, but
it follows from Theorem 26 that deadlock-freedom also applies to any reduct of
M0.

Theorem 27 (Deadlock-freedom). If M0 is well-typed, then there is a re-

duction sequence M0
β1 · · ·

βc Mc, with c ≥ 0, such that either (1) c ≥ 1
and βc has the form p → q : m, or (2) Mc has the form

(r1 ◁ (∅,R1[return v1], ∅), . . . , rn ◁ (∅,Rn[return vn], ∅))

Proof. Let G be the type of M0 = (r1 ◁ C1, . . . , rn ◁ Cn). If U(G) = end, then
for every i we have U(G ↾ ri) = end, so the computation tree JCiK has the form
return(xi), and by Theorem 19 there is a reduction Ci

τ ∗ (∅,Ri[return vi], ∅).
Otherwise, U(G) has the form rj → rk : {ℓi⟨bi⟩.Gi}i∈I . In this case, U(G ↾ rj) has
the form rk⊕i∈I ℓi⟨bi⟩.Ti and U(G ↾ rk) has the form rj&i∈I ℓi⟨bi⟩.Ui. It follows

from Theorem 19 that there are reductions Cj
rk!m ∗ Dj and Ck

rj?m ∗ Dk, so
that we can take βc = rj → rk : m.

Finally, liveness means that (1) if a configuration is waiting to receive a
message, then it will eventually do so; and (2) if a configuration sends a message,
then that message will eventually be consumed. This assumes fair scheduling
(the scheduler does not starve any participant). Our formulation of liveness is
analogous to that of [18], and is stronger than the liveness considered in [38] (cf.
[18, Footnote 4]).

Theorem 28 (Liveness). Let M0
β1 M1

β2 · · · be a (possibly infinite)
reduction sequence, with Mi = (r1 ◁ Ci1, . . . , rn ◁ Cin), and Cij = (ρij , tij , σij).
Assume that the reduction sequence is fair, meaning for every i such that there

exists a reduction Mi
β′

M′, there is some i′ > i such that βi′ = β′. If M0 is
well-typed, then we have the following.

1. If tij has the form R[recv p {ℓk⟨xk⟩. uk}k∈K ], and ρij has no messages from
p, then there is some i′ > i and m ∈ M such that βi′ = (p → rj : m).

2. If βi = (p → rj : m), then there is some i′ > i such that ti′j has the form
R[recv p {ℓk⟨xk⟩. uk}k∈K ].

The idea behind the proof of liveness is that, if the global type G contains
a communication p → q between two participants of the session, then at some
point during the execution a p → q transition becomes available. We prove the
latter by appealing to Theorem 19, using the fact that such a transition becomes
available in the model. Fairness implies that the transition will be taken at some
point. For both cases of liveness, the required communication appears at some
finite depth in G, and thus happens somewhere along the reduction sequence.
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8 Related work

Semantics of session types Originating from [19,20], strong foundations of ses-
sion types have been developed based on linear logic, exploiting a Curry-Howard
correspondence between linear logic and typed session π-calculi [40,8,42]. The
most effective and advanced semantics of these use logical relations to tackle var-
ious programming language features including parametricity [7] and higher-order
functions [40]. Among them, [41], which is built on [1], enables tracking of cyclic
dependencies of channels via classical logic session types, and applies this to in-
formation flow analysis. The work in [43] develops logical relations based on in-
stuitionistic linear logic enriched with temporal predicates. The logical relations
works are limited to binary session types; we do multiparty. Jacobs et al. [22]
introduce MPGV, a functional MPST language with multiparty session types,
based on the linear logic perspective. They use separation logic to define config-
uration invariants to maintain the acyclic nature of the communication topology
and to establish subject reduction. They support session delegation, which we
leave to future work, but they do not develop a (denotational) semantics for
their calculus. Castellani et al. [10,11] interpret asynchronous and synchronous
multiparty sessions as flow event structures. They do not have asynchronous sub-
typing; our work is the first denotational semantics for MPST with asynchronous
subtyping. They also do not consider standard programming constructs such as
sequencing, unlike us. Moreover, their work focuses on interpreting sessions and
global protocols. As such, they do not interpret (local) computations in the man-
ner that we do, so their semantics cannot be used to reason about individual
participants in isolation. In a separate line of work, Castellan and Yoshida [9]
use a connection between linear logics and game semantics to describe a fully
abstract game semantics for binary session typed processes. They leave the ex-
tension to asynchrony and multiparty open. The aforementioned works do not
study MPST from the perspective of computational effects.

Effects and session types Orchard and Yoshida [33] show that one can encode a
binary session-typed π-calculus in a graded variant of PCF, session types being
encoded as grades, and vice-versa. This work is orthogonal to ours. Their graded
PCF does not have message-passing, and they do not consider message-passing
as a computational effect. Thus they do not show how to track message-passing
in an effectful calculus, nor do they provide a denotational semantics for session
types. Instead their motivation is about encodability results, and they do not
study safety, deadlock-freedom and liveness properties. Their work also considers
only binary session types (not multiparty), and does not consider asynchrony.
There are few other works that approach message-passing from the perspective of
computational effects. Sanada [37] uses message-passing to exemplify category-
graded effect handlers, but does not give a denotational semantics. Marshall
and Orchard [30] take the linear logic perspective on synchronous binary ses-
sion types, and use grades to track linearity. They observe that communication
primitives are effects, but do not use grades to track them directly, and leave
deadlock-freedom open (cf. [30, Section 11]).
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Asynchronous subtyping Recent work on asynchronous subtyping includes the
undecidablity result of [5], works focused on taming this undecidablity [6,3], and
mechanization [16]. Our formulation of asynchronous subtyping, by character-
ising when the protocol requires or permits a message to be sent or received,
is entirely different to the formulations appearing in these works, and yet is
equivalent to the sound and complete subtyping of [18]. Compared to [18], our
formulation avoids any use of session trees. Session trees are infinite structures,
and thus cause some difficulties when it comes to implementing subtyping [16];
our reformulation shows that we do not need to involve session trees. Moreover,
session-tree unfolding is defined only for closed session types, and hence [18]
define subtyping only for closed session types. By avoiding session trees, we are
able to provide the first extension of this subtyping to non-closed session types.

Typed bisimulations Kouzapas et al. study a bisimulation method which char-
acterises a typed contextual equality in a higher-order binary session π-calculus
[27], and applied it to measure the expressiveness of higher-order session pro-
cesses [26]. Kouzapas and Yoshida [28] propose a typed bisimulation, controlled
by declared global types, for a synchronous multiparty session π-calculus. We
use typed bisimulations to justify the correctness of our denotational semantics.

Models of computational effects Kavvos [25], improving on some earlier work by
Plotkin and Power [34], gives a general adequacy result for computational effects.
Our adequacy result (Corollary 20) may follow from a graded variant of Kavvos’s
result, but there is none in the literature yet. There are various monadic models
of shared-state concurrency [2,14,36,15], as opposed to message-passing; these
bear little resemblance to our model.

9 Conclusions

This work is the first to provide a formal mathematical model for reasoning
about asynchronous message-passing computation. We show that every multi-
party session type T can be interpreted a set of computation trees, and thus that
computation trees provide a basis for reasoning about asynchrony, even without
message queues. Computation trees provide an adequate denotational seman-
tics for a simple call-by-value programing language with message-passing as a
computational effect, namely SafeMP. Since it is based on well-studied tools for
studying computational effects, we expect that we can add more programming
features to SafeMP without much difficulty. We also hope our computational-
effects perspective on session types will enable the application of more of the
vast computational effects literature to session types. Asynchronous session sub-
typing is a particular focus of our work. It is known to be difficult to reason
about, but we have found our reformulation to be helpful with such reasoning.
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