
Designing Asynchronous Multiparty Protocols with
Crash-Stop Failures
Adam D. Barwell #

University of St. Andrews and University of Oxford, UK

Ping Hou #

University of Oxford, UK

Nobuko Yoshida #

University of Oxford, UK

Fangyi Zhou #

Imperial College London and University of Oxford, UK

Abstract
Session types provide a typing discipline for message-passing systems. However, most session type
approaches assume an ideal world: one in which everything is reliable and without failures. Yet
this is in stark contrast with distributed systems in the real world. To address this limitation, we
introduce Teatrino, a code generation toolchain that utilises asynchronous multiparty session types
(MPST) with crash-stop semantics to support failure handling protocols.

We augment asynchronous MPST and processes with crash handling branches. Our approach
requires no user-level syntax extensions for global types and features a formalisation of global
semantics, which captures complex behaviours induced by crashed/crash handling processes. The
sound and complete correspondence between global and local type semantics guarantees deadlock-
freedom, protocol conformance, and liveness of typed processes in the presence of crashes.

Our theory is implemented in the toolchain Teatrino, which provides correctness by construction.
Teatrino extends the Scribble multiparty protocol language to generate protocol-conforming
Scala code, using the Effpi concurrent programming library. We extend both Scribble and Effpi
to support crash-stop behaviour. We demonstrate the feasibility of our methodology and evaluate
Teatrino with examples extended from both session type and distributed systems literature.

2012 ACM Subject Classification Software and its engineering → Source code generation; Software
and its engineering → Concurrent programming languages; Theory of computation → Process calculi;
Theory of computation → Distributed computing models

Keywords and phrases Session Types, Concurrency, Failure Handling, Code Generation, Scala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.30

Related Version Full version: https://arxiv.org/abs/2305.06238

Supplementary Material ECOOP 2023 Artifact Evaluation approved artifact:
http://doi.org/10.5281/zenodo.7714133
Source code for the artifact: https://github.com/adbarwell/ECOOP23-Artefact

Funding Work supported by: EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1, EP/L00058X/1,
EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1, NCSS/EPSRC
VeTSS, and Horizon EU TaRDIS 101093006.

Acknowledgements We thank the anonymous reviewers for their useful comments and suggestions.
We thank Jia Qing Lim for his contribution to the Effpi extension. We thank Alceste Scalas for
useful discussions and advice in the development of this paper and for his assistance with Effpi.

© Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 30; pp. 30:1–30:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adb23@st-andrews.ac.uk
https://orcid.org/0000-0003-1236-7160
mailto:ping.hou@cs.ox.ac.uk
https://orcid.org/0000-0001-6899-9971
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
mailto:fangyi.zhou15@imperial.ac.uk
https://orcid.org/0000-0002-8973-0821
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://arxiv.org/abs/2305.06238
http://doi.org/10.5281/zenodo.7714133
https://github.com/adbarwell/ECOOP23-Artefact
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

1 Introduction

Background As distributed programming grows increasingly prevalent, significant research
effort has been devoted to improve the reliability of distributed systems. A key aspect of
this research focuses on studying unreliability (or, more specifically, failures). Modelling
unreliability and failures enables a distributed system to be designed to be more tolerant of
failures, and thus more resilient.

In pursuit of methods to achieve safety in distributed communication systems, session
types [19] provide a lightweight, type system–based approach to message-passing concurrency.
In particular, Multiparty Session Types (MPST) [20] facilitate the specification and verification
of communication between message-passing processes in concurrent and distributed systems.
The typing discipline prevents common communication-based errors, e.g. deadlocks and
communication mismatches [21, 37]. On the practical side, MPST have been implemented in
various mainstream programming languages [7, 10, 11, 22, 24, 25, 28, 30], which facilitates their
applications in real-world programs.

Nevertheless, the challenge to account for unreliability and failures persists for session
types: most session type systems assume that both participants and message transmissions
are reliable without failures. In a real-world setting, however, participants may crash,
communications channels may fail, and messages may be lost. The lack of failure modelling in
session type theories creates a barrier to their applications to large-scale distributed systems.

Recent works [3, 26, 27, 33, 42] close the gap of failure modelling in session types with
various techniques. [42] introduces failure suspicion, where a participant may suspect their
communication partner has failed, and act accordingly. [33] introduces reliability annotations
at type level, and fall back to a given default value in case of failures. [26] proposes a
framework of affine multiparty session types, where a session can terminate prematurely, e.g.
in case of failures. [3] integrates crash-stop failures, where a generalised type system validates
safety and liveness properties with model checking; [27] takes a similar approach, modelling
more kinds of failures in a session type system, e.g. message losses, reordering, and delays.

While steady advancements are made on the theoretical side, the implementations of those
enhanced session type theories seem to lag behind. Barring the approaches in [26,42], the
aforementioned approaches [3,27,33] do not provide session type API support for programming
languages.1 To bring the benefits of the theoretical developments into real-world distributed
programming, a gap remains to be filled on the implementation side.

This Paper We introduce a top-down methodology for designing asynchronous multiparty
protocols with crash-stop failures: (1) We use an extended asynchronous MPST theory,
which models crash-stop failures, and show that the usual session type guarantees remain
valid, i.e. communication safety, deadlock-freedom, and liveness; (2) We present a toolchain
for implementing asynchronous multiparty protocols, under our new asynchronous MPST
theory, in Scala, using the Effpi concurrency library [39].

The top-down design methodology comes from the original MPST theory [20], where the
design of multiparty protocols begins with a given global type (top), and implementations rely
on local types (bottom) obtained from the global type. The global and local types reflect the
global and local communication behaviours respectively. Well-typed implementations that
conform to a global type are guaranteed to be correct by construction, enjoying full guarantees

1 [3] provides a prototype implementation, utilising the mCRL2 model checker [5], for verifying type-level
properties, instead of a library for general use.

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:3

(safety, deadlock-freedom, liveness) from the theory. This remains the predominant approach
for implementing MPST theories, and is also followed by some aforementioned systems [26,42].

We model crash-stop failures [6, §2.2], i.e. a process may fail arbitrarily and cease to
interact with others. This model is simple and expressive, and has been adopted by other
approaches [3, 27]. Using global types in our design for handling failures in multiparty
protocols presents two distinct advantages: (1) global types provide a simple, high-level
means to both specify a protocol abstractly and automatically derive local types; and,
(2) desirable behavioural properties such as communication safety, deadlock-freedom, and
liveness are guaranteed by construction. In contrast to the synchronous semantics in [3], we
model an asynchronous semantics, where messages are buffered whilst in transit. We focus on
asynchronous systems since most communication in the real distributed world is asynchronous.
In [27], although the authors develop a generic typing system incorporating asynchronous
semantics, their approach results in the type-level properties becoming undecidable [27, §4.4].
With global types, we restore the decidability at a minor cost to expressivity.

To address the gap on the practical side, we present a code generator toolchain, Teatrino,
to implement our MPST theory. Our toolchain takes an asynchronous multiparty protocol
as input, using the protocol description language Scribble [43], and generates Scala code
using the Effpi [39] concurrency library as output.

The Scribble Language [43] is designed for describing multiparty communication proto-
cols, and is closely connected to MPST theory (cf. [31]). This language enables a programmatic
approach for expressing global types and designing multiparty protocols. The Effpi con-
currency library [39] offers an embedded Domain Specific Language (DSL) that provides
a simple actor-based API. The library offers both type-level and value-level constructs for
processes and channels. Notably, the type-level constructs reflect the behaviour of programs
(i.e. processes) and can be used as specifications. Our code generation technique, as well as
the Effpi library itself, utilises the type system features introduced in Scala 3, including
match types and dependent function types, to encode local types in Effpi. This approach
enables us to specify and verify program behaviour at the type level, resulting in a more
powerful and flexible method for handling concurrency.

By extending Scribble and Effpi to support crash detection and handling, our toolchain
Teatrino provides a lightweight way for developers to take advantage of our theory, bridging
the gap on the practical side. We evaluate the expressivity and feasibility of Teatrino with
examples incorporating crash handling behaviour, extended from session type literature.

Outline We begin with an overview of our methodology in §2. We introduce an asynchronous
multiparty session calculus in §3 with semantics of crashing and crash handling. We introduce
an extended theory of asynchronous multiparty session types with semantic modelling of
crash-stop failures in § 4. We present a typing system for the multiparty session calculus
in § 5. We introduce Teatrino, a code generation toolchain that implements our theory
in § 6, demonstrating how our approach is applied in the Scala programming language.
We evaluate our toolchain with examples from both session type and distributed systems
literature in § 7. We discuss related work in § 8 and conclude in § 9. Full proofs, auxiliary
material, and more details of Teatrino can be found in the full version of the paper [2].
Additionally, our toolchain and examples used in our evaluation are available on GitHub.

2 Overview

In this section, we give an overview of our methodology for designing asynchronous multiparty
protocols with crash-stop failures, and demonstrate our code generation toolchain, Teatrino.

ECOOP 2023

https://github.com/adbarwell/ECOOP23-Artefact

30:4 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

A Global Type G with crash

projection (↾)

Local Type for L T L Local Type for I with crash T I Local Type for C T C

typing (⊢)

Process for L PL Process for I with crash PI Process for C PC

Figure 1 Top-down View of MPST with Crash

Asynchronous Multiparty Protocols with Crash-Stop Failures We follow a standard top-
down design approach enabling correctness by construction, but enrich asynchronous MPST
with crash-stop semantics. As depicted in Fig. 1, we formalise (asynchronous) multiparty
protocols with crash-stop failures as global types with crash handling branches (crash). These
are projected into local types, which may similarly contain crash handling branches (crash).
The projected local types are then used to type-check processes (also with crash handling
branches (crash)) that are written in a session calculus. As an example, we consider a simple
distributed logging scenario, which is inspired by the logging-management protocol [26], but
extended with a third participant.

The Simpler Logging protocol consists of a logger (L) that controls the logging services,
an interface (I) that provides communications between logger and client, and a client (C)
that requires logging services via interface. Initially, L sends a heartbeat message trigger
to I. Then C sends a command to L to read the logs (read). When a read request is sent, it
is forwarded to L, and L responds with a report, which is then forwarded onto C. Assuming
all participants (logger, interface, and client) are reliable, i.e. without any failures or crashes,
this logging behaviour can be represented by the global type G0:

G0 = L→I:trigger.C→I:read.I→L:read.L→I:report(log).I→C:report(log).end (1)

Here, G0 is a specification of the Simpler Logging protocol between multiple roles from a
global perspective.

In the real distributed world, all participants in the Simpler Logging system may fail.
Ergo, we need to model protocols with failures or crashes and handling behaviour, e.g. should
the client fail after the logging has started, the interface will inform the logger to stop and
exit. We follow [6, §2.2] to model a crash-stop semantics, where we assume that roles can
crash at any time unless assumed reliable (never crash). For simplicity, we assume I and
L to be reliable. The above logging behaviour, incorporating crash-stop failures, can be
represented by extending G0 with a branch handling a crash of C:

G = L→I:trigger.C→I:
{

read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}
(2)

We model crash detection on receiving roles: when I is waiting to receive a message from
C, the receiving role I is able to detect whether C has crashed. Since crashes are detected
only by the receiving role, we do not require a crash handling branch on the communication
step between I and C – nor do we require them on any interaction between L and I (since we
are assuming that L and I are reliable).

Following the MPST top-down methodology, a global type is then projected onto local
types, which describe communications from the perspective of a single role. In our unreliable
Simpler Logging example, G is projected onto three local types (one for each role C, L, I):

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:5

Protocol.scr Teatrino Protocol.scala Final.scala· · ·
Programmer

Integration

Figure 2 Workflow of Teatrino

TC = I⊕read.I&report(log).end TL = I⊕trigger.I&
{

read.I⊕report(log).end
fatal.end

}
TI = L&trigger.C&

{
read.L⊕read.L&report(log).C⊕report(log).end
crash.L⊕fatal.end

}
Here, TI states that I first receives a trigger message from L; then I either expects a read
request from C, or detects the crash of C and handles it (in crash) by sending the fatal
message to notify L. We add additional crash modelling and introduce a stop type for crashed
endpoints. We show the operational correspondence between global and local type semantics,
and demonstrate that a projectable global type always produces a safe, deadlock-free, and
live typing context.

The next step in this top-down methodology is to use local types to type-check processes
Pi executed by role pi in our session calculus. For example, TI can be used to type check I
that executes the process:

L?trigger.
∑ {

C?read.L!read.L?report(x).C!report⟨x⟩.0
C?crash.L!fatal.0

}
In our operational semantics (§ 3), we allow active processes executed by unreliable roles
to crash arbitrarily. Therefore, the role executing the crashed process also crashes, and is
assigned the local type stop. To ensure that a communicating process is type-safe even in
presence of crashes, we require that its typing context satisfies a safety property accounting for
possible crashes (Def. 13), which is preserved by projection. Additional semantics surrounding
crashes adds subtleties even in standard results. We prove subject reduction and session
fidelity results accounting for crashes and sets of reliable roles.

Code Generation Toolchain: Teatrino To complement the theory, we present a code
generation toolchain, Teatrino, that generates protocol-conforming Scala code from a mul-
tiparty protocol. We show the workflow diagram of our toolchain in Fig. 2. Teatrino takes
a Scribble protocol (Protocol.scr) and generates executable code (Protocol.scala) conforming
to that protocol, which the programmer can integrate with existing code (Final.scala).

Teatrino implements our session type theory to handle global types expressed using
the Scribble protocol description language [43], a programmer-friendly way for describing
multiparty protocols. We extend the syntax of Scribble slightly to include constructs for
crash recovery branches and reliable roles.

The generated Scala code utilises the Effpi concurrency library [39]. Effpi is an
embedded domain specific language in Scala 3 that offers a simple Actor-based API for
concurrency. Our code generation technique, as well the Effpi library itself, leverages the
type system features introduced in Scala 3, e.g. match types and dependent function types,
to encode local types in Effpi. We extend Effpi to support crash detection and handling.

As a brief introduction to Effpi, the concurrency library provides types for processes
and channels. For processes, an output process type Out[A, B] describes a process that
uses a channel of type A to send a value of type B, and an input process type In[A, B, C]
describes a process that uses a channel of type A to receive a value of type B, and pass it
to a continuation type C. Process types can be sequentially composed by the >>: operator.
For channels, Chan[X] describes a channel that can be used communicate values of type X.
More specifically, the usage of a channel can be reflected at the type level, using the types

ECOOP 2023

30:6 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

InChan[X]/OutChan[X] for input/output channels.

1 type I[C0 <: InChan[Trigger], C1 <: OutChan[Fatal],
2 C2 <: InChan[Read], C3 <: InChan[Report], C4 <: OutChan[Report]]
3 = InErr[C0, Trigger,
4 (X <: Read) =>
5 Out[C3,Read] >>: In[C4, Report, (Y <: Log) => Out[C5, Report]],
6 (Err <: Throwable) => Out[C2,Fatal]
7]

Figure 3 Effpi Type for TI

As a sneak peek of the code we generate, in Fig. 3, we show the generated Effpi
representation for the projected local type TI from the Simpler Logging example. Readers
may be surprised by the difference between TI and the generated Effpi type I. This is
because the process types need their respective channel types, namely the type variables
C0, C1, etc. bounded by InChan[...] and OutChan[...]. We explain the details of code
generation in § 6.2, and describe an interesting challenge posed by the channel generation
procedure in § 6.3.

For crash handling behaviour, we introduce a new type InErr, whose last argument
specifies a continuation type to follow in case of a crash. Line 3 in Fig. 3 shows the crash
handling behaviour: sending a message of type Fatal, which reflects the crash branch in the
local type TI. We give more details of the generated code in § 6.2.

Code generated by Teatrino is executable, protocol-conforming, and can be specialised
by the programmer to integrate with existing code. We evaluate our toolchain on examples
taken from both MPST and distributed programming literature in § 7. Moreover, we extend
each example with crash handling behaviour to define unreliable variants. We demonstrate
that, with Teatrino, code generation takes negligible time, and all potential crashes are
accompanied with crash handlers.

3 Crash-Stop Asynchronous Multiparty Session Calculus

In this section, we formalise the syntax and operational semantics of our asynchronous
multiparty session calculus with process failures and crash detection.

Syntax Our asynchronous multiparty session calculus models processes that may crash
arbitrarily. Our formalisation is based on [16] – but in addition, follows the fail-stop model
in [6, §2.7], where processes may crash and never recover, and process failures can be detected
by failure detectors [6, §2.6.2] [8] when attempting to receive messages.

We give the syntax of processes in Fig. 4. In our calculus, we assume that there are basic
expressions e (e.g. true , false , 7 + 11) that are assigned basic types B (e.g. int, bool). We
write e ↓ v to denote an expression e evaluates to a value v (e.g. (7 < 11) ↓ true , (1 + 1) ↓ 2).

A process, ranged over by P , Q, is a communication agent within a session. An output
process p!m⟨e⟩.P sends a message to another role p in the session, where the message is
labelled m, and carries a payload expresion e, then the process continues as P . An external
choice (input) process

∑
i∈I p?mi(xi).P i receives a message from another role p in the session,

among a finite set of indexes I, if the message is labelled mi, then the payload would be
received as xi, and process continues as Pi. Note that our calculus uses crash as a special
message label denoting that a participant (role) has crashed. Such a label cannot be sent
by any process, but a process can implement crash detection and handling by receiving it.
Consequently, an output process cannot send a crash message (side condition m ̸= crash),
whereas an input process may include a crash handling branch of the form crash.P ′ meaning

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:7

P , Q ::= Processes∑
i∈I

p?mi(xi).P i external choice∣∣ p!m⟨e⟩.P (where m ̸= crash) output∣∣ if e then P else Q conditional∣∣ X variable∣∣ µX.P recursion∣∣ 0 inaction∣∣ crashed

M ::= Sessions
p ◁ P | p ◁ h participant∣∣ M | M parallel

h ::= Queues
ϵ empty∣∣ ⊘ unavailable∣∣ (p, m(v)) message∣∣ h · h concatenation

Figure 4 Syntax of sessions, processes, and queues. Noticeable changes w.r.t. standard session
calculus [16] are highlighted.
that P ′ is executed when the sending role has crashed. A conditional process if e then P else Q

continues as either P or Q depending on the evaluation of e. We allow recursion at the
process level using µX.P and X, and we require process recursion variables to be guarded
by an input or an output action; we consider a recursion process structurally congruent to
its unfolding µX.P ≡ P{µX.P/X}. Finally, we write 0 for an inactive process, representing a
successful termination; and for a crashed process, representing a termination due to failure.

An incoming queue2, ranged over by h, h′, is a sequence of messages tagged with their
origin. We write ϵ for an empty queue; ⊘ for an unavailable queue; and (p, m(v)) for a
message sent from p, labelled m, and containing a payload value v. We write h1 · h2 to
denote the concatenation of two queues h1 and h2. When describing incoming queues, we
consider two messages from different origins as swappable: h1 · (q1, m1(v1)) · (q2, m2(v2)) · h2 ≡
h1 · (q2, m2(v2)) · (q1, m1(v1)) · h2 whenever q1 ≠ q2. Moreover, we consider concatenation (·)
as associative, and the empty queue ϵ as the identity element for concatenation.

A session, ranged over by M, M′, consists of processes and their respective incoming
queue, indexed by their roles. A single entry for a role p is denoted p ◁ P | p ◁ h, where P is
the process for p and h is the incoming queue. Entries are composed together in parallel
as M | M′, where the roles in M and M′ are disjoint. We consider parallel composition as
commutative and associative, with p ◁ 0 | p ◁ ϵ as a neutral element of the operator. We write∏

i∈I(pi ◁ Pi | pi ◁ hi) for the parallel composition of multiple entries in a set.

Operational Semantics of our session calculus is given in Def. 1, using a standard structural
congruence ≡ defined in [16]. Our semantics parameterises on a (possibly empty) set of
reliable roles R, which are assumed to never crash.

▶ Definition 1 (Session Reductions). Session reduction →R is inductively defined by the rules
in Fig. 5, parameterised by a fixed set R of reliable roles. We write → when R is insignificant.
We write →R

∗ (resp. →∗) for the reflexive and transitive closure of →R (resp. →).

Our operational semantics retains the basic rules in [16], but also includes (highlighted)
rules for crash-stop failures and crash handling, adapted from [3]. Rules [r-send] and [r-rcv]

model ordinary message delivery and reception: an output process located at p sending to q
appends a message to the incoming queue of q; and an input process located at p receiving
from q consumes the first message from the incoming queue. Rules [r-cond-T] and [r-cond-F]

model conditionals; and rule [r-struct] permits reductions up to structural congruence.
With regard to crashes and related behaviour, rule [r-] models process crashes: an active

(P ̸= 0) process located at an unreliable role (p /∈ R) may reduce to a crashed process p ◁ ,

2 In [16], the queues are outgoing instead of incoming. We use incoming queues to model our crashing
semantics more easily.

ECOOP 2023

30:8 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

[r-] p ◁ P | p ◁ hp | M →R p ◁ | p ◁ ⊘ | M (P ̸= 0, p /∈ R)
[r-send] p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁ Q | q ◁ hq | M

→ p ◁ P | p ◁ hp | q ◁ Q | q ◁ hq · (p, m(v)) | M (e ↓ v, hq ̸= ⊘)
[r-send-] p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁ | q ◁ ⊘ | M → p ◁ P | p ◁ hp | q ◁ | q ◁ ⊘ | M
[r-rcv] p ◁

∑
i∈I

q?mi(xi).P i | p ◁ (q, mk(v)) · hp | M → p ◁ P k{v/xk} | p ◁ hp | M (k ∈ I)
[r-rcv-⊙] p ◁

∑
i∈I

q?mi(xi).P i | p ◁ hp | q ◁ | q ◁ ⊘ | M
→ p ◁ P k | p ◁ hp | q ◁ | q ◁ ⊘ | M (k ∈ I, mk = crash, ∄m, v : (q, m(v)) ∈ hp)

[r-cond-T] p ◁ if e then P else Q | p ◁ h | M → p ◁ P | p ◁ h | M (e ↓ true)
[r-cond-F] p ◁ if e then P else Q | p ◁ h | M → p ◁ Q | p ◁ h | M (e ↓ false)
[r-struct] M1 ≡ M′

1 and M′
1 → M′

2 and M′
2 ≡ M2 =⇒ M1 → M2

Figure 5 Reduction relation on sessions with crash-stop failures.
with its incoming queue becoming unavailable p ◁ ⊘. Rule [r-send-] models a message delivery
to a crashed role (and thus an unavailable queue), and the message becomes lost and would
not be added to the queue. Rule [r-rcv-⊙] models crash detection, which activates as a “last
resort”: an input process at p receiving from q would first attempt find a message from q in
the incoming queue, which engages the usual rule [r-recv]; if none exists and q has crashed
(q ◁), then the crash handling branch in the input process at p can activate. We draw
attention to the interesting fact that [r-recv] may engage even if q has crashed, in cases where
a message from q in the incoming queue may be consumed. We now illustrate our operational
semantics of sessions with an example.

▶ Example 2. Consider the session M = p◁P |p◁ϵ|q◁Q|q◁ϵ, where P = q!m⟨“abc”⟩.
∑ {

q?m′(x).0
q?crash.0

}
and Q =

∑ {
p?m(x).p!m′⟨42⟩.0
p?crash.0

}
. In this session, the process Q for q receives a message sent

from p to q; the process P for p sends a message from p to q, and then receives a message
sent from q to p. Let each role be unreliable, i.e. R = ∅, and P crash before sending. We
have M →∅ p ◁ | p ◁ ⊘ | q ◁ Q | q ◁ ϵ → p ◁ | p ◁ ⊘ | q ◁ 0 | q ◁ ϵ . We observe that when the
output process P located at an unreliable role p crashes (by [r-]), the resulting entry for p is
a crashed process (p ◁) with an unavailable queue (p ◁ ⊘). Subsequently, the input process
Q located at q can detect and handle the crash by [r-rcv-⊙] via its crash handling branch.

4 Asynchronous Multiparty Session Types with Crash-Stop Semantics

In this section, we present our asynchronous multiparty session types with crash-stop
semantics. We give an overview of global and local types with crashes in § 4.1, including
syntax, projection, subtyping, etc.; our key additions to the classic theory are crash handling
branches in both global and local types, and a special local type stop to denote crashed
processes. We give a Labelled Transition System (LTS) semantics to both global types (§ 4.2)
and configurations (i.e. a collection of local types and point-to-point communication queues,
§ 4.3). We discuss alternative design options of modelling crash-stop failures in § 4.4. We
relate the two semantics in § 4.5, and show that a configuration obtained via projection is
safe, deadlock-free, and live in § 4.6.

4.1 Global and Local Types with Crash-Stop Failures
The top-down methodology begins with global types to provide an overview of the communic-
ation between a number of roles (p, q, s, t, . . .), belonging to a (fixed) set R. At the other

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:9

B ::= int
∣∣ bool

∣∣ real
∣∣ unit

∣∣ . . . Basic types
G ::= p→q†: {mi(Bi).Gi}i∈I Transmission∣∣ p†⇝q:j {mi(Bi).Gi}i∈I (j ∈ I) Transmission en route∣∣ µt.G

∣∣ t
∣∣ end Recursion, Type variable, Termination

† ::= ·
∣∣ Crash annotation

S, T ::= p&{mi(Bi).Ti}i∈I

∣∣ p⊕{mi(Bi).Ti}i∈I External choice, Internal choice∣∣ µt.T
∣∣ t

∣∣ end
∣∣ stop Recursion, Type variable, Termination, Crash

Figure 6 Syntax of global types and local types. Runtime types are shaded.

end, we use local types to describe how a single role communicates with other roles from
a local perspective, and they are obtained via projection from a global type. We give the
syntax of both global and local types in Fig. 6, which are similar to syntax used in [3, 37].

Global Types are ranged over G, G′, Gi, . . ., and describe the behaviour for all roles from
a bird’s eye view. The syntax shown in shade are runtime syntax, which are not used for
describing a system at design-time, but for describing the state of a system during execution.
The labels m are taken from a fixed set of all labels M, and basic types B (types for payloads)
from a fixed set of all basic types B.

We explain each construct in the syntax of global types: a transmission, denoted
p→q†: {mi(Bi).Gi}i∈I , represents a message from role p to role q (with possible crash
annotations), with labels mi, payload types Bi, and continuations Gi, where i is taken from
an index set I. We require that the index set be non-empty (I ≠ ∅), labels mi be pair-wise
distinct, and self receptions be excluded (i.e. p ≠ q), as standard in session type works.
Additionally, we require that the special crash label (explained later) not be the only label in
a transmission, i.e. {mi | i ∈ I} ≠ {crash}. A transmission en route p†⇝q:j {mi(Bi).Gi}i∈I is
a runtime construct representing a message mj (index j) sent by p, and yet to be received
by q. Recursive types are represented via µt.G and t, where contractive requirements
apply [34, §21.8]. The type end describes a terminated type (omitted where unambiguous).

To model crashes and crash handling, we use crash annotations and crash handling
branches: a crash annotation , a new addition in this work, marks a crashed role (only
used in the runtime syntax), and we omit annotations for live roles, i.e. p is a live role, p is
a crashed role, and p† represents a possibly crashed role, namely either p or p . We use a
special label crash for handling crashes: this continuation denotes the protocol to follow when
the sender of a message is detected to have crashed by the receiver. The special label acts as
a ‘pseudo-message’: when a sender role crashes, the receiver can select the pseudo-message to
enter crash handling. We write roles(G) (resp. roles (G)) for the set of active (resp. crashed)
roles in a global type G, excluding (resp. consisting only of) those with a crash annotation .

Local Types are ranged over S, T , U, . . ., and describe the behaviour of a single role. An
internal choice (selection) (or an external choice (branching)), denoted p⊕{mi(Bi).Ti}i∈I (or
p&{mi(Bi).Ti}i∈I), indicates that the current role is to send to (or receive from) the role p.
Similarly to global types, we require pairwise-distinct, non-empty labels. Moreover, we require
that the crash label not appear in internal choices, reflecting that a crash pseudo-message
can never be sent; and that singleton crash labels not permitted in external choices. The type
end indicates a successful termination (omitted where unambiguous), and recursive types
follow a similar fashion to global types. We use a new runtime type stop to denote crashes.

Subtyping relation ⩽ on local types will be used in § 4.5 to relate global and local type
semantics. Our subtyping relation is mostly standard [37, Def. 2.5], except for an extra rule
for stop and additional requirements to support crash handling branch in external choices.

ECOOP 2023

30:10 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

Projection gives the local type of a participating role in a global type, defined as a partial
function that takes a global type G and a role p, and returns a local type, given by Def. 3.

▶ Definition 3 (Global Type Projection). The projection of a global type G onto a role p,
with respect to a set of reliable roles R, written G ↾R p, is:

(
q→r†: {mi(Bi).Gi}i∈I

)
↾R p =

r⊕{mi(Bi).(Gi ↾R p)}i∈{j∈I | mj ̸=crash} if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I

if p = r, and q /∈ R implies
∃k ∈ I : mk = crashd

i∈I Gi ↾R p if p ̸= q, and p ̸= r

(
q†⇝r:j {mi(Bi).Gi}i∈I

)
↾R p =

Gj ↾R p if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I

if p = r, and q /∈ R implies
∃k ∈ I : mk = crashd

i∈I Gi ↾R p if p ̸= q, and p ̸= r

(µt.G) ↾R p =
{

µt.(G ↾R p) if p ∈ G or fv(µt.G) ̸= ∅
end otherwise

t ↾R p = t
end ↾R p = end

where
d

is the merge operator for local types (full merging):
p&{mi(Bi).S′

i}i∈I ⊓p&
{

mj(Bj).T ′
j

}
j∈J

= p&{mk(Bk).(S′
k ⊓T ′

k)}k∈I∩J & p&{mi(Bi).S′
i}i∈I\J & p&

{
mj(Bj).T ′

j

}
j∈J\I

p⊕{mi(Bi).S′
i}i∈I ⊓ p⊕{mi(Bi).T ′

i }i∈I = p⊕{mi(Bi).(S′
i ⊓ T ′

i)}i∈I

µt.S ⊓ µt.T = µt.(S ⊓ T) t ⊓ t = t end ⊓ end = end

We parameterise our theory on a (fixed) set of reliable roles R, i.e. roles assumed to never
crash: if R = ∅, every role is unreliable and susceptible to crash; if roles(G) ⊆ R, every role
in G is reliable, and we simulate the results from the original MPST theory without crashes.
We base our definition of projection on [37], but include more (highlighted) cases to account
for reliable roles, crash branches, and runtime global types.

When projecting a transmission from q to r, we remove the crash label from the internal
choice at q, reflecting our model that a crash pseudo-message cannot be sent. Dually,
we require a crash label to be present in the external choice at r – unless the sender
role q is assumed to be reliable. Our definition of projection enforces that transmissions,
whenever an unreliable role is the sender (q /∈ R), must include a crash handling branch
(∃k ∈ I : mk = crash). This requirement ensures that the receiving role r can always handle
crashes whenever it happens, so that processes are not stuck when crashes occur. We explain
how these requirements help us achieve various properties by projection in § 4.6. The rest of
the rules are taken from the literature [37,40], without much modification.

4.2 Crash-Stop Semantics of Global Types
We now give a Labelled Transition System (LTS) semantics to global types, with crash-stop
semantics. To this end, we first introduce some auxiliary definitions. We define the transition
labels in Def. 4, which are also used in the LTS semantics of configurations (later in § 4.3).

▶ Definition 4 (Transition Labels). Let α be a transition label of the form:
α ::= p&q :m(B) (p receives m(B) from q)

∣∣ p⊕q :m(B) (p sends m(B) to q)∣∣ p (p crashes)
∣∣ p⊙q (p detects the crash of q)

The subject of a transition label, written subj(α), is defined as:
subj(p&q :m(B)) = subj(p⊕q :m(B)) = subj(p) = subj(p⊙q) = p.

The labels p⊕q :m(B) and p&q :m(B) describe sending and receiving actions respectively.
The crash of p is denoted by the label p , and the detection of a crash by label p⊙q: we
model crash detection at reception, the label contains a detecting role p and a crashed role q.

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:11

We define an operator to remove a role from a global type in Def. 5: the intuition is
to remove any interaction of a crashed role from the given global type. When a role has
crashed, we attach a crashed annotation, and remove infeasible actions, e.g. when the sender
and receiver of a transmission have both crashed. The removal operator is a partial function
that takes a global type G and a live role r (r ∈ roles(G)) and gives a global type G r.

▶ Definition 5 (Role Removal). The removal of a live role p in a global type G, written G p,
is defined as follows:

(p→q: {mi(Bi).Gi}i∈I) r =

p ⇝q:j {mi(Bi).(Gi r)}i∈I if p = r and ∃j ∈ I : mj = crash
p→q : {mi(Bi).(Gi r)}i∈I if q = r
p→q: {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(p⇝q:j {mi(Bi).Gi}i∈I) r =

p ⇝q:j {mi(Bi).(Gi r)}i∈I if p = r
Gj r if q = r
p⇝q:j {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(p→q : {mi(Bi).Gi}i∈I) r =
{

Gj r if p = r and ∃j ∈ I : mj = crash
p→q : {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(p ⇝q:j {mi(Bi).Gi}i∈I) r =
{

Gj r if q = r
p ⇝q:j {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(µt.G) r =
{

µt.(G r) if fv(µt.G) ̸= ∅ or roles(G r) ̸= ∅
end otherwise

t r = t end r = end

For simple cases, the removal of a role G r attaches crash annotations on all occurrences
of the removed role r throughout global type G inductively.

We draw attention to some interesting cases: when we remove the sender role p from
a transmission prefix p→q, the result is a ‘pseudo-transmission’ en route prefix p ⇝q : j

where mj = crash. This enables the receiver q to ‘receive’ the special crash after the crash
of p, hence triggering the crash handling branch. Recall that our definition of projection
requires that a crash handling branch be present whenever a crash may occur (q /∈ R).

When we remove the sender role p from a transmission en route prefix p⇝q : j, the
result retains the index j that was selected by p, instead of the index associated with crash
handling. This is crucial to our crash modelling: when a role crashes, the messages that the
role has sent to other roles are still available. We discuss alternative models later in § 4.4.

In other cases, where removing the role r would render a transmission (regardless of being
en route or not) meaningless, e.g. both sender and receiver have crashed, we simply remove
the prefix entirely.

We now give an LTS semantics to a global type G, by defining the semantics with a tuple
⟨C; G⟩, where C is a set of crashed roles. The transition system is parameterised by reliability
assumptions, in the form of a fixed set of reliable roles R. When unambiguous, we write G

as an abbreviation of ⟨∅; G⟩. We define the reduction rules of global types in Def. 6.

▶ Definition 6 (Global Type Reductions). The global type (annotated with a set of crashed
roles C) transition relation α−→R is inductively defined by the rules in Fig. 7, parameterised
by a fixed set R of reliable roles. We write ⟨C; G⟩ −→R ⟨C′; G′⟩ if there exists α such
that ⟨C; G⟩ α−→R ⟨C′; G′⟩; we write ⟨C; G⟩ −→R if there exists C′, G′, and α such that
⟨C; G⟩ α−→R ⟨C′; G′⟩, and −→∗

R for the transitive and reflexive closure of −→R.

Rules [GR-⊕] and [GR-&] model sending and receiving messages respectively, as are standard
in existing works [13]. We add an (highlighted) extra condition that the message exchanged
not be a pseudo-message carrying the crash label. [GR-µ] is a standard rule handling recursion.

ECOOP 2023

30:12 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

p /∈ R p ∈ roles(G) G ̸= µt.G′

⟨C; G⟩ p −→R ⟨C ∪ {p}; G p⟩
[GR-] ⟨C; G{µt.G/t}⟩ α−→R ⟨C′; G′⟩

⟨C; µt.G⟩ α−→R ⟨C′; G′⟩
[GR-µ]

j ∈ I mj ̸= crash

⟨C; p→q: {mi(Bi).G′
i}i∈I⟩

p⊕q:mj(Bj)
−−−−−−→R ⟨C; p⇝q:j {mi(Bi).G′

i}i∈I⟩
[GR-⊕]

j ∈ I mj ̸= crash

⟨C; p†⇝q:j {mi(Bi).G′
i}i∈I⟩

q&p:mj(Bj)
−−−−−−→R ⟨C; G′

j⟩
[GR-&]

j ∈ I mj = crash

⟨C; p ⇝q:j {mi(Bi).G′
i}i∈I⟩ q⊙p−−→R ⟨C; G′

j⟩
[GR-⊙]

j ∈ I mj ̸= crash

⟨C; p→q : {mi(Bi).G′
i}i∈I⟩

p⊕q:mj(Bj)
−−−−−−→R ⟨C; G′

j⟩
[GR- m]

∀i ∈ I : ⟨C; G′
i⟩

α−→R ⟨C′; G′′
i ⟩ subj(α) /∈ {p, q}

⟨C; p→q†: {mi(Bi).G′
i}i∈I⟩ α−→R ⟨C′; p→q†: {mi(Bi).G′′

i }i∈I⟩
[GR-Ctx-i]

∀i ∈ I : ⟨C; G′
i⟩

α−→R ⟨C′; G′′
i ⟩ subj(α) ̸= q

⟨C; p†⇝q:j {mi(Bi).G′
i}i∈I⟩ α−→R ⟨C′; p†⇝q:j {mi(Bi).G′′

i }i∈I⟩
[GR-Ctx-ii]

Figure 7 Global Type Reduction Rules

We introduce (highlighted) rules to account for crash and consequential behaviour. Rule
[GR-] models crashes, where a live (p ∈ roles(G)), but unreliable (p /∈ R) role p may crash.
The crashed role p is added into the set of crashed roles (C ∪ {p}), and removed from the
global type, resulting in a global type G p. Rule [GR-⊙] is for crash detection, where a
live role q may detect that p has crashed at reception, and then continues with the crash
handling continuation labelled crash. This rule only applies when the message en route is
a pseudo-message, since otherwise a message rests in the queue of the receiver and can be
received despite the crash of the sender (cf. [GR-&]). Rule [GR- m] models the orphaning of a
message sent from a live role p to a crashed role q. Similar to the requirement in [GR-⊕], we
add the side condition that the message sent is not a pseudo-message.

Finally, rules [GR-Ctx-i] and [GR-Ctx-ii] allow non-interfering reductions of (intermediate)
global types under prefix, provided that all of the continuations can be reduced by that label.
▶ Remark 7 (Necessity of C in Semantics). While we can obtain the set of crashed roles in any
global type G via roles (G), we need a separate C for bookkeeping purposes. To illustrate,
let G = p→q:{m.end, crash.end}; we can have the following reductions:

⟨∅; G⟩ q −→∅ ⟨{q}; p→q :{m.end, crash.end}⟩ p⊕q:m−−−→∅ ⟨{q}; end⟩
While we can deduce q is a crashed role in the interim global type, the same information
cannot be recovered from the final global type end.

4.3 Crash-Stop Semantics of Configurations
After giving semantics to global types, we now give an LTS semantics to configurations, i.e.
a collection of local types and communication queues across roles. We first give a definition
of configurations in Def. 8, followed by their reduction rules in Def. 9.

▶ Definition 8 (Configurations). A configuration is a tuple Γ; ∆, where Γ is a typing context,
denoting a partial mapping from roles to local types, defined as: Γ ::= ∅

∣∣ Γ, p▷T . We write
Γ[p 7→ T] for updates: Γ[p 7→ T](p) = T and Γ[p 7→ T](q) = Γ(q) (where p ̸= q).

A queue, denoted τ , is either a (possibly empty) sequence of messages M1·M2· · · · ·Mn,
or unavailable ⊘. We write ϵ for an empty queue, and M ·τ ′ for a non-empty queue with

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:13

Γ(p) = q⊕{mi(Bi).Ti}i∈I k ∈ I

Γ; ∆ p⊕q:mk(Bk)−−−−−−−→ Γ[p 7→ Tk]; ∆[p, q 7→ ∆(p, q)·mk(Bk)]
[Γ-⊕]

Γ(p) = q&{mi(Bi).Ti}i∈I k ∈ I m′ = mk B′ = Bk ∆(q, p) = m′(B′)·τ ′ ̸= ⊘

Γ; ∆ p&q:mk(Bk)−−−−−−−→ Γ[p 7→ Tk]; ∆[q, p 7→ τ ′]
[Γ-&]

Γ(p) = µt.T Γ[p 7→ T {µt.T/t}]; ∆ α−→ Γ′; ∆′

Γ; ∆ α−→ Γ′; ∆′
[Γ-µ]

Γ(p) ̸= end Γ(p) ̸= stop

Γ; ∆ p −→ Γ[p 7→ stop]; ∆[·, p 7→ ⊘]
[Γ-]

Γ(q) = p&{mi(Bi).Ti}i∈I Γ(p) = stop k ∈ I mk = crash ∆(p, q) = ϵ

Γ; ∆ q⊙p−−→ Γ[q 7→ Tk]; ∆
[Γ-⊙]

Figure 8 Configuration Semantics

message M at the beginning. A queue message M is of form m(B), denoting a message with
label m and payload B. We sometimes omit B when the payload is not of specific interest.

We write ∆ to denote a queue environment, a collection of peer-to-peer queues. A queue
from p to q at ∆ is denoted ∆(p, q). We define updates ∆[p, q 7→ τ] similarly. We write ∆∅
for an empty queue environment, where ∆∅(p, q) = ϵ for any p and q in the domain.

We write τ ′ ·M to append a message M at the end of a queue τ ′: the message is
appended to the sequence when τ ′ is available, or discarded when τ ′ is unavailable (i.e.
⊘·M = ⊘). Additionally, we write ∆[·, q 7→ ⊘] for making all the queues to q unavailable:
i.e. ∆[p1, q 7→ ⊘][p2, q 7→ ⊘] · · · [pn, q 7→ ⊘].

We give an LTS semantics of configurations in Def. 9. Similar to that of global types, we
model the semantics of configurations in an asynchronous (a.k.a. message passing) fashion,
using a queue environment to represent the communication queues among all roles.

▶ Definition 9 (Configuration Semantics). The configuration transition relation α−→ is defined
in Fig. 8. We write Γ; ∆ α−→ iff Γ; ∆ α−→Γ′; ∆′ for some Γ′ and ∆′. We define two reductions
→ and →R (where R is a fixed set of reliable roles) as follows:

We write Γ; ∆→Γ′; ∆′ for Γ; ∆ α−→ Γ′; ∆′ with α∈{p&q :m(B), p⊕q :m(B), p⊙q}. We write
Γ; ∆ → iff Γ; ∆ → Γ′; ∆′ for some Γ′; ∆′, and Γ; ∆ ̸→ for its negation, and →∗ for the
reflexive and transitive closure of →;
We write Γ; ∆ →R Γ′; ∆′ for Γ; ∆ α−→ Γ′; ∆′ with α /∈ {r | r∈R}. We write Γ; ∆→R iff
Γ; ∆ →R Γ′; ∆′ for some Γ′; ∆′, and Γ; ∆′ ̸→R for its negation. We define →∗

R as the
reflexive and transitive closure of →R.

We first explain the standard rules: rule [Γ-⊕] (resp. [Γ-&]) says that a role can perform an
output (resp. input) transition by appending (resp. consuming) a message at the corresponding
queue. Recall that whenever a queue is unavailable, the resulting queue remains unavailable
after appending (⊘·M = ⊘). Therefore, the rule [Γ-⊕] covers delivery to both crashed and
live roles, whereas two separate rules are used in modelling global type semantics ([GR-⊕] and
[GR- m]). We also include a standard rule [Γ-µ] for recursive types.

The key innovations are the (highlighted) rules modelling crashes and crash detection:
by rule [Γ-], a role p may crash and become stop at any time (unless it is already ended
or stopped). All of p’s receiving queues become unavailable ⊘, so that future messages to
p would be discarded. Rule [Γ-⊙] models crash detection and handling: if p is crashed and
stopped, another role q attempting to receive from p can then take its crash handling branch.
However, this rule only applies when the corresponding queue is empty: it is still possible to
receive messages sent before crashing via [Γ-&].

ECOOP 2023

30:14 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

4.4 Alternative Modellings for Crash-Stop Failures
Before we dive into the relation between two semantics, let us have a short digression to
discuss our modelling choices and alternatives. In this work, we mostly follow the assumptions
laid out in [3], where a crash is detected at reception. However, they opt to use a synchronous
(rendez-vous) semantics, whereas we give an asynchronous (message passing) semantics,
which entails interesting scenarios that would not arise in a synchronous semantics.

Specifically, consider the case where a role p sends a message to q, and then p crashes after
sending, but before q receives the message. The situation does not arise under a synchronous
semantics, since sending and receiving actions are combined into a single transmission action.

Intuitively, there are two possibilities to handle this scenario. The questions are whether
the message sent immediately before crashing is deliverable to q, and consequentially, at
what time does q detect the crash of p.

In our semantics (Figs. 7 and 8), we opt to answer the first question in positive: we argue
that this model is more consistent with our ‘passive’ crash detection design. For example, if
a role p never receives from another role q, then p does not need to react in the event of q’s
crash. Following a similar line of reasoning, if the message sent by p arrives in the receiving
queue of q, then q should be able to receive the message, without triggering a crash detection
(although it may be triggered later). As a consequence, we require in [Γ-⊙] that the queue
∆(p, q) be empty, to reflect the idea that crash detection should be a ‘last resort’.

For an alternative model, we can opt to detect the crash after crash has occurred. This is
possibly better modelled with using outgoing queues (cf. [12]), instead of incoming queues
in the semantics presented. Practically, this may be the scenario that a TCP connection is
closed (or reset) when a peer has crashed, and the content in the queue is lost. It is worth
noting that this kind of alternative model will not affect our main theoretical results: the
operational correspondence between global and local type semantics, and furthermore, global
type properties guaranteed by projection.

4.5 Relating Global Type and Configuration Semantics
We have given LTS semantics for both global types (Def. 6) and configurations (Def. 9), we
now relate these two semantics with the help of the projection operator ↾ (Def. 3).

We associate configurations Γ; ∆ with global types G (as annotated with a set of crashed
roles C) by projection, written Γ; ∆ ⊑R ⟨C; G⟩. Naturally, there are two components of the
association: (1) the local types in Γ need to correspond to the projections of the global type
G and the set of crashed roles C; and (2) the queues in ∆ corresponds to the transmissions
en route in the global type G and also the set of crashed roles C.

▶ Definition 10 (Association of Global Types and Configurations). A configuration Γ; ∆ is
associated with a (well-annotated w.r.t. R) global type ⟨C; G⟩, written Γ; ∆ ⊑R ⟨C; G⟩, iff
1. Γ can be split into disjoint (possibly empty) sub-contexts Γ = ΓG, Γ , Γend where:

(A1) ΓG contains projections of G: dom(ΓG) = roles(G), and ∀p ∈ dom(ΓG) : Γ(p) ⩽
G ↾R p;

(A2) Γ contains crashed roles: dom(Γ) = C, and ∀p ∈ dom(Γ) : Γ(p) = stop;
(A3) Γend contains only end endpoints: ∀p ∈ Γend : Γ(p) = end.

2. (A4) ∆ is associated with global type ⟨C; G⟩, given as follows:
i. Receiving queues for a role is unavailable if and only if it has crashed: ∀q : q ∈

C ⇐⇒ ∆(·, q) = ⊘;
ii. If G = end or G = µt.G′, then queues between all roles are empty (except receiving

queue for crashed roles): ∀p, q : q /∈ C =⇒ ∆(p, q) = ϵ;

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:15

iii. If G = p→q†: {mi(Bi).G′
i}i∈I , or G = p†⇝q:j {mi(Bi).G′

i}i∈I with mj = crash (i.e.
a pseudo-message is en route), then (i) if q is live, then the queue from p to q is
empty: q† ̸= q =⇒ ∆(p, q) = ϵ, and (ii) ∀i ∈ I : ∆ is associated with ⟨C; G′

i⟩;
iv. If G = p†⇝q:j {mi(Bi).G′

i}i∈I with mj ̸= crash, then (i) the queue from p to q begins
with the message mj(Bj): ∆(p, q) = mj(Bj)·τ ; (ii) ∀i ∈ I : removing the message
from the head of the queue, ∆[p, q 7→ τ] is associated with ⟨C; G′

i⟩.
We write Γ ⊑R G as an abbreviation of Γ; ∆∅ ⊑R ⟨∅; G⟩. We sometimes say Γ (resp. ∆) is
associated with ⟨C; G⟩ for stating Item 1 (resp. Item 2) is satisfied.

We demonstrate the relation between the two semantics via association, by showing two
main theorems: all possible reductions of a configuration have a corresponding action in
reductions of the associated global type (Thm. 11); and the reducibility of a global type is
the same as its associated configuration (Thm. 12).

▶ Theorem 11 (Completeness of Association). Given associated global type G and configuration
Γ; ∆: Γ; ∆ ⊑R ⟨C; G⟩. If Γ; ∆ α−→ Γ′; ∆′, where α ̸= p for all p ∈ R, then there exists
⟨C′; G′⟩ such that Γ′; ∆′ ⊑R ⟨C′; G′⟩ and ⟨C; G⟩ α−→R ⟨C′; G′⟩.

▶ Theorem 12 (Soundness of Association). Given associated global type G and configuration
Γ; ∆: Γ; ∆ ⊑R ⟨C; G⟩. If ⟨C; G⟩ −→R, then there exists Γ′; ∆′, α and ⟨C′; G′⟩, such that
⟨C; G⟩ α−→R ⟨C′; G′⟩, Γ′; ∆′ ⊑R ⟨C′; G′⟩, and Γ; ∆ α−→ Γ′; ∆′.

By Thms. 11 and 12, we obtain, as a corollary, that a global type G is in operational corres-
pondence with the typing context Γ = {p▷G ↾R p}p∈roles(G), which contains the projections
of all roles in G.

4.6 Properties Guaranteed by Projection
A key benefit of our top-down approach of multiparty protocol design is that desirable
properties are guaranteed by the methodology. As a consequence, processes following the
local types obtained from projections are correct by construction. In this subsection, we
focus on three properties: communication safety, deadlock-freedom, and liveness, and show
that the three properties are guaranteed from configurations associated with global types.
Communication Safety We begin by defining communication safety for configurations
(Def. 13). We focus on two safety requirements: (i) each role must be able to handle any
message that may end up in their receiving queue (so that there are no label mismatches);
and (ii) each receiver must be able to handle the potential crash of the sender, unless the
sender is reliable.

▶ Definition 13 (Configuration Safety). Given a fixed set of reliable roles R, we say that φ is
an R-safety property of configurations iff, whenever φ(Γ; ∆), we have:
[S-⊕&] Γ(q) = p&{mi(Bi).S′

i}i∈I and ∆(p, q) ̸= ⊘ and ∆(p, q) ̸= ϵ implies Γ; ∆ q&p:m′(B′)−−−−−−−→;
[S- &] Γ(p) = stop and Γ(q) = p&{mi(Si).S′

i}i∈I and ∆(p, q) = ϵ implies Γ; ∆ q⊙p−−→;
[S-µ] Γ(p) = µt.S implies φ(Γ[p 7→ S{µt.S/t}]; ∆);

[S-→] Γ; ∆ →R Γ′; ∆′ implies φ(Γ′; ∆′).
We say Γ; ∆ is R-safe, if φ(Γ; ∆) holds for some R-safety property φ.

We use a coinductive view of the safety property [35], where the predicate of R-safe
configurations is the largest R-safety property, by taking the union of all safety properties φ.
For a configuration Γ; ∆ to be R-safe, it has to satisfy all clauses defined in Def. 13.

ECOOP 2023

30:16 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

By clause [S-⊕&], whenever a role q receives from another role p, and a message is present
in the queue, the receiving action must be possible for some label m′. Clause [S- &] states
that if a role q receives from a crashed role p, and there is nothing in the queue, then q must
have a crash branch, and a crash detection action can be fired. (Note that [S-⊕&] applies
when the queue is non-empty, despite the crash of sender p.) Finally, clause [S-µ] extends
the previous clauses by unfolding any recursive entries; and clause [S-→] states that any
configuration Γ′; ∆′ which Γ; ∆ transitions to must also be R-safe. By using transition →R,
we ignore crash transitions p for any reliable role p ∈ R.

▶ Example 14. Recall the local types TC, TL, and TI of the Simpler Logging example in § 2.
The configuration Γ; ∆, where Γ = C▷TC, L▷TL, I▷TI and ∆ = ∆∅, is {L, I}-safe. This can be
verified by checking its reductions. For example, in the case where C crashes immediately, we
have: Γ; ∆ C −→ Γ[C 7→ stop]; ∆[·, C 7→ ⊘] →∗ Γ[C 7→ stop][L 7→ end][I 7→ end]; ∆[·, C 7→ ⊘] and each
reductum satisfies all clauses of Def. 13.

Deadlock-Freedom The property of deadlock-freedom, sometimes also known as progress,
describes whether a configuration can keep reducing unless it is a terminal configuration. We
give its formal definition in Def. 15.

▶ Definition 15 (Configuration Deadlock-Freedom). Given a set of reliable roles R, we say
that a configuration Γ; ∆ is R-deadlock-free iff: 1. Γ; ∆ is R-safe; and, 2. If Γ; ∆ can reduce
to a configuration Γ′; ∆′ without further reductions: Γ; ∆→∗

R Γ′; ∆′ ̸→R, then: a. Γ′ can be
split into two disjoint contexts, one with only end entries, and one with only stop entries:
Γ′ = Γ′

end, Γ′
 , where dom(Γ′

end) = {p | Γ′(p) = end} and dom
(

Γ′

)
= {p | Γ′(p) = stop}; and,

b. ∆′ is empty for all pairs of roles, except for the receiving queues of crashed roles, which
are unavailable: ∀p, q : ∆′(·, q) = ⊘ if Γ′(q) = stop, and ∆′(p, q) = ϵ, otherwise.

It is worth noting that a (safe) configuration that reduces infinitely satisfies deadlock-
freedom, as Item 2 in the premise does not hold. Otherwise, whenever a terminal configuration
is reached, it must satisfy Item 2a that all local types in the typing context be terminated
(either successfully end, or crashed stop), and Item 2b that all queues be empty (unless
unavailable due to crash). As a consequence, a deadlock-free configuration Γ; ∆ either does
not stop reducing, or terminates in a stable configuration.

Liveness The property of liveness describes that every pending output/external choice is
eventually triggered by means of a message transmission or crash detection. Our liveness
property is based on fairness, which guarantees that every enabled message transmission,
including crash detection, is performed successfully. We give the definitions of non-crashing,
fair, and live paths of configurations respectively in Def. 16, and use these paths to formalise
the liveness for configurations in Def. 17.

▶ Definition 16 (Non-crashing, Fair, Live Paths). A non-crashing path is a possibly infinite
sequence of configurations (Γn; ∆n)n∈N , where N = {0, 1, 2, . . .} is a set of consecutive
natural numbers, and ∀n ∈ N , Γn; ∆n → Γn+1; ∆n+1. We say that a non-crashing path
(Γn; ∆n)n∈N is fair iff, ∀n ∈ N :
(F1) Γn; ∆n

p⊕q:m(B)−−−−−−→ implies ∃k, m′, B′ such that n ≤ k ∈ N and Γk; ∆k
p⊕q:m′(B′)−−−−−−−→

Γk+1; ∆k+1;
(F2) Γn; ∆n

p&q:m(B)−−−−−−→ implies ∃k such that n ≤ k ∈ N and Γk; ∆k
p&q:m(B)−−−−−−→ Γk+1; ∆k+1;

(F3) Γn; ∆n
p⊙q−−→ implies ∃k such that n ≤ k ∈ N and Γk; ∆k

p⊙q−−→ Γk+1; ∆k+1.
We say that a non-crashing path (Γn; ∆n)n∈N is live iff, ∀n ∈ N :

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:17

(L1) ∆n(p, q) = m(B)·τ ̸= ⊘ and m ̸= crash implies ∃k such that n ≤ k ∈ N and
Γk; ∆k

q&p:m(B)−−−−−−→ Γk+1; ∆k+1;
(L2) Γn(p) = q&{mi(Bi).Ti}i∈I implies ∃k, m′, B′ such that n ≤ k ∈ N and

Γk; ∆k
p&q:m′(B′)−−−−−−−→ Γk+1; ∆k+1 or Γk; ∆k

p⊙q−−→ Γk+1; ∆k+1.

A non-crash path is a (possibly infinite) sequence of reductions of a configuration without
crashes. A non-crash path is fair if along the path, every internal choice eventually sends
a message (F1), every external choice eventually receives a message (F2), and every crash
detection is eventually performed (F3). A non-crashing path is live if along the path, every
non-crash message in the queue is eventually consumed (L1), and every hanging external
choice eventually consumes a message or performs a crash detection (L2).

▶ Definition 17 (Configuration Liveness). Given a set of reliable roles R, we say that a
configuration Γ; ∆ is R-live iff: 1. Γ; ∆ is R-safe; and, 2. Γ; ∆ →∗

R Γ′; ∆′ implies all
non-crashing paths starting with Γ′; ∆′ that are fair are also live.

A configuration Γ; ∆ is R-live when it is R-safe and any reductum of Γ; ∆ (via transition
→∗

R) consistently leads to a live path if it is fair.
Properties by Projection We conclude by showing the guarantee of safety, deadlock-freedom,
and liveness in configurations associated with global types in Lem. 18. Furthermore, as a
corollary, Thm. 19 demonstrates that a typing context projected from a global type (without
runtime constructs) is inherently safe, deadlock-free, and live by construction.

▶ Lemma 18. If Γ; ∆ ⊑R ⟨C; G⟩, then Γ; ∆ is R-safe, R-deadlock-free, and R-live.

▶ Theorem 19 (Safety, Deadlock-Freedom, and Liveness by Projection). Let G be a global
type without runtime constructs, and R be a set of reliable roles. If Γ is a typing context
associated with the global type G: Γ ⊑R G, then Γ; ∆∅ is R-safe, R-deadlock-free, and R-live.

5 Typing System with Crash-Stop Semantics

In this section, we present a type system for our asynchronous multiparty session calculus.
Our typing system is extended from the one in [16] with crash-stop failures. We introduce
the typing rules in § 5.1, and show various properties of typed sessions: subject reduction,
session fidelity, deadlock-freedom, and liveness in § 5.2.

5.1 Typing Rules
Our type system uses three kinds of typing judgements: (1) for processes; (2) for queues; and
(3) for sessions, and is defined inductively by the typing rules in Fig. 9. Typing judgments
for processes are of form Θ ⊢ P : T , where Θ is a typing context for variables, defined as
Θ ::= ∅

∣∣ Θ, x : B
∣∣ Θ, X : T .

With regard to queues, we use judgments of the form ⊢ h : δ, where we use δ to denote
a partially applied queue lookup function. We write δ = ∆(−, p) to describe the incoming
queue for a role p, as a partially applied function δ = ∆(−, p) such that δ(q) = ∆(q, p). We
write δ1 · δ2 to denote the point-wise application of concatenation. For empty queues (ϵ),
unavailable queues (⊘), and queue concatenations (·), we simply lift the process-level queue
constructs to type-level counterparts. For a singleton message (q, m(v)), the appropriate
partial queue δ would be a singleton of m(B) (where B is the type of v) for q, and an empty
queue (ϵ) for any other role.

ECOOP 2023

30:18 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

⊢ ϵ : ϵ
[t-ϵ]

⊢ ⊘ : ⊘
[t-⊘]

⊢ h1 : δ1 ⊢ h2 : δ2

⊢ h1 · h2 : δ1 · δ2
[t-·]

⊢ v : B δ(q) = m(B) ∀r ̸= q : δ(r) = ϵ

⊢ (q, m(v)) : δ
[t-msg]

Θ ⊢ : stop
[t-]

Θ ⊢ 0 : end
[t-0] Θ ⊢ e : B Θ ⊢ P : T

Θ ⊢ q!m⟨e⟩.P : q⊕m(B).T
[t-out]

∀i ∈ I Θ, xi : Bi ⊢ P i : T i

Θ ⊢
∑

i∈I
q?mi(xi).P i : q&{mi(Bi).T i}i∈I

[t-ext] Θ ⊢ e : bool Θ ⊢ P i : T (i = 1, 2)

Θ ⊢ if e then P 1 else P 2 : T
[t-cond]

Θ, X : T ⊢ P : T

Θ ⊢ µX.P : T
[t-rec]

Θ, X : T ⊢ X : T
[t-var]

Θ ⊢ P : T T ⩽ T ′

Θ ⊢ P : T ′ [t-sub]

Γ; ∆ ⊑R ⟨C; G⟩ ∀i ∈ I ⊢ P i : Γ(pi) ⊢ hi : ∆(−, pi) dom(Γ) ⊆ {pi | i ∈ I}
⟨C; G⟩ ⊢

∏
i∈I

(pi ◁ Pi | pi ◁ hi)
[t-sess]

Figure 9 Typing rules for queues, processes, and sessions.

Finally, we use judgments of the form ⟨C; G⟩ ⊢ M for sessions. We use a global type-guided
judgment, effectively asserting that all participants in the session respect the prescribed
global type, as is the case in [15]. As highlighted, the global type with crashed roles ⟨C; G⟩
must have some associated configuration Γ; ∆, used to type the processes and the queues
respectively. Moreover, all the entries in the configuration must be present in the session.

Most rules in Fig. 9 assign the corresponding session type according to the behaviour of
the process. For example, (highlighted) rule [t-⊘] assigns the unavailable queue type ⊘ to
a unavailable queue ⊘; rules [t-out] and [t-ext] assign internal and external choice types to
input and output processes; (highlighted) rule [t-] (resp. [t-0]) assigns the crash termination
stop (resp. successful termination end) to a crashed process (resp. inactive process 0).

▶ Example 20. Consider the process that acts as the role C in our Simpler Logging example
(§ 2 and Ex. 14): PC = I!read.I?report(x).0, and a message queue hC = ϵ. Process PC has the
type TC, and queue hC has the type ϵ, which can be verified in the standard way. If we follow
a crash reduction, e.g. by the rule [r-], the session evolves as C ◁ PC | C ◁ hC →R C ◁ | C ◁ ⊘,
where, by [t-], PC is typed by stop, and hC is typed by ⊘.

5.2 Properties of Typed Sessions
We present the main properties of typed sessions: subject reduction (Thm. 21), session fidelity
(Thm. 22), deadlock-freedom (Thm. 24), and liveness (Thm. 26).

Subject reduction states that well-typedness of sessions are preserved by reduction. In
other words, a session governed by a global type continues to be governed by a global type.

▶ Theorem 21 (Subject Reduction). If ⟨C; G⟩ ⊢ M and M →R M′, then either ⟨C; G⟩ ⊢
M′, or there exists ⟨C′; G′⟩ such that ⟨C; G⟩ −→R ⟨C′; G′⟩ and ⟨C′; G′⟩ ⊢ M′.

Session fidelity states the opposite implication with regard to subject reduction: sessions
respect the progress of the governing global type .

▶ Theorem 22 (Session Fidelity). If ⟨C; G⟩ ⊢ M and ⟨C; G⟩ −→R, then there exists M′

and ⟨C′; G′⟩ such that ⟨C; G⟩ −→R ⟨C′; G′⟩, M →R
∗ M′ and ⟨C′; G′⟩ ⊢ M′.

Session deadlock-freedom means that the ‘successful’ termination of a session may include
crashed processes and their respective unavailable incoming queues – but reliable roles (which
cannot crash) can only successfully terminate by reaching inactive processes with empty

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:19

1 global protocol SimpleLogger(role U, reliable role L)
2 { rec t0 { choice at U { write(String) from U to L;
3 continue t0; }
4 or { read from U to L;
5 report(Log) from L to U;
6 continue t0; }
7 or { crash from U to L; } } }

Figure 10 A Simple Logger protocol in Scribble.

incoming queues. We formalise the definition of deadlock-free sessions in Def. 23 and show
that a well-typed session is deadlock-free in Thm. 24.

▶ Definition 23 (Deadlock-Free Sessions). A session M is deadlock-free iff M →R
∗ M′ ↛R

implies either M′ ≡ p ◁ 0 | p ◁ ϵ, or M′ ≡ p ◁ | p ◁ ⊘.

▶ Theorem 24 (Session Deadlock-Freedom). If ⟨C; G⟩ ⊢ M, then M is deadlock-free.

Finally, we show that well-typed sessions guarantee the property of liveness: a session is
live when all its input processes will be performed eventually, and all its queued messages will
be consumed eventually. We formalise the definition of live sessions in Def. 25 and conclude
by showing that a well-typed session is live in Thm. 26.

▶ Definition 25 (Live Sessions). A session M is live iff M →R
∗ M′ ≡ p ◁ P | p ◁ hp | M′′

implies: 1. if hp = (q, m(v)) · h′
p, then ∃P ′, M′′′ : M′ →R

∗ p ◁ P ′ | p ◁ h′
p | M′′′; and 2. if

P =
∑

i∈I q?mi(xi).P i, then ∃k ∈ I, w, h′
p, M′′′ : M′ →R

∗ p ◁ P k{w/xk} | p ◁ h′
p | M′′′.

▶ Theorem 26 (Session Liveness). If ⟨C; G⟩ ⊢ M, then M is live.

6 Teatrino: Generating Scala Programs from Protocols

In this section, we present our toolchain Teatrino that implements our extended MPST
theory with crash-stop failures. Teatrino processes protocols represented in the Scribble
protocol description language, and generates protocol-conforming Scala code that uses the
Effpi concurrency library. A user specifies a multiparty protocol in Scribble as input,
introduced in §6.1. We show the style of our generated code in §6.2, and how a developer can
use the generated code to implement multiparty protocols. As mentioned in § 2, generating
channels for each process and type poses an interesting challenge, explained in § 6.3.

6.1 Specifying a Multiparty Protocol in Scribble
The Scribble Language [43] is a multiparty protocol description language that relates closely
to MPST theory (cf. [31]), and provides a programmatic way to express global types. As an
example, Fig. 10 describes the following global type of a simple distributed logging protocol:

G = µt0.u→l:
{

write(str).t0, read.l→u:report(Log).t0, crash.end
}

.

The global type is described by a Scribble global protocol, with roles declared on Line 1.
A transmission in the global type (e.g. u→l: {· · ·}) is in the form of an interaction statement
(e.g. ... from U to L;), except that choice (i.e. with an index set |I| > 1) must be marked
explicitly by a choice construct (Line 2). Recursions and type variables in the global types
are in the forms of rec and continue statements, respectively.

In order to express our new theory, we need two extensions to the language: (1) a reserved
label crash to mark crash handling branches (cf. the special label crash in the theory), e.g. on
Line 7; and (2) a reliable keyword to mark the reliable roles in the protocol (cf. the reliable
role set R in the theory). Roles are assumed unreliable unless declared using the reliable

keyword, e.g. L on Line 1.

ECOOP 2023

30:20 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

6.2 Generating Scala Code from Scribble Protocols
The Effpi Concurrency Library [39] provides an embedded Domain Specific Language (DSL)
offering a simple actor-based API. The library utilises advanced type system features in
Scala 3, and provides both type-level and value-level constructs for processes and channels.
In particular, the type-level constructs reflect the behaviour of programs (i.e. processes), and
thus can be used as specifications. Following this intuition, we generate process types that
reflect local types from our theory, as well as a tentative process implementing that type (by
providing some default values where necessary).
Generated Code To illustrate our approach, we continue with the Simple Logger example
from § 6.1, and show the generated code in Fig. 11. The generated code can be divided
into five sections: (i) label and payload declarations, (ii) recursion variable declarations,
(iii) local type declarations, (iv) role-implementing functions, and (v) an entry point.

Sections (i) and (ii) contain boilerplate code, where we generate type declarations for
various constructs needed for expressing local types and processes. We draw attention to the
key sections (iii) and (iv), where we generate a representation of local types for each role, as
well as a tentative process inhabiting that type.
Local Types and Effpi Types We postpone the discussion about channels in Effpi to § 6.3.
For now, we compare the generated Effpi type and the projected local type, and also give a
quick primer3 on Effpi constructs. The projected local types of the roles u and l are shown
as follows:

G ↾{l} u = µt0.l⊕
{

write(str).t0, read.l&report(Log).t0
}

G ↾{l} l = µt0.u&
{

write(str).t0, read.u⊕report(Log).t0, crash.end
}

The local types are recursive, and the Effpi type implements recursion with Rec[RecT0, ...]
and Loop[RecT0], using the recursion variable RecT0 declared in section (ii).

For role u, The inner local type is a sending type towards role l, and we use an Effpi
process output type Out[A, B], which describes a process that uses a channel of type A to
send a value of type B. For each branch, we use a separate output type, and connect it to
the type of the continuation using a sequential composition operator (>>:). The different
branches are then composed together using a union type (|) from the Scala 3 type system.

Recall that the role l is declared reliable, and thus the reception labelled report from
l at u does not need to contain a crash handler. We use an Effpi process input type
In[A, B, C], which describes a process that uses a channel of type A to receive a value of
type B, and uses the received value in a continuation of type C.

For role l, the reception type is more complex for two reasons: (1) role u is unreliable,
necessitating crash handling; and (2) the reception contains branching behaviour (cf. the
reception u being a singleton), with labels write and read. For (1), we extend Effpi with a
variant of the input process type InErr[A, B, C, D], where D is the type of continuation
in case of a crash. For (2), the payload type is first received as an union (Line 17), and then
matched to select the correct continuation according to the type (Line 21).
From Types To Implementations Since Effpi type-level and value-level constructs are
closely related, we can easily generate the processes from the processes types. Namely, by
matching the type Out[..., ...] with the process send(..., ...); the type In[..., ...]
with the process receive(...) {... => ...}; and similarly for other constructs. Whilst
executable, the generated code represents a skeleton implementation, and the programmer is
expected to alter the code according to their requirements.

3 A more detailed description of constructs can be found in [38].

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:21

1 // (i) label and payload declarations
2 case class Log() // payload type
3 case class Read() // label types
4 case class Report(x : Log)
5 case class Write(x : String)
6 // (ii) recursion variable declarations
7 sealed abstract class RecT0[A]() extends RecVar[A]("RecT0")
8 case object RecT0 extends RecT0[Unit]
9 // (iii) local type declarations

10 type U[C0 <: OutChan[Read | Write], C1 <: InChan[Report]] =
11 Rec[RecT0,
12 ((Out[C0, Read] >>: In[C1, Report, (x0 : Report) => Loop[RecT0]])
13 | (Out[C0, Write] >>: Loop[RecT0]))]
14

15 type L[C0 <: InChan[Read | Write], C1 <: OutChan[Report]] =
16 Rec[RecT0,
17 InErr[C0, Read | Write, (x0 : Read | Write) => L0[x0.type, C1],
18 (err : Throwable) => PNil]]
19

20 type L0[X0 <: Read | Write, C1 <: OutChan[Report]] <: Process =
21 X0 match { case Read => Out[C1, Report] >>: Loop[RecT0]
22 case Write => Loop[RecT0] }
23 // (iv) role-implementing functions
24 def u(c0 : OutChan[Read | Write],
25 c1 : InChan[Report]) : U[c0.type, c1.type] = {
26 rec(RecT0) {
27 val x0 = 0
28 if (x0 == 0) {
29 send(c0, new Read()) >> receive(c1) {(x1 : Report) => loop(RecT0) }
30 } else {
31 send(c0, new Write("")) >> loop(RecT0)
32 } } }
33

34 def l(c0 : InChan[Read | Write],
35 c1 : OutChan[Report]) : L[c0.type, c1.type] =
36 rec(RecT0) {
37 receiveErr(c0)((x0 : Read | Write) => l0(x0, c1),
38 (err : Throwable) => nil) }
39

40 def l0(x : Read | Write, c1 : OutChan[Report]) : L0[x.type, c1.type] =
41 x match { case y : Read => send(c1, new Report(new Log())) >> loop(RecT0)
42 case y : Write => loop(RecT0) }
43 // (v) an entry point (main object)
44 object Main {
45 def main() : Unit = {
46 var c0 = Channel[Read | Write]()
47 var c1 = Channel[Report]()
48 eval(par(u(c0, c1), l(c0, c1)))
49 } }

Figure 11 Generated Scala code for the Simple Logger protocol in Fig. 10

ECOOP 2023

30:22 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

We also introduce a new crash handling receive process receiveErr, to match the
new InErr type. Process crashes are modelled by (caught) exceptions and errors in role-
implementing functions, and crash detection is achieved via timeouts. Timeouts are set by
the programmer in an (implicit) argument to each receiveErr call.

Finally, the entry point (main object) in section (v) composes the role-implementing
functions together with par construct in Effpi, and connects the processes with channels.

6.3 Generating Effpi Channels from Scribble Protocols
As previously mentioned, Effpi processes use channels to communicate, and the type of
the channel is reflected in the type of the process. However, our local types do not have any
channels; instead, they contain a partner role with which to communicate. This poses an
interesting challenge, and we explain the channel generation procedure in this section.

We draw attention to the generated code in Fig. 11 again, where we now focus on the
parameters C0 in the generated types U and L. In the type U, the channel type C0 needs to
be a subtype of OutChan[Read | Write] (Line 10), and we see the channel is used in the
output processes types, e.g. Out[C0, Read] (Line 12, note that output channels subtyping
is covariant on the payload type). Dually, in the type L, the channel type C0 needs to be a
subtype of InChan[Read | Write] (Line 15), and we see the channel is used in the input
process type, i.e. InErr[C0, Read | Write, ..., ...] (Line 17).

Similarly, a channel c0 is needed in the role-implementing functions u and l as arguments,
and the channel is used in processes send(c0, ...) and receiveErr(c0) Finally, in
the entry point, we create a bidirectional channel c0 = Channel[Read | Write]() (Line 46),
and pass it as an argument to the role-implementing functions u and l (Line 48), so that the
channel can be used to link two role-implementing processes together for communication.

Generating the channels correctly is crucial to the correctness of our approach, but
non-trivial since channels are implicit in the protocols. In order to do so, a simple approach is
to traverse each interaction in the global protocol, and assign a channel to each accordingly.

This simple approach would work for the example we show in Fig. 10; however, it would
not yield the correct result when merging occurs during projection, which we explain using
an example. For clarity and convenience, we use annotated global and local types, where
we assign an identifier for each interaction to signify the channel to use, and consider the
following global type: G = p 0−→q:

{
left.p 1−→r:left.end, right.p 2−→r:right.end

}
.

The global type describes a simple protocol, where role p selects a label left or right
to q, and q passes on the same label to r. As a result, the projection on r (assuming
all roles reliable) should be a reception from q with branches labelled left or right, i.e.
p&1,2{left.end, right.end}. Here, we notice that the interaction between q and r should
take place on a single channel, instead of two separate channels annotated 1 and 2.

When merging behaviour occurs during projection, we need to use the same channel
in those interactions to achieve the correct behaviour. After traversing the global type to
annotate each interaction, we merge annotations involved in merges during projection.

7 Evaluation

We evaluate our toolchain Teatrino from two perspectives: expressivity and feasibility. For
expressivity, we use examples from session type literature, and extend them to include crash
handling behaviour using two patterns: failover and graceful failure. For feasibility, we show
that our tool generates Scala code within negligible time.

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:23

Table 1 Overview of All Variants for Each Example.

Name Var. R Comms. Crash Branches Max Cont. Len.
PingPong
R = {p, q}

(a) R 2 0 4
(b) ∅ 2 2 4

Adder
R = {p, q}

(c) R 5 0 6
(d) ∅ 5 5 6

TwoBuyer
R = {p, q, r}

(e) R 7 0 8
(f) {r} 18 6 12

OAuth
R = {c, a, s}

(g) R 12 0 11
(h) {s, a} 21 8 11
(i) {s} 26 13 11
(j) ∅ 30 28 11

TravelAgency
R = {c, a, s}

(k) R 8 0 6
(l) {a, s} 9 3 6

(m) {a} 9 4 6

DistLogger
R = {l, c, i}

(n) R 10 0 7
(o) {i, c} 15 2 7
(p) {i} 16 4 7

CircBreaker
R = {s, a, r}

(q) R 18 0 10
(r) {a, s} 24 3 10
(s) {a, s} 23 3 11

We note that we do not evaluate the performance of the generated code. The generated
code uses the Effpi concurrency library to implement protocols, and any performance
indication would depend and reflect on the performance of Effpi, instead of Teatrino.

Expressivity We evaluate our approach with examples in session type literature: PingPong,
Adder, TwoBuyer [21], OAuth [32], TravelAgency [23], DistLogger [26], and CircBreaker [26].
Notably, the last two are inspired by real-world patterns in distributed computing.

We begin with the fully reliable version of the examples, and extend them to include
crash handling behaviour. Recall that our extended theory subsumes the original theory,
when all roles are assumed reliable. Therefore, the fully reliable versions can act both as a
sanity check, to ensure the code generation does not exclude good protocols in the original
theory, and as a baseline to compare against.

To add crash handling behaviour, we employ two patterns: failover and graceful failure.
In the former scenario, a crashed role has its functions taken over by another role, acting as a
substitute to the crashed role [3]. In the latter scenario, the protocol is terminated peacefully,
possibly involving additional messages for notification purposes. Using the example from § 2,
the fully reliable protocol in Eq. (1) is extended to one with graceful failure in Eq. (2).

We show a summary of the examples in Table 1. For each example, we give the set of
all roles R and vary the set of reliable roles (R). Each variant is given an identifier (Var.),
and each example always has a fully reliable variant where R = R. We give the number of
communication interactions (Comms.), the number of crash branches added (Crash Branches),
and the length of the longest continuation (Max Cont. Len.) in the given global type.

The largest of our examples in terms of concrete interactions is OAuth, with Variant (i)
having 26 interactions and (j) having 30 interactions. This represents a 2.17× and 2.5×
increase over the size of the original protocol, and is a consequence of the confluence of two
factors: the graceful failure pattern, and low degree of branching in the protocol itself. The
TwoBuyer Variant (f) represents the greatest increase (2.57×) in interactions, a result of
implementing the failover pattern. The CircBreaker variants are also notable in that they are

ECOOP 2023

30:24 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

(a) (b) (c) (d) (e) (k) (l) (m) (n) (g) (o) (p) (f) (q) (h) (s) (r) (i) (j)
0

0.5

1

1.5

T
im

e
(m

s)

Parsing EffpiIR CodeGen

Figure 12 Average Generation Times for All Variants in Table 1.

large in terms of both interactions and branching degree – both affect generation times.

Feasibility In order to demonstrate the feasibility of our tool Teatrino, we give generation
times using our prototype for all protocol variants and examples, plotted in Fig. 12. We
show that Teatrino is able to complete the code generation within milliseconds, which does
not pose any major overhead for a developer.

In addition to total generation times, we report measurements for three main constituent
phases of Teatrino: parsing, EffpiIR generation, and code generation. EffpiIR generation
projects and transforms a parsed global type into an intermediate representation, which is
then used to generate concrete Scala code.

For all variants, the code generation phase is the most expensive phase. This is likely
a consequence of traversing the given EffpiIR representation of a protocol twice – once for
local type declarations and once for role-implementing functions.

8 Related Work

We summarise related work on both theory and implementations of session types with failure
handling, as well as other MPST implementations targeting Scala without failures.

We first discuss closest related work [3, 27, 33, 42], where multiparty session types are
extended to model crashes or failures. Both [33] and [27] are exclusively theoretical.

[33] proposes an MPST framework to model fine-grained unreliability: each transmission
in a global type is parameterised by a reliability annotation, which can be one of unreliable
(sender/receiver can crash, and messages can be lost), weakly reliable (sender/receiver can
crash, messages are not lost), or reliable (no crashes or message losses). [42] utilises MPST as
a guidance for fault-tolerant distributed system with recovery mechanisms. Their framework
includes various features, such as sub-sessions, event-driven programming, dynamic role
assignments, and, most importantly, failure handling. [3] develops a theory of multiparty
session types with crash-stop failures: they model crash-stop failures in the semantics of
processes and session types, where the type system uses a model checker to validate type
safety. [27] follow a similar framework to [3]: they model an asynchronous semantics, and
support more patterns of failure, including message losses, delays, reordering, as well as link
failures and network partitioning. However, their typing system suffers from its genericity,
when type-level properties become undecidable [27, §4.4].

Other session type works on modelling failures can be briefly categorised into two: using
affine types or exceptions [14,26,29], and using coordinators or supervision [1,41]. The former
adapts session types to an affine representation, in which endpoints may cease prematurely;
the latter, instead, are usually reliant on one or more reliable processes that coordinate in
the event of failure. The works [1, 29,41] are limited to theory.

[29] first proposes the affine approach to failure handling. Their extension is primarily
comprised of a cancel operator, which is semantically similar to our crash construct: it repres-
ents a process that has terminated early. [14] presents a concurrent λ-calculus based on [29],

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:25

with asynchronous session-typed communication and exception handling, and implements
their approach as parts of the Links language. [26] proposes a framework of affine multiparty
session types, and provides an implementation of affine MPST in the Rust programming
language. They utilise the affine type system and Result types of Rust, so that the type
system enforces that failures are handled.

Coordinator model approaches [1, 41] often incorporate interrupt blocks (or similar con-
structs) to model crashes and failure handling. [1] extends the standard MPST syntax with
optional blocks, representing regions of a protocol that are susceptible to communication fail-
ures. In their approach, if a process P expects a value from an optional block which fails, then
a default value is provided to P , so P can continue running. This ensures termination and
deadlock-freedom. Although this approach does not feature an explicit reliable coordinator
process, we describe it here due to the inherent coordination required for multiple processes
to start and end an optional block. [41] similarly extends the standard global type syntax
with a try-handle construct, which is facilitated by the presence of a reliable coordinator
process, and via a construct to specify reliable processes. When the coordinator detects a
failure, it broadcasts notifications to all remaining live processes; then, the protocol proceeds
according to the failure handling continuation specified as part of the try-handle construct.

Other related MPST implementations include [9, 17, 18]. [18] designs a framework for
MPST-guided, safe actor programming. Whilst the MPST protocol does not include any
failure handling, the actors may fail or raise exceptions, which are handled in a similar way to
what we summarise as the affine technique. [9] revisits API generation techniques in Scala
for MPST. In addition to the traditional local type/automata-based code generation [22, 36],
they propose a new technique based on sets of pomsets, utilising Scala 3 match types [4].
[17] presents Choral, a programming language for choreographies (multiparty protocols).
Choral supports the handling of local exceptions in choreographies, which can be used to
program reliable channels over unreliable networks, supervision mechanisms, etc. for fallible
communication. They utilise automatic retries to implement channel APIs.

9 Conclusion and Future Work

To overcome the challenge of accounting for failure handling in distributed systems using
session types, we propose Teatrino, a code generation toolchain. It is built on asynchronous
MPST with crash-stop semantics, enabling the implementation of multiparty protocols that
are resilient to failures. Desirable global type properties such as deadlock-freedom, protocol
conformance, and liveness are preserved by construction in typed processes, even in the
presence of crashes. Our toolchain Teatrino, extends Scribble and Effpi to support
crash detection and handling, providing developers with a lightweight way to leverage our
theory. The evaluation of Teatrino demonstrates that it can generate Scala code with
minimal overhead, which is made possible by the guarantees provided by our theory.

This work is a new step towards modelling and handling real-world failures using session
types, bridging the gap between their theory and applications. As future work, we plan to
studys different crash models (e.g. crash-recover) and failures of other components (e.g. link
failures). These further steps will contribute to our long-term objective of modelling and
type-checking well-known consensus algorithms used in large-scale distributed systems.

ECOOP 2023

30:26 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

References
1 Manuel Adameit, Kirstin Peters, and Uwe Nestmann. Session types for link failures. In Ahmed

Bouajjani and Alexandra Silva, editors, Formal Techniques for Distributed Objects, Components,
and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of
the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec
2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, volume 10321 of Lecture Notes
in Computer Science, pages 1–16. Springer, 2017. doi:10.1007/978-3-319-60225-7_1.

2 Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Designing Asynchronous
Multiparty Protocols with Crash-Stop Failures, 2023. arXiv:2305.06238.

3 Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. Generalised Multiparty
Session Types with Crash-Stop Failures. In Bartek Klin, Sławomir Lasota, and Anca Muscholl,
editors, 33rd International Conference on Concurrency Theory (CONCUR 2022), volume
243 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:25, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.
dagstuhl.de/opus/volltexte/2022/17098, doi:10.4230/LIPIcs.CONCUR.2022.35.

4 Olivier Blanvillain, Jonathan Immanuel Brachthäuser, Maxime Kjaer, and Martin Odersky.
Type-level programming with match types. Proc. ACM Program. Lang., 6(POPL):1–24, 2022.
doi:10.1145/3498698.

5 Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P.
de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mCRL2 Toolset
for Analysing Concurrent Systems. In Tomáš Vojnar and Lijun Zhang, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 21–39, Cham, 2019. Springer
International Publishing.

6 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011. doi:10.1007/978-3-642-15260-3.

7 David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed programming using role-parametric session types in go: statically-typed endpoint
APIs for dynamically-instantiated communication structures. Proc. ACM Program. Lang.,
3(POPL):29:1–29:30, 2019. doi:10.1145/3290342.

8 Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. J. ACM, 43(2):225–267, March 1996. doi:10.1145/226643.226647.

9 Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proença. API Generation
for Multiparty Session Types, Revisited and Revised Using Scala 3. In Karim Ali and
Jan Vitek, editors, 36th European Conference on Object-Oriented Programming (ECOOP
2022), volume 222 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–
27:28, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL:
https://drops.dagstuhl.de/opus/volltexte/2022/16255.

10 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-Free Asynchronous Message
Reordering in Rust with Multiparty Session Types. In 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume abs/2112.12693 of PPoPP ’22, pages
261–246. ACM, 2022. doi:10.1145/3503221.3508404.

11 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty ses-
sion types and Python. Formal Methods Syst. Des., 46(3):197–225, 2015. doi:10.1007/
s10703-014-0218-8.

12 Romain Demangeon and Nobuko Yoshida. On the Expressiveness of Multiparty Sessions. In
Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2015), volume 45 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 560–574, Dagstuhl, Germany,
2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/
opus/volltexte/2015/5621, doi:10.4230/LIPIcs.FSTTCS.2015.560.

https://doi.org/10.1007/978-3-319-60225-7_1
http://arxiv.org/abs/2305.06238
https://drops.dagstuhl.de/opus/volltexte/2022/17098
https://drops.dagstuhl.de/opus/volltexte/2022/17098
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.1145/3498698
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1145/3290342
https://doi.org/10.1145/226643.226647
https://drops.dagstuhl.de/opus/volltexte/2022/16255
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
http://drops.dagstuhl.de/opus/volltexte/2015/5621
http://drops.dagstuhl.de/opus/volltexte/2015/5621
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.560

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:27

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In 40th International
Colloquium on Automata, Languages and Programming, volume 7966 of LNCS, pages 174–186,
Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39212-2_18.

14 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional Asynchronous
Session Types: Session Types without Tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29,
2019. doi:10.1145/3290341.

15 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. J. Log. Algebraic Methods Program.,
104:127–173, 2019. doi:10.1016/j.jlamp.2018.12.002.

16 Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and Nobuko Yoshida. Precise
Subtyping for Asynchronous Multiparty Sessions. Proc. ACM Program. Lang., 5(POPL),
January 2021. doi:10.1145/3434297.

17 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choreographies as objects. CoRR,
abs/2005.09520, 2020. arXiv:2005.09520.

18 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types
for Safe Runtime Adaptation in an Actor Language. In Anders Møller and Manu Sridharan,
editors, 35th European Conference on Object-Oriented Programming (ECOOP 2021), volume
194 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:30, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.
dagstuhl.de/opus/volltexte/2021/14053, doi:10.4230/LIPIcs.ECOOP.2021.10.

19 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline
for structured communication-based programming. In Chris Hankin, editor, Programming
Languages and Systems, pages 122–138, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
doi:10.1007/BFb0053567.

20 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
In 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 273–284. ACM, 2008. doi:10.1145/1328897.1328472.

21 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
Journal of the ACM, 63:1–67, 2016. doi:10.1145/2827695.

22 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification through Endpoint API
Generation. In 19th International Conference on Fundamental Approaches to Software
Engineering, volume 9633 of LNCS, pages 401–418, Berlin, Heidelberg, 2016. Springer.
doi:10.1007/978-3-662-49665-7_24.

23 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming, 22nd European
Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings, volume 5142 of Lecture Notes in
Computer Science, pages 516–541. Springer, 2008. doi:10.1007/978-3-540-70592-5_22.

24 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with mungo and stmungo. In James Cheney and Germán Vidal, editors, Proceedings of the 18th
International Symposium on Principles and Practice of Declarative Programming, Edinburgh,
United Kingdom, September 5-7, 2016, pages 146–159. ACM, 2016. doi:10.1145/2967973.
2968595.

25 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Implementing Multiparty
Session Types in Rust. In Simon Bliudze and Laura Bocchi, editors, Coordination Models and
Languages - 22nd IFIP WG 6.1 International Conference, COORDINATION 2020, Held as
Part of the 15th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings, volume 12134 of Lecture Notes
in Computer Science, pages 127–136. Springer, 2020. doi:10.1007/978-3-030-50029-0_8.

26 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine
Rust Programming with Multiparty Session Types. In Karim Ali and Jan Vitek, editors,
36th European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of

ECOOP 2023

https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1145/3290341
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1145/3434297
http://arxiv.org/abs/2005.09520
https://drops.dagstuhl.de/opus/volltexte/2021/14053
https://drops.dagstuhl.de/opus/volltexte/2021/14053
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1007/978-3-030-50029-0_8

30:28 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:29, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.
de/opus/volltexte/2022/16232.

27 Matthew Alan Le Brun and Ornela Dardha. MAGπ: Types for Failure-Prone Communication.
In Thomas Wies, editor, Programming Languages and Systems, pages 363–391, Cham, 2023.
Springer Nature Switzerland. doi:10.1007/978-3-031-30044-8_14.

28 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-Safe Web
Programming in TypeScript with Routed Multiparty Session Types. In International Confer-
ence on Compiler Construction, CC, pages 94–106, 2021. doi:10.1145/3446804.3446854.

29 Dimitris Mostrous and Vasco T. Vasconcelos. Affine Sessions. Logical Methods in Computer
Science, Volume 14, Issue 4, November 2018. URL: https://lmcs.episciences.org/4973,
doi:10.23638/LMCS-14(4:14)2018.

30 Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. Logical Methods in
Computer Science, 13:1–30, 2017. doi:10.23638/LMCS-13(1:17)2017.

31 Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble, pages 236–259. Springer
International Publishing, Cham, 2019. doi:10.1007/978-3-030-21485-2_14.

32 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. SPY: Local Verification of Global
Protocols. In Axel Legay and Saddek Bensalem, editors, Runtime Verification, pages 358–363,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-40787-1_25.

33 Kirstin Peters, Uwe Nestmann, and Christoph Wagner. Fault-tolerant multiparty session
types. In Mohammad Reza Mousavi and Anna Philippou, editors, Formal Techniques for Dis-
tributed Objects, Components, and Systems, pages 93–113, Cham, 2022. Springer International
Publishing. doi:10.1007/978-3-031-08679-3_7.

34 Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
35 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,

2011. doi:10.1017/CBO9780511777110.
36 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decomposition

of Multiparty Sessions for Safe Distributed Programming. In Peter Müller, editor, 31st
European Conference on Object-Oriented Programming (ECOOP 2017), volume 74 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1–24:31, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/
volltexte/2017/7263, doi:10.4230/LIPIcs.ECOOP.2017.24.

37 Alceste Scalas and Nobuko Yoshida. Less is More: Multiparty Session Types Revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, January 2019. doi:10.1145/3290343.

38 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Effpi: verified message-passing programs in
Dotty. In Jonathan Immanuel Brachthäuser, Sukyoung Ryu, and Nathaniel Nystrom, editors,
Proceedings of the Tenth ACM SIGPLAN Symposium on Scala, Scala@ECOOP 2019, London,
UK, July 17, 2019, pages 27–31. ACM, 2019. doi:10.1145/3337932.3338812.

39 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Verifying Message-Passing Programs with
Dependent Behavioural Types. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, pages 502–516, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3314221.3322484.

40 Rob van Glabbeek, Peter Höfner, and Ross Horne. Assuming Just Enough Fairness to make
Session Types Complete for Lock-freedom. In 36th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE,
2021. doi:10.1109/LICS52264.2021.9470531.

41 Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu, and Lukasz Ziarek. A Typing
Discipline for Statically Verified Crash Failure Handling in Distributed Systems. In Amal
Ahmed, editor, Programming Languages and Systems, pages 799–826, Cham, 2018. Springer
International Publishing. doi:10.1007/978-3-319-89884-1_28.

https://drops.dagstuhl.de/opus/volltexte/2022/16232
https://drops.dagstuhl.de/opus/volltexte/2022/16232
https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.1145/3446804.3446854
https://lmcs.episciences.org/4973
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1007/978-3-030-21485-2_14
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-031-08679-3_7
https://doi.org/10.1017/CBO9780511777110
http://drops.dagstuhl.de/opus/volltexte/2017/7263
http://drops.dagstuhl.de/opus/volltexte/2017/7263
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3337932.3338812
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1109/LICS52264.2021.9470531
https://doi.org/10.1007/978-3-319-89884-1_28

A.D. Barwell, P. Hou, N. Yoshida, F. Zhou 30:29

42 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A Multiparty Session
Typing Discipline for Fault-Tolerant Event-Driven Distributed Programming. Proc. ACM
Program. Lang., 5(OOPSLA), October 2021. doi:10.1145/3485501.

43 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In 8th International Symposium on Trustworthy Global Computing - Volume
8358, TGC 2013, pages 22–41, Berlin, Heidelberg, 2014. Springer-Verlag. doi:10.1007/
978-3-319-05119-2_3.

ECOOP 2023

https://doi.org/10.1145/3485501
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3

	1 Introduction
	2 Overview
	3 Crash-Stop Asynchronous Multiparty Session Calculus
	4 Asynchronous Multiparty Session Types with Crash-Stop Semantics
	4.1 Global and Local Types with Crash-Stop Failures
	4.2 Crash-Stop Semantics of Global Types
	4.3 Crash-Stop Semantics of Configurations
	4.4 Alternative Modellings for Crash-Stop Failures
	4.5 Relating Global Type and Configuration Semantics
	4.6 Properties Guaranteed by Projection

	5 Typing System with Crash-Stop Semantics
	5.1 Typing Rules
	5.2 Properties of Typed Sessions

	6 Teatrino: Generating Scala Programs from Protocols
	6.1 Specifying a Multiparty Protocol in Scribble
	6.2 Generating Scala Code from Scribble Protocols
	6.3 Generating Effpi Channels from Scribble Protocols

	7 Evaluation
	8 Related Work
	9 Conclusion and Future Work

