
Designing Asynchronous Multiparty Protocols with1

Crash-Stop Failures (Artifact)2

Adam D. Barwell #3

University of St. Andrews and University of Oxford, UK4

Ping Hou #5

University of Oxford, UK6

Nobuko Yoshida #7

University of Oxford, UK8

Fangyi Zhou #9

Imperial College London and University of Oxford, UK10

Abstract
We introduce Teatrino, a toolchain that supports
handling multiparty protocols with crash-stop fail-
ures and crash-handling behaviours. Teatrino
accompanies the novel MPST theory in the related
article, and enables users to generate fault-tolerant
protocol-conforming Scala code from Scribble
protocols. Local types are projected from the global
protocol, enabling correctness-by-construction, and
are expressed directly as Scala types via the
Effpi concurrency library. Teatrino extends both

Scribble and Effpi with support for crash-stop
behaviour. The generated Scala code is execut-
able and can be further integrated with existing
systems. The accompanying theory in the related
article guarantees deadlock-freedom and liveness
properties for failure handling protocols and their
implementation. This artifact includes examples,
extended from both session type and distributed
systems literature, featured in the related article.

2012 ACM Subject Classification Software and its engineering → Source code generation; Software
and its engineering → Concurrent programming languages; Theory of computation → Process calculi;
Theory of computation → Distributed computing models
Keywords and phrases Session Types, Concurrency, Failure Handling, Code Generation, Scala
Digital Object Identifier 10.4230/DARTS.9.2.9
Funding Work supported by: EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1, EP/L00058X/1,
EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1, NCSS/EPSRC VeTSS,
and Horizon EU TaRDIS 101093006.
Acknowledgements We thank the anonymous reviewers for their useful comments and suggestions. We
thank Jia Qing Lim for his contribution to the Effpi extension. We thank Alceste Scalas for useful
discussions and advice in the development of this paper and for his assistance with Effpi.

Related Article A.D. Barwell, P. Hou, N. Yoshida, F. Zhou, “Designing Asynchronous Multiparty
Protocols with Crash-Stop Failures”, in 37th European Conference on Object-Oriented Programming
(ECOOP 2023), LIPIcs, Vol. 263, pp. 30:1–30:29, 2023.
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17-21, 2023, Seattle, Washington, United States

1 Scope11

The artifact presents Teatrino, a code generation toolchain supporting Multiparty Session Type12

(MPST) protocols with crash-stop failures and crash-handling behaviours. Teatrino is written13

in Haskell and implements both global and local types, including projection, from the related14

article.15

© Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 9, pp. 9:1–9:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adb23@st-andrews.ac.uk 
https://orcid.org/0000-0003-1236-7160 
mailto:ping.hou@cs.ox.ac.uk 
https://orcid.org/0000-0001-6899-9971 
mailto:nobuko.yoshida@cs.ox.ac.uk 
https://orcid.org/0000-0002-3925-8557 
mailto:fangyi.zhou15@imperial.ac.uk 
https://orcid.org/0000-0002-8973-0821 
https://doi.org/10.4230/DARTS.9.2.9
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


9:2 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures (Artifact)

Global types are derived from a subset of the Scribble syntax [2] accepted by νScr, extended16

to support our crash-handling model, which is consumed by Teatrino as input. Protocol-17

conforming Scala code is generated via projection to local types. Runtime types, as indicated18

in the related article, are not supported in Teatrino since these are not used when specifying19

protocols. Generated code uses an extended form of the Effpi concurrency library; although20

executable upon generation, the code can be extended and integrated with existing systems by21

the programmer.22

The artifact contains protocol specifications for all examples presented in the related article.23

The artifact additionally includes dependencies and configuration files in order to facilitate the24

execution of generated code.25

For more details, please consult Section 6 in the related article, Appendix G in the full26

version [1], and the README file in the artifact.27

2 Content28

The artifact is packaged as a Docker image, containing the source code of Teatrino, our tool,29

and our extended Effpi concurrency library. The artifact also includes the benchmarks used in30

the paper to evaluate our toolchain.31

We enumerate the contents of the home user directory (/home/mpst/) below (∗ indicates an32

executable file):33

Lib/Teatrino/: contains the source code for our Teatrino tool. We use the Stack build34

system.35

build.sbt: is the Scala sbt build file used to compile and run the generated code.36

effpi/: contains the extended Effpi concurrency library. Note that references to authors37

and/or copyright holders are to original authors and/or copyright holders of the library.38

examples/: contains example protocols.39

genAll.sh∗: generates code using Teatrino for all Scribble files in effpi.40

project/: configuration files used by build.sbt.41

runScala.sh∗: script for running a single Scala file generated by Teatrino.42

The home user directory may also contain the below subdirectories.43

scala/: default output directory for generated code, produced by Teatrino.44

effpi_sandbox/: used to run generated code, produced by runScala.sh.45

3 Getting the artifact46

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the47

Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available48

at: https://zenodo.org/record/7974824. The source files can be accessed at https://github.49

com/adbarwell/ECOOP23-Artefact.50

4 Tested platforms51

The artifact has been tested under Linux (Ubuntu 22.04.01) and macOS (Ventura 13.3.1, M2). In52

principle, it should be able to run under a correct installation of Docker.53

5 License54

The artifact is available under the MIT licence (https://opensource.org/license/mit/).55

https://zenodo.org/record/7974824
https://github.com/adbarwell/ECOOP23-Artefact
https://github.com/adbarwell/ECOOP23-Artefact
https://github.com/adbarwell/ECOOP23-Artefact
https://opensource.org/license/mit/


A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 9:3

6 MD5 sum of the artifact56

94cc09960ca3a9558cc30925291eca5d57

7 Size of the artifact58

1.3 GiB59

A Additional Information60

For additional information, readers are invited to consult the README.md file in the Docker image,61

which contains information on how to use the artifact. Alternatively, the README file is available62

online at https://github.com/adbarwell/ECOOP23-Artefact/blob/master/README.md.63

References
1 Adam D. Barwell, Ping Hou, Nobuko Yoshida,

and Fangyi Zhou. Designing asynchronous multi-
party protocols with crash-stop failures. CoRR,
abs/2305.06238, 2023. arXiv:2305.06238, doi:
10.48550/arXiv.2305.06238.

2 Nobuko Yoshida, Raymond Hu, Rumyana Neykova,
and Nicholas Ng. The scribble protocol language.
In 8th International Symposium on Trustworthy
Global Computing - Volume 8358, TGC 2013, pages
22–41, Berlin, Heidelberg, 2014. Springer-Verlag.
doi:10.1007/978-3-319-05119-2_3.

DARTS

https://github.com/adbarwell/ECOOP23-Artefact/blob/master/README.md
http://arxiv.org/abs/2305.06238
https://doi.org/10.48550/arXiv.2305.06238
https://doi.org/10.48550/arXiv.2305.06238
https://doi.org/10.1007/978-3-319-05119-2_3

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Additional Information

