
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

Dynamic deadlock verification
for general barrier synchronisation

Tiago Cogumbreiro
Imperial College London

cogumbreiro@imperial.ac.uk

Raymond Hu
Imperial College London

raymond.hu05@imperial.ac.uk

Francisco Martins
University of Lisbon
fmartins@fc.ul.pt

Nobuko Yoshida
Imperial College London
n.yoshida@imperial.ac.uk

Abstract
We present Armus, a dynamic verification tool for deadlock detec-
tion and avoidance specialised in barrier synchronisation. Barriers
are used to coordinate the execution of groups of tasks, and serve as
a building block of parallel computing. Our tool verifies more bar-
rier synchronisation patterns than current state-of-the-art. To im-
prove the scalability of verification, we introduce a novel event-
based representation of concurrency constraints, and a graph-based
technique for deadlock analysis. The implementation is distributed
and fault-tolerant, and can verify X10 and Java programs.

To formalise the notion of barrier deadlock, we introduce a core
language expressive enough to represent the three most widespread
barrier synchronisation patterns: group, split-phase, and dynamic
membership. We propose a graph analysis technique that selects
from two alternative graph representations: the Wait-For Graph,
that favours programs with more tasks than barriers; and the State
Graph, optimised for programs with more barriers than tasks. We
prove that finding a deadlock in either representation is equivalent,
and that the verification algorithm is sound and complete with
respect to the notion of deadlock in our core language.

Armus is evaluated with three benchmark suites in local and
distributed scenarios. The benchmarks show that graph analysis
with automatic graph-representation selection can record a 7-fold
execution increase versus the traditional fixed graph representation.
The performance measurements for distributed deadlock detection
between 64 processes show negligible overheads.

Categories and Subject Descriptors D.4.1 [Process Manage-
ment]: Deadlocks—detection, avoidance; D.3.3 [Language Con-
structs and Features]: Concurrent programming structures—bar-
riers, phasers; F.3.2 [Semantics of Programming Languages]: Op-
erational semantics

General Terms Verification

Keywords barrier synchronisation, phasers, deadlock detection,
deadlock avoidance, X10, Java

1. Introduction
The rise of multicore processors has pushed mainstream program-
ming languages to incorporate various parallel programming and
concurrency features. An important class of these are barriers and
their associated techniques. Java 5–8 and .NET 4 introduced several
abstractions that expose barriers explicitly or otherwise use implicit
barrier synchronisations: latches, cyclic barriers, fork/join, futures,
and stream programming. The basic functionality of a barrier is
to coordinate the execution of a group of tasks: it allows them to
wait for each other at an execution point. Recent languages feature
more advanced abstractions, such as clocks in X10 [45] and phasers
in Habanero-Java/C (HJ) [7], that support highly dynamic coordi-
nation of control flow and synchronisations. In particular, phasers

unify the barrier synchronisation patterns available in Java, X10,
and .NET under a single abstraction.

As for many other concurrency mechanisms, deadlocks—in
which two tasks blocked on distinct barriers are (indirectly) wait-
ing for each other—are one of the primary errors related to bar-
rier synchronisation. Historically, the approach to counter barrier
deadlocks has been to restrict the available barrier synchronisation
patterns such that programs are barrier-deadlock free by construc-
tion, e.g., OpenMP [30] restricts barrier composition to syntactic
nesting. To date there are no available tools for barrier-deadlock
verification in X10 or HJ, nor for mainstream libraries, such as the
Java Phaser [16] and the .NET Barrier [25] APIs.

Two key characteristics exacerbate barrier-deadlock verifica-
tion in recent languages and systems: barriers can be created dy-
namically and communicated among tasks as values (called first-
class barriers [41]); and the group of participants can change
over time (dynamic membership [29]). Due to the difficulty of
statically analysing the usage of first-class barriers (e.g., dealing
with aliases and non-determinism statically), the state-of-the-art
in barrier-deadlock verification is based on dynamic techniques
that monitor the run-time execution of programs (existing tools for
static verification handle only a simplistic model where synchro-
nisation is global; see Section 7). Dynamic membership, found in
Java, .NET, X10, and HJ, is, however, simply not handled by any
existing barrier-deadlock verification tools.

The state-of-the-art in dynamic barrier-deadlock verification
follows graph-based techniques and originates from MPI [28] and
UPC [42]. Graph-based approaches work by maintaining a rep-
resentation of the concurrency constraints between running tasks
(e.g., the synchronisation state of blocked tasks), and by perform-
ing a graph analysis on this state (e.g., cyclic dependencies). While
the existing graph-based tools, such as [13, 14], precisely identify
deadlocks in systems featuring multiple barriers, these approaches
are too limited in the presence of dynamic membership.

The main limitations of the current tools are: (i) a representa-
tion of concurrency constraints that assumes static barrier mem-
bership, and (ii) committing to the Wait-For Graph [20] analysis
technique that is optimised for concurrency constraints with more
tasks than barriers (a rare situation for classical parallel programs).
Naive extensions to resolve (i) face the problem of maintaining the
membership status of barriers consistently and efficiently; this is-
sue is compounded in the distributed setting, which is a key design
point of deadlock verification for languages like X10/HJ. Issue (ii)
is related to the dynamic nature of such barrier applications, where
the number of tasks and barrier synchronisations may not be known
until run-time and may vary during execution. Committing to a par-
ticular graph model can thus hinder the scalability of dynamic ver-
ification. The State Graph [18] is an alternative model that favours
scenarios with more tasks than barriers. In the general case we can-

1



not determine which model is most suitable statically; moreover,
this property may change as execution proceeds.

Armus This paper presents Armus, to our knowledge, the first
deadlock verification tool for phasers [7, 34]. The contributions of
this work are as follows.

• Armus leverages phasers to represent concurrency constraints
among synchronisation events. This representation enables the
analysis of first-class barriers with dynamic membership, and
simplifies the algorithm of distributed deadlock detection.
• Armus introduces a technique to improve the scalability of

graph-based verification, by automatically and dynamically se-
lecting and transforming between the commonly used Wait-For
Graph (WFG) and the alternative State Graph (SG) models.
• We formalise an operational model for a concurrent language

with phasers (subsuming the barriers of [16, 25, 45]) and the
Armus deadlock verification algorithm. We show that our dead-
lock verification is sound and complete with respect to the
characterisation of deadlock in our language, and establish the
WFG-SG equivalence.
• The Armus-X10 and JArmus applications are the first deadlock

verification tools for X10 clocks and the Java phaser API, fea-
turing: distributed deadlock detection where the tool reports ex-
isting deadlocks, and local deadlock avoidance where the tool
raises an exception before entering a deadlock.

To address (i), Armus introduces a novel representation of con-
currency dependencies, based on events in the sense of Lamport’s
logical clocks [22]. A major part of deadlock analysis is the genera-
tion of concurrency constraints, attained by bookkeeping the status
of tasks and barriers. The insight of our technique is to interpret
the operation of waiting for a phase as observing a timestamp; and
then to assert a dependency from the phase a task is blocked to
any (future) phase the task participates. With this representation Ar-
mus simplifies the analysis of dynamic membership, since it avoids
tracking the arrival and departure of participants on a synchroni-
sation; bookkeeping the participants of a barrier in a distributed
setting is a global state, thus a challenging procedure to maintain.

Armus addresses (ii) with a novel technique that automatically
selects between two graph models according to the monitored con-
currency constraints. The standard graph model used in graph anal-
ysis, the WFG, comes from distributed databases [20], a setting
with a fixed number of tasks and dynamic resource creation. The
WFG was therefore optimised for concurrency constraints with
many resources and few tasks. The underlying assumptions of the
WFG no longer hold for languages with dynamic tasks and dy-
namic barrier creation (first-class barriers), such as X10 and Java.
For these applications, Armus proposes a technique that selects ei-
ther the WFG or the SG depending on the ratio between tasks and
barriers. The difference on the size of the graph can be dramatic.
For instance, in benchmark PS [46], the average edge count de-
creases from 781 edges to 6 edges (see Section 6.3). The automatic
model selection performs at least as fast as the usual approach of a
fixed graph representation.

We outline the sections of this paper. The following section il-
lustrates the subtleties of barrier deadlock verification regarding
first-class barriers with dynamic membership and how Armus ad-
dresses these challenges, with connections to later sections. Sec-
tion 3 presents a programming language abstraction (PL) for gen-
eral barrier constructs, expressive enough to capture all surveyed
barrier synchronisation patterns. In Section 4, we introduce a novel
representation of barrier-dependency state based on synchronisa-
tion events and define the construction of Wait-For Graphs and
State Graphs for Armus deadlock verification. We show that the
WFG and SG constructed from a given state are equivalent wrt.

1 val c = Clock.make();
2 finish {
3 // Spawn I tasks, looping together J times
4 for (i in 1..I) async clocked(c) {
5 for (j in 1..J) {
6 val l = a(i-1);
7 val r = a(i+1);
8 c.advance(); // Cyclic barrier (clock) step
9 a(i) = (l + r) / 2;

10 c.advance();}}
11 } // Join barrier (finish) step: wait on all tasks
12 handle(a);

Figure 1: Join and cyclic barrier synchronisation in X10.

the presence of cycles, and that cycle detection gives sound and
complete deadlock verification wrt. a deadlock in PL. Next, Sec-
tion 5 presents the implementation details of Armus, including the
distributed deadlock detection algorithm, and applications to Java
(JArmus) and to X10 (Armus-X10). Section 6 performs an ex-
tensive performance evaluation of Armus in Java and X10, using
the NAS Parallel Benchmark, the Java Grade Forum Benchmark
suite, and the HPC Challenge benchmark suite. The results show
that overall deadlock detection is below 13% in local applications,
and negligible in distributed applications. Furthermore, automatic
graph model selection outperforms the fixed graph model selection:
deadlock detection can have an overhead impact difference of 9%;
deadlock avoidance have an overhead impact difference of 518%.
Finally, Section 7 discusses related work and Section 8 concludes
the paper. The Armus web page [3] includes the implementation
and the benchmark data.

2. Barrier programs and deadlocks
This section illustrates the use of different kinds of barriers in X10
and Java, and examples of deadlocks that arise in such programs.
We motivate the design of Armus for the more general mecha-
nism of phasers, which has allowed us to directly apply Armus
to handle the different forms of barrier programming and barrier
synchronisation patterns in languages like X10 and Java. Since
a comprehensive deadlock verification for X10 applications must
also consider distributed barrier coordination, we discuss the chal-
lenges of distributed deadlock detection and motivate the event-
based barrier-dependency state used in Armus. Finally, we discuss
how the choice of graph model impacts deadlock verification scal-
ability in various scenarios of barrier applications.

2.1 Dynamic barrier membership using X10 clocks
Our running example is a simplified parallel 1-dimensional iterative
averaging [35], divided into two stages. The first stage spawns I

tasks, in parallel, to work on an array a of I+2 numbers. Each
task is responsible for updating an element with the average of
its neighbours, repeatedly over a series of synchronised iterations.
After these tasks have finished, a single task then performs the
second stage, some final processing on the resulting array values.

Figure 1 lists an X10 implementation of the running example.
The first stage is implemented using a cyclic barrier, represented by
the clock created and assigned to c (an immutable val) on Line 1.
The for loop starting on Line 4 spawns 1..I parallel tasks (called
activities in X10) using the async statement. All I child tasks are
registered (clocked) with clock c; the parent task is implicitly
registered upon clock creation. In the async body of each task i,
the inner loop, repeated J times, reads a(i-1) and a(i+1) array
values and assigns the average to a(i). Stepwise looping by these
parallel tasks is coordinated using the blocking advance operation
on the clock. A task executes an advance by waiting until every

2



task registered with that clock has done so, and then all tasks
may proceed. On Line 8, the tasks synchronise between reading
the current values in the j-th step and writing the new values.
Another synchronisation takes place between writing on Line 10
and reading the values in the (j+1)-th step.

The second stage is implemented using a join barrier. The
parent awaits on Line 11 the termination of the I tasks spawned
in the body of the finish.

Deadlock verification for dynamic membership Deadlock veri-
fication for this example must take into account two properties of
barrier semantics: group synchronisation, and dynamic member-
ship. The former capability lets groups of tasks synchronise inde-
pendently, in contrast with global synchronisation. The verification
must identify any transitive dependencies among the participants
of different groups through the chosen graph analysis. The latter
capability lets tasks register and revoke their membership in a bar-
rier, which may introduce subtle deadlocks such as the one affect-
ing the program in Figure 1. In X10, two operations register a task
with c: creating clock c and clocked(c); while c.drop() revokes
the membership with c. The code deadlocks because all of the I

tasks are stuck on the first advance, since the registered parent task
never calls advance. Armus can monitor the program’s execution
to detect deadlocks, reporting to the user after the error occurs.
A straightforward fix to the deadlock is to insert c.drop() imme-
diately before Line 11 to break the circular dependency. Alterna-
tively, Armus can perform deadlock avoidance and an exception is
raised in Lines 8 and 11 and the tasks become deregistered from
clock c.

The X10 language was developed with the goal of simplify-
ing the migration of single-threaded prototype programs to dis-
tributed implementations running across, e.g., multiple SMP clus-
ters. Programs refer to each site (e.g., cluster nodes) of the dis-
tributed system as places. Any X10 statement may be prefixed
with at(p) to execute that statement at the site referred by place p

(a value). Clocks work across multiple places, so invoking at(p)

async clocked(c) spawns a task that runs at place p registered
with a distributed clock c. For instance, let the running example be
defined as function example. Statement at (p) async example();

executes the running example in a site referenced by p. Similarly, a
site can fork and join the execution of the running example across
a cluster with the following X10 code, in which every site operates
a distinct instance of clock c.

finish for (p in CLUSTER) at (p) async example();

We argue that the techniques available in the literature are not
adapted to the distributed analysis of barrier deadlocks, because
of the effort to monitor dynamic membership across all sites of
the distributed system. Such techniques, developed mostly to ver-
ify lock-based deadlocks, track the status of each blocked operation
with the objective of obtaining dependencies between tasks. Since
barrier synchronisation is a collective operation, a distributed al-
gorithm incurs in the additional effort of aggregating the arrival
status of each participant [13, 14]. Essentially, the analysis ends up
recreating a significant part of the actual synchronisation protocol,
which Agarwal et al. [2] observe to be the non-trivial part of dis-
tributed barrier synchronisation with dynamic membership. Armus
proposes an alternative representation that is oblivious of the status
of the barrier operation—a global property—and instead consid-
ers the local impact of each task in the global ordering of barrier
synchronisation.

2.2 Generalised barrier synchronisation using phasers
Phasers generalise barrier synchronisation by introducing the no-
tion of barrier phase, allowing a task to await a future barrier step
(i.e., ahead of the other members), rather than just the immediately

1 c = new Phaser(1); // "Cyclic barrier" phaser
2 b = new Phaser(1); // "Join barrier" phaser
3 for (int i = 1; i <= I; i++) {
4 c.register(); b.register();
5 new Thread() { // Spawn task i
6 public void run() {
7 for (int j = 1; j <= J; j++) {
8 l = a[i-1];
9 r = a[i+1];

10 c.arriveAndAwaitAdvance();
11 a[i] = (l + r) / 2;
12 c.arriveAndAwaitAdvance();
13 }
14 c.arriveAndDeregister();b.arriveAndDeregister();
15 }}.start();
16 }
17 b.arriveAndAwaitAdvance();
18 handle(a);

Figure 2: The example implemented using Java phasers.

pending step. This abstraction was first introduced in HJ as an ex-
tension of X10 clocks. A limited form of phasers was later included
in Java 7. Figure 2 lists a Java version of the running example, us-
ing the java.util.concurrent.Phaser API to represent both the
cyclic and join barriers. The cyclic barrier is managed by the phaser
assigned to c. The integer constructor argument (Line 1) creates
the phaser with an initial count of pre-registered tasks for the first
phase: here, the count, initialised to 1, signifies the registration of
the parent task with this phaser. On Line 4, each of the I tasks
(threads) is registered with the c-phaser. Intuitively, a non-negative
monotonic integer is assigned to each task, called the local phase,
that is incremented when the task arrives at phaser; the phase is
observed when all participants advance their local phase. Analo-
gously to the X10 code, the cyclic barrier synchronisations are thus
performed by each task invoking arriveAndAwaitAdvance on c on
Lines 10 and 12 to arrive at and observe each synchronisation event.

The join barrier is managed by the phaser assigned to b. The
join synchronisation is achieved by each task i invoking on Line 14
the non-blocking arriveAndDeregister method on b when fin-
ished, which the parent task observes by arriveAndAwaitAdvance

on Line 17. Corresponding to Figure 1, this Java implementation
will deadlock at the first c-phaser synchronisation because the reg-
istered parent task does not arrive at this event; the fix is to have
the parent task do c.arriveAndDeregister() between Lines 16
and 17. Note that avoiding this deadlock by changing the code to
simply not register the parent task with the c-phaser (i.e., by setting
its constructor argument to 0) is not sufficient: in this case, the syn-
chronisations on c would proceed non-deterministically between
already running threads and those that have yet to be started.

Unlike in X10/HJ/MPI, Java phasers lack the information to
identify which tasks are participating in a synchronisation, e.g.,
method Phaser.register does not target a thread. To verify Fig-
ure 2 the programmer must insert the code JArmus.register(c,b)

before Line 7.
HJ phasers permit tasks to await arbitrary phases, and split-

phase synchronisation. The former enables collective producer-
consumer synchronisations. The latter (also present in X10 and
Java) enables the barrier synchronisation to be conducted over two
steps: the task firstly initiates the synchronisation as a non-blocking
background operation (i.e., concurrently with the task), and can
wait for the operation to conclude at a later point. By designing Ar-
mus to support HJ phasers, we subsume deadlock detection for X10
and Java barrier programs under one central abstraction. Works on
phasers include synchronisation algorithms [27, 37], data-flow pro-
gramming models [35, 36], and OpenMP extensions [38].

3



Event-based concurrency dependencies To be able to define the
concurrency dependencies between tasks and phasers, state-of-the-
art analysis uses information about the blocked tasks and the par-
ticipants of each phaser. Instead, Armus defines these dependencies
by reasoning about synchronisation events in the sense of Lamport
logical clocks, a mechanism that can order events by associating a
different timestamp (a monotonic integer) per event.

There is a natural representation between a phaser and a logical
clock: when tasks synchronise on a phase number n of a phaser p
each participant observes a synchronisation event that occurred at
timestamp n of the logical clock associated with phaser p. Under
this view, blocked tasks wait for a specific event to be observed.
But since a waiting task cannot arrive at other registered phasers,
then waiting tasks also impede the observation of events. Thus, any
event that a tasks is waiting must precede an event the task impedes.
A deadlock corresponds to any circular dependencies found in this
ordering of events. Our novel representation dramatically improves
the scalability of verification for two reasons.

1. Our representation has enough information to generate different
graph models (Wait-For Graph and State Graph).

2. When performing distributed verification, the consistency of the
dependencies is local to the task. Each site can independently
collect the dependencies generated by each of its blocked task,
which means that the various sites do not need to agree upon a
certain global view, see Section 5.2.

Graph-based deadlock analysis Graph-based approaches per-
form cycle detection on the concurrency dependencies between
tasks and synchronisation events. The Wait-For Graph (WFG) only
models dependencies between tasks. The State Graph (SG) only
models dependencies between synchronisation events. Since the
scalability of cycle detection depends on the size of the graph, the
ratio between the number of synchronisation events and the num-
ber of tasks impacts the best graph model choice. We discuss three
scenarios of applications that use barrier synchronisation.

Parallel applications designed following the Single Program
Multiple Data (SPMD) programming model share two character-
istics: there is a fixed number of tasks and a fixed number of cyclic
barriers throughout the whole computation; and the number of tasks
is a parameter of the program, but the number of cyclic barriers is
not. All of the benchmarks found in Section 6.1 share these charac-
teristics. Scaling an SPMD program usually involves adding more
tasks, whilst maintaining the same number of cyclic barriers; hence
SG becomes beneficial at a larger scale.

The appropriate graph model for fork/join applications is harder
to predict. For instance, in nested fork/join programming models,
such as in X10, where join barriers (finishes) are lexically scoped,
each task is registered with all join barriers that are enclosing its
spawn location, e.g., an X10 task spawned within the scope of three
finishes is registered with three join barriers. The case complicates
when join barriers are created dynamically in a recursive function
call. For instance, languages with futures turn each function call
into a join barrier, so it can happen that there are as many join
barriers (resources) as there are tasks. In general, it is not possible to
statically predict the ratio between resources and tasks in fork/join
(and future) applications.

Java and X10 include multiple barrier abstractions to let appli-
cations choose from different programming models. Recent pro-
posals of abstractions that use barrier synchronisation, in the con-
text of X10 programming, make the case difficult for a fixed graph
representation (be it the WFG or the SG). Atkins et al. design and
implement clocked variables [4] that mediate the access of shared
memory cells with barrier synchronisation in the context of X10.
We benchmark three parallel algorithms that use clocked variables
in Section 6.3 and the average edge count of each is different: in SE

1 pc = newPhaser();
2 pb = newPhaser();
3 loop
4 t = newTid();
5 reg(pc, t); reg(pb, t);
6 fork(t)
7 loop
8 skip;
9 adv(pc); await(pc); // Cyclic barrier steps

10 skip;
11 adv(pc); await(pc);
12 end;
13 dereg(pc);
14 dereg(pb); // Notify finish
15 end;
16 end;
17 adv(pb); await(pb); // Join barrier step
18 skip;
19 end

Figure 3: PL for the example in Figure 1.

the edge count is similar between WFG and the SG; in FI the SG
is on average twice as small; and in FT the average edge count of
the WFG is ten times as small. Additionally, in the context of HJ,
Shirako et al. propose using phasers for point-to-point synchroni-
sation [34], so we expect the WFG to be more beneficial, and for
the implementation of parallel reduction operations [35] that should
favour the SG model.

3. PL: a core phaser-based language for general
barrier synchronisations

This section introduces the syntax and semantics of a core lan-
guage (PL) that abstracts user-level programs with barriers. The
verification requires the state of the phaser data structure, and the
set of blocked tasks to characterise a deadlock. The formalisation
serves two purposes: defines the required information to charac-
terise a deadlock, and precises the operations that change this in-
formation. Since our runtime verification works by sampling the
state of phasers and blocked tasks, the analysis is oblivious to con-
trol flow mechanisms. Thus, language constructs that do not affect
barrier synchronisation, like data manipulation, are left out or sim-
plified, e.g., the loop.

Phasers We first formalise the semantics of phasers in one pred-
icate and three operations. Let P denote a phaser that maps task
names t ∈ T into local phases n ∈ N . Predicate await(P, n),
used by tasks to observe a phaser, holds if every member of the
phaser has a local phase of at least n.

∀t ∈ dom(P ) : P (t) ≥ n =⇒ await(P, n)

We define the operational semantics for phasers in Figure 4. Three
operations φ mutate a phaser: reg(t, n) adds a new member task t
whose local phase is n; dereg(t) revokes the membership of t; and
adv(t) increments the local phase of t.

LetM map phaser names p ∈ P to phasers, used to represent all
phasers in the system. There are two operators o over phaser maps:
p := P that creates a phaser P named p, and p.φ that manipulates
the phaser named p.

Syntax PL abstracts a user-level program as an instruction se-
quence s defined with instructions c, generated by the grammar:

s ::= c; s | end

c ::= t = newTid() | fork(t) s | p = newPhaser() | reg(t, p)

| dereg(p) | adv(p) | await(p) | loop s | skip

We explain the syntax and its informal semantics by giving,
in Figure 3, the PL representation of the running example, from

4



Figure 1. Launching a task encompasses two instructions: create
task name t with newTid (Line 4), and then fork a task t whose
body is an instruction sequence s (Lines 6 to 15).

On task membership we have: newPhaser that creates a phaser
and registers the current task at phase zero; reg that registers task t
with a phaser p (the registered task in the parameter inherits the
phase number of the current task); and dereg that deregisters the
current task from phaser p. In our example the driver task creates a
join barrier pb in Line 2, registers worker tasks t with pb in Line 5,
which deregister from it to signal task termination in Line 14. For
synchronisation we have phase advance with instruction adv, and
await to wait for the phase the current task is registered with. While
averaging the array each task advances its phase and then awaits the
others to do the same in Lines 9 and 11.

Finally, regarding control flow we have skip that does nothing
(used to represents data-related operations), and loop that unfolds
its body an arbitrary number of times (possibly zero), capturing
while-loops, for-loops, and conditional branches. In Lines 8 and 10
we abstract the reading and writing to shared memory with the
skip. In Lines 3 to 16 we abstract the for-loop to spawn tasks, and
in Lines 7 to 12 we abstract the for-loop to average the array.

PL semantics We define the operational semantics for PL in In-
structions and States in Figure 4. The rules for instruction se-
quences (skip and loop) are standard. A state S::=(M,T ) of
the system pairs phaser maps M with task maps T . A task map
T ::={t1 : s1, . . . , tm : sm} captures the state of the running tasks:
it relates task ti to instruction sequence si. Given any map, say
X , we write dom(X) for the domain of X . When dom(X) ∩
dom(Y ) = ∅, we write X ] Y for the disjoint union of X and Y .

In the context of dynamic verification, the semantics of PL
plays two roles. First, with rule [sync] we can define the notion
of blocked tasks, which allows us to characterise deadlocked states
and establish the results in Section 4.3. Second, the remaining rules
serve as a specification of how to maintain the status of phasers
when verifying X10 and Java applications, see Section 5.3.

Deadlocks We define a deadlock state (Definition 3.2) based on a
totally deadlocked state (Definition 3.1). A totally deadlocked state
occurs when every tasks is blocked on a phaser and because of a
task from that state.

Definition 3.1 (Totally deadlocked state). A state (M,T ) is totally
deadlocked if, and only if, T 6= ∅, and for all t ∈ dom(T ) we
have that T (t) = await(p); s, M(p)(t) = n, and there is a
task t′ ∈ dom(T ) where M(p)(t′) < n.

If we augment a totally deadlock state with tasks that are not
blocked on a phaser, then the state becomes deadlocked, as these
extra tasks can still reduce.

Definition 3.2 (Deadlocked state). State (M,T ′ ] T ) is dead-
locked on task map T if, and only if, state (M,T ) is totally dead-
locked.

4. Deadlock verification algorithm

We adapt the classical notion of resource [18] to a phase in PL
and use two alternative graph models to analyse concurrency con-
straints: Wait-For Graph [20] (WFG) and the State Graph [18]
(SG).

The algorithm consists of three steps. First, by abstracting a PL
state as a resource-dependency state, which expresses the depen-
dencies between tasks and resources. Second, by translating this
resource-dependency state into a WFG, or a SG. Third, by apply-
ing the standard cycle detection on the resulting graph.

Phasers ∃t′ : P (t′) ≤ n

P
reg(t,n)
−−−−−→ P ] {t : n}

[reg]

P ] {t : n} dereg(t)−−−−−→ P [dereg]

P ] {t : n} adv(t)−−−−→ P ] {t : n+ 1} [adv]

Phaser maps M
p:=P−−−→M ] {p : P} [new-p]

P
φ−→ P ′

M ] {p : P} p.φ−−→M ] {p : P ′}
[new-t]

Instructions skip; s −→ s [skip]

s′ = c1; ..; cn; end

loop s′; s −→ c1; ..; cn; (loop s′; s)
[i-loop]

loop s′; s −→ s [e-loop]

States
t′′ /∈ fv(s)

(M,T ] {t : t′ = newTid(); s})
−→ (M,T ] {t : s[t′′/t′]} ] {t′′ : end})

[new-t]

(M,T ] {t : fork(t′) s′; s} ] {t′ : end})
−→ (M,T ] {t : s} ] {t′ : s′})

[fork]

M
q:=P−−−→M ′ P = {t : 0} q /∈ fv(s)

(M,T ] {t : p = newPhaser(); s}) −→ (M ′, T ] {t : s[q/p]})
[new-ph]

M(p)(t) = n M
p.reg(t′,n)−−−−−−−→M ′

(M,T ] {t : reg(t′, p); s}) −→ (M ′, T ] {t : s}) [reg]

M
p.dereg(t)−−−−−−→M ′

(M,T ] {t : dereg(p); s}) −→ (M ′, T ] {t : s}) [dereg]

M
p.adv(t)−−−−−→M ′

(M,T ] {t : adv(p); s}) −→ (M ′, T ] {t : s}) [adv]

M(p)(t) = n await(P, n)

(M,T ] {t : await(p); s}) −→ (M,T ] {t : s}) [sync]

s −→ s′

(M,T ] {t : s}) −→ (M,T ] {t : s′}) [c-flow]

Figure 4: Operational semantics of PL.

4.1 Resource-dependency state construction
A resource-dependency state D consists of a pair (I,W ). The map
of impeding tasks I maps resources to the set of task names that
impede synchronisation; in the case of barriers this set denotes
the tasks that have not arrived at the barrier. The map of waiting
resources W maps task names to the set of resources the task is
blocked on. In PL, tasks can only await on a single phaser so we
get singleton sets.

Example 4.1 (Resource dependency). Consider the deadlocked
state (M1, T1) defined below, derived from the running example
considering I to be 3. Tasks t1, t2, and t3 are the worker tasks
blocked at the cyclic barrier pc. Driver task t4 is at the join bar-
rier pb.
M1 =

{
pc: {t1 : 1, t2 : 1, t3 : 1, t4 : 0}, pb: {t1 : 0, t2 : 0, t3 : 0, t4 : 1}

}
,

T1 = {t1 : await(pc); s1, t2 : await(pc); s2,
t3 : await(pc); s3, t4 : await(pb); s4}

5



t1 t2 t3 t4

(a) WFG

t1 t2 t3 t4

r1

r2

(b) GRG

r1

r2

(c) SG

Figure 5: Graphs of concurrency constraints in Example 4.1.

To construct a resource-dependency (I1,W1) from (M1, T1) we
look into the tasks, to identify the resources. Let resource r1 rep-
resent awaiting on phaser pc at phase 1 and resource r2 represent
awaiting on phaser pb at phase 1. Hence,

W1 =
{
t1 : {r1}, t2 : {r1}, t3 : {r1}, t4 : {r2}

}
To construct the structure of impeding tasks we inspect the phaser
map according to each resource (r1 and r2). Task t4 impedes any
task blocked on resource r1 (phaser pc at phase 1). Similarly,
tasks t1, t2, and t3 impede task t4 via resource r2 (phaser pb at
phase 1), since the former are registered with a phase below 1.

I1 =
{
r1 : {t4}, r2 : {t1, t2, t3}

}
Below we define this notion: let res be a bijective function that

maps resources r to pairs of phaser names and naturals (the phase).

Definition 4.1 (Resource-dependency). Let ϕ be a function from
states into resource-dependencies, where ϕ (M,T )

def
= (I,W ) is

defined as:

W
def
=

{
t : {res (p, n)} | ∀t ∈ T : T (t) = await(p); s

∧M(p)(t) = n
}

I
def
= {res (p, n) : R | ∀t′ ∈ T : T (t′) = await(p); s

∧M(p)(t′) = n}

where R = {t | ∀t ∈ T : M(p)(t) < n}
By Definition 4.1, we have that ϕ (M1, T1) = (I1,W1).

We can view a resource-dependency as a graph by simply con-
sidering nodes to be tasks and resources, and useW and I to create
the edges. The General Resource Graph [15] (GRG) models depen-
dencies between tasks and resources. For each task t1 that waits on
a resource r1, that is r1 ∈ W (t1), then we have an edge (t1, r1).
For each resource r1 that impedes task t4, that is t4 ∈ I(r1), then
we have an edge (r1, t4). Figure 5b depicts the GRG for resource-
dependency (I1,W1).

WFG and SG can be obtained from a GRG by simple edge con-
traction. We give an intuition on the construction of the WFG and
of the SG. The WFG is task-centric, so an edge (t1, t4) represents
that task t1 waits for task t4 to synchronise, meaning that there ex-
ists a resource r1 such that r1 ∈ W (t1) and t4 ∈ I(r1). Figure 5a
illustrates the WFG for resource-dependency (I1,W1). The SG is
resource-centric, so an edge (r1, r2) represents that resource r1 im-
pedes any task from synchronising via resource r2, meaning that
there exists a task t4 such that r1 ∈ W (t4) and t4 ∈ I(r2). Fig-
ure 5c depicts the SG for resource-dependency (I1,W1).

4.2 WFG and SG construction
Graph analysis is the last step of verification. The resource-
dependency state serves as a general representation of concurrency
constraints, translatable to WFG and to SG.

First, some notions about graph theory [6]. A (directed) graphG =
(V,E) consists of a nonempty finite set of vertices V (where r ∈

V ), and of a finite set of edges E (where e ∈ E). An edge e =
(r, r′) is directed from the head r to the tail r′.

Graph (V,E) is a subgraph of graph (V ′, E′) if (i) V ⊂ V ′, (ii)
E ⊂ E′, and (iii) ∀(r, r′) ∈ E =⇒ r ∈ V ∧r′ ∈ V . A walkw on
(V,E) is an alternating sequence r1 · · · rn−1rn of vertices ri ∈ V
such that n > 1 and (ri, ri+1) ∈ E for i = 1, . . . , n− 1. We may
specify the first and last vertices of a walk by saying a r-r′ walk, for
the walk r · · · r′. A cycle is a walk r · · · r′ where r = r′. We may
specify the first and last vertex of a cycle by saying a r-cycle, for
the cycle r · · · r. The length of a walk corresponds to the number of
its edges. We say that r ∈ w if, and only if,w = r1 · · · rn and there
exists a ri such that r = ri and 1 ≤ i ≤ n. We say that (r, r′) ∈ w
if, and only if, w = r1 · · · rn and there exists a ri and ri+1 such
that r = ri, r′ = ri+1, and 1 ≤ i < n.

The in-degree n of a vertex r counts the number of edges whose
tail is r. The out-degree n of a vertex r counts the number of edges
whose head is r. We say that vertex r′ is reachable from r, or
vertex r reaches r′, if there exists a r-r′ walk on graph G.

Next we formalise the notions of constructing a WFG and an
SG from a resource-dependency.

Definition 4.2 (WFG construction). Let wfg be a function from
resource-dependencies into WFG’s:

wfg (I,W )
def
=

(
T , {(t1, t2) | ∀t1, r, t2 : r ∈W (t1) ∧ t2 ∈ I(r)}

)
Formula wfg (I1,W1) yields the graph in Figure 5a:(
T , {(t1, t4), (t2, t4), (t3, t4), (t4, t1), (t4, t2), (t4, t3)}

)
Definition 4.3 (SG construction). Let sg be a function from
resource-dependencies into SG’s:

sg (I,W )
def
=

(
R, {(r1, r2) | ∀t, r1, r2 : t ∈ I(r1) ∧ r2 ∈W (t)}

)
We apply Definition 4.3 and get the graph in Figure 5c:

sg (I1,W1) =
(
R, {(r1, r2), (r2, r1)}

)
To prove the equivalence in finding a cycle in the WFG and

finding a cycle in the SG, we define the GRG, that bridges the WFG
and the SG.

Definition 4.4 (GRG construction). Let grg be a function from
resource-dependencies into GRG’s:

grg (I,W )
def
=

(
R∪ T ,{(t, r) | ∀t, r : r ∈W (t)}

∪ {(r, t) | ∀t, r : t ∈ I(r)}
)

Formula grg (I1,W1) yields the graph in Figure 5b:(
R∪ T , {(t1, r1), (t2, r1), (t3, r1), (t4, r2),

(r1, r4), (r2, r1), (r2, r2), (r2, r3), }
)

4.3 Complexity and correctness of the deadlock verification
algorithm

The correctness of the verification algorithm requires three theo-
rems: equivalence, soundness, and completeness. The first theorem
shows that whenever there is a cycle in the WFG, there is a cy-
cle in the SG, and vice versa. The second and third theorems state
soundness and completeness of the deadlock verification. Sound-
ness means that a cycle detection based on a WFG corresponds to
a deadlocked PL state; completeness means that every deadlocked
state yields a WFG with a cycle.

We motivate the importance of selecting from alternative graph
models by discussing various synchronisation scenarios. To this
end we introduce the complexity of graph analysis with the WFG
and with the SG. We conclude the section by establishing the main
results of our paper.

6



Proposition 4.2 (Complexity). Given a resource dependency
state (I,W ), a cycle detection based on WFG is O(|W |2 + |W |),
while a cycle detection based on SG is O(|I|2 + |I|).

Proof. A cycle detection in a graph has a complexity of O(e + v)
[40], for a graph with e edges and v vertices. We know that [6]
for any graph e ≤ v2, thus we can simplify the complexity to
O(v+v2). Since the WFG vertices are tasks, a deadlock verification
that uses a WFG over a resource-dependency state with |W | tasks
has a complexity of O(|W |2+ |W |). Similarly, for the SG, we have
O(|I|2 + |I|).

4.4 Equivalence theorem
We prove the equivalence in finding a cycle in the WFG and finding
a cycle in the SG. For this purpose, we use the GRG, which bridges
the WFG and the SG.

Lemma 4.5. t1t2 is a walk on wfg (D) if, and only if, there exists
a resource r such that t1rt2 is a walk on grg (D).

Proof. See Appendix A.

Lemma 4.6. r1r2 is a walk on sg (D) if, and only if, there exists a
task t such that r1tr2 is a walk on grg (D).

Proof. The proof is analogous to that of Lemma 4.5.

Lemma 4.7. If w = t1 · · · tn is has a positive length on wfg (D)
and 1 < k < n, then there exists a walk w′ = r1 · · · rk on sg (D)
such that for all i where 1 ≤ i ≤ k we have tiriti+1 is a walk on
grg (D).

Proof. By induction on k. See Appendix A.

Theorem 4.8. There exists a cycle w on graph wfg (D) if, and
only if, there exists a cycle w′ on graph sg (D).

Proof. ( =⇒ ) The proof follows by case analysis on the length
of w.
Case length is 1 where w = tt. Applying Lemma 4.5 to tt is a
walk on wfg (D), yields that there exists a resource r such that trt
is a walk on grg (D). Since we have trt is a walk on grg (D) and
trt is a walk on grg (D), then rtr is also a walk on grg (D). Thus,
from Lemma 4.6 and rtr, we get that rr is a walk on sg (D) and a
cycle.
Case length is 2 where w = t1t2t1. Applying Lemma 4.5 to t1t2
is a walk on wfg (D), yields that there exists a resource r1 such
that (i) t1r1t2 is a walk on grg (D). Similarly, applying Lemma 4.5
to t2t1 is a walk on wfg (D), yields that there exists a resource r2
such that (ii) t2r2t1 is a walk on grg (D).

From (i) and (ii) we get that (iii) r1t2r2 and (iv) r2t1r1. From
Lemma 4.6, we get that r1r2 and r2r1 are walks on sg (D), and
therefore r1r2r1 is a cycle on sg (D).
Case length is greater than 2 wherew = t1 · · · tntn+1t1 and n ≥
2. Applying Lemma 4.7 to t1 · · · tntn+1, we get that r1 · · · rn on
sg (D) such that (i) for all i where 1 ≤ i ≤ n we have tiriti+1

is a walk on grg (D). Since t1 · · · tntn+1 is a walk on wfg (D),
thus from (i) we get that (ii) t1r1t2 and (iii) tnrntn+1 are walks on
grg (D). From t1 · · · tntn+1t1 is a walk on wfg (D), we get that
tn+1t1 is a walk on wfg (D) and from Lemma 4.5, there exists a
resource r such that (iv) tn+1rt1 is a walk on grg (D).

From (iii) tnrntn+1 and (iv) tn+1rt1, we get that rntn+1r; thus
from Lemma 4.6 we get that (v) rnr is a walk on sg (D).

From (iv) tn+1rt1 and (ii) t1r1t2, we get that rt1r1 is a walk
on grg (D). Applying Lemma 4.6 to the latter, yields that (vi) rr1
is a walk on sg (D).

Finally, since (vi) rr1, (v) rnr, and r1 · · · rn are walks on
sg (D), we get rr1 · · · rnr is a walk on sg (D) and a cycle.

The proof for (⇐= ) is analogous.

4.5 Soundness
The two crucial properties of our deadlock detection algorithm are:
soundness (Theorem 4.10), where finding a cycle in the SG cor-
responds to a deadlocked state; and completeness (Theorem 4.15),
where the SG of any deadlocked state contains a cycle. We first
prove soundness.

The relationship between a blocked task in a state and an edge
in a WFG graph is fundamental for the results we establish in this
section.

Lemma 4.9. Let ϕ (M,T ) = (I,W ), wfg (D) = (V,E),
res (p, n) = r. We have that (t1, t2) ∈ E if, and only if,
T (t1) = await(p); s, M(p)(t1) = n, and M(p)(t2) < n.

Proof. See Appendix A.

Theorem 4.10 (Soundness). If w is closed on wfg (ϕ (M,T ))
with a positive length, then there exists task map T ′ and T ′′ such
that T = T ′ ] T ′′, dom(T ′) = {t | ∀t ∈ w}, state (M,T ) is
deadlocked on T ′.

Proof. Let wfg (ϕ (M,T )) = (V,E) and

X
def
= {t1 : t2 | ∀(t1, t2) ∈ w} (1)

First, we show dom(X) ⊆ dom(T ). Let t1 ∈ dom(X), we need
to show that t1 ∈ dom(T ). If X(t1) = t2, then by Equation (1)
(t1, t2) ∈ w and therefore (t1, t2) ∈ E. Thus, by Lemma 4.9
T (t1) = await(p); s and M(p)(t1) = n.

Now that we showed dom(X) ⊆ dom(T ), then let T =
T1 ] T2 s.t. dom(T1) = dom(X). We have that T1 6= ∅, since the
length of w is |dom(X)| > 0. Second, we prove that (M,T1) is
totally deadlocked. By Definition 3.1 for any task t1 ∈ dom(T1),
we need to show (1) T1(t1) = await(p); s and (2) there exists a
task t2 s.t. M(p)(t2) < n.

1. Let t1 ∈ dom(T1), then t1 ∈ dom(X) and therefore there is
a task t2 s.t. (t1, t2) ∈ w and therefore (t1, t2) ∈ E. Applying
Lemma 4.9 to (t1, t2) ∈ E, yields that T (t1) = await(p); s.

2. We are left with showing that t2 ∈ dom(T1) (since we already
know that M(p)(t2) < n). By hypothesis w is a cycle, thus
there exists a task t3 such that (t2, t3) ∈ w. We apply Equa-
tion (1) to (t2, t3) ∈ w and get that t2 ∈ dom(X). Therefore,
t2 ∈ dom(T1).

Finally, applying Definition 3.2 to (M,T1) is totally deadlocked,
yields that (M,T1 ] T2) is deadlocked on T1.

4.6 Completeness
The intuition behind the proof of completeness can be divided into
two parts. First, by showing that any totally deadlocked state has
a cycle. Second, by establishing the subgraph relation between a
totally deadlocked state and a deadlocked state.

It is easy to see that any totally deadlocked task t has a positive
out-degree.

Lemma 4.11. Let (V,E) = wfg (ϕ (S)). If S is totally deadlocked
and t ∈ V , then t has a positive out-degree.

Proof. Let S = (M,T ). By Definition 3.1 there exists a task t
such that T (t) = await(p); s and there is a task t′ ∈ dom(T )
where M(p)(t′) < n. From Lemma 4.9, we get that (t, t′) ∈ E
and t has a positive out-degree.

7



A graph in which all vertexes have a positive out-degree is
cyclic.

Lemma 4.12. Let G = wfg (ϕ (S)). If S is totally deadlocked,
then there exists a cycle w on G.

Proof. Let G = (V,E). Applying Lemma 4.11 to the hypothesis
yields that every vertex has a positive out-degree. Hence, by the
contrapositive of [6, Proposition 1.4.2], (V,E) has a cycle w.

Next, is an auxiliary lemma to establish the subgraph relation-
ship between WFG’s.

Lemma 4.13. For all t /∈ dom(T ), we have that wfg (ϕ (M,T ))
is a subgraph of graph wfg (ϕ (M,T ] {t : s})).

Proof. We use Lemma 4.9. See Appendix A.

Lemma 4.14. Graph wfg (ϕ (M,T )) is a subgraph of graph
wfg (ϕ (M,T ] T ′)).

Proof. The proof follows by induction on the structure of T ′ and
uses Lemma 4.13. See Appendix A.

Finally, we can establish the completeness theorem.

Theorem 4.15 (Completeness). If state S is deadlocked on T
and t ∈ dom(T ), then there exists a t′-cycle on wfg (ϕ (S)) such
that t′ is reachable from t.

Proof. By Definition 3.2 we have that S = (M,T ] T ′) and
that (M,T ) is totally deadlocked. Let (V1, E1) = wfg (ϕ (S)).
Let (V2, E2) be the subgraph of (V1, E1) of all vertices reachable
from t. It is easy to see that V2 is nonempty. From Definition 3.1
there is a task t′′ ∈ dom(T ) such that M(p)(t′′) < n. Applying
Lemma 4.9 to T (t) = await(p); s and M(p)(t′′) < n, we get
that (t′′, t), so t′′ ∈ V2 and (t′′, t) ∈ E2.

We have that every V2 ⊆ dom(T ). Let T2 = {t : T (t) | t ∈
dom(V2)}. We now show that T2 is totally deadlocked. For that it
is enough to pick t1 ∈ V2 and show that (i) T2(t1) = await(p); s,
(ii) M(p)(t1) = n, and that there exists a task t2 where (iii) t2 ∈
dom(T2) and (iv)M(p)(t2) < n. Since t1 ∈ dom(T ) and (M,T )
is totally deadlocked, then by Definition 3.1 T (t1) = await(p); s,
(ii) M(p)(t1) = n, and there exists a task t2 such that t2 ∈
dom(T ) and (iv) M(p)(t2) < n. Given that T (t1) = T2(t1),
then (iii) T2(t1) = await(p); s. We still need to show (i). Applying
Lemma 4.9 to T (t1) = await(p); s, (ii) M(p)(t1) = n, and
t2 ∈ dom(T ), and (iii) yields (t1, t2) ∈ E1. Thus, t1 reaches t2;
and therefore, t2 ∈ V2 and (t1, t2) ∈ E2. Hence,(i) t2 ∈ dom(T2).

From Lemma 4.12 and totally deadlocked state (M,T2), we
get that there exists a t′-cycle on graph wfg (ϕ (M,T2)). By def-
inition, we also know that any t′ is reachable from t. We apply
Lemma 4.14 and obtain that wfg (ϕ (M,T2)) is a subgraph of
wfg (ϕ (M,T ′ ] T )), hence we have w on wfg (ϕ (M,T ′ ] T )).

5. The Armus tool
The architecture of Armus is divided into two layers: the applica-
tion layer generates concurrency constraints for each task, and the
verification layer that manages the resource-dependency state and
checks for deadlocks. The application layer is specific to each lan-
guage we check.

Our verification algorithm can be used to avoid and to detect
deadlocks. In the former, Armus checks for deadlocks before the
task blocks and interrupts the blocking operation with an exception
if the deadlock is found. The programmer can treat the exceptional
situation to develop applications resilient to deadlocks. In the latter,
verification is performed periodically and can only report already

existing deadlocks, with the benefit of a lower performance over-
head.

5.1 Resource-dependency deadlock verification library

Armus’ deadlock verification library implements the theory de-
scribed in Section 4.2. The main features of the library are (i) a
deadlock detection algorithm that is fault-tolerant and distributed;
and (ii) a scalable deadlock verification technique (i.e., the adaptive
graph representation).

Essentially, whenever a task of the program blocks the ap-
plication layer invokes the verification library by producing its
blocked status: a set of waiting W (t) and set of impeding re-
sources {r | ∀r : t ∈ I(r)}. The library is divided into two ser-
vices: an implementation of the resource-dependencies; and the
deadlock checker that analyses the resource-dependencies for dead-
locks, using Definition 4.2 and Definition 4.3. Maintaining the
blocked status is more frequent than checking for deadlocks, so the
resource-dependencies are rearranged per task to optimise updates.
The deadlock checker internally transforms the dependencies into
a graph and then performs cycle detection with JGraphT [17].

The verification library provides two graph selection modes:
fixed or automatic. In the former, the verification always uses the
same graph model. State-of-the-art tools are fixed to the WFG
model. In the automatic mode, the verification library selects the
graph model according to the ratio between blocked tasks and
registered phasers. This means that the graph model used for cycle
detection can change over time.

We briefly describe the implementation of each mode. In the
fixed to WFG mode (see Definition 4.2), the algorithm iterates over
a copy of the blocked tasks twice. First, uses the impeding resource
of each blocked task to construct map I . Second, generates a WFG-
edge from each waiting resource r to each task in I(r). In the
fixed to SG mode (see Definition 4.3), it iterates over each blocked
task (available in the resource-dependencies) and generates an SG-
edge from each impeding resource to each blocked resource. The
adaptive mode tries to build an SG first; if during the construction
of the SG it reaches a size threshold, then it builds a WFG instead.
The size threshold is reached if at any time there are more SG-
edges than twice the number of tasks processed thus far. The value
of the threshold was obtained based on experiments on the available
benchmarks.

5.2 Distributed deadlock detection

Armus adapts the traditional one-phase deadlock detection [21]
to barrier synchronisation and introduces support for fault toler-
ance. A distributed program is composed of various sites that com-
municate among each other, each runs an instance of Armus that
has remote access to a global resource-dependency (implemented
as a data store server Redis [31]). The various instances of Ar-
mus periodically update a disjoint portion of the global resource-
dependency with the contents of their local resource-dependencies.
The deadlock checker requires a global view of the system, so it
operates on the blocked status of the global resource-dependency.

There are two differences with reference to the original algo-
rithm in [21]. Armus uses logical clocks to represent barrier syn-
chronisations and maintain global data consistency; the original al-
gorithm requires vector clocks to represent lock synchronisations.
For fault-tolerance concerns, the global status of Armus is main-
tained in a dedicated server, and all sites check for deadlocks. In
contrast, in [21] there is a designated control site that collects the
global status and performs graph analysis. Our benchmarks, in Sec-
tion 6.2, show that the verification overhead has a negligible impact
for 64 tasks.

The verification algorithm is fault-tolerant, since it continues
executing despite (i) site-failures and (ii) data store-failures. Such

8



feature is of special interest for checking fault-tolerant applications,
like Resilient X10 [9]. The algorithm resists (i) because the dead-
lock checker executes at each site and does not depend on the coop-
eration of other sites to function. The algorithm resists (ii) because
Redis itself is fault-tolerant.

5.3 Verifying barrier deadlocks in X10 and in Java

We present two verification applications to check for barrier dead-
locks: JArmus for Java programs and Armus-X10 for X10 pro-
grams. These tools work by “weaving” the verification into pro-
grams. The input is a compiled program to be verified (Java byte-
code); the output is a verified program (Java bytecode) that includes
dynamic checks for deadlock verification. JArmus and Armus-X10
layers implement the resource-dependency construction from Sec-
tion 4.1.

JArmus and Armus-X10 share the same usage and design. The
implementation of each of these verification tools is divided into
two components: the resource mapper and the task observer. The
resource mapper converts synchronisation events to resources. The
task observer intercepts blocking calls to inform Armus that the
current task is blocked with a set of resource edges.

Armus-X10 Armus-X10 can verify any program written in X10
that uses: clocks, finishes, and the SPMDBarrier; the tool can ver-
ify distributed applications. Unlike in Java, automatic instrumenta-
tion is possible. The X10 runtime provides information about the
registered clocks and registered finishes of a given task, which is
required to construct the concurrency dependencies of each task.
X10 can be compiled to Java bytecode, called Managed X10, and
to machine code, called Native X10. Currently, our application only
supports Managed X10.

JArmus JArmus supports CountDownLatch, CyclicBarrier,
Phaser, and ReentrantLock class operations of the standard Java
API. Unlike in X10 and HJ, the relationship between the partici-
pants of barrier synchronisation and tasks in Java is left implicit.
For example, when using a CyclicBarrier the programmer de-
clares the number of participants and then shares the object with
those many tasks, but it is not specified which tasks participate in
the synchronisation. This missing information, which the Armus
analysis requires, is also necessary to extend the Java implementa-
tion of phasers to support the full range of features in the original
phaser semantics [34]. For instance, only by knowing exactly which
tasks are participants can phasers allow some tasks to advance with-
out waiting. Since JArmus has no way of reconstructing this infor-
mation for the CountDownLatch, CyclicBarrier, and Phaser

classes, then the programmer must annotate its code to supply the
barriers each task is registered with. Each task, upon starting up,
must invoke JArmus.register(b) per barrier b it uses (similarly to
the X10 clocked). Instances of the class ReentrantLock do not
require annotations.

6. Evaluation
The aim of the evaluation process is to 1) ascertain whether the per-
formance impact of Armus scales with the increase in the number
of tasks, 2) evaluate the performance overhead of distributed dead-
lock detection, and 3) compare execution impact the SG with the
WFG and with adaptive approach.

The hardware used to run the benchmarks has four AMD
Opteron 6376 processors, each with 16 cores, making a total of
64 cores. There are 64GB of available RAM. The operating sys-
tem used is Ubuntu 13.10. For the languages, we used Java build
1.8.0_05-b13, and X10 version 2.4.3. For compiling and running
we used the defaults flags with no additional parameters, except in
the case of the NPB suite that is compiled with -O.

Table 1: Relative execution overhead in detection mode.

Threads 2 4 8 16 32 64

BT 3% -4% 0% -5% 0% 7%
CG 7% 0% 7% 15% 12% 9%
FT 1% 0% -1% -7% 0% 0%
MG -5% 0% 0% 0% 11% 13%
RT -4% 0% 0% 0% 0% 8%
SP -1% 4% 4% 2% 0%

Table 2: Relative execution overhead in avoidance mode.

Threads 2 4 8 16 32 64

BT 5% 0% 0% 0% 11% 8%
CG 0% 9% 20% 34% 46% 50%
FT 1% 4% 0% 0% 7% 25%
MG 8% 7% 21% 27% 27% 30%
RT -5% 0% 0% 0% 5% 16%
SP 2% 9% 8% 22% 28%

We follow the start-up performance methodology detailed in
[11]. We take 31 samples of the execution time of each benchmark
and discard the first sample. Next, we compute the mean of the
30 samples with a confidence interval of 95%, using the standard
normal z-statistic.

6.1 Impact of non-distributed verification

The two goals of this evaluation are: to measure the impact of ver-
ification on standard Java benchmarks, and ii) to measure whether
the verification scales with the increase of the number of tasks.
We run the verification algorithm against a set of standard paral-
lel benchmarks available for Java. JArmus is run in the detection
mode (every 100 milliseconds) and in the avoidance mode, both
use the adaptive graph model. Note that the Java applications we
checked are not distributed.

We select benchmarks from the NASA Parallel Benchmark
(NPB) suite [10] and the Java Grande Forum (JGF) [39] bench-
mark suite. The NPB ranges from kernels to pseudo-applications,
taken primarily from representative Computational Fluid Dynamics
(CFD) parallel applications. The JGF is divided into three groups
of applications: micro-benchmarks, computational kernels, and
pseudo-applications. All benchmarks proceed iteratively, and use
a fixed number of cyclic barriers to synchronise stepwise. Further-
more, all benchmarks check the validity of the produced output.

For the sake of reproducibility we list the parameters of the
benchmarks run as specified in [10, 39]: BT uses size A, CG uses
size C, the Java version of FT uses size B, MG uses size C, RT uses
B, and SP uses size W. The input set chosen for benchmark SP only
allows it to scale up to 31 tasks. For simplicity, in the evaluation we
consider that this benchmark scales up to 32 tasks.

Figure 6 summarises the comparative study of the execution
time for each benchmark. Tables 1 and 2 list the relative runtime
overhead in detection and in avoidance. The results for the NPB
and JGF benchmark suites are depicted in Figures 6a to 6f. In de-
tection mode, since there is a dedicated task to perform verification,
we observe that the overhead does not increase linearly as we add
more tasks. The relative runtime overhead sits below 15% and in
most cases is negligible. In avoidance mode, each task checks the
graph whenever it blocks, so as we add more tasks, the execution
overhead increases. Still, in the worst case, benchmark CG, the over-
head is 50%, which is acceptable for application testing purposes.

9



..

2

.

4

.

8

.

16

.

32

.

64

.

Task count

.

0

.

100

.

200

.

300

.

400

.

500

.

600

.

700

.

800

.

900

.

Ex
ec

ut
io

n
tim

e
(s

)

(a) Benchmark BT

..

2

.

4

.

8

.

16

.

32

.

64

.

Task count

.

0

.

20

.

40

.

60

.

80

.

100

.

120

.

140

.

160

.

180

.

Ex
ec

ut
io

n
tim

e
(s

)

(b) Benchmark CG

..

2

.

4

.

8

.

16

.

32

.

64

.

Task count

.

0

.

20

.

40

.

60

.

80

.

100

.

Ex
ec

ut
io

n
tim

e
(s

)

(c) Benchmark FT

..

2

.

4

.

8

.

16

.

32

.

64

.

Task count

.

0

.

20

.

40

.

60

.

80

.

100

.

120

.

140

.

Ex
ec

ut
io

n
tim

e
(s

)

(d) Benchmark MG

..

2

.

4

.

8

.

16

.

32

.

Task count

.

0

.

50

.

100

.

150

.

200

.

250

.

300

.

Ex
ec

ut
io

n
tim

e
(s

)

(e) Benchmark SP

..

2

.

4

.

8

.

16

.

32

.

64

.

Task count

.

0

.

2

.

4

.

6

.

8

.

10

.

12

.

14

.

Ex
ec

ut
io

n
tim

e
(s

)

(f) Benchmark RT

Figure 6: Comparative execution time for non-distributed benchmarks (lower means faster).

6.2 Impact of distributed verification
The goal of the evaluation is to measure the runtime overhead
of deadlock detection in available X10 distributed applications.
Armus-X10 is configured with the distributed deadlock detection
mode, running the verification algorithm every 200 milliseconds.
The chosen benchmarks are available via the X10 source code
repository [45]. Deadlock avoidance is unavailable in the dis-
tributed setting.

Benchmarks FT and STREAM come from the HPC Challenge
benchmark [26], SSAC2 is an HPCS Graph Analysis Bench-
mark [5], JACOBI and KMEANS are available from the X10’s web-
site. For reproducibility purposes the non-default parameters we
select are: FT magnitude 11; KMEANS 25k points, 3k clusters to
find, and 5 iterations; JACOBI matrix of size 40, maximum itera-
tions are 40; SSCA2 215 vertices, a with a probability of 7%, and
no permutations; STREAM with size of 524k.

Figure 7 depicts the execution time of each benchmark with and
without verification. There is no statistical evidence of an execution
overhead with running deadlock detection mode.

6.3 Impact of the graph model choice
The goal of this evaluation is to measure the impact of the graph
model in the verification procedure. To this end we analyse the
worst case behaviour: programs that generate graphs with thou-
sands of edges. In particular, we evaluate our adaptive model se-
lection against the usual fixed model selection (WFG and SG).

We select a suite of programs that spawn tasks and create bar-
riers as needed, depending on the size of the program, unlike the
classical parallel applications we benchmark in Sections 6.1 and 6.2
where the number of tasks should correspond to the number of
available processing units (cores). The suite of programs exercises
different worst case scenarios for the verification algorithm: many
tasks versus many barriers.

The chosen benchmarks are educative programs taken from the
course on Principles and Practice of Parallel Programming, taught
by Martha A. Kim and Vijay A. Saraswat, Fall 2013 [46]. BFS per-
forms a parallel breadth-first search on a randomly generated graph.
There is a task per node being visited and a barrier per depth-level
of the graph. FI computes a Fibonacci number iteratively with a

shared array of clocked variables (each pairs a barrier with a num-
ber). Each element of the array holds the outcome of a Fibonacci
number. When the program starts it launches n tasks. The i-th task
stores its Fibonacci number in the i-th clocked variable and syn-
chronises with task i + 1 and task i + 2 that read the produced
value. FR computes a Fibonacci number recursively. Recursive calls
are executed in parallel and a clocked variable synchronises the
caller with the callee. SE implements the Sieve of Eratosthenes us-
ing clocked variables. There is a task per prime number and one
clocked variable per task. PS computes the prefix sum—or cumu-
lative sum—for a given number of tasks. Given an input array with
as many elements as there are tasks, the outcome of task i is the
partial sum of the array up to the i-th element. All tasks proceed
stepwise and are synchronised by a global barrier.

Figures 8 and 9 depict the execution time of each benchmark
verified by Armus-X10 in avoidance and detection modes (respec-
tively) where we vary the selection method of the graph model.
Table 3 lists the average number of edges used in verification and
the relative execution time overhead of each benchmark.

We can classify the benchmarks in three groups according to the
ratio between the number of tasks and the number of resources: i)
similar count of tasks and resources, benchmark SE; ii) much more
resources than tasks, benchmarks FI and FT; and iii) much more
tasks than resources, benchmarks BFS and PS. When i) there are as
many resources as there are tasks, then all graph models perform
equally well. When ii) there are more resources than tasks, and iii)
vice-versa, the choice of the graph model is of major importance
for a verification with low impact on the execution time.

Even in the worst case behaviour for analysis the largest ver-
ification overhead with deadlock detection is 25%; for deadlock
avoidance the largest is 117%. For both cases we consider adap-
tive graph selection. Overall, the approach of the adaptive graph
model outperforms the fixed graph model approach. The adaptive
approach can save up to 9% of execution overhead in deadlock de-
tection versus a fixed model. The graph model choice severely am-
plifies the verification overhead in deadlock avoidance. The case
in point is benchmark PS, where the verification overhead ranges
from 600% (fixed) down to 82% (adaptive).

10



..

FT

.

KMEANS

.

JACOBI

.

SSCA2

.

STREAM

.

0

.

100

.

200

.

300

.

400

.

500

.

Ex
ec

ut
io

n
tim

e
(s

)

.

Unchecked

.

Checked

Figure 7: Comparative execution time
for distributed deadlock detection (lower
means faster).

..

SE

.

FI

.

FR

.

BFS

.

PS

.

0

.

10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

90

.

T
im

e
(s

)

.

Unchecked

.

Auto

.

SG

.

WFG

Figure 8: Comparative execution time
for different graph model choices (lower
means faster), using deadlock avoidance.

..

SE

.

FI

.

FR

.

BFS

.

PS

.

0

.

5

.

10

.

15

.

20

.

25

.

T
im

e
(s

)

.

Unchecked

.

Auto

.

SG

.

WFG

Figure 9: Comparative execution time
for different graph model choices (lower
means faster), using deadlock detection.

Table 3: Edge count and verification overhead per benchmark per
graph mode.

SE FI FR BFS PS

Auto

Edges 23 1074 140 5 7
Avoidance 75% 94% 117% 45% 82%
Detection 25% 24% 25% 9% 18%

SG

Edges 51 2137 1643 7 6
Avoidance 75% 112% 300% 45% 82%
Detection 25% 24% 25% 9% 18%

WFG

Edges 23 1281 94 579 781
Avoidance 75% 94% 117% 200% 600%
Detection 25% 29% 25% 18% 27%

7. Related work
This section lists related work focusing on deadlock verification in
parallel programming languages.

Deadlock prevention The literature around source code analy-
sis to prevent barrier related deadlocks is vast. The fork/join pro-
gramming model is easily restricted syntactically to prevent dead-
locks from happening. Lee and Palsberg present a calculus for a
fork/join programming model [24], suited for inter-procedural anal-
ysis through type inference, and establish a deadlock freedom prop-
erty. The work also includes a type system that is used to identify
may-happen-parallelism, further explored in [1]. Finally, related
work on “barrier matching” tackles the problem of barrier dead-
locks in a setting where there is only global barrier synchronisa-
tion [19, 47].

Cogumbreiro et al. [8] propose a static typing system to ensure
the correctness of phased activities for a fragment of X10 that
disallows awaiting on a particular clock. Therefore, programs that
involve more than one clock and that perform single waits cannot
be expressed, nor verified (cf. the X10 and Java programs we
present in Section 2).

Other works on the formalisation of barrier semantics are not
concerned with deadlock-freedom. Saraswat and Jagadeesan [33]
formalise the concurrency primitives of X10. Le et al. devise a
verification for the correct use of a cyclic barrier in a fork/join
programming language [23]. Vasudevan et al. [43] perform static
analysis to improve performance of synchronisation mechanisms.

The tool X10X [12] is a model checker for X10. Model check-
ers perform source code analysis and can be used to discover po-
tential deadlocks. This class of tools is affected by the state explo-
sion problem: the analysis grows exponentially with the possible
interleaves of the program. Thus, X10X may not be able to verify

complex programs. In general, prevention is too limiting to be ap-
plied to the whole system, so language designers use this strategy
to eliminate just a class of deadlocks.

Deadlock avoidance To our best knowledge, techniques that
avoid deadlocks in the context of barrier synchronisation only han-
dle a few situations of barrier deadlocks, unlike our proposal that
is complete (with reference to Theorem 4.15). For instance, in X10
and HJ, tasks deregister from all barriers upon termination; this
mitigates deadlocks that arise from missing participants. HJ avoids
deadlocks that originate from the interaction between phasers and
finish blocks by limiting the use of phasers to the scope of finish
blocks.

Deadlock detection UPC-CHECK [32] deals with deadlock de-
tection, but in a simpler setting where barriers are global; in con-
trast, our work can handle group synchronisation. Literature con-
cerning MPI deadlock detection takes a top-down approach: the
general idea is given, but mapping it to the actual MPI semantics is
left out. DAMPI [44] reports a program as deadlocked after a period
of inactivity, so it may indicate false positives, i.e., it can misiden-
tify a slow program as a deadlock. Umpire [13] and MUST [14]
(a successor of Umpire) use a graph-based deadlock detection al-
gorithm that subsumes deadlock detection to cycle detection, but
omit a formal description on how the graph is actually generated
from the language, cf. Theorems 4.10 and 4.15. We summarise the
distributed detection technique of MUST. First, all sites collaborate
to generate a single stream of events to a central site. The difficulty
lays in ordering and aggregating the events generated by the vari-
ous tasks. Then, the central site processes the stream of events to
perform the collective checking, where, among other things, it iden-
tifies any completed barrier synchronisations. Finally, since MUST
maintains a distributed wait state, then the site performing the col-
lective checking must broadcast the status of terminated synchro-
nisations back to the various sites of the application. The wait state
is required to delay the graph analysis as much as possible. In our
approach, tasks only requires local information to maintain data
consistency, which means that, in a distributed setting, Armus does
not require the last synchronisation step that MUST performs. Fur-
thermore, unlike MUST, Armus is capable of verifying split-phase
synchronisation, known in MPI as non-blocking collective opera-
tions.

8. Conclusion
We put forward Armus, a dynamic verification tool for barrier dead-
locks that features distributed deadlock detection and a scalable
graph analysis technique (based on automatic graph model selec-
tion). The target of verification is the core language PL, introduced
to represent programs with various barrier synchronisation patterns.

11



The graph-based deadlock verification of Armus is formalised and
shown to be sound and complete against PL. We establish an equiv-
alence theorem between utilising the graph models WFG and SG
for deadlock detection; this result enables us to use the standard
WFG to prove our results, and choose automatically between the
WFG and the SG during verification. Our adaptive model selection
dramatically increases the performance against the fixed model se-
lection. The runtime overhead of the deadlock detection is low for
up to 64 tasks, in most cases negligible. We present two applica-
tions: Armus-X10 monitors any unchanged X10 program for dead-
locks; JArmus is a library to verify Java programs. To the best of
our knowledge, our work is the first dynamic verification tool that
can correctly detect Java and X10 barrier deadlocks.

For future work, we intend to verify HJ programs, as it will ex-
ercise the expressiveness of Armus. This language features abstrac-
tions with complex synchronisation patterns, such as the bounded
producer-consumer. Another direction is the verification of MPI
programs that introduce complex patterns of point-to-point syn-
chronisation and enable a direct comparison with state-of-the-art
in barrier deadlock detection.

Acknowledgements We thank Olivier Tardieu and PPoPP re-
viewers for their comments and suggestions. The work is par-
tially supported by EPSRC KTS with Cognizant, EP/K034413/1,
EP/K011715/1 and EP/L00058X/1, EU project FP7-612985 Up-
Scale and ICT COST Action 1201 BETTY.

References
[1] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. May-

happen-in-parallel analysis of X10 programs. In PPoPP’10, pages
183–193. ACM, 2007.

[2] S. Agarwal, S. Joshi, and R. K. Shyamasundar. Distributed general-
ized dynamic barrier synchronization. In ICDCN’11, pages 143–154.
Springer, 2011.

[3] Armus homepage. bitbucket.org/cogumbreiro/armus/wiki/
PPoPP15.

[4] D. Atkins, A. Potanin, and L. Groves. The design and implementation
of clocked variables in X10. In ACSC’13, pages 87–95. Australian
Computer Society, 2013.

[5] D. A. Bader and K. Madduri. Design and implementation of the HPCS
graph analysis benchmark on symmetric multiprocessors. In HiPC’05,
volume 3769 of LNCS, pages 465–476. Springer, 2005.

[6] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and
Applications. Springer, 2nd edition, 2009.

[7] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: the new
adventures of old X10. In PPPJ’11, pages 51–61. ACM, 2011.

[8] T. Cogumbreiro, F. Martins, and V. T. Vasconcelos. Coordinating
phased activities while maintaining progress. In COORDINATION’13,
volume 7890 of LNCS, pages 31–44. Springer, 2013.

[9] D. Cunningham, D. Grove, B. Herta, A. Iyengar, K. Kawachiya,
H. Murata, V. Saraswat, M. Takeuchi, and O. Tardieu. Resilient X10:
Efficient failure-aware programming. In PPoPP’14, pages 67–80.
ACM, 2014.

[10] M. A. Frumkin, M. Schultz, H. Jin, and J. Yan. Performance and
scalability of the NAS Parallel Benchmarks in Java. In IPDPS’03.
IEEE, 2003.

[11] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java
performance evaluation. In OOPSLA’07, pages 57–76. ACM, 2007.

[12] M. Gligoric, P. C. Mehlitz, and D. Marinov. X10X: Model checking a
new programming language with an "old" model checker. In ICST’12,
pages 11–20. IEEE, 2012.

[13] T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S. Müller. A graph
based approach for MPI deadlock detection. In ICS’09, pages 296–
305. ACM, 2009.

[14] T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski, and M. S. Müller.
MPI runtime error detection with MUST: advances in deadlock detec-
tion. In SC’12, pages 1–11. IEEE, 2012.

[15] R. C. Holt. Some deadlock properties of computer systems. ACM
Computing Surveys, 4(3):179–196, Sept. 1972.

[16] Java 7 Phaser API. docs.oracle.com/javase/7/docs/api/
java/util/concurrent/Phaser.html.

[17] JGraphT homepage. jgrapht.org.
[18] E. G. C. Jr., M. J. Elphick, and A. Shoshani. System deadlocks. ACM

Computing Surveys, 3(2):67–78, 1971.
[19] A. Kamil and K. Yelick. Enforcing textual alignment of collectives

using dynamic checks. In LCPC’09, volume 5898 of LNCS, pages
368–382. Springer, 2009.

[20] E. Knapp. Deadlock detection in distributed databases. ACM Comput-
ing Survey, 19(4):303–328, 1987.

[21] A. D. Kshemkalyani and M. Singhal. Correct two-phase and one-
phase deadlock detection algorithms for distributed systems. In
SPDP’90, pages 126–129, 1990.

[22] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[23] D.-K. Le, W.-N. Chin, and Y.-M. Teo. Verification of static and
dynamic barrier synchronization using bounded permissions. In
ICFEM’13, volume 8144 of LNCS, pages 231–248. Springer, 2013.

[24] J. K. Lee and J. Palsberg. Featherweight X10: a core calculus for
async-finish parallelism. In PPoPP’10, pages 25–36. ACM, 2010.

[25] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel
library. In OOPSLA’09, pages 227–242. ACM, 2009.

[26] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi. The HPC Challenge (HPCC)
benchmark suite. In SC’06. ACM, 2006.

[27] S. Marr, S. Verhaegen, B. D. Fraine, T. D’Hondt, and W. D. Meuter.
Insertion tree phasers: Efficient and scalable barrier synchronization
for fine-grained parallelism. In HPCC’10, pages 130–137. IEEE,
2010.

[28] Message Passing Interface (MPI) homepage. mpi-forum.org.
[29] M. T. O’Keefe and H. G. Dietz. Hardware barrier synchronization:

Dynamic barrier MIMD (DBM). In ICPP’90, pages 43–46. Pennsyl-
vania State University, 1990.

[30] OpenMP homepage. openmp.org.
[31] Redis homepage. redis.io.
[32] I. Roy, G. R. Luecke, J. Coyle, and M. Kraeva. A scalable deadlock

detection algorithm for UPC collective operations. In PGAS’13, pages
2–15. The University of Edinburgh, 2013.

[33] V. Saraswat and R. Jagadeesan. Concurrent clustered programming. In
CONCUR’05, volume 3653 of LNCS, pages 353–367. Springer, 2005.

[34] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers: a
unified deadlock-free construct for collective and point-to-point syn-
chronization. In ICS’08, pages 277–288. ACM, 2008.

[35] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phaser
accumulators: A new reduction construct for dynamic parallelism. In
IPDPS’09, pages 1–12. IEEE, 2009.

[36] J. Shirako, D. M. Peixotto, D.-D. Sbîrlea, and V. Sarkar. Phaser beams:
Integrating stream parallelism with task parallelism. Presented at the
X10’11, 2011.

[37] J. Shirako and V. Sarkar. Hierarchical phasers for scalable synchro-
nization and reductions in dynamic parallelism. In IPDPS’10, pages
1–12. IEEE, 2010.

[38] J. Shirako, K. Sharma, and V. Sarkar. Unifying barrier and point-
to-point synchronization in OpenMP with Phasers. In IWOMP’11,
volume 6665 of LNCS, pages 122–137. Springer, 2011.

[39] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel Java Grande
benchmark suite. In SC’01. ACM, 2001.

[40] R. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[41] F. Turbak. First-class synchronization barriers. In ICFP’96, pages
157–168. ACM, 1996.

12

https://bitbucket.org/cogumbreiro/armus/wiki/PPoPP15
bitbucket.org/cogumbreiro/armus/wiki/PPoPP15
https://bitbucket.org/cogumbreiro/armus/wiki/PPoPP15
bitbucket.org/cogumbreiro/armus/wiki/PPoPP15
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Phaser.html
docs.oracle.com/javase/7/docs/api/java/util/concurrent/Phaser.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Phaser.html
docs.oracle.com/javase/7/docs/api/java/util/concurrent/Phaser.html
http://jgrapht.org/
jgrapht.org
http://mpi-forum.org/
mpi-forum.org
http://openmp.org/
openmp.org
http://redis.io/
redis.io


[42] UPC homepage. upc-lang.org.
[43] N. Vasudevan, O. Tardieu, J. Dolby, and S. A. Edwards. Compile-

time analysis and specialization of clocks in concurrent programs. In
CC’09, volume 5501 of LNCS, pages 48–62. Springer, 2009.

[44] A. Vo. Scalable Formal Dynamic Verification of MPI Programs
Through Distributed Causality Tracking. PhD thesis, University of
Utah, 2011. AAI3454168.

[45] X10 homepage. x10-lang.org.
[46] Course materials of principles and practice of parallel programming.

www.cs.columbia.edu/~martha/courses/4130/au13/, 2013.
[47] Y. Zhang, E. Duesterwald, and G. R. Gao. Concurrency analysis

for shared memory programs with textually unaligned barriers. In
LCPC’08, volume 5234 of LNCS, pages 95–109. Springer, 2008.

A. Appendix: Proofs of Section 4.3
Lemma 4.5 We have that t1t2 is a walk on wfg (D) if, and only
if, there exists a resource r such that t1rt2 is a walk on grg (D).

Proof. ( =⇒ ) Let grg (D) = (V,E) and wfg (D) = (V ′, E′).
Since t1t2 is a walk on wfg (D), then t1t2 ∈ E′. By Definition 4.2
there exists a vertex r such that r ∈ W (t1) and t2 ∈ I(r). Thus,
by Definition 4.4 (t1, r) ∈ E and (r, t2) ∈ E, and therefore t1rt2
is a walk on grg (D).

( ⇐= ) Let grg (D) = (V,E). Since t1rt2 is a walk
on grg (D), then (t1, r) ∈ E and (r, t2) ∈ E. From Defini-
tion 4.4 r ∈ W (t1) and t2 ∈ I(r). Let wfg (D) = (V ′, E′).
Thus, from Definition 4.2 t1t2 ∈ E′ and therefore t1t2 is a walk
on wfg (D).

Lemma 4.7 If w = t1 · · · tn is has a positive length on wfg (D)
and 1 < k < n, then there exists a walk w′ = r1 · · · rk on sg (D)
such that for all i where 1 ≤ i ≤ k we have tiriti+1 is a walk on
grg (D).

Proof. • Case k = 2, where w = t1t2t3 · · · tn is a walk
on wfg (D) and n ≥ 3. Applying Lemma 4.5 to t1t2 is a
walk on wfg (D), yields that there exists a resource r1 such
that t1r1t2 is a walk on grg (D). Similarly, from Lemma 4.5
and t2t3 is a walk on wfg (D), we get that there exists a re-
source r2 such that t2r2t3 is a walk on grg (D). Finally, we
have that r1t2r2 is a walk on grg (D), hence by Lemma 4.6,
r1r2 is a walk on sg (D).
• Case k = j + 1, where w = t1 · · · tjtj+1 · · · tn is a walk

on wfg (D) and n > j ≥ 2. By the induction hypothesis we
have that there exists a walk r1 · · · rj on sg (D) such that (i) for
all i where 1 ≤ i ≤ j we have tiriti+1 is a walk on grg (D).
From (i), we have that (ii) tjrjtj+1 is a walk on grg (D).
By hypothesis, we also have that tj+1tj+2 is a walk on wfg (D),
thus from Lemma 4.5, there exists a resource rj+1 such that
(iii) tj+1rj+1tj+2 is a walk on grg (D).
From (ii) tjrjtj+1 and (iii) tj+1rj+1tj+2 walks on grg (D), we
get that rjtjrj+1 is a walk on grg (D). Applying Lemma 4.6
to the latter, yields that rjrj+1 is a walk on sg (D). Thus,
r1 · · · rjrj+1 is a walk on sg (D) and we are left with proving
for all i where 1 ≤ i ≤ j + 1 we have tiriti+1 is a walk on
grg (D). But, we already know that (i) for all iwhere 1 ≤ i ≤ j
we have tiriti+1 is a walk on grg (D), so we just need to prove
that tj+1rj+1tj+2 is a walk on grg (D), which we have already
shown with (iii).

Lemma 4.9 Let ϕ (M,T ) = (I,W ), wfg (D) = (V,E),
res (p, n) = r. We have that (t1, t2) ∈ E if, and only if,
T (t1) = await(p); s, M(p)(t1) = n, and M(p)(t2) < n.

Proof. ( =⇒ ) We have that (t1, t2) ∈ E, thus by Definition 4.2
there is a resource r such that r ∈ W (t1) and t2 ∈ I(r). From
Definition 4.1 and r ∈ W (t1), we get that T (t1) = await(p); s,
M(p)(t1) = n, and res (p, n) = r. From Definition 4.1 and
t2 ∈ I(r), we obtain that M(p)(t2) < n.

(⇐= ) We have that T (t1) = await(p); s,M(p)(t1) = n, and
M(p)(t2) < n. From Definition 4.1, T (t1) = await(p); s, and
M(p)(t1) = n, yields a resource r such that res (p, n) = r and
r ∈ W (t1). From Definition 4.1 and M(p)(t2) < n, we get that
t1 ∈ I(r). We apply Definition 4.2 to t1 ∈ I(r) and r ∈ W (t2)
and get that (t1, t2) ∈ E.

Lemma 4.13 For all t /∈ dom(T ), we have that

wfg (ϕ (M,T ))

is a subgraph of graph wfg (ϕ (M,T ] {t : s})).

Proof. Let wfg (ϕ (M,T )) = (V,E) and

wfg (ϕ (M,T ] {t : s})) = (V ′, E′)

Graph (V,E) is a subgraph of (V ′, E′) if 1) V ⊆ V ′, 2) E ⊆ E′,
3) ∀(t, t′) ∈ E =⇒ t ∈ V ∧ t′ ∈ V .

1. We have that V ⊆ V ′ holds, since V = V ′ = T .
2. If (t1, t2) ∈ E, then (t1, t2) ∈ E′. By Lemma 4.9 and

(t1, t2) ∈ E, we have that T (t2) = await(p); s′, M(p)(t2) =
n, and M(p)(t1) < n. We have that t /∈ dom(T ), thus
T ] {t : s}(t2) = await(p); s′. From T ] {t : s}(t2) =
await(p); s′, M(p)(t1) < n,

wfg (ϕ (M,T ] {t : s})) = (V ′, E′)

and Lemma 4.9, we get that (t1, t2) ∈ E′.
3. We show that ∀(t, t′) ∈ E =⇒ t ∈ V ∧ t′ ∈ V . By

definition t ∈ T and t′ ∈ T .

Lemma 4.14 Graph wfg (ϕ (M,T )) is a subgraph of graph
wfg (ϕ (M,T ] T ′)).

Proof. The proof follows by induction on the structure of T ′ and
uses Lemma 4.13.

The proof follows by induction on the structure of T ′. Let

wfg (ϕ (M,T )) = (V,E)

and
wfg (ϕ (M,T ] T ′)) = (V ′, E′)

We inspect T ′.

• Case T ′ is ∅. To show that (V,E) is subgraph of itself, we just
need to show that ∀(t, t′) ∈ E =⇒ t ∈ V ∧ t′ ∈ V , which
holds by Definition 4.2, since V = V ′ = T .
• Case T ′ is T ′′ ] {t : s}. By the induction hypothesis, we have

that wfg (ϕ (M,T )) is a subgraph of wfg (ϕ (M,T ] T ′′)). By
Lemma 4.13 this case holds.

13

https://upc-lang.org/
upc-lang.org
http://x10-lang.org/
x10-lang.org
http://www.cs.columbia.edu/~martha/courses/4130/au13/
www.cs.columbia.edu/~martha/courses/4130/au13/

	Introduction
	Barrier programs and deadlocks
	Dynamic barrier membership using X10 clocks
	Generalised barrier synchronisation using phasers

	PL: a core phaser-based language for general barrier synchronisations
	Deadlock verification algorithm
	Resource-dependency state construction
	WFG and SG construction
	Complexity and correctness of the deadlock verification algorithm
	Equivalence theorem
	Soundness
	Completeness

	The Armus tool
	Resource-dependency deadlock verification library
	Distributed deadlock detection
	Verifying barrier deadlocks in X10 and in Java

	Evaluation
	Impact of non-distributed verification
	Impact of distributed verification
	Impact of the graph model choice

	Related work
	Conclusion
	Appendix: Proofs of Section 4.3

