
Dynamic Multirole Session Types

Pierre-Malo Deniélou and Nobuko Yoshida

Department of Computing, Imperial College London

Abstract. Multiparty session types enforce structured safe communications be-
tween several participants, as long as their number is fixed when the session starts.
In order to handle common distributed interaction patterns such as peer-to-peer
protocols or cloud algorithms, we propose a new role-based multiparty session
type theory where roles are defined as classes of local behaviours that an arbitrary
number of participants can dynamically join and leave. We offer programmers a
polling operation that gives access to the current set of a role’s participants in or-
der to fork processes. Our type system with universal types for polling can handle
this dynamism and retain type safety. A multiparty locking mechanism is intro-
duced to provide communication safety, but also to ensure a stronger progress
property for joining participants that has never been guaranteed in previous sys-
tems. Finally, we present some implementation mechanisms used in our prototype
extension of ML.

1 Introduction

As a type foundation for structured distributed, communication-centred programming,
session types [19, 32] have been studied over the last decade for a wide range of process
calculi and programming languages. The original binary theory has been generalised
to multiparty session types [20] in order to guarantee stronger conformance to stipu-
lated session structures between cooperating multiple end-point participants. Since the
first work [20] was proposed, the multiparty session type theory has been developed in
process calculi [4, 10, 15, 23], and used in several different contexts such as distributed
object communication optimisations [30], security [5, 9], design by contract [6], parallel
and web service programming [26, 36, 37] and medical guidelines [24], some of which
initiated industrial collaborations (see § 6 and 7). While many interaction patterns can be
captured in the existing multiparty sessions framework, there are significant limitations
for describing and validating loosely-coupled, ungoverned, dynamic protocols, since
the number of participants is required to be fixed both when the session is designed and
when the session execution starts. This makes it unable to express interaction patterns
frequently found in messaging oriented middleware and service-oriented computing.

The central underpinning of multiparty session types is that critical properties, such
as communication safety (essentially a correspondence between send and receive) and
deadlock-freedom, are guaranteed by the combination of two means: first, a static type-
checking methodology based on the existence of a global type (a description of a mul-
tiparty protocol from a global viewpoint) and of its end-point projections — the global
type is projected to end-point types against which processes can be efficiently type-
checked; second, a synchronisation mechanism which ensures that all the well-behaved

1

(i.e. well-typed) participants are actually present when the session starts. This paper in-
troduces a new role-based multiparty type system and synchronisation mechanism that,
together, can specify, verify and govern dynamically evolving protocols.

In the rest of this section, we illustrate our motivation, approach and solutions
through protocols of increasing complexity: (1) Map/Reduce (introduction of the no-
tion of roles and universal quantification); (2) P2P chat (projection challenges) and
(3) Auction (branching and communication safety).

(1) Map/Reduce We imagine a server that wants a task to be computed on a cluster
made of three cluster clients: the server sends them jobs and they give back their an-
swers. We give a picture illustrating this communication pattern and the corresponding
global multiparty session type written in the original theory [20].

client1 Reduce
))SSSS

server //

Map 55kkkk

))SSSS client2 // server

client3

55kkkk BC
_ _ _ _oo

@A
_ _ _ _

Gorg =µx.(server→client1〈Map〉;
server→client2〈Map〉;
server→client3〈Map〉;
client1→server〈Reduce〉;
client2→server〈Reduce〉;
client3→server〈Reduce〉);x

This session starts with the server sending asynchronously the messages Map to partic-
ipants client1, client2 and client3. Each of them answers back with a message Reduce.1

Recursion µx denotes an unbounded number of repeated interactions.
The problem here is that such a session cannot start without one of the clients and,

once running, is not able to handle a fourth client joining or one of the current clients
leaving. In the original multiparty sessions, any of these scenarios requires ending the
session, writing an appropriate global type for the new situation, and starting a fresh
session again.

This paper proposes a theory of dynamic multirole session types that can describe
global interactions between roles, which are classes of participants that share a common
behaviour (e.g. the clients in the above example). Dynamism is disciplined by a simple
universally quantified type that allows to spawn further interactions by polling the set
of participants currently playing a given role.

In the above session, we notice that the three clients have the exact same behaviour
(receiving a Map message and sending a Reduce message). We call this behaviour the
client role and now expect a varying number of participants to inhabit it. On the other
hand, the server role is as usual instantiated by exactly one participant and the ses-
sion does not start without its presence. The following picture illustrates this dynamic
protocol. Its global type features the new universal type.

client Reduce
''OOOOO

server //

Map 77ooooo

''OOOOO
...

// server

client

77ooooo BC
_ _ _ _oo

@A
_ _ _ _

G =µx.∀x : client.{server→x〈Map〉;
x→server〈Reduce〉};x

1 Since the previous multiparty session types [4, 20] do not support explicit parallelism, we rely on asyn-
chrony to express the desired behaviour.

2

The repeated interaction in the global type G involves a Map message to be sent by
the server to every participants x of the client role; the server then expects a message
Reduce in answer. At the type level, such an operation is specified using a universal
quantification:

∀x : r.G′ polls the current participants p1, ...,pn of role r and, in parallel pro-
cesses, binds x to each in the subsequent interaction, as in G′{p1/x} | ... |
G′{pn/x}

In our example, G′ = server→x〈Map〉;x→server〈Reduce〉 is executed in parallel for
each client x. Then, the recursion variable x points the interaction back to its beginning.
Local types Since the implementation, written here in a variant of the π-calculus, is
distributed, the typing system first projects the global type to each end-point (local)
type. For each role, the projection algorithm computes a local type that describes the
behaviour of any participant that wants to play it. The local types for this session are
the following:

Tclient =µx.?〈server,Map〉; !〈server,Reduce〉;x
Tserver =µx.∀x : client.{!〈x,Map〉; ?〈x,Reduce〉};x

First, the client behaviour Tclient is straightforward as it is only involved in two messages
at each iteration with the server. The local type of the client expresses that it expects a
message Map from the server (?〈server,Map〉) and that it sends a message Reduce as
an answer (!〈server,Reduce〉). The server role is involved in all the messages of this
session. We note the presence of the quantification over all x playing the client role.
Processes We write some process examples that would be well typed against the local
types. The session identifier s denotes an active session:

Pclient(z)=a[z : client](s).µX .s?〈server,Map〉;s!〈server,Reduce〉;X
Pserver(z)=a[z : client](s).µX .s∀(x : client).{s!〈x,Map〉;s?〈x,Reduce〉};X

A session starts through the join operation (a[z : client](s)) which gets the session name
s of a running session advertised on a. A participant z playing the client with Pclient(z) is
simply exchanging messages Map and Reduce with the server through sending (s!) and
receiving (s?) operations. The server needs to fork subprocesses for its interactions with
each client. To this effect, the polling operation s∀(x:client).{s!〈x,Map〉;s?〈x,Reduce〉}
creates as many processes s!〈x,Map〉;s?〈x,Reduce〉 as there are participants x playing
the client role. Note that late joining client participants are incorporated in the session
at each iteration: the repetition of the polling operation s∀(x : client) is able to ensure a
safe interaction between all parties.

(2) Peer-to-peer chat In this session, there is only one role, the client, whose behaviour
is to always broadcast its messages to all the other clients. We give the global type and
a representation of the interaction when four clients are present.

client //

%%LLLLLLLLLL

Msg

��

clientMsg
oo

yyrrrrrrrrrr

��
client //

99rrrrrrrrrr

OO

client
Msgoo

eeLLLLLLLLLL
Msg

OO

G =µx.(∀x : client.∀y : client\ x.{x→yMsg〈string〉});x

3

This type features a double quantification which specifies that each pair of clients x,y
will interact in the form of a unique Msg. The explicit exclusion of x from the list of
clients y prevents self-sent messages.

This second example shows the projection difficulties that arise from quantification.
Local types To illustrate the projection of nested quantifiers, we first rely on our intu-
ition: each client should send a message Msg to every other client and, concurrently,
should expect a message Msg from each of them.

Tclient(z)=µx.(∀y : client\ z.{!〈y,Msg〈string〉〉} | ∀x : client\ z.{?〈x,Msg〈string〉〉});x

Let us examine how the projection algorithm gives this local type. Suppose we project
for a generic client z. The first quantifier ∀x:client of the global type necessarily involves
z, meaning that among these parallel processes there is exactly one where x is z. In the
other parallel processes, although x is not z, z can still be involved. The projection of
the second nested quantifier ∀y : client \ x works in the same way. This is why the first
parallel part is ∀y : client \ z.{!〈y : client,Msg〈string〉〉}, which explicitly excludes the
possible !〈z,Msg〈string〉〉.2

Process Once the local types are known, the client processes have a similar structure,
including the explicit polling operator, written s∀(y : client\ z).

Pclient(z)=a[z : client](s).µX .(s∀(y : client\ z).{s!〈y,Msg〈m〉〉} |
s∀(x : client\ z).{s?〈x,Msg(w)〉});X

(3) Auction We now illustrate the expressiveness of our universal types when com-
bined with instantiation of participant identities and branching session. In this session,
we have three roles: the multiple buyers (here participants alice, alex, alan) and
sellers (here bob, ben) which all connect to a single broker. This broker will then form
matching pairs (x,y) of buyers and sellers who will then continue their interaction Price-
Order separately.

alice
Notify //_____

Stop

$$HHHHHHHHHHHHHHH bob Price // alice Order // bob

broker

Match〈bob〉
Quit〈ben〉

44jjjjjj

44jjjjjjjjjjj //Quit〈bob〉 //______
Match〈ben〉

**TTTTTTTTTTTT

Quit〈bob〉
Quit〈ben〉 **

TTTTTTTTTTTT alex

Notify))TTTTTT

Stop
55jjjjjjjjjjjj

alan
Stop

//

Stop

::vvvvvvvvvvvvvvv
ben Price // alex Order // ben

G =∀x :buyer.∀y : seller.broker→x{Match〈y〉.x→y〈Notify〉.y→x〈Price〉.x→y〈Order〉,
Quit〈y〉. x→y 〈Stop〉}; end

The quantifications ∀x :buyer.∀y : seller specify that every possible association between
buyers and sellers is considered by the broker when he makes his choices. For each pair
(x,y) of buyer and seller, the broker selects to send to x either a message Match〈y〉 if he
has found y to be a match for x, or a message Quit〈y〉 otherwise. If the message Match

2 If we want our global type to include those self-sent message, it can be done explicitly by writing a global
type: µx.(∀x : client.(x→xMsg〈string〉 | ∀y : client.x→yMsg〈string〉);x.

4

was sent, x notifies y and the interaction Price-Order proceeds. In the other branch, x
needs to warn y by the message Stop that the broker chose the second branch.

For this example, we write a process for a buyer:

Pbuyer(z)=a[z :buyer](s).s∀(y : seller).{
s?〈broker,{Match〈y〉.s!〈y,Notify〉.s?〈y,Price〉.s!〈y,Order〉,

Quit〈y〉.s!〈y,Stop〉}〉};quit〈s〉

From the above process, we can see the importance of the communication of the partic-
ipant identity y with the messages Match and Quit. The adjunction of y to the messages
is necessary for x to know to which y to send the Notify message. Note that the y in
Match〈y〉 is not a regular payload as all the sellers y are already known by x: at recep-
tion, x matches his known y against the one coming along Match or Quit.

This example presents a non-recursive session where all participants leave the ses-
sion (through the expression quit〈s〉) at the end of their interaction. Since late joiners
always start at the beginning of the session, they cannot safely interact with the partic-
ipants that have already proceeded. To guarantee progress, we require that late joiners
wait for the current participants to end before joining themselves and beginning their
actions. To provide consistent synchronisation, we introduce a multiparty locking mech-
anism to protect the global session executions.

Main contributions

(§ 2) A new role-based multiparty session type framework where participants can play
several roles in a session. Its semantics allows participants to dynamically join and
leave a running session, and create new parallel sessions.

(§ 3, § 4) Introduction of a universal type for polling participants, along with explicit
parallel compositions, and a type system that provides subject reduction (Theo-
rem 4.1) and type safety (Corollary 4.1: no type error for values and labels). The
end-point projection and the well-formedness conditions of global types deal with
the subtle interplay between universal quantifiers, parallel compositions, branching
and instantiations of participant identities.

(§ 5) A semantics and type system with a simple locking mechanism by which commu-
nication safety (Theorem 5.1: every receiver has a corresponding sender with the
right type), progress (Theorem 5.2: processes in a single multiparty session always
progress) and join progress (Theorem 5.3: late joiners can always join to an existing
session and progress) are established.

(§ 5.5) Practical implementation techniques used in our prototype extension of ML.

Appendix lists the proofs, detailed definitions and additional examples for the reader’s
convenience.

2 Multirole session calculus

We describe here an extension of the multiparty session calculus presented in [4]. Our
new system handles roles and allows programs to participate in protocols that include
multiple parallel interactions and dynamic role instantiation.

5

u ::= x | a | b | ... Shared channel

p ::= p :r | x :r Participant with role

~p ::= p ::~p | x ::~p | ε Participant list

c ::= s[p] | y Session channel

e ::= v | x | e∧ e | ... Expression

v ::= a | s[p :r] | true | ... Values

P ::= Processes
| u〈G〉 Session initialisation
| u[p](y).P Join
| quit〈c〉 Quit
| c!〈p, l〈~p〉〈e〉〉 Send
| c?〈p,{li〈~pi〉(xi).Pi}i∈I〉 Receive
| c∀(x :r \~p).{P} Poll
| P | P Parallel composition
| P;P Sequential composition
| if e then P else P Conditional
| µX .P | X Recursion, Recursion variable
| 0 Null
| (ν a :G)P Restriction
| (ν s)P Session restriction
| s :h Message buffer
| a〈s〉[R] Session registry

| a〈s〉[R] Registry

R ::= r1 :P1, ...,rn :Pn Role set

h ::= ε | h · (p0 :r0,p1 :r1, l〈~p〉〈v〉) Buffer

Fig. 1. Multirole session calculus

Syntax We give in Figure 1 the syntax of the processes of our session variant of the
π-calculus.

A session is always initialised by a process of the form u〈G〉 where G is a global
type (formally defined in § 3). Session initialisation attributes a particular global inter-
action pattern G to a shared channel u. Once the session has been initialised on channel
u, participants can join with u[p](y).P where p designates a participant identity p or x
associated with a particular role name r. Joining binds the variable y with the session
channel that this particular participant can use when he plays the role r. Leaving the ses-
sion is done by quit〈c〉, where c is the session channel corresponding to the participant
and role.

The asynchronous emission c!〈p, l〈~p〉〈e〉〉 allows to send to p a value e labelled by a
constant l and participant names ~p. The reception c?〈p,{li〈~pi〉(xi).Pi}i∈I〉 expects from
p a message with a label among the {li}i∈I with participants ~pi. The message payload
is then received in variable xi, which binds in Pi. Messages are always labelled. (fol-
lowing [5, 11]). The list of participants ~pi enriches the label li in order for the receiver
to be able to disambiguate messages that have the same sender and label, but different
continuations.

6

The polling operation c∀(x : r \~p).{P} is the main way to interact with the partici-
pants that instantiate a given role: P is replicated for each participant x playing role r,
with the exception of the participants mentioned in ~p.

Parallel and sequential composition are standard, as are the conditional and recur-
sion. The creation of a shared rendez-vous name is done by (ν a :G)P. This fresh name
can then be used as a reference for future instances of a session specified by G.

Once a session is running, our semantics uses some artifacts that are not directly
accessible to the programmer. First, session instances are represented by session re-
striction (ν s)P. Second, the message buffer s : h stores the messages in transit for the
session s. Last, the session registry a〈s〉[R] records the current association between par-
ticipants and roles in the running session s.

For simplicity, we write c?〈p, l〈~p〉(xi)〉.P if there is a unique branch. Similarly, we
omit the empty list of participant (〈ε〉) and unit payloads (e.g. c!〈p, l〉). We also do not
write 0, and roles r (e.g. in x :r) if they are clear from the context.

We use syntactic sugar for the special roles that cannot be multiply instantiated.
Polling is done implicitly for these roles. Their participants’ names (p or x) do not have
to be explicitly mentioned: the mention of the role r is sufficient and unambiguous. In
the Map/Reduce example from § 1, server is such a role.

We call a process which does not contain free variables and runtime syntax initial.

a〈G〉 −→ (ν s)(a〈s〉[R] | s :ε) (∀ri∈G,R(ri) = ∅) b INITc

a[p :r](y).P | a〈s〉[R · r :P] −→ P{s[p :r]/y} | a〈s〉[R · r :P]{p}] bJOINc

quit〈s[p :r]〉 | a〈s〉[R · r :P] −→ a〈s〉[R · r :P\p] bQUITc

s[p :r]!〈p′ :r′, l〈~p〉〈v〉〉 | a〈s〉[R] | s :h −→ a〈s〉[R] | s :h · (p :r, p′ :r′, l〈~p〉〈v〉)
(p∈R(r)∧p′∈R(r′)) bSENDc

s[p :r]?〈p′ :r′,{li〈~pi〉(xi).Pi}i∈I〉 |
| a〈s〉[R] | s :(p′ :r′, p :r, lk〈~pk〉〈v〉) ·h −→ Pk{v/xk} | a〈s〉[R] | s :h (p∈R(r)∧ k∈ I) bRECVc

s[p :r′]∀(x :r \~p).{P} | a〈s〉[R] −→ P{p1/x} | ... | P{pk/x} | a〈s〉[R]
(R(r)\~p = {p1, ..,pk}∧p∈R(r′)) bPOLLc

if true then P else Q −→ P b IFTc

if false then P else Q −→ Q b IFFc

P | Q−→ P′ | Q′

E [P] | Q−→ E [P′] | Q′
bPARc

P−→ P′

E [P]−→ E [P′]
bCTXc

P≡P′ −→ Q′≡Q

P−→ Q
bCONGc

E ::= [] | E | P | E ;P | (ν a)E | (ν s)E | s[p :r]!〈p′ :r′, l〈~p〉〈E 〉〉 |
if E then P else P | E ∧ e | v∧E | . . .

Fig. 2. Reduction rules for the multirole session calculus

Semantics Figure 2 lists the reduction rules. We give in figure 2 the reduction rules
of our multirole session calculus. The b INITc rule proceeds to a session initialisation by
reducing a〈G〉. It creates a fresh session channel s and two processes. First, the session
registry a〈s〉[R] is an entity that centralises the association between participants and
roles in the particular instance s of a session. Initially, R does not record any participant

7

for any of the roles of G. The second process is the session’s message buffer s :ε , which
is also initially empty.

The rule bJOINc governs the registration of a participant to a running session. The
participant asks with a[p : r](y).P to join the session advertised on channel a and spec-
ifies his identity p and which role r he wants to play. This information is added to the
session registry a〈s〉[R · r :P]{p}] and the session channel s[p :r] is communicated. The
rule bQUITc manages the departure of a participant from a session: quit〈s[p :r]〉 forces
the deletion of p :r from the registry.

The rule bSENDc describes asynchronous sending, s[p : r]!〈p′ : r′, l〈~p〉〈v〉〉, which ap-
pends its labelled message to the buffer s : h. In rule bRECVc, the reception s[p : r]?〈p′ :
r′,{li〈~pi〉(xi).Pi}i∈I〉 takes from the session buffer the first message (p′ :r′, p:r, lk〈~pk〉〈v〉)
that has a proper address, label and participant list and selects the matching continua-
tion Pk. The rule bPOLLc details the reduction of the polling process s[p:r′]∀(x:r\~p).{P}.
The set of participants {p1, ...,pk} that play role r (once the ones in~p are removed) is
received from the session registry and the process P is forked accordingly, with x ap-
propriately substituted. In bPARc, bound names in E and free names in Q are disjoint.

We leave the standard definition of structural equivalence ≡ to the appendix (fig-
ure 8). The reduction is defined modulo the standard structural equivalence ≡. We just
mention here the session garbage collection rule (ν a : G,s)(a〈s〉[R] | s : ε)≡ 0 (when
∀ri∈G,R(ri) = ∅) and the permutation rule s :(q, p, l〈~p1〉〈v〉) · (q′, p′, l′〈~p2〉〈v′〉) ·h≡ s :
(q′, p′, l′〈~p2〉〈v′〉) · (q, p, l〈~p1〉〈v〉) ·h which allows to put forward in the session buffers
the messages that have different senders, recipients, labels or participants lists. Others
are standard.

(ν a)(a〈G〉 | P(p1) | P(p2))
b INITc → (ν a)((ν s)(a〈s〉[client :∅] | s :ε) | P(p1) | P(p2)))
bJOINc → (ν a,s)(a〈s〉[client :{p1}] | s :ε | Q(p1) | P(p2))
bJOINc → (ν a,s)(a〈s〉[client :{p1,p2}] | s :ε | Q(p1) | Q(p2))
bPOLLc → (ν a,s)(R | s :ε | Q(p2) | (s[p1]!〈p2,Msg〈m〉〉 |

s[p1]∀(x : client\p1).{s[p1]?〈x,Msg(w)〉});Q(p1))
bSENDc → (ν a,s)(R | s :(p1,p2,Msg〈m〉) | Q(p2) |

(s[p1]∀(x : client\p1).{s[p1]?〈x,Msg(w)〉});Q(p1))
bPOLLc → (ν a,s)(R | s :(p1,p2,Msg〈m〉)) | Q(p2) | s[p1]?〈p2,Msg(w)〉;Q(p1))
bPOLLc → (ν a,s)(R | s :(p1,p2,Msg〈m〉) | s[p1]?〈p2,Msg(w)〉;Q(p1) |

(s[p2]!〈p1,Msg〈m〉〉 | s[p2]∀(x : client\p2).{s[p2]?〈x,Msg(w)〉});Q(p2))
bSENDc → (ν a,s)(R | s :(p1,p2,Msg〈m〉) · (p2,p1,Msg〈m〉) |

s[p1]?〈p2,Msg(w)〉;Q(p1) | s[p2]∀(x : client\p2).{s[p2]?〈x,Msg(w)〉};Q(p2))
bPOLLc → (ν a,s)(R | s :(p1,p2,Msg〈m〉) · (p2,p1,Msg〈m〉) |

s[p1]?〈p2,Msg(w)〉;Q(p1) | s[p2]?〈p1,Msg(w)〉;Q(p2))
bRECVc → (ν a,s)(R | s :(p2,p1,Msg〈m〉) | s[p1]?〈p2,Msg(w)〉;Q(p1) | Q(p2))
bRECVc → (ν a,s)(R | s :ε | Q(p1) | Q(p2))

Fig. 3. Reduction for the peer-to-peer chat example

Reduction example We take the process Pclient(z) from the peer-to-peer chat mentioned
in the introduction (§ 1(2)). Figure 3 gives reduction steps of a situation where we have
two client processes Pclient(p1) and Pclient(p2) that want to interact on session channel

8

a. We call Q(z) the process µX .(s[z]∀(y :client\ z).{s[z]!〈y, Msg〈m〉〉} | s[z]∀(x :client\
z).{s[z]?〈x,Msg(w)〉});X and abbreviate the registry a〈s〉[client :{p1,p2}] by R.

3 Multirole session types

In this section, we present the multirole session types which specify the communication
patterns that are to be enforced. We start with the definition of global and local types
and follow with projection and well-formedness properties.

3.1 Global and local types

Global types G describe role-based global scenarios between multiple participants as a
type signature. When a participant agrees with a global type G, his behaviour is defined
by a local protocol (called local type Ti) that is generated by the projection of G to the
role he wants to play. If each of the local programs P1, ...,Pn can be type-checked against
the corresponding projected local types T1, ..,Tn, then they are automatically guaran-
teed to interact properly, following the intended scenario. The grammar of global types
(G,G′, ...) and local types (T,T ′, ...) is given in figure 4. There are four key extensions
from the standard multiparty session types [4]: (1) association of each participant to a
role; (2) universal quantifiers to bind participants identities; (3) parallel compositions
for local types; and (4) labels that can be extended by lists of participants.

G ::= Global types
| p→p′{li〈~pi〉〈Ui〉.Gi}i∈I Labelled messages
| ∀x :r \~p.G Universal quantification
| G | G′ | G;G′ Parallel, Sequential
| µx.G | x Recursion, variable
| ε | end Inaction, End

T ::= Local types
| !〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉 Selection
| ?〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉 Branching
| ∀x :r \~p.T Universal quantification
| T | T ′ | T ;T ′ Parallel, Sequential
| µx.G | x | ε | end Recursion, inaction, end

U ::= S | T Message types

S ::= 〈G〉 | bool | unit | ... Sorts

Fig. 4. Global and local types

In the global types (G,G′, ...), a global interaction can be a labelled message ex-
change (p→p′{li〈~pi〉〈Ui〉.Gi}i∈I), where p and p′ denote the sending and receiving par-
ticipants with roles (recall that p denotes either p : r or x : r), ~pi is a list of participants,
Ui is the payload type of the message and Gi the interaction that follows the choice of
label li (I is a finite set of integers). Value types S include shared channel types 〈G〉 or
base types (bool,unit , ...). Message types U are either value types S or local types T
(which correspond to the behaviour of one of the session participants) for delegation.

Parallel composition is written as G |G′, and G;G′ denotes sequential composition.
µx.G is a recursive type where type variable x is guarded in the standard way (they

9

only appear under some prefix). Inaction ε marks the absence of communication, while
end denotes the end of the session for all roles. The universal quantification is written
∀x :r \~p.G where the participants of role r bind free occurrences x in G. It corresponds
to the operational semantics of s[p : r′]∀(x : r \~p).{P} (see § 2), i.e. a parallel composi-
tion G{p1/x} | ... | G{pk/x} for some list of participants {p1, ...,pk} playing the role r
(which is decided at runtime), from which the list of participants ~p has been excluded.

In local types T , selection expresses the transmission to p of a label li taken from a
set {li}i∈I with a list of participants ~pi and a message type Ui, followed by Ti. Branching
is its dual counterpart. The other local types are similar to their global versions.

We consider global and local types modulo the following equalities. For local types,
we define: (T | ε) = (ε | T) = (ε;T) = T , (T | end) = (end | T) = T , (T | T ′); end =
(T ; end | T ′; end) and !〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉; end = !〈p,{li〈~pi〉〈Ui〉.Ti; end}i∈I〉. Simi-
lar equalities are applied to global types. We also use similar abbreviations for global
and local types as the ones for processes (mentioned in § 2). In particular, we write
p→ql〈~p′〉〈U〉;G or !〈p, l〈~q〉〈U〉〉;T for a single branching, and p→q〈l〉 if the list of
participant is empty and the payload type is unit. end is also often eluded.

Finally, we define fv to be a function over local and global types which returns the
set of free participant variables. The function ftv gives the set of free recursion variables.

Example 3.1 (Global types). To give some additional clarity to the semantics of global
session types, we give here several variations on an additional example. We imagine a
chat protocol (similar in spirit to the peer-to-peer chat session) where the clients must
interact through a single server. We have thus two roles: the unique server and the
multiple clients. Each client’s behaviour is to send a message to the server who will
then broadcast it to all the others. In the following picture, we only represent the Msg
that one client sends to the server and that is followed by the server broadcasting its
content (in message Spread) to all the other clients.

'&%$!"#c . . . '&%$!"#c '&%$!"#c
Msg

��

'&%$!"#c . . . '&%$!"#c

server
Spread

kk ee 99

Spread

33

The global type for this session relies on the sequentiality that links each Msg to its
following Spread. We write it as:

G1 = µx.∀x : client.{x→server〈Msg〉.∀y : client\ x.{server→y〈Spread〉}};x

It starts with a quantification over all clients x. Upon reception by the server of a mes-
sage from x, the global type specifies that Spread should be sent to all the other clients:
∀y : client\ x.server→y〈Spread〉.

An alternate chat server could be one where the server collects all incoming mes-
sages and then sends a digest to all clients. In that case, the global type would be written:

G2 = µx.∀x : client.{x→server〈Msg〉};∀y : client.{server→y〈Spread〉};x

The central synchronisation between the two quantified types is important in our model.
The semantics is radically different if this synchronisation is removed.

G3 = µx.∀x : client.{x→server〈Msg〉; server→x〈Spread〉};x

The global type G3 means that, independently for each client, the server first collects a
message Msg and then immediately sends back to this same client a message Spread.

10

3.2 Projection from multirole global types to local types

We now define the projection operation, which, for any participant z playing a role r in a
session G, computes the local type it has to conform to. We say an end-point projection
of G onto z : r, written G ↑ z : r, is the local type that the participant z should respect to
play the role r in session G.

As mentioned in § 1, the main difficulty lies in the projection of the quantifiers.
Let us first consider informally the global type ∀x : r.G. This global type has the same
semantics as G{p1/x} | ... | G{pk/x} for some p1, ...,pk playing the role r. If we write
the projection of ∀x : r.G for a participant pi playing role r (written as ∀x : r.G ↑ pi : r),
we can single out the instance corresponding to pi:

(G{p1/x} ↑ pi :r) | ... | (G{pk/x} ↑ pi :r) = (G{pi/x} ↑ pi :r) | ∀x :r \pi.(G ↑ pi :r)

Based on this intuition behind the projection of quantifiers, we give the projection def-
inition in figure 5. Projection is role-based, i.e. for each role r of a session G, a local
type T = G ↑ p is computed with p = z : r. The case p = p : r is defined by replacing z
by p.

p→p′{li〈~pi〉〈Ui〉 :Gi}i∈I ↑ p = !〈p′,{li〈~pi〉〈Ui〉.Gi ↑ p}i∈I〉
p′→p{li〈~pi〉〈Ui〉 :Gi}i∈I ↑ p = ?〈p′,{li〈~pi〉〈Ui〉.Gi ↑ p}i∈I〉
p→p{li〈~pi〉〈Ui〉 :Gi}i∈I ↑ p = !〈p,{li〈~pi〉〈Ui〉.?〈p, li〈~pi〉〈Ui〉.Gi ↑ p〉}i∈I〉

p′→p′′{li〈~pi〉〈Ui〉.Gi}i∈I ↑ p =
⊔

i∈I{Gi ↑ p}
(∀x :r \~p.G) ↑ z :r = G{z/x} ↑ z :r | ∀x :r \ z ::~p.(G ↑ z :r) (z 6∈~p)

(∀x :r \~p.G) ↑ p = ∀x :r \~p.(G ↑ p) (all other cases)

(G | G) ↑ p = (G ↑ p | G ↑ p)

(G;G) ↑ p = (G ↑ p;G ↑ p)

µx.G ↑ p = µx.(G ↑ p)

x ↑ p = x
ε ↑ p = ε

end ↑ p = end

Fig. 5. Projection

The projection of communication leads to a case analysis: if the participant pro-
jected to (i.e. p) is the sender, then the projection is a selection sent to p′; if p is the re-
ceiver then the projection is an input from p′; if participant p is both sender and receiver
then the projection is an output followed by an input; otherwise, the communication is
not observed locally and is skipped. The operator t then merges the different remote
branches (this operation was introduced in [36, § 4]). Roughly speaking, it makes sure
that the locally observable behaviours are either independent of the remotely chosen
branch or can be properly identified through their labels. It is defined by T tT = T and
the following equality:

?〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉t ?〈p,{l j〈~p j
′〉〈U ′j〉.T ′j} j∈J〉

= ?〈p,{lk〈~pk〉〈Uk〉.Tk}k∈I\J ∪{lk〈~pk
′〉〈U ′k〉.Tk}k∈J\I

∪{lk〈~pk〉〈Uk〉.Tk tT ′k}k∈I∩J〉 when ∀k∈ I∩ J, ~pk = ~pk
′∧Uk = U ′k

11

Note that the merging operation may not return a result if the session uses labels am-
biguously. An example can be found in § 3.3.

Finally, the most critical rules define the projection of a quantified global type (∀x :
r \~p.G) ↑ p. The first rule applies only when the quantification acts on the same role r
as the projection, and when p is not in the exclusion list ~p. In that case, as explained
above, the local type is the parallel composition of G where x : r is substituted by p,
projected for p, and a quantification excluding p. The second rule sees the projection
acting homomorphically through the quantification on a different role, or if p is in ~p.
Other rules are homomorphic as well. We say that G is projectable if G can be projected
(i.e. projection gives a result) for each of its roles.

Example 3.2 (Projection). (1) Peer-to-peer chat example. We give an example of
projection for the peer-to-peer chat session from § 1, which features nested quantifiers.
The local type T (z : client) is calculated in the following way (p is z : client):

(µx.(∀x : client.∀y : client\ x.x→yMsg〈string〉);x) ↑ z : client
= µx.((∀x : client.∀y : client\ x.x→yMsg〈string〉) ↑ z : client);x
= µx.((∀y : client\ z.z→yMsg〈string〉) ↑ z : client |

∀x : client\ z.(∀y : client\ x.x→yMsg〈string〉) ↑ z : client);x
= µx.(∀y : client\ z.(z→yMsg〈string〉) ↑ z : client |

∀x : client\ z.((x→zMsg〈string〉) ↑ z : client |
∀y : client\ z.(x→yMsg〈string〉) ↑ z : client));x

= µx.(∀y : client\ z.!〈y,Msg〈string〉〉 |
∀x : client\ z.(?〈x,Msg〈string〉〉 | ∀y : client\ z.ε));x

≡ µx.(∀y : client\ z.!〈y,Msg〈string〉〉 | ∀x : client\ z.?〈x,Msg〈string〉〉);x

(2) Chat-server from example 3.1. We give the projections for each of the three global
types. The projection of G1 for the server and client roles gives:

T1(z : server) =µx.(∀x : client.{?〈x : client,Msg〉;
∀y : client\ x.!〈y : client,Spread〉});x

T1(z : client) =µx.(!〈server,Msg〉 | ∀x : client\ z.{?〈server,Spread〉});x

Note that the sequentiality between Msg and Spread is rightly present in the server’s
local type. The projection of G2 results in:

T2(z : server) = µx. ∀x : client.{?〈x : client,Msg〉};
∀y : client.{!〈y : client,Spread〉};x

T2(z : client)= µx.(!〈server,Msg〉 | ∀x : client\ z.{?〈server,Spread〉});x

We note that the server’s local type represents a behaviour which first collects all in-
coming messages and then sends a digest to all clients. On the other hand, the client
behaviour is the same as in session G1. The projection of G3 is given as:

T3(z : server)=µx.∀x : client.{?〈x : client,Msg〉; !〈y : client,Spread〉};x
T3(z : client)=µx.!〈server,Msg〉; ?〈server,Spread〉;x

In the above types, for each client, the server first collects a message Msg and then
immediately sends back a message Spread to this client.

12

3.3 Well-formedness

For type-checking to work, global types need to follow a set of rules that will ensure a
reliable and unambiguous session behaviour.

Syntax correctness First, we enforce syntactic restrictions to global types G to only
keep syntactically correct global types. We use a simple kinding system to this effect
(defined in appendix C.1). We give here the main points that are checked and two of the
kinding rules.

We start by verifying that every participant variable x is bound by a quantifier ∀x :
r \~p and that it is consistently used with role r. Then we check that recursion variables
do not appear under quantification or explicit parallel composition. Formally, if a global
type is of the form ∀x :r \~p.G or G | G′, then G and G′ are required not to contain any
free recursion variables. This condition prevents any race condition between different
iterations of the same loop. The two kinding rules that check for these conditions are
the following:

Γ ,x :r ` G . Type ftv(G) = ∅
Γ ` ∀x :r.G . Type

Γ ` Gi . Type ftv(Gi) = ∅ (i = 1,2)
Γ ` G1 | G2 . Type

Other checks include verifying that the position of end is indeed correct. For example,
(G; end);G′ is not well-formed.

We give a few examples of correct and incorrect global session types.

× G1 = µx.(server→client〈Msg〉;x | server→broker〈Notify〉;x)√
G2 = µx.(server→client〈Msg〉 | server→broker〈Notify〉);x√
G3 = µx.server→client〈Msg〉;x | µy.server→broker〈Notify〉;y

Syntax correctness We apply kinding rules [3] to construct syntactically correct types.
A first point that is verified is that every participant variable x is bound by a quantifier
and that it is consistently used with the same role. Then, we check that recursion vari-
ables do not appear under quantification or explicit parallel composition. Formally, if a
global type is of the form ∀x :r \~p.G or G | G′, then G and G′ are required not to con-
tain any free recursion variables. This condition prevents any race condition between
different iterations of the same loop. We give a few examples of correct and incorrect
global session types.

× G1 = µx.(server→client〈Msg〉;x | server→broker〈Notify〉;x)√
G2 = µx.(server→client〈Msg〉 | server→broker〈Notify〉);x√
G3 = µx.server→client〈Msg〉;x | µy.server→broker〈Notify〉;y

Other checks include the verification that the position of end is indeed correct. For
example, (G; end);(G′; end) is not well-formed.

Projectability As seen in § 3.2, projection does not always return a local type, due to
the verification made when branches are merged. The merging operation verifies that
each branch is properly labelled and that no local process can be confused about which
branch to follow. We thus require that any global session type G should be projectable.

× G4 = broker→buyer{Notify.buyer→seller〈Msg〉; seller→buyer〈Pay〉,
Quit.buyer→seller〈Msg〉}√

G5 = broker→buyer{Notify.buyer→seller〈Price〉; seller→buyer〈Pay〉,
Quit.buyer→seller〈Stop〉}

13

The seller in G4 cannot distinguish the two Msg sent by the buyer. In G5, the seller
knows which branch has been taken by the broker since the upper one is labelled by
Price and the lower one by Stop.

Linearity The concept of linearity is introduced in [20] but, in our case, we use a re-
laxed version to allow flexible parallel compositions (explicit or through quantification)
and branching. It makes sure that messages are always labelled in a way that prevents
communication mix-ups.

First, linear global types are supposed to be projectable, which guarantees the exis-
tence of matching communications and a correct labelling of mutually exclusive branches.
Then, the linearity property verifies that no confusion can arise between concurrent
threads of each local type.

To verify the linearity of a global type G, we first need to transform the quantifiers
into explicit parallel compositions. To this effect, we associate to each role r of G a
(big enough) list of participant names p0,p1, Then, we compute for each role r the
local type Tr = G ↑ p0 :r and homomorphically replace every subterm of Tr of the form3

∀x :r \~p.T0 by T0{pi/x} | T0{p j/x} with pi,p j the first two participant names for role r
that do not appear in ~p. This transformation is called dequantification.

Definition 3.1 (Linearity). We say that a well-labelled global type G is linear if, for
all roles r of G, the dequantification T ′r of Tr = G ↑ p0 :r satisfies the following property:
whenever ?〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉 and ?〈p,{l′j〈~p j

′〉〈U ′j〉.T ′j} j∈J〉 are both subterms of T ′r ,
then, ∀i, j∈ I× J, li = l′j⇒ ({li}i∈I = {l′j} j∈J ∧Ui = U ′j ∧ (~pi = ~p j

′⇒ Ti = T ′j)).

This definition checks that if two receptions exist in the local type of a role r, then either
they share no label (and thus cannot be confused), or they share exactly the same set
of message labels, with identical payload types, in which case they should only differ
by the distinguishing lists of participants: these lists allow to reliably target different
continuation types even when concurrent threads expect messages with the same labels.

× G6 = ∀x :buyer.∀y : seller.{broker→x〈Msg〉.x→y〈Notify〉}√
G7 = ∀x :buyer.∀y : seller.{broker→x〈Msg〈y〉〉.x→y〈Notify〉}

The dequantification of G6 ↑ p0 : seller is (buyers are p0,p1, sellers are q0,q1):

?〈broker,〈Msg〉.!〈q0,〈Notify〉〉〉 | ?〈broker,〈Msg〉.!〈q1,〈Notify〉〉〉

These two concurrent threads have identical guards but different continuations. The
dequantification of G7 ↑ p0 : seller is:

?〈broker,〈Msg〈q0〉〉.!〈q0,〈Notify〉〉〉 | ?〈broker,〈Msg〈q1〉〉.!〈q1,〈Notify〉〉〉

In that case, the participant identity 〈y〉 is added to the label Msg and is able to disam-
biguate the concurrent receptions.

3 We leave the implicit quantifiers of the singly instantiated roles untouched.

14

Well-formedness We now give the formal version of the well-formedness condition.
Note that it is decidable.

Definition 3.2 (Well-formed global types). We say that a global type G is well-formed
if the following conditions hold:

1. (Syntactically correct) G is syntactically correct [3]. (i.e. checked by the kinding
rules in Appendix C.1).

2. (Projectability) G ↑ z :r is defined for each role r of G.
3. (Linearity) G is linear (Definition 3.1).

We explain the test of these conditions on the auction example.

Example 3.3 (Well-formedness). We test the well-formedness of the auction example
from § 1 (the numbers below correspond to the well-formedness conditions). Recall the
global type G:

G = ∀x :buyer.∀y : seller.broker→x{Match〈y〉.x→y〈Notify〉.y→x〈Price〉.x→y〈Order〉,
Quit〈y〉. x→y 〈Stop〉}; end

The syntax correctness (1) is checked easily: there is no recursion, participant variables
are bound and used for a unique role, and end is well-positioned. G is projectable (2)
since the two branches (Match, Quit) do not forget to use different labels (Notify, Stop)
to propagate to the seller y the choice that the broker makes. Concerning linearity (3),
the potential problem is in the first message: when a buyer x receives a message Match
or Quit from the broker, x should know which parallel instance it concerns among the
ones the quantification ∀y : seller creates. We only give below the verification details
for the buyer. With buyers p0,p1 and sellers q0,q1, the result of the dequantification of
G ↑ p0 :buyer is:

?〈broker,{Match〈q0〉.!〈q0,〈Notify〉.?〈q0,〈Price〉.!〈q0,〈Order〉〉〉〉,
Quit〈q0〉.!〈q0,〈Stop〉〉}〉

| ?〈broker,{Match〈q1〉.!〈q1,〈Notify〉.?〈q1,〈Price〉.!〈q1,〈Order〉〉〉〉,
Quit〈q1〉.!〈q1,〈Stop〉〉}〉

For G ↑ q0 : seller, the dequantification result gives:

?〈p0,{Notify.!〈p0,〈Price〉.?〈p0,〈Order〉〉〉,Stop}〉
| ?〈p1,{Notify.!〈p1,〈Price〉.?〈p1,〈Order〉〉〉,Stop}〉

We check linearity by looking at the different occurrences of the same label (for ex-
ample Match in G ↑ p0 : buyer) being received from the same participant (e.g. broker):
we verify that the lists of participant identities are different whenever the continuations
are different. Linearity is thus only achieved here thanks to the communication of the
disambiguating y in messages Match and Quit, as it can be seen in the buyer’s case.
The seller’s and broker’s (here omitted) linearity verifications are trivial.

4 Multirole session typing system

This section introduces the typing system and proves subject reduction (Theorem 4.1)
and type safety (Corollary 4.1). There are three main differences with previous session

15

Γ ` Env

Γ ` true , false :bool
[BOOL]

Γ ` ei :bool (i = 1,2)
Γ ` e1∨ e2 :bool

[OR]

Γ ` Env

Γ ` p :r
[RL]

Γ ` Env y :r∈Γ

Γ ` y :r
[RLV]

Γ ` S . Type u :S∈Γ

Γ ` u :S
[ID]

Γ ,a :〈G〉 ` P . ∆

Γ ` (νa :G)P . ∆
[NEW]

Γ ` a :〈G〉 Γ ` ∆ :End

Γ ` a〈G〉 . ∆
[INIT]

Γ ` u :〈G〉 Γ ` P . ∆ ,y :G ↑ p

Γ ` u[p](y).P . ∆
[JOIN]

Γ ` P . ∆ ,c : end

Γ ` quit〈c〉;P . ∆ ,c : end
[LEAVE]

Γ ` p Γ ` ~p j Γ ` e :S j Γ ` P . ∆ ,c :Tj j∈ I

Γ ` c!〈p, l j〈~p j〉〈e〉〉;P . ∆ ,c : !〈p,{li〈~p j〉〈Si〉.Ti}i∈I〉
[SEL]

Γ ` p Γ ` ~p j Γ ` P . ∆ ,c :Tj j∈ I

Γ ` c!〈p, l j〈~p j〉〈c′〉〉;P . ∆ ,c : !〈p,{li〈~p j〉〈T 〉.Ti}i∈I〉,c′ :T
[SELS]

Γ ` p ∀i∈ I Γ ` ~pi Γ ,yi :Si ` Pi . ∆ ,c :Ti (Ui = Si)
or Γ ` Pi . ∆ ,c :Ti,yi :T ′i (Ui = T ′i)

Γ ` c?〈p,{li〈~pi〉(yi).Pi}i∈I〉 . ∆ ,c?〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉
[BRA]

Γ ,x :r ` P . c :T Γ ` ~p

Γ ` c∀(x :r \~p).{P} . c :∀x :r \~p.T
[POLLING]

Γ ` e :bool Γ ` Pi . ∆ (i = 1,2)
Γ ` if e then P1 else P2 . ∆

[IF]

Γ ` P . ∆ Γ ` Q . ∆ ′

Γ ` P | Q . ∆ ◦∆ ′
[PAR]

Γ ` P . ∆ Γ ` Q . ∆ ′

Γ ` P;Q . ∆ ;∆ ′
[SEQ]

Γ ,X :∆ ` P . ∆

Γ ` µX .P . ∆
[REC]

Γ ,X :∆ ` Env

Γ ,X :∆ ` X . ∆
[RVAR]

Γ ` ∆ :End

Γ ` 0 . ∆
[NIL]

Fig. 6. Multirole session typing for initial processes

systems. First, a participant x can appear free in environments, types and processes, and
is necessarily bound by universal quantifiers. Second, previous systems did not allow
any parallel composition of types which use common channels. Since the projection
of a universal quantified type generates parallel compositions, we relax this restriction.
Thanks to the well-formedness of the global types (Definition 3.2), the typing system
for initial processes is kept simple. Third, our runtime typing system needs to track
parallel behaviours by forks and joins. After the presentation of our typing system, we
prove the results of subject reduction (Theorem 4.1) and type safety (Corollary 4.1).

4.1 Typing systems

Environments We start with the grammar of environments.

Γ ::= ∅ | Γ ,u :S | Γ ,y :r | Γ ,X :∆ ∆ ::= ∅ | ∆ ,c :T

Γ is the standard environment which associates variables to sort types or roles, shared
names to global types, and process variables to session types. ∆ is the session environ-
ment which associates channels to session types. We write Γ ,u : S only if u 6∈dom(Γ).
Similarly for other variables. We define the sequential ; and parallel ◦ compositions for

16

types as follows:

∆]∆
′ = ∆\dom(∆ ′)∪∆

′\dom(∆)∪{c : ∆(c)]∆
′(c) | c ∈ dom(∆)∩dom(∆ ′)}

where] ∈ {◦, ;} and ∆(c)]∆ ′(c) is syntactically well-formed.

∆ ;∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{c : ∆(c);∆ ′(c) | c ∈ dom(∆)∩dom(∆ ′)}
∆ ◦∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{c : (∆(c)|∆ ′(c)) | c ∈ dom(∆)∩dom(∆ ′)}

where we assume ∆(c);∆ ′(c) is well-formed (defined by kinding rules detailed in fig-
ure 10).

Typing systems for initial processes We detail the typing system for expressions and
processes in figure 6. The judgement for expression typing is given as Γ ` e : S. The
judgement for process typing is given as Γ ` P . ∆ which can be read as: “under the
environment Γ , process P has session type ∆”.

Rules [BOOL,OR,ID] are standard. Γ ` Env means that Γ is well-formed, and Γ `
S . Type means S is well-formed under Γ . Since a participant variable with role can
appear both in types and environments, we need to use kinding techniques to make
sure that types with free variables do not appear before the variables’ declarations and
ensure well-formedness (see Definition 3.2). Rules [RL,RLV] are introduction rules for
participants associated with roles.

Rule [INIT] types the initialisation of a session with global type G. The judgement
Γ ` ∆ : end means that ∆ only contains end or ε [19, 20]. The rule ensures the initial-
isation is not bound by the prefix. Rule [JOIN] types a joining process that follows the
projection to p. A leaving process is typed if the remaining session type is completed
(i.e. end).

Rule [SEL] is for the selection of label li, participants ~pi and payload e. We first infer
the destination p from Γ . If e is an atomic type (e.g. bool) or a shared channel type,
then it is typed as in standard selection rules [4, 20] for the expression by recording
participants ~pi in the resulting type. This way, we can preserve the dependency between
the participants during polling and session communications. Rule [SELS] is a session
delegation rule [4, 20]. Rule [BRA] is the dual of the selection rules. Note that the partic-
ipants p and ~pi in c?〈p,{li〈~pi〉(yi).Pi}i∈I〉 are free so that they are bound by the polling
and dynamically instantiated by reductions. Rules [PAR,SEQ] assume ∆ ◦∆ ′ and ∆ ;∆ ′ are
defined. Rule [POLLING] is the introduction rule for the universal quantification. It only
concerns a single session (otherwise other sessions are copied after forking). The other
rules are standard [4, 20].

Since checking well-formedness is decidable, following the standard method [20,
§ 4], we have:

Proposition 4.1. Assuming the bound names and variables in P are annotated (i.e. pro-
cesses whose bound variables are annotated by types), type-checking of Γ ` P . ∅
terminates.

Typing runtime processes While the session typing systems for initial processes are
simple, typing runtime (which keeps tracking intermediate invariants to prove the the-
orems) is not trivial due to parallel processes and participant instantiations generated
by polling. We first extend the syntax of types T to include message selection type

17

!〈p :r, l〈~p〉〈U〉〉, which is an intermediate type for labelled values stored in the message
buffer.

To type runtime processes, we need to extend judgements to Γ `Σ P . ∆ , which
means that P contains the message buffers whose session names are in Σ . We only
show the most interesting typing rule for the register:

Γ ` a :〈G〉 {ri}i∈I = dom(R) G ↑ xi :ri = Ti

Γ `∅ a〈s〉[R] . {s[p ji :ri] :Ti{p ji/xi}}i ∈ I,p ji6∈ R(ri)
[RGST]

Γ `Σi Pi .∆i (i = 1,2)
[GPAR]

Γ `Σ1]Σ2 P1 | P2 .∆1 ∗∆2

[RGST] assigns to the registry a type which holds a set of projected local types for all
roles with participants which are not recorded in R. Session typing s[ri :p ji] :Ti{p ji/xi}
is erased once it interacts with the initialisation process a[p ji :ri](y).P (see rule bJOINc in
figure 2), and the resulting P{s[p ji :ri]/y} holds s[ri :p ji] : Ti{p ji/xi} (see the proof of
Subject reduction theorem in [3]).

When two runtime processes are put in parallel (rule [GPAR]) a queue associated to
the same session does not appear twice (Σ1 ∩Σ2 = /0). For composing the two session
environments, either (1) we sequence a message type T and a local type T ′ for the same
session channel as s[p : r] : T ;T ′ or (2) we check whether s[p : r] : T and s[p : r] : T ′ can
be parallel composed as s[p : r] : (T | T ′) by checking the linearity condition for T | T ′
following Definition 3.1; and otherwise (3) undefined. Then we define ∆ ∗∆ ′ replacing
] by ∗ in the definition of ∆]∆ ′.

∆ ∗∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{c : ∆(c)∗∆ ′(c) | c ∈ dom(∆)∩dom(∆ ′)}.

4.2 Subject reduction

As session participants join, interact and leave, runtime session types need to follow.
This dynamism is formalised by a type reduction relation⇒ on session environments
as follows.

1. {s[q :r′] : !〈p :r,{li〈~pi〉〈Ui〉.Ti}i∈I〉} ⇒ {s[q :r′] : !〈p :r, lk〈~pi〉〈Uk〉.Tk〉}
2. s[p :r] : !〈q :r′, lk〈~pk〉〈Uk〉〉,s[q :r′] : ?〈p :r,{li〈~pk〉〈Ui〉.Ti}i∈I〉
⇒ s[p :r] :ε,s[q :r′] :Tk if k∈ I

3. s[p :r] : !〈p :r, lk〈~pk〉〈Uk〉〉; ?〈p :r,{li〈~pi〉〈Ui〉.Ti}i∈I〉 ⇒ s[p :r] :Tk if k∈ I
4. s[p :r] :∀x :ri \~p.T ⇒ s[p :r] :(T{p1/x} | .. | T{pk/x}) with pi 6∈~p
5. s[p :r] :E [T]∪∆ ⇒ s[p :r] :E [T ′]∪∆ ′ if s[p :r] :T ∪∆ ⇒ s[p :r] :T ′∪∆ ′

6. ∆ ∪∆ ′′⇒ ∆ ′∪∆ ′′ if ∆ ⇒ ∆ ′

In the above type reduction rules, message selection types are considered modulo the
type equivalence relation ≡ and E is a type evaluation context (i.e. E ::= [] | E |
T | T | E | E ;T).

Rule (1) corresponds to the choice of label li. Rule (2) corresponds to the exchange
of a labelled value from participant p:r to participant q:r′. Rule (3) is about self-sending
and receiving. Rule (4) governs universal quantifiers and forks types with respect to the
participants which are not in the exclusion list ~p. Rules (5,6) are congruent rules.

Hereafter we assume all processes are derived from the initial processes (§ 2) (i.e. sub-
terms of those who are reduced from initials). Using the above definitions,

18

Theorem 4.1 (Subject reduction). Suppose Γ `Σ P . ∆ and P −→∗ P′. Then, Γ `Σ

P′ . ∆ ′ for some ∆ ′ such that ∆ ⇒∗ ∆ ′.

We say P has a type error if expressions in P contain either a type error for a value or
constant in the standard sense (e.g. if 3 then P else Q) or a label error (e.g. the sender
sends a value with label l0 while the receiver does not expect label l0). From the subject
reduction theorem and the well-formedness of global types (Definition 3.2), we can
prove:

Corollary 4.1 (Type safety). Suppose Γ ` P . ∆ . For any P′ such that P−→∗ P′, P′ has
no type error.

5 Communication safety and progress

This section discusses the difficulties that a distributed session semantics creates when
participants can dynamically join, leave and poll. We illustrate two limitations of the
semantics and typing system presented so far and propose a solution based on multi-
party locking that allows more flexibility for leaving a session and guarantees commu-
nication safety. We give two progress properties, one of which goes beyond existing
achievements.

5.1 Limitations

Leaving a session While our operational semantics (bQUITc in figure 2) allows a partic-
ipant to leave a session at any time, the typing rule ([LEAVE] in figure 6) only allows a
participant to leave when its local type is end.

Recall the peer-to-peer chat example from § 1 (2), G is of the form µx.G0;x; end
with G0 = ∀x :client.∀y :client\x.{x→yMsg 〈string〉}. The recursive type prevents any
participant from ever leaving since a process will never reach type end. We however
remark that a client can play just one interaction round (i.e. G0) and leave safely before
another session iteration occurs. If the starting and ending points of global types are
known, some participants are able to leave a session safely while others stay.

Communication safety and progress In traditional multiparty sessions, the subject
reduction theorem immediately brings communication safety and progress (in a single
session) [20]. The reason is that standard multiparty session initiation ensures that all
parties are eventually present (it waits for the expected fixed number of participants to
join), while the typing system guarantees the safety of the communications when they
start. This does not hold in our system due to the interplay between joining, leaving and
polling.

We illustrate this point with the peer-to-peer chat example from § 1. In that global
type, every client is broadcasting Msg to all the others. Recall the client process Pclient(z)
from § 1.

a[z : client](s).µX .(s∀(y : client\ z).{s!〈y,Msg〈m〉〉}
| s∀(x : client\ z).{s?〈x,Msg(w)〉});X

At each iteration, every client does exactly two polling operations. Now suppose that a
client does the first polling operation (to send Msg) before another client joins. It means
that this new client will not receive the message it expects. More generally, the polls that

19

correspond to the emissions need to always give the exact same result as the reception
polls. This suggests that some mechanism to synchronise distributed polling processes
is required to guarantee consistent polling results.

5.2 Multiparty locking for polling synchronisation

This subsection shows that a simple locking policy that can be automatically computed
from the global type is able to ensure a safe synchronisation to allow flexible session
departure and consistent polling results. The key point is to temporarily block late par-
ticipants from joining in the middle of a session execution in order to prevent any in-
terference with polling. This is simply done by automatically surrounding global types
by locks: lock{G} means that the interactions specified by G are protected from late
joiners and is called a locked global type. This condition is easily implementable using
a standard two phase commitment protocol which minimises the necessary synchroni-
sation between processes (figure 7) and is easily implementable in ML (§ 5.5).

The peer-to-peer chat example from § 1 is now defined by µx.lock{∀x : client.∀y :
client.x→yMsg〈string〉};x. This type allows participants to join at each recursive itera-
tion, preventing interferences while the exchange of Msg is under way.

Syntax We first extend the syntax of processes (figure 1) as:

P ::= ... | c lock | c unlock | a◦[R,Λ] | a•[R,Λ]
Λ ::= ∅ | Λ ∪{p :r}

The process syntax is extended to locking and unlocking operations. The registry has
two new states: a◦[R,Λ] represents a registry that is in the process of being locked (so
far by participants Λ), while a•[R,Λ] represents a registry that is locked (and where
participants Λ are still involved).

Semantics The operational semantics with multiparty locking is given in figure 7. It
defines the relations between the three states of the registry and is based on a standard
two phase locking protocol commonly found in distributed applications.

The first phase is the registration state: if the registry is of the form a〈s〉[R], partici-
pants can join and leave the session through bJOINc and bQUITc. The only other reduction
rule that can be applied is bLOCKc, which puts the registry in its second state, the locking
state a◦[R, ` : Λ]. Then, the session can only wait for all the current participants in R
to activate their locks by the rules bUP, TOPc. A new process can asynchronously join by
bJOIN2c, and a current process can finally decide to leave bQUIT2c from the active session.
The difference between bUPc and bTOPc lies in the side condition: R ≈ Λ holds when
∀p :r.(Λ = Λ ′]{p :r}⇔ R= R′ ·r :P]{p}). Consequently, bTOPc is only triggered when
the set Λ contains the exact same combinations of participants and role as the set R,
meaning that all participants have activated their locks.

The application of rule bTOPc marks the beginning of the interaction state, with a
registry of the form a•〈s〉[R, ` :Λ]. Only in this state can the rules b SEND, RECV, POLLc be
safely applied. The registry goes back to its registration state by the application of rule
bUNLOCKc which can occur only when everyone besides one participant has activated the
unlock operation by rule bDOWNc.

20

a〈G〉 −→ (ν s)(a〈s〉[R] | s :ε) (∀ri∈G,R(ri) = ∅) b INITc

a[p :r](y).P | a〈s〉[R · r :P] −→ P{s[p :r]/y} | a〈s〉[R · r :P]{p}] bJOINc

a[p :r](y).P | a◦〈s〉[R · r :P,Λ] −→ P{s[p :r]/y} | a◦〈s〉[R · r :P]{p},Λ]
(p :r 6∈Λ) bJOIN2c

quit〈s[p :r]〉 | a〈s〉[R · r :P] −→ a〈s〉[R · r :P\{p}] bQUITc

quit〈s[p :r]〉 | a◦〈s〉[R · r :P,Λ] −→ a◦〈s〉[R · r :P\{p},Λ] (p :r 6∈Λ) bQUIT2c

s[p :r]lock | a〈s〉[R] −→ a◦〈s〉[R,{p :r}] bLOCKc

s[p :r]lock | a◦〈s〉[R,Λ] −→
{

a◦〈s〉[R,Λ]{p :r}]
a•〈s〉[R,Λ]{p :r}]

(R 6≈Λ]{p :r})
(R≈Λ]{p :r})

bUPc
bTOPc

s[p :r]unlock | a•〈s〉[R,Λ]{p :r}] −→
{

a•〈s〉[R,Λ]
a〈s〉[R]

(Λ 6= ∅)
(Λ = ∅)

bDOWNc
bUNLOCKc

s[p :r]!〈p′ :r′, l〈~p〉〈v〉〉 | a•〈s〉[R,Λ] | s :h −→ a•〈s〉[R,Λ] | s :h · (p :r, p′ :r′, l〈~p〉〈v〉)
(p∈R(r)∧p′∈R(r′)) bSENDc

s[p :r]?〈p′ :r′,{li〈~pi〉(xi).Pi}i∈I〉 | a•〈s〉[R]
| s :(p′ :r′, p :r, lk〈~pk〉〈v〉) ·h −→ Pk{v/xk} | a•〈s〉[R] | s :h(p∈R(r)∧ k∈ I) bRECVc

s[p :r]∀(x :r \~p).{P} | a•〈s〉[R · r :P,Λ] −→ P{p1/x} | .. | P{pk/x} | a•〈s〉[R · r :P,Λ]
(R(r)\~p = {p1, ..,pk}∧p∈R(r′)) bPOLLc

Other rules are from 2.

Fig. 7. Operational semantics with multiparty lock

Types and typing The syntax of global and local types are extended from figure 4 as
follows:

G ::= ... | lock{G} T ::= ... | lock | unlock

We say that a global type G is terminable if there exists at least one finite path (whose
leaf is ε) up to the unfolding of G. A terminable type can be easily defined by a
kinding system: ε is terminable; p→p′{li〈~pi〉〈Ui〉.Gi}i∈I is terminable if for some k∈
I, Gk is terminable; and others are defined homomorphically (see [3]). For example,
µx.p→p′{l1〈U1〉.ε, l2〈U2〉.x} is terminable, but µx.p→p′{l1〈U1〉.x, l2〈U2〉.x} is not.
We define the condition for global types and environments.

for the formal definition).

Definition 5.1 (Well-locked and persistently well-locked). We say that a global type
G is well-locked if G is closed (i.e. no free participant and recursive type variables)
and of the form lock{G0}; end, and G0 does not include any lock. We say that a
closed global type G is persistently well-locked if G is of the form µx.lock{G0};x; end,
with lock{G0}; end well-locked and G0 is terminable. We call Γ well-locked if for all
Γ (u) = 〈G〉, G is either well-locked or persistently well-locked. We call Γ persistently
well-locked if for all Γ (u) = 〈G〉, G is persistently well-locked.

Type lock{G0}means that a single multiparty session is locked. Type µx.lock{G0};x
states a multiparty session is persistently (repeatedly) locked. The persistent lock en-
sures if a new participant p wants to join, it can join at the beginning of the interaction
G0, and if one wishes to quit, it can quit at the end of the session. Consequently, it re-
quires the global type to be of the form µx.G0;x with a well-locked G0 that does not

21

contain any infinite loop which would prevent from reaching a new iteration (unlock).
The persistent condition is needed for the final strong join progress discussed later.

Local types lock and unlock come from the projection:

lock{G} ↑ z :r = lock;(G ↑ z :r);unlock

This way, correct locks are automatically inserted at the right points of the local types.
Typing lock and unlock is straightforward.

Γ ` Env

Γ ` c lock . c :lock
Γ ` Env

Γ ` c unlock . c :unlock

We add the following rule which types quit〈c〉 as some projection of session 〈G〉 in
the environment.

Γ ` P . ∆ ,c : end Γ ` u :〈G〉
Γ ` quit〈c〉;P . ∆ ,c :G ↑ p

The above rule is useful when G is persistently well-locked. Suppose G is of the form
G = µx.lock;G0;x; end. By the above rule, we can type lock;Q;unlock;quit〈c〉 if
Q has type G0 ↑ p since G ↑ p≈G0 ↑ p;G ↑ p where T ≈ T ′ means T is isomorphic to
T ′; once session is unlocked, one can leave the active session at c instead of repeating
the same session G ↑ p.

As a simple example, recall the peer-to-peer chat server from § 1. The following
client leaves a session after one interaction, which is typable under G = µx.lock{G0};x; end
with G0 = ∀x : client.∀y : client\ x.{x→yMsg〈string〉}.

Pclient(p)=a[p : client](s).(s∀(y : client\ z).{s!〈y,Msg〈m〉〉} |
s∀(x : client\ z).{s?〈x,Msg(w)〉});quit〈s〉

5.3 Communication safety and progress

We first state communication safety. It states that, in a session execution, no receiver
waits for a message that will never come; and that there is no messages sent but never
received.

Definition 5.2 (Communication-safety). We say P is communication safe if:

– P≡E [Q] with Q = s[p:r]?〈p′ :r′,{li〈~pi〉(x).Pi}i∈I〉 implies that there exists E [Q]−→∗
E ′[Q | s :(p′ :r′, p :r, lk〈~pk〉〈v〉) ·h] with k∈ I; and

– P≡E [Q] with Q = s : (p′ : r′, p : r, lk〈~pk〉〈v〉) · h implies that there exists E [Q] −→∗
E ′[Q | s[p :r]?〈p′ :r′,{li〈~pi〉(x).Pi}i∈I〉] with k∈ I.

The first statement means that branching processes can always find out a correct element
in the message buffer; and the second one is its dual. Note that combining with Type
safety, the receiver will input a value v of the expected type.

Definition 5.3 (Single-session join). We write Γ `? P � ∆ if P is typable and with a
type derivation where the session typing in the premise and the conclusion of each prefix
rule is restricted to be at most a singleton (more precisely, ∆ = ∅ in [JOIN,LEAVE,SEL,BAR]

and ∆ contains at most one element in ∆ ;∆ ′ in [SEQ], ∆ ◦∆ ′ in [PAR,SEQ], ∆ in [IF,NEW,REC,RVAR]

in figure 6, deleting [SELS]). We say Q = a[p](y).Q′ is a single-session join if a : 〈G〉`?

Q.∅ and Q′ does not contain shared name restriction and any join process.

22

Γ `? P � ∆ ensures that P contains (several) join processes each of which holds a sin-
gle session, while single-session join a[p](y).Q′ has only one active point a, and once
the session initiated at a, Q′ can only perform session communication at that initiated
session. We prove the communication safety in a single multiparty session.

Theorem 5.1 (Communication safety). Suppose a : 〈G〉 `? P.∅ and P is initial. As-
sume a : 〈G〉 is well-locked4. and P does not contain any shared name restriction. For
any P′ such that P−→∗ P′, P′ is communication safe.

The proof starts by a definition of coherent environments (a certain kind of duality
relation over multiple participants [4, § 3]). Then, we prove a stronger subject reduction
theorem that shows the reduction of well-locked processes preserves the coherency of
the resulting environment. We note that session fidelity [20, Corollary 5.6] comes also
as a corollary.

Now we prove the progress property in a single multiparty session as in [20, Theo-
rem 5.12], i.e. if a program P starts from one session, the reductions at session channels
do not get stuck.

Definition 5.4 (Progress property). We say Γ ` P . ∅ can progress, or satisfies the
progress property, if, whenever P−→∗ P′, then either P′ ≡ 0, P′ −→ R or for some single-
session join a :〈G〉 ` Q with a :〈G〉∈Γ such that P′ | Q−→ R and R can progress.

The above definition means that a process satisfies the progress property if it can never
reach a deadlock state, i.e., if it never reduces to a process which contains active ses-
sions (this amounts to containing waiting process at some session channel) and which
is irreducible in any inactive context with single-session join Q running in parallel.

Theorem 5.2 (Progress). Suppose Γ `? P.∅ and P is initial. Assume Γ is well-locked
and P does not contain any shared name restriction. Then P can progress.

5.4 Join progress

The above standard progress property is not strong enough, since all late joiners can-
not participate to existing sessions. This subsection states a new progress property, not
found in the literature.

Recall the (1) map-reduce example from § 1, and change the position of the recur-
sion in the global type to:

G0 = ∀x : client.server→x〈Map〉; µx.x→server〈Reduce〉;x

From G0, we have the following well-typed processes:

P0(s,z : client) = s?〈server,Map〉; µX .s!〈server,Reduce〉;X
P0(s,z : server) = s∀(x : client).{s!〈x,Map〉; µX .s?〈x,Reduce〉;X}

4 The property can be generalised to Γ from {a:〈G〉} if we compose a parallel composition of single-session
processes to E[Q] in Definition 5.2 as Definition 5.4. A similar generalisation is possible for Definition
5.5.

23

While the interaction between them is communication safe, the problem is that a late
client will never be listened to by the existing server because the server’s polling opera-
tion is not repeated to include him. In other words, the late client cannot join an existing,
already running session. Persistent locking ensures this situation does not happen.

Below we write P
s[p : r]−−−→Q if P −→ Q and P −→ Q is derived using bQUITc, bQUIT2c,

bSENDc, bRECVc or bPOLLc at s[p : r] with bPAR,CTX,CONGc, i.e. P interacts with a queue or
registry through s[p :r].

Definition 5.5 (Join progress property). We say that a :〈G〉 ` P . ∅ satisfies the join
progress property if:

– P can progress; and
– if P−→∗ (ν s)(P′ | a〈s〉[R]) then, for any single-session join a:〈G〉 ` a[p:r](y).Q . ∅

with p :r fresh, and for any R such that P′ | a〈s〉[R] | a[p :r](y).Q−→∗ a•〈s〉[R′] | R =
Q′,

• if s[p :r]∈R, then there exists Q′ −→∗ s[p : r]−−−→R′; and
• (ν s)Q′ satisfies the join progress property.

The above definition says that a fresh joiner (a[p : r](y).Q) can always join the existing
(unlocked) session s in P′. In addition, it can always progress at the created session
channel s by interacting with P′. More intuitively, once some participants under any role
start a session, the late joiner can still join that session and interact with earlier joiners,
progressing further. Note that we can consider any single-session join a[p : r](y).Q to
make a process progress, which contrasts with the definition of the progress property
(Definition 5.4) where P is only composed of single-session joining processes.

Theorem 5.3 (Join progress). Suppose a :〈G〉 `? P . ∅ and P is initial. Assume a :〈G〉
is persistently well-locked and P does not contain any shared name restriction. Then P
satisfies the join progress property.

We have for our examples:

Proposition 5.1 (Properties of the examples).
Assume that each global type G in the protocols (1–3) of § 1 is replaced by lock{G}.

Then all examples are type/communication safe and can always progress. Moreover if
each global type in the protocols (1,2) of § 1 inside the recursive type, i.e. µx.G;x is
replaced by µx.lock{G};x, then they additionally satisfy the join progress property.

5.5 Implementation

We summarise here several key points that differentiate the multirole session calculus
as a reference implementation from our ML prototype.
Prototype implementation The multirole calculus has been implemented as an exten-
sion of ML. Following the technique used in [5, 14], the global types that the program-
mer writes are compiled into an end-point function for each role. This choice allows to
replace the implementation of the typing system by an automated generation of well-
typed processes that can be used, through an API, by the programmer. The session
semantics is thus entirely generated and implemented by communication libraries.
A distributed implementation The main issue for our compiler is to distribute as much

24

as possible the centralised aspects of the semantics of figures 2 and 7. First concerned,
the message buffers are completely distributed and implemented on the sender side: a
thread is spawned to asynchronously make sure that the message gets across the TCP
channel. Second, the registries can be partially distributed with one registry per role that
deals with the corresponding joining, leaving and polling activities. These distributed
registries however need to stay in contact to synchronise the global locking events (rules
b LOCK, TOP, UNLOCKc). Registries are attributed to participants by age: the first joiner for a
role plays the registry as well, until he quits, in which case the registry is transmitted to
the second older.
Extension Singly instantiated roles, like the server or broker from examples in § 1,
are modelled through an inefficient implicit quantification. Our implementation gives
a special status to these roles. We use the fact that they play their own registry. As
a consequence, no separate polling is necessary to send them messages and the extra
messages required by the quantification can be avoided.
Efficiency To gain performances, we propose an implementation with optimised mes-
saging and improved asynchrony.

First, since the slowest operation is communication, our implementation tries to
minimise the number of messages that are exchanged. The main illustration is that if
two messages are specified to be sent in a row between the same participants, they are
automatically concatenated.

A more radical change is to do the polling only once for every participant, at the
beginning of each locked part of the session execution. The advantages are to limit the
number of sent messages and to remove in effect the global synchronisation point of rule
bUNLOCKc. As soon as all polling operations are done, the distributed session execution
can safely proceed until the list of participants of the next iteration is synchronised (rule
bTOPc).

6 Related work

The first motivation for the present work is a strong need to extend session type the-
ory with dynamic reconfiguration of multiparty sessions and role-based abstraction to
support a wider range of communication protocols found in practice.

The inspiration for multiparty session types comes from the design of high-level
global protocol signatures for Web Services Choreography Description Language [1].
In CDL, types of participants (participantType) are declared as instances of types of
roles (roleType) which represent collections of interaction behaviours. Later, some of
the members of the W3C CDL working group have started developing a language called
Scribble [18, 29] based on the theory of multiparty session types [4, 20]. Scribble is cur-
rently being experimented with for several different application domains in distributed
systems [2, 25, 28] including business and financial protocols [33]. Our auction example
in § 1(3) was extracted from the Scribble specification document.

The need for roles in session programming is also substantiated by our experiences
in implementing web service usecases [1] and parallel algorithms for high-performance
clusters [26] using Session Java (SJ) [21, 22]. In this work, we first describe communi-
cations between processes in a global topology (e.g. a multi-dimensional mesh or a ring)
in the form of parameterised multiparty session types [36]. The compatibility between

25

[36] and our present work is yet to be investigated as complex topologies with dynamic
features need sophisticated distributed synchronisation algorithms (see also § 7).

The second motivation for the present work is the incorporation of dynamic fea-
tures most suited to and compatible with existing multiparty session types [4–6, 9, 15,
20, 23, 24, 30, 36, 37]. The Conversation Calculus [8, 34] models distributed behaviours
among “places” using new primitives such as conversation contexts (i.e. shared interac-
tion points) and up (↑) communication (similar to [7, 13]). A conversation models the
interactions between a client and various services, with dynamic joining into a conver-
sation, for a possibly unknown number of processes. While both their work and ours
aim to support dynamic natures for sessions, the two join mechanisms are quite differ-
ent. Their join is encoded by base primitives for late joining into a point of conversation,
which more closely resembles the late asynchronous session initiation in [21, 36]. On
the other hand, our join mechanism is role-based, and articulated at the level of global
types, by declaring a single type construct which binds participants to a role. In con-
trast to [8], the process which controls joining might be a sender or listener, depending
on the result of the projection (i.e. the position of polling). This flexibility enables di-
rect modelling and clear articulation (i.e. without encoding) of different patterns of
dynamic parallel protocols including symmetric peer-to-peer chats (§ 1 and Examples
3.1 and 3.2) by types. In [8], they proposed a sophisticated typing system that builds
a well-founded order on events (similar to the line of [35]), to guarantee progress for
processes under the assumption that all communications are matched with sufficient
joiners. They do not, however, explore type inference for progress (decidability of a
generation of well-formed ordering) [34]. Our progress can be, on the other hand, guar-
anteed by well-formedness of global types, with an automatic insertion of locks (which
means a typing system with progress is decidable with Proposition 4.1). This leads to
a simple but practical prototype implementation as discussed in § 5.5. A strong joining
property has not been studied in [8].

Formal theories of contracts using multiparty interaction structures are studied in
[12]. Contracts [12] record abstract interaction behaviours of processes, and typable
processes themselves may not always satisfy the properties of session types such as
progress: it is proved later by checking whether a whole contract conforms to a certain
form. Proving properties with contracts requires an exploration of all possible inter-
leaved or non-deterministic paths of a protocol, see [36, § 5]. for further comparisons.

The first suggestion to use roles to model dynamic conversations in the context of
session types was made in [17]. This idea is further developed in a master’s thesis [27]
which formalises a Java-like core calculus for role-based session interactions. A ses-
sion structure is described as a collection of binary session types for broadcast channels
(used to send messages to role participants). New participants can only join a conver-
sation before it starts. Type structures for global protocols and their induced properties
(in particular progress) are not studied in [27].

For further comparisons of session types with other service-oriented calculi and
behaviour typing systems, see [16] for a wide ranging survey of the related literature.

7 Conclusion and future work

This work introduced a multirole session type discipline for validating dynamic be-
haviours among an unspecified number of participants, answering a well-known open

26

problem of multiparty session types [4, 6, 9, 15, 20, 23, 30, 36]. Dynamism is formalised
through a powerful universal type construct which can represent many collective com-
munications protocols, ranging over parallel computations, P2P networking, chat pro-
tocols and e-commerce auctions. The key technical challenge is an end-point projection
from global types that combines branching, parallel composition, participant instantia-
tion and nested universal types. Despite the greater expressiveness, projection and type
checking are decidable. Global types offer a practical guideline for a correct multiparty
synchronisation mechanism, by which the theorems (properties) are articulated as: (1)
∀x.G (subject reduction and type safety with dynamic join and leave semantics), (2)
well-locked lock{G} (communication safety and progress); and (3) persistently well-
locked µx.lock{G};x (join progress). Our prototype implementation demonstrates the
direct applicability of the present theory.

To realise the full potential of the multirole session type theory, several challenges
need to be addressed. First, the theory can be integrated with the multiparty session
exceptions developed in [10] in order to handle system failure and fault-tolerance in
a larger class of distributed protocols, preserving type safety. It is especially useful
to directly express more complex and dynamic topologies, in combination with the
parameterised type theory from [36].

One extension that comes immediately to mind is the addition of an explicit exis-
tential ∃x : r.G. It however raises many semantic issues. Consider G′ = ∀x : client.{∃y :
server.x→y〈Msg〉}. In that example, every client contacts a server (the intuition is that
each x chooses his y). The question is: how can we ensure by local typing that servers
will be listening to the right number of requests? The difficulty is that a server y can be
potentially chosen by every client x or by none, and that this choice is distributed (and
thus very hard to locally type check). Consequently, the global existential quantification
rather abstracts complex distributed election algorithms. A different solution is an ex-
tension to subtyping between roles r1 <: r2 by which we can represent a protocol with
memberships, e.g. a client sends a message to a subset of subscribers.

Second, type-based approaches for correct locking has been widely studied, includ-
ing [31] in a framework of linear program analysis and types. Our aim in § 5.2 is to
propose a simple way to realise synchronisation, articulated by global types, suggesting
another use of global descriptions for different purposes. One such instance is studied
in [15], where multiparty session types lead to an efficient buffer analysis, along with
automatically guaranteed communication and buffer safety. A benefit of using global
types (i.e. a choreography framework [1]) is that the analysis can be done solely based
on global types, without directly analysing (possibly distributed) end-point types or
processes since we can assume all processes agree with that global specification. An
integration with global and local locking [31] is, however, an interesting future topic
from the viewpoint of local refinements [23].

Third, we are currently collaborating with several industry partners working on open
standardisations for financial protocols [33] and messaging middleware [2], governance
architectures [28] and cyberinfrastructures [25] to attest the practical use and expres-
siveness of the session framework, for which an integration with multiparty logic [6]
and security [5, 9] for monitoring, is our next task.
Acknowledgement We are grateful to Luı́s Caires, Marco Carbone, Søren Debois, Ko-
hei Honda, Raymond Hu, Kohei Suenaga, Hugo Vieira and Vasco Vasconcelos for their
helpful comments. We thank the anonymous reviewers for their precise questions and
suggestions. This work was supported by EPSRC EP/F003757/01 and G015635/01.

27

References

1. Web Services Choreography Description Language. http://www.w3.org/2002/ws/
chor/.

2. Advanced Message Queueing Protocols. http://www.amqp.org/confluence/
display/AMQP/Advanced+Message+Queuing+Protocol.

3. On-line Appendix of this paper. http://www.doc.ic.ac.uk/˜pmalo/dynamic.
4. L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida.

Global Progress in Dynamically Interleaved Multiparty Sessions. In CONCUR’08, volume
5201 of LNCS, pages 418–433. Springer, 2008.

5. K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. Leifer. Cryptographic protocol
synthesis and verification for multiparty sessions. In CSF, pages 124–140, 2009.

6. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-
tributed multiparty interactions. In CONCUR’10, volume 6269 of LNCS, pages 162–176.
Springer, 2010.

7. M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents: The calculus of
boxed ambients. TOPLAS, 26(1):57–124, 2004.

8. L. Caires and H. T. Vieira. Conversation types. In ESOP, volume 5502 of LNCS, pages
285–300. Springer, 2009. A full version will appear in TCS.

9. S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, and T. Rezk. Session Types for Access
and Information Flow Control. In CONCUR’10, volume 6269 of LNCS, pages 237–252.
Springer, 2010.

10. S. Capecchi, E. Giachino, and N. Yoshida. Global escape in multiparty session. In 30th
FSTTCS’10, LIPICS, 2010. To appear.

11. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming
for web services. In ESOP’07, volume 4421 of LNCS, pages 2–17, 2007.

12. G. Castagna and L. Padovani. Contracts for mobile processes. In CONCUR, number 5710
in LNCS, pages 211–228, 2009.

13. G. Castagna, J. Vitek, and F. Z. Nardelli. The seal calculus. Inf. Comput., 201(1):1–54, 2005.
14. R. Corin and P. Deniélou. A protocol compiler for secure sessions in ML. In TGC, volume

4912 of LNCS, pages 276–293. Springer, 2008.
15. P.-M. Deniélou and N. Yoshida. Buffered communication analysis in distributed multiparty

sessions. In CONCUR’10, volume 6269 of LNCS, pages 343–357. Springer, 2010. Full
version, Prototype at http://www.doc.ic.ac.uk/˜pmalo/multianalysis.

16. M. Dezani-Ciancaglini and U. de’ Liguoro. Sessions and Session Types: an Overview. In
WS-FM’09, volume 6194 of LNCS, pages 1–28. Springer, 2010.

17. E. Giachino, M. Sackman, S. Drossopoulou, and S. Eisenbach. Softly safely spoken:
role playing for session types. Preliminary on-line preproceeding, 64–69 pages, http:
//gloss.di.fc.ul.pt/places09/preproceedings.pdf.

18. K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, and N. Yoshida. Scribbling interactions
with a formal foundation. In ICDCIT, LNCS. Springer, 2011. To appear.

19. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for
structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
22–138. Springer, 1998.

20. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL,
pages 273–284, 2008.

21. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-Safe Eventful Sessions in
Java. In ECOOP’10, volume 6183 of LNCS, pages 329–353. Springer, 2010.

22. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java. In
ECOOP’08, volume 5142 of LNCS, pages 516–541, 2008.

23. D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in partially commutative
asynchronous sessions. In ESOP’09, volume 5502 of LNCS, pages 316–332, 2009.

28

24. L. Nielsen, N. Yoshida, and K. Honda. Multiparty symmetric sumtypes. Technical Report 8,
Department of Computing, Imperial College London, 2009. To appear in Express’10. Apims
Project at: http://www.thelas.dk/index.php/apims.

25. Ocean Observatories Initiative (OOI). http://www.oceanleadership.org/
programs-and-partnerships/ocean-observing/ooi/.

26. O. Pernet, N. Ng, R. Hu, N. Yoshida, and Y. Kryftis. Safe Parallel Programming with Session
Java. Technical Report 14, Department of Computing, Imperial College London, 2010.

27. A. Raad. Smelling of Roses: ROles, Specification, Specification and Scrutiny. DoC master’s
thesis, Imperial College London, 2010.

28. Savara JBoss Project. http://www.jboss.org/savara.
29. Scribble Project. http://www.jboss.org/scribble.
30. K. C. Sivaramakrishnan, K. Nagaraj, L. Ziarek, and P. Eugster. Efficient session type guided

distributed interaction. In Coordination’10, volume 6116 of LNCS, pages 152–167. Springer,
2010.

31. K. Suenaga. Type-based deadlock-freedom verification for non-block-structured lock prim-
itives and mutable references. In APLAS, volume 5356 of LNCS, pages 155–170, 2008.

32. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.
In PARLE’94, volume 817 of LNCS, pages 398–413. Springer, 1994.

33. UNIFI. International Organization for Standardization ISO 20022 UNIversal Financial In-
dustry message scheme. http://www.iso20022.org.

34. H. Viera. A Calculus for Modeling and Analyzing Conversations in Service-Oriented Com-
puting. PhD thesis, University Nova de Lisboa, 2010.

35. N. Yoshida. Graph types for monadic mobile processes. In FSTTCS, volume 1180 of LNCS,
pages 371–386, 1996.

36. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty session types.
In FoSSaCs, volume 6014 of LNCS, pages 128–145, 2010.

37. N. Yoshida, V. T. Vasconcelos, H. Paulino, and K. Honda. Session-based compilation frame-
work for multicore programming. In FMCO’08, volume 5751 of LNCS, pages 226–246.
Springer, 2009.

This appendix lists the omitted definitions and proofs from the main sections.

A Appendix for Section 2

Well-formedness consequence For a well-formed global session type G, the set of all
labels appearing in G ↑ z : r can be partitioned in the sets {Lk}k∈K such that, for each
subterm of G ↑ z :r of the form ?〈p,{li〈~pi〉〈Ui〉.Ti}i∈I〉, we have the existence of k0 such
that {li}i∈I = Lk0 (consequence of definition 3.1).

Definition A.1 (Label set). Each well-formed global session type G defines a function
L which, for each role r, associates to each label li its unique label set L(r)(li) = Lk0 .

Structural equivalence We give here the complete definition of the structural equiva-
lence relation.

The garbage collection (ν a,s)(a〈s〉[R] | s : ε)≡ 0 (when ∀ri∈G,R(ri) = ∅) elimi-
nates sessions that have no participants anymore.

The permutation rule s :(q, p, l〈~p1〉(v)) · (q′, p′, l′〈~p2〉(v′)) ·h≡ s :(q′, p′, l′〈~p2〉(v′)) ·
(q, p, l〈~p1〉(v)) · h when (p 6= p′ ∨ q 6= q′ ∨L(role(p))(l) 6= L(role(p))(l′)∨ ~p1 6= ~p2)
allows to put forward in the session buffer the messages that have different senders,
recipients, labels or participants lists.

Other rules are standard [4].

29

P | 0≡P P | Q≡Q | P (P | Q) | R≡P | (Q | R) 0;P≡P

(ν dd′)P≡ (ν d′d)P (ν d)0≡0
(ν a)(ν s)(a〈s〉[R] | s :ε)≡0 (∀ri∈G.R(ri) = ∅)

(ν d)P | Q≡ (ν d)(P | Q) (d 6∈ fnQ)

µX .P≡P{µX .P/X}

s :(q, p, l〈~p1〉(v)) · (q′, p′, l′〈~p2〉(v′)) ·h≡ s :(q′, p′, l′〈~p2〉(v′)) · (q, p, l〈~p1〉(v)) ·h
when (p 6= p′∨q 6= q′∨L(role(p))(l) 6= L(role(p′))(l′)∨ ~p1 6= ~p2)

d ranges over a or s. The function L is defined by Definition A.1.

Fig. 8. Structural equivalence

B Appendix for Section 3

We give here the complete definitions for the well-formedness property.
The following proposition says that the dequantification with two participant names

is sufficient.

Proposition B.1. For n > 2, we call T ′ the n-dequantification of T if we homomor-
phically replace every subterm of the form ∀x : r \~p.T0 by T0{p1/x} | T0{p2/x} | . . . |
T0{pn/x} with p1,p2,p3, ...,pn the first n participant names of the list for role r that do
not appear in ~p. Then (1) G is linear iff the n-dequantification of the types T projected
from G satisfy the linearity property; and (2) G is well-formed iff G is well-formed using
n-dequantification.

By the above proposition with the results in [15],

Proposition B.2. It is decidable to check whether a given G is well-formed or not.

C Appendix for Section 4

Judgements We list the judgements. α,β , ... range over any types.

Γ ` Env well-formed environments
Γ ` α �Type well-formed types
Γ `U �MType well-formed carried types
Γ ` e�S expression
Γ ` p participant with role
Γ ` P� τ processes

C.1 Kinding Systems

We give the different kinding systems that are used for value types (figure 9), local types
(figure 10), global types (figure 11) and environments (figures 12 and 13).

C.2 Fair global types

We define in figure 14 a kinding system to check if a global type allows, at each point
of its execution, to reach an end to the interaction.

30

Γ ` G . Type ftv(G) = fv(G) = ∅
Γ ` 〈G; end〉 . MType

bKSHAREc
Γ ` T . Type ftv(T) = fv(T) = ∅

Γ ` T ; end . MType
bKSESSc

Γ ` Env

Γ ` nat ,bool . MType
bKNAT,KBOOLc

Fig. 9. Kinding rules for value types

Γ ` p ∀k∈K, Γ ` ~pk Γ `Uk . MType Γ ` Tk . Type

Γ ` !〈p,{lk〈~pk〉〈Uk〉.Tk}k∈K〉 . Type
bKLSELc

Γ ` p Γ ` ~pk ∀k∈K, Γ `Uk . MType Γ ` Tk . Type

Γ ` ?〈p,{lk〈~pk〉〈Uk〉.Tk}k∈K〉 . Type
bKLBRANCHc

Γ ` ~p Γ ,x :r ` T . Type ftv(T) = ∅
Γ ` ∀x :r \~p,T . Type

bKLFORALLc

Γ ` Ti . Type ftv(Ti) = ∅ (i = 1,2)
Γ ` T1 | T2 . Type

bKLPARc

Γ ` T1 . Type Γ ` T2 . Type

Γ ` T1;T2 . Type
bKLSEQc

Γ ` Env

Γ ` ε . Type
bKLNILc

Γ ` T . Type

Γ ` µx.T . Type
bKLRECc

Γ ` Env

Γ ` x . Type
bKLVARc

Fig. 10. Kinding rules for local types

Γ ` p Γ ` p′ ∀k∈K, Γ ` ~pk Γ `Uk . MType Γ ` Gk . Type

Γ ` p→p′{lk〈~pk〉〈Uk〉.Gk}k∈K . Type
bKBRAc

Γ ` ~p Γ ,x :r ` G . Type ftv(G) = ∅
Γ ` ∀x :r \~p.G . Type

bKFORALLc
Γ ` Gi . Type ftv(Gi) = ∅ (i = 1,2)

Γ ` G1 | G2 . Type
bKPARc

Γ ` Gi . Type (i = 1,2)
Γ ` G1;G2 . Type

bKSEQc
Γ ` Env

Γ ` ε . Type
bKNILc

Γ ` G . Type

Γ ` µx.G . Type
bKRECc

Γ ` Env

Γ ` x . Type
bKVARc

Fig. 11. Kinding rules for global types

C.3 Typing rules for runtime syntax

We first give the full rules and definitions.

Typing system for runtime processes We start from a formal definition of message
types.

31

∅ ` Env
bENILc

Γ ` S . MType u 6∈dom(Γ)
Γ ,u :S ` Env

bSENVc

Γ ` Env x 6∈dom(Γ)
Γ ,x :r ` Env

bRENVc
Γ ` ∆ . Env X 6∈dom(Γ)

Γ ,X :∆ ` Env
bVENVc

Fig. 12. Well-formed environments

−
bPENULc

∅ ` Env

Γ ` ∆ � Env Γ ` T � Type c 6∈ dom(∆)
bPPTc

Γ ` ∆ ,c : T � Env

Fig. 13. Kinding rules for session environments

Γ ` p Γ ` p′ ∀k∈K, Γ ` ~pk Γ `Uk . MType
∃i∈K. (Γ ` Gi . FType, ∀ j∈K \{i}, Γ ` G j . Type)

Γ ` p→p′{lk〈~pk〉〈Uk〉.Gk}k∈K . FType
bKFBRAc

Γ ` ~p Γ ,x :r ` G . FType

Γ ` ∀x :r \~p.G . FType
bKFFORALLc

Γ ` Gi . FType ftv(Gi) = ∅ (i = 1,2)
Γ ` G1 | G2 . FType

bKFPARc

Γ ` Gi . FType (i = 1,2)
Γ ` G1;G2 . FType

bKFSEQc
Γ ` Env

Γ ` ε . FType
bKFNILc

Γ ` G . FType

Γ ` µx.G . FType
bKFRECc

Γ ` G . FType ftv(G) = fv(G) = ∅
Γ ` 〈µx.G;x; end〉 . MType

bKSHAREc

Similar rules are used for the local types.

Fig. 14. Kinding rules for fair (FType) and well-persistent global types

Message T ::= !〈p : r, l〈~p〉〈U〉〉 message selection
| T;T′ message sequence

Generalised T ::= T session
| T message
| T;T continuation

; is defined by:

∆ ;{s[q : r] : T}=

{
∆ ′,s[q : r] : T′;T if ∆ = ∆ ′,s[q : r] : T′,
∆ ,s[q : r] : T otherwise.

Below we denote the binary relation T ^ T′ if T | T′ satisfies the linearity condition
defined in Definition 3.1.

We then define the composition ∗ between generalised types as:

T∗T′ =


T;T′ if T is a message type,
T′;T if T′ is a message type,
T|T′ if T ^ T′

⊥ otherwise

32

Γ ` Env
bQINITc

Γ `{s} s : ε . /0

Γ `{s} s : h.∆ Γ ` v : S
bQVALc

Γ `{s} s : h · (q : r′,p : r, l〈~p〉〈v〉).∆ ;{s[q : r′] :!〈p : r, l〈~p〉〈S〉〉}

Γ `{s} s : h.∆

bQDELEGc
Γ ` s : h · (q : r′,p : r, l〈~p〉〈s′[p′ :r′′]〉)� (∆ ,s′[p′ :r′′] : T ′);{s[q : r′]} :!〈p : r, l〈~p〉〈T ′〉〉

Fig. 15. Typing System for Queues

Γ ` a :〈G〉 {ri}i∈I = dom(R) G ↑ xi :ri = Ti

Γ `∅ a〈s〉[R] . {s[p ji :ri] :Ti{p ji/xi}}i ∈ I,p ji6∈ R(ri)
[RGST]

Γ ` P.∆

bPROMc
Γ `∅ P.∆

Γ `Σ P.∆ ∆ ≈ ∆
′

bSHIFTc
Γ `Σ P.∆

′

Γ `Σ P.∆ Γ `Σ ′ Q.∆
′

bGPARc
Γ `Σ]Σ ′ P | Q.∆ ∗∆

′

Γ `Σ P.∆

bGSRESc
Γ `Σ\s (ν s)P.∆ \ s

Fig. 16. Typing System for Runtime Processes

where ⊥ represents failure of typing.
We extend ∗ to session environments as expected:

∆ ∗∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{c : ∆(c)∗∆ ′(c) | c ∈ dom(∆)∩dom(∆ ′)}.

Next we define the projection of local types to define the coherent relation.

Definition C.1. The projection of the generalised local type T onto q : r′, denoted by
T � q : r′, is defined by:

(!〈p : r, l〈~p〉〈U〉〉;T′) � q : r′ =

{
!l〈~p〉〈U〉;T′ � q : r′ if p : r = q : r′,
T′ � q : r′ otherwise.

(!〈p : r,{li〈~pi〉〈Ui〉 : Ti}i∈I〉) � q : r

=

{
!{li〈~pi〉〈Ui〉 : Ti � q : r′}i∈I if q : r′ = p : r,
ti∈I Ti � q : r′ if q : r′ 6= p : r

(?〈p : r,{lk〈~pk〉〈Uk〉 : Tk}k∈K〉) � q : r′

=

{
?{li〈Ui〉 : Ti � q : r′}i∈I if q : r′ = p : r,
ti∈I Ti � q : r′ if q : r′ 6= p : r

(∀x : r \~p.T) � q : r′

=

{
T{q/x} � q : r′ | ∀x : r \ (~pq).(T � q : r′) if q : r′ = p : r,
∀x : r \~p.(T � q : r′) if q : r′ 6= p : r

(µx.T) � q : r = µx.(T � q : r) x � q : r = x

33

T ;T ′ � q : r = (T � q : r);(T ′ � q : r)
T |T ′ � q : r = (T � q : r)|(T ′ � q : r)
end � q : r = end T ;T � q : r = (T � q : r);(T � q : r)

Definition C.2. The duality relation under P between projections of generalised types
is the minimal symmetric relation which satisfies:

end ./ end T{µx.T/x} ./ T ′ =⇒ µx.T ./ T ′

∀i ∈ {1,2} Ti ./ T ′i =⇒ T1;T ′1 ./ T2;T ′2 and T1|T ′1 ./ T2|T ′2 .
T ./ T ′&T ./ T′ =⇒ T ;T ./ T ′;T′.

T ./ T ′ =⇒ ∀x :r \~p.T ./ ∀x :r \~p.T ′

T{p1/x} | T{p2/x} | · · ·T{pn/x} ./ T ′ =⇒ ∀x :r \~p.T ./ T ′

where P\~p = {p1,p2, ...,pn}
∀i ∈ I Ti ./ T ′i =⇒ !{li〈~pi〉〈Ui〉 : Ti}i∈I ./ ?{li〈~pi〉〈Ui〉 : T ′i }i∈I
∃i ∈ I l = li & T ./ Ti =⇒ !l〈~pi〉〈Ui〉;T ./ ?{li〈~pi〉〈Ui〉 : Ti}i∈I

Definition C.3. A session environment ∆ is coherent for the session s under P (notation
co(∆ ,s)) if s[p : r] : T ∈ ∆ and T � q : r′ 6= end imply s[q : r′] : T ′ ∈ ∆ and T � q : r ./
T ′ � p : r under P. A session environment ∆ is coherent if it is coherent for all sessions
which occur in it.

D Proofs for Theorem 4.1

This section proves Subject reduction theorem. We have the standard Weakening and
Strengthening lemmas We start from the substitution lemma.

Lemma D.1 (Substitution Lemma) 1. If Γ ,y : r,Γ ′ ` J and Γ ` p : r, then Γ ,(Γ ′{p/y})`
J{p/y}.

2. If Γ ,X : ∆0 ` P.∆ and Γ ` Q : ∆0, then Γ ` P{Q/X}.∆ .
3. If Γ ,x : S ` P.∆ and Γ ` v : S, then Γ ` P{v/x}.∆{v/x}.
4. If Γ ` P.∆ ,y : T , then Γ ` P{s[r : p]/y}.∆ ,s[r : p] : T .

Note that substitutions may change session types and environments in the role and
shared channel case. The application of (1) to process judgements is especially useful
for the Subject Reduction Theorem: if Γ ,y : r,Γ ′ `P.∆ and Γ ` p.r then Γ ,(Γ ′{p/x})`
P{p/x}.∆{p/x}.

By definition and checking kinding rules, we have:

Proposition D.1. If G is linear, then its end-point projection Ti is linear; and if G is
well-formed, then its end-point projection Ti is well-formed.

Below the n-dequantification of T is defined in Proposition pro:well-formedness.
Then by Proposition B.1, we have:

Proposition D.2. (1) T is well-labelled iff the n-dequantification of T is well-labelled;
(2) T is linear iff the n-dequantification of T is linear; and (3) T is well-formed iff the
n-dequantification of T is well-formed.

The proof of the following theorem is similar with [4].

34

Theorem D.1 (Subject congruence). Suppose that Γ `Σ P . ∆ and that P≡ P′. Then,
Γ `Σ P′ . ∆ .

Theorem D.2 (Subject reduction). Suppose that Γ `Σ P . ∆ and that P−→∗ P′. Then,
Γ `Σ P′ . ∆ ′ for some ∆ ′ such that ∆ ⇒∗ ∆ ′.

By induction on a derivation of P−→∗ P′, with a case analysis on the final rule (us-
ing Theorem D.1 for the structural congruence). We only consider some paradigmatic
cases. We often omit Σ and some session environments ∆ if they are not used (in par-
ticular, in the case of Γ ` ∆ . End).

Case Init: a〈G〉 −→ (ν s)(a〈s〉[R] | s : ε) with ∀ri ∈G,R(ri) = ∅. By assumption, Γ `
a〈G〉.∅ with Γ ` a:〈G〉 by [INIT]. We also have Γ `∅ a〈s〉[R] . {s[p ji :ri]:Ti{p ji/xi}}i ∈ I,p ji6∈ R(ri)
with {ri}i∈I = dom(R) and G ↑ xi : ri = Ti by [RGST], and Γ `{s} s : ε . /0 by [QINIT]. Then
by bGSRESc, we have done.

Case Join: Assume a[p :r](y).P | a〈s〉[R · r :P]−→ P{s[p :r]/y} | a〈s〉[R · r :P]{p}]. Then
by assumption, Γ ` a[p :r](y).P | a〈s〉[R · r :P] . ∆ By the standard generation lemma,

Γ ` a[p :r](y).P . ∆1 (1)

with
Γ ` a :〈G〉 Γ ` P . ∆1,y :G ↑ p :r (2)

Also we have
Γ ` a〈s〉[R,r : P].{s[r :p j] :T{p j/x}}p j6∈ P,∆2 (3)

with {ri}i∈I = dom(R) and G ↑ xi : ri = Ti and ∆2 = {s[p ji : ri] : Ti{p ji/xi}}i ∈ I,p ji6∈ R(ri).
By substitution lemma, from (2),

Γ ` P{s[p :r]/y} . ∆1,s[p :r] :G ↑ p :r (4)

with G ↑ p :r= Tr{p : r/x : r}. Let ∆3 = {s[r :p j] :T{p j/x}}p j6∈ P,∆2. From (3), we have:

Γ ` a〈s〉[R,r : P]{p}].∆3 \ s[r : p] (5)

Hence ∆1∪∆2 = (∆1,s[p :r] :G ↑ p :r)∪∆3 \ s[r : p], as required.

Case Quit: Similar with the above case with Weakening of end type by [NIL] in figure 6.
Case Send: The same as [4], noting the register is unchanged after the reduction.
Case Recv: Case (1) We assume that v is a constant, i.e. v has a base type. Suppose:

s[p :r]?〈p′ :r′,{li〈~pi〉(x).Pi}i∈I〉 | a〈s〉[R] | s :(p′ :r′, p :r, lk〈~pk〉〈v〉) ·h
−→ Pk{v/x} | a〈s〉[R] | s :h

with p∈R(r)∧ k∈ I.
By assumption, Γ `Σ s[p:r]?〈p′ :r′,{li〈~pi〉(x).Pi}i∈I〉 | s : (p′ : r′,p : r, l〈~pi〉〈v〉) ·h.∆ .

By the standard generation lemma, we have:

Γ ` s[p :r]?〈p′ :r′,{li〈~pi〉(y).Pi}i∈I〉 . ∆1,s[p :r]?〈p′ :r′,{li〈~pi〉〈Ui〉.Ti}i∈I〉 (6)
Γ `{s} s : (p′ : r′,p : r, lk〈~pk〉〈v〉) ·h.∆2 (7)

35

where ∆ = ∆2 ∗(∆1,s[p :r]?〈p′ :r′,{li〈~pi〉〈Ui〉.Ti}i∈I〉) with Γ ,x : Sk ` Pk .∆1,s[p : r] : Tk
and Γ ` v : S′k for some k ∈ I. We also note that ∆2 = {s[p′ : r′] :!〈p : r, lk〈~pk〉〈S′k〉〉}∗∆ ′2.
Note that the uniqueness of the label implies Sk = S′k. Then by substitution lemma (4),
we have Γ ` Pk{v/xk}.∆1,s[p : r] : Tk.

Using rule bGPARc, we conclude

Γ `{s} P{v/x} | s : h.∆
′
2 ∗ (∆1,s[p : r] : Tk).

Note that ∆ ⇒ ∆ ′2 ∗ (∆1,s[p : r] : Tk). Hence we conclude the case.
Case (2): The case of the delegation is similar with Case (1).
Case Poll: Suppose s[p : r′]∀(x : r \~p).{P} | a〈s〉[R] −→ P{p1/x} | ... | P{pk/x} | a〈s〉[R]
with R(r)\~p = {p1, ..,pk} and p∈R(r′). By assumption,

Γ `Σ s[p :r′]∀(x :r \~p).{P} | a〈s〉[R] . ∆ (8)

with ∆ = s[p : r′] :∀(x : r \~p).T,∆ ′ and ∆ ′ = {s[p ji : ri] : Ti{p ji/xi}}i ∈ I,p ji6∈ R(ri) with p :
r′ 6= p ji :ri. Then by hypothesis, we have

Γ `Σ P{pi/x} . s[p :r′] :Ti{pi/x} (9)

By Propositions D.1 and D.2, the well-formedness of ∀(x : r \~p).T implies that of
Ti{pi/x}^ Tj{p j/x} for all i, j. Hence by bGPARc

Γ `Σ P{p1/x} | . . . | P{pk/x} . s[p :r′] :(T1{p1/x} | . . . | Tk{pk/x}) (10)

and ∆ ⇒ s[p :r′] :(T1{p1/x} | . . . | Tk{pk/x}),∆ ′, as required.

E Proofs of Communication Safety, Progress and Join Progress

Proofs of Theorems 5.1 and 5.2 We first prove the following property which states
that once a is locked by the first participant, then the role set R does not change until the
final lock is released.

Definition E.1. We say reduction sequence P0 −→ P1 −→ . . .−→ Pn is in locked under s if
Pi = Ei[a•〈s〉[Ri,Λi]] or Pi = Ei[a◦〈s〉[Ri,Λi]] for all 0≤ i≤ n.

The following is immediate from the definition of the reduction relation.

Proposition E.1. Suppose that P0 is typable and P0 −→ P1 −→ . . .−→ Pn is in locked under
s with Pi = Ei[a 〈s〉[Ri,Λi]]. Then Ri = R j for all 0≤ i, j ≤ n.

For typing, we strengthen the name restriction rule as follows:

Γ `Σ P.∆ co(∆ ,s)
bGSRESc

Γ `Σ\s (ν s)P.∆ \ s

Then we prove the following property with Proposition E.1.
We introduce a definition which relates a collection of local types to a global type

(cf. [20, §5]).

36

Definition E.2. 1. (full projection) Assume G is coherent. Then the full projection of
G, denoted by [[G]]s is defined as the family {s[p] : (G � p) | p ∈ G}.

2. We write G⇒ G′ if we take off the minimum prefix in G under causality � in
[15, 20].

Then we prove the following invariant properties for global/local types with Propo-
sition E.1 (see [20, §5]).

Proposition E.2. Assume for all `, in the same session in ∆ , each register is locked
under s, i.e. Ri = R j for all 0 ≤ i, j ≤ n if Ri and R j contains the same s (between lock
and unlock).

1. ∆ ⇒ ∆1 and ∆ ⇒ ∆2 imply there exits ∆ ′ such that ∆1⇒ ∆ ′ and ∆2⇒ ∆ ′.
2. ∆ is coherent and ∆ ⇒∗ ∆ ′ imply ∆ ′ coherent.
3. Assume [[G]]s = ∆(s) and ∆(s)⇒ ∆ ′(s) iff G−→ G′ and [[G′]]s = ∆ ′(s).

Proof. (1) By Propositions D.1 and D.2, noting that the linearity condition of the well-
formed global types ensures the confluent property of the local types. By analysis of
Rules (1–6) in § 4.2.
(2) By Proposition E.1, we can assume R does not change once a session is locked (i.e.
inside a single multiparty session G inside lock{G}). The only difficult case is Rule (4)
where the polling changes the environment. We prove if T and T ′ are projected from
well-formed global type to p and p′ respectively, we have T � p′ ./ T ′ � p. Without loss
of generality, we can think the projection from ∀x :r\~p.p−→ p′;G0 to p and p′ such that
p 6= p′ is coherent w.r.t. p′ and p if R do not change during the polling. The case p = p′

will be treated by Rule 3 (Case (4) below).
Case (1) p 6= x : r and p′ 6= x : r. We have Tp = G ↑ p = ∀x : r \ ~p.!〈q〉;G0 ↑ p and
T ′q = G ↑ q = ∀x :r \~p.?〈p〉;G0 ↑ q.

Let p = p and q = q. Assume

s[p] : Tp,s[q] : T ′q ,∆ ⇒ s[p] : (T1{p1/x} | T1{p2/x} | · · · | T1{pn/x}),s[q] : T ′q ,∆
′ = ∆

′′

by applying Rule (4) where T1 = !〈q〉;G0 ↑ p. Let T2 = ?〈p〉;G0 ↑ q. Then by Proposi-
tion E.1, we have

(T1{p1/x} | T1{p2/x} | · · · | T1{pn/x}) ./ T ′q

since by the definition of duality, we have

(T1{p1/x} | T1{p2/x} | · · · | T1{pn/x}) ./ (T2{p1/x} | T2{p2/x} | · · · | T2{pn/x})

under ∆ ′. Hence ∆ ′′ is coherent. The case s[q] : Tq reduces with the register in ∆ ′ can
be proved by (1).
Case (2) p = x :r and p′ 6= x :r. Then G ↑ p = !〈p′〉;G0{p/x} | ∀x :r \~pp.(G ↑ p) and
G ↑ p′ = ∀x : r \~p.(G0 ↑ p′). By Definition C.1, we have G ↑ p ↑ p′ ./ G ↑ p′ ↑ p. The
rest is similar with the above case.
Case (3) p 6= x :r and p′ = x :r. The symmetric case of Case (2).
Case (4) p = x :r and p′ = x :r. Then we have: T = !〈p〉; ?〈p〉;(G0{p/x} ↑ p) | ∀(x :r\
~pp).(G ↑ p). Then the type reduction uses Rule 3. After one step by Rule 3, G0{p/x} ↑ p
is coherent by IH.
(3) Similar with [20].

37

Now we prove the following stronger subject reduction theorem.

Theorem E.1 (Subject reduction with coherence). Suppose that Γ `Σ P . ∆ and that
P −→∗ P′ with ∆ coherent. Then, Γ `Σ P′ . ∆ ′ for some ∆ ′ such that ∆ ⇒∗ ∆ ′ and ∆ ′

coherent.

Proof. The proof is essentially the same as one for Theorem 4.1 except we need to
show the typed reductions under well-lockedness preserves the coherency, which was
proved in Proposition E.2.

From this revised theorem together with Proposition E.2 (3), the progress (Theorem
5.2) is immediate following the proofs in [20, § 5]. The communication safety (Theorem
5.1) is also straightforward following [20, § 5].

Proof of Theorem 5.3 We first note the property for fair global types.

Proposition E.3. Suppose G is fair. Then ∃ G−→∗ ε .

The proof is straightforward by the definition.
Now we assume a : 〈G〉`? P .∅ and P is initial. Suppose 〈G〉 is persistently well-

locked and P does not contain any shared name restriction. By Theorem 5.2, we only
have to prove P satisfies: if P −→∗ (ν s)(P′ | a〈s〉[R]) then, for any single-session join
a : 〈G〉 ` a[p : r](y).Q.∅ with p : r fresh, and for any R such that P′ | a〈s〉[R] | a[p :
r](y).Q−→∗ a•〈s〉[R′] | R,

1. if s[p :r]∈R, then there exists a reduction a•〈s〉[R′] | R−→∗ s[p:r]−−→R′; and
2. (ν s)R satisfies the join progress property.

For (1), once a[p :r](y).Q enters the existing unlocked session at s by registering p :r to
the register, by Proposition E.3 and Theorem 5.2, Q{s[p :r]/x} can perform an action at

s[p :r] since the condition G−→∗ G′
s[p:r]−−→ for some G′, implies R can perform the action

at s[p : r] by [20, Session Fidelity, Corollary 5.6]; and by the fact the register changed
from a〈s〉[R] to a•〈s〉[R′] which means all sufficient joiners are joined in the register
(hence it forms a single coherent multiparty session). Note that there exists an active

redex at s[p : r] when G′
s[p:r]−−→ since (1) P starts from the single multiparty session at

a; (2) there is no hidden shared name blocks the action at s[p : r]; and (3) all sufficient
joiners are joined (a•〈s〉[R′]).

For (2), suppose we compose a new joiner a[q : r′](y).Q′ to R. Once G is unlocked
by reaching ε by Proposition E.3, R will be unclocked. Then the new joiner can register
q : r′ to the registry (since the sufficient joiners with other roles can recursively join
again by the form of G). The persistent global type is unfold as: G = µx.lock{G1};x =
lock{G1}; µx.lock{G1};x). Then we can repeat the argument in (1) again for fair G1
for q :r′.

F Publisher-Subscriber

We show one more example: publisher-subscriber. This example explains the impor-
tance of join progress, which we shall discuss at the end.

38

The session features the two roles of publisher and subscriber, where each pub-
lisher broadcasts its messages to all the subscribers. There is a single topic per session
and routing is abstracted away: the traditional brokers’ actions are realised through the
session semantics. We informally represent this interaction by the following picture.

sub

pub

Msg 22fffffffffffff //

''NNNNNNNNNNNNNN

##HHHHHHHHHHHHHHHH sub

...
... ED__

BC�
�
�
�

_ _ _ _ _ _ _ _oo

pub

77pppppppppppppp
//

;;vvvvvvvvvvvvvvvv

Msg ,,XXXXXXXXXXXXX sub

sub@A
_ _ _ _ _ _ _

GF�
�
�
�

__

Global Type We write the global type using the universal quantifier for both the pub
and the sub roles. The global type is the following:

µx.(∀x :pub.∀y : sub.x→y〈Msg〉);x

The quantifiers ∀x:pub.∀y:sub. allow to specify that the only sort of message x→y〈Msg〉
of this session is exchanged between every pair of publisher x and subscriber y.

Local Types The projected local types are the following:

T (z :pub) = µx.(∀y : sub.!〈y : sub,Msg〉);x
T (z : sub) = µx.(∀x :pub.?〈x :pub,Msg〉);x

The results of the projection emphasise here the importance of the quantifiers. If z plays
a publisher, its local type reflects the fact that it sends a Msg to all subscribers y by
using a quantification: ∀y : sub.!〈y : sub,Msg〉. For the subscriber, on the other hand,
the projection needs to take into account that each publisher sends a message to all
subscribers, which implies that each subscriber should expect exactly one message from
each publisher. The computed local type T (z :sub) of the subscriber role only keeps the
quantification over the publishers x, as: ∀x :pub.?〈x :pub,Msg〉.

Processes We give an example of processes that can be typed using the above local
types:

P(z :pub,m) = a[z :pub](s).µX .(s∀(y : sub).{s!〈y,Msg〈m〉〉});X
P(z : sub) = a[z : sub](s).µX .(s∀(x :pub).{s?〈x,Msg(w)〉});X

In this example, each publisher publishes a message m, while the each subscriber just
listens to them. We saw in this session how quantifiers are projected to local roles. This
projection is however more complex when quantifiers on the same role are nested.

Now consider the following two global types:

Gps1 = µx.(∀x :pub.∀y : sub.x→y〈Msg〉);x
Gps2 = ∀x :pub.µx.∀y : sub.x :pub→y : sub〈Msg〉;x

The first global type Gps1 as well as its local types and processes are given above. For
the second type Gps2, we have the following typed processes:

P(z :pub,m) = a[z :pub](s).µX .(s∀(y : sub).{s!〈y,Msg〈m〉〉});X
P2(z : sub) = a[z : sub](s).s∀(x :pub).{µX .(s?〈x,Msg(w)〉);X}

39

While the interaction between them is communication safe, the problem is that a late
publisher will never be listened to by the existing subscribers, i.e. the publisher cannot
join to the existing multiparty session, although it can publish to late subscribers. The
late publisher should always wait for new subscribers who join into his session. In other
words, the late joiner cannot join to a current, existing running session.

40

