
Explicit Connection Actions in
Multiparty Session Types

Raymond Hu1 and Nobuko Yoshida1

Imperial College London

Abstract. This work extends asynchronous multiparty session types
(MPST) with explicit connection actions to support protocols with op-
tional and dynamic participants. The actions by which endpoints are
connected and disconnected are a key element of real-world protocols
that is not treated in existing MPST works. In addition, the use cases
motivating explicit connections often require a more relaxed form of mul-
tiparty choice: these extensions do not satisfy the conservative restric-
tions used to ensure safety in standard syntactic MPST. Instead, we de-
velop a modelling-based approach to validate MPST safety and progress
for these enriched protocols. We present a toolchain implementation, for
distributed programming based on our extended MPST in Java, and a
core formalism, demonstrating the soundness of our approach. We discuss
key implementation issues related to the proposed extensions: a practi-
cal treatment of choice subtyping for MPST progress, and multiparty
correlation of dynamic binary connections.

1 Introduction

Multiparty session types (MPST) is a type systems theory for verifying message
passing concurrent processes, originally developed in the π-calculus [21]. A stan-
dard top-down presentation of syntactic MPST systems consists of three layers:
(1) a global specification of an asynchronous message passing protocol as a global
type, with the participants abstracted as roles; (2) a syntactic projection to a lo-
calised view of the protocol for each role as a local type; which are in turn used to
(3) type check the endpoint processes implementing the roles. A well-typed sys-
tem of session endpoint implementations is guaranteed free from communication
safety errors, such as unexpected message receptions and deadlocks.

In our view, the central design point of practical languages and tools based
on session types is: (a) to identify a class of protocols, through the constraints
of the type syntax and accompanying well-formedness conditions; such that
MPST safety is indeed guaranteed by (b) (independent) verification of end-
point programs against their local projections. Much research, both multiparty
and the special case of binary sessions, has focused on addressing (b) in var-
ious ways: extending existing languages to support static session typing (e.g.,
Links [32]) via pre-processing tools (Java [25,45]), embedding into existing lan-
guages via encodings (Haskell [40,26], Rust [27]), dynamic session typing by run-
time monitoring (Python [15], Erlang [19]), hybrid (part static, part dynamic)
approaches (Java [24], Scala [42], ML [36]), and code generation (MPI/C [35]).

2

Regarding (a), the multiparty works of the above mostly follow the core
theoretical systems [22,12], where protocol well-formedness is directly derived
from syntactic restrictions in conjunction with various simplifying assumptions.
Unfortunately, these restrictions are too conservative for many useful patterns
found in practice. An important example of such a pattern is an interaction
between two session participants that, in some cases, leads to the later involve-
ment of a third party in the session. By contrast, the standard MPST notion of
session initiation is assumed to be a single, atomic synchronisation between all
parties (as in all of the above works), which inherently rules out any instance of
this pattern. Standard MPST basically do not support protocols with dynamic
joining/leaving of participants during a session, nor optional participation.

This paper. We develop an MPST toolchain to address limitations w.r.t. to (a)
as discussed above, that can be readily integrated with some of the existing
approaches for (b). There are two main contributions.

One is to extend MPST to support explicit connection actions in protocol
specifications, in a manner that is closely guided by the practical motivations.
Rather than a globally interconnected structure between a fixed number of par-
ticipants, we consider a multiparty session as a dynamically evolving configu-
ration of binary bidirectional connections that are established and closed (and
possibly re-established) as the session progresses. Concretely, we extend an exist-
ing MPST-based protocol description language, Scribble [44,47]. The following
is an instance of the pattern from above in our extended Scribble:

explicit global protocol OptionalDynamicThirdParty(role A, role B, role C) {

hello() connect A to B; // A connects to B; sends a message labelled hello

goodday() from B to A; // B replies to A on the established connection

choice at A { opt1() from A to B; // A has two choices: send opt1 or opt2 to B

greetings() connect B to C; } // B connects to C; sends greetings

or { opt2() from A to B; } } // Session ends without involving C

(The syntax is explained more in § 2.) Explicit connection actions allow MPST
to better fit real-world use cases from domains such as Internet applications
and Web services, where multiparty systems are often implemented over binary
transports like TCP and HTTP. As we shall see in examples, many patterns
involving explicit connections also require a more relaxed form of choice than in
standard MPST, with mixed action kinds and destination roles.

The second aspect relates to global type validation in our extended MPST.
The proposed extensions do not satisfy the conservative restrictions used to
ensure safety in standard syntactic MPST: they allow writing additional use
cases, but also introduce the potential for errors that were previously precluded.

/* Standard MPST: all roles interconnected

* on session init. (Scribble default) */

global protocol

P1(role A, role B, role C) {

choice at A { 1() from A to B; }

or { 2() from A to C; }

do P1(A, B, C);

}

// Explicit connection actions

explicit global protocol

P2(role A, role B, role C) {

choice at A { 1() connect A to B;

disconnect A and B; }

or { 2() connect A to C;

disconnect A and C; }

do P2(A, B, C); }

3

The minimal examples above illustrate some of the issues at hand. P1 features a
choice involving only A and B in one case, and A and C in the other (which is not
permitted in [22,12,17,18]), that is repeated continuously by the recursion (not
permitted in [18]). However, P1 does satisfy the intuitive notion of MPST safety
(e.g., no reception errors or deadlocks); and under an assumption of output choice
fairness, i.e., provided A does not starve B or C of messages, P1 also satisfies MPST
progress (otherwise, if, e.g., A talks only to B, then C remains in the session but
never progresses). Using explicit connection actions, this pattern can be rewritten
in P2 to satisfy both safety and progress without such an assumption.

Our approach is to develop a modelling-based validation for MPST protocols.
Specifically, we derive a model of a global type from the 1-bounded execution
of the induced multiparty session, i.e., where the capacity of each dynamically
established, asynchronous channel is limited to one message; and explicitly check
the model is free of the traditional MPST safety and progress errors, as well as
the additional kinds of errors introduced by our extensions, such as unexpected or
duplicate (dis)connections. The key to this approach is that the characteristics
of syntactic MPST can be leveraged to serve the soundness of the bounded
validation; as opposed to solely relying on syntactic restrictions for outright
safety. We treat output choice fairness by a structural transformation in the
model construction, that reflects the underlying issue of session subtyping [37];
e.g., our validation accepts P1 (above) only if fairness is assumed.

Techniques based on “minimal asynchrony” have been employed for various
purposes in related theoretical works (§ 5); e.g., to show the decidability of chore-
ography realisability [4], classifying session types in the context of communicat-
ing FSMs [18], and the study of properties of half-duplex binary systems [11].
The advance of this work is to formulate the 1-bounded validation for our ex-
tended MPST; and its application in a practical toolchain, from the validation of
our extended Scribble specifications to safe implementations of distributed Java
endpoints. We believe that such an approach may offer a practical, uniform val-
idation methodology for MPST-based protocols, towards incorporating further
MPST extensions (e.g., [6,15,5,46,29]) together in an integrated toolchain.

2 Use Case and Overview

2.1 Use Case: Travel Agency Web Service (Revisited)

Travel Agency is one of the widely-used examples in session types literature,
based on a W3C Web services choreography use case;1 we follow the version
in [1]. The basic scenario starts by a Client (C) initiating a session with the
Travel Agent (A) to negotiate a product quote. The client may eventually choose
to reject all quotes, ending the session; or to accept one, leading to a payment
transaction between the client and a third-party Service (S). Although this is
a natural multiparty use case, it is not actually fully supported by standard
MPST. To see the potential problems, consider the following fragment from the
latter part of the protocol:

1 https://www.w3.org/TR/2004/WD-ws-chor-reqs-20040311/ § 3.1.1

https://www.w3.org/TR/2004/WD-ws-chor-reqs-20040311/

4

1 explicit global protocol TravelAgency

2 (role C, role A, role S) {

3 connect C to A;

4 do Nego(C, A, S);

5 }

6 // aux subprotocols

7 aux global protocol Nego

8 (role C, role A, role S) {

9 choice at C {

10 query(Str) from C to A;

11 quote(Int) from A to C;

12 do Nego(C, A, S);

13 } or {

14 do Pay(C, A, S);

15 } }

17 // So far, only C and A are connected

18 aux global protocol Pay

19 (role C, role A, role S) {

20 choice at C {

21 // C connects to S, sends pay info

22 pay(Str) connect C to S;

23 // S returns a payment reference

24 confirm(Int) from S to C;

25 // C forwards the payref to A

26 accpt(Int) from C to A;

27 } or {

28 reject() from C to A;

29 }

30 } // End of protocol

31

Fig. 1. The Travel Agency choreography use case1 using explicit connection actions.

choice at C { pay(Str) from C to S; confirm(Int) S to C; accpt(Int) from C to A;}

or { reject() from C to A; } // S not involved [i]

In standard MPST, the execution model is that all three roles are synchronised
on session initiation, and there are no further implicit messages (e.g., no ses-
sion termination handshake). Under these assumptions, the above fragment is
unsafe because, in the second case, there is no way for an implementation of S

to locally determine that the session is finished. Consequently, specifications in
existing MPST use workarounds that are less rigorous (e.g., decomposing the
protocol into separate global types, losing some of the message causalities) or
less realistic/efficient (e.g., by introducing extra messages, or delegation [12]).

The above fragment is also not permitted as a standard MPST choice due to
the directed choice restriction: the messages from a branch point must be sent to
the same role in all cases (e.g., r′ in the type grammar r → r′ : {li.Gi}i∈I [22,12];
similarly in automata-based works [18,17]) as a conservative element towards
ensuring safety. The superficial quick fix by simply moving the accpt message to
the start of the first case is not possible in this example, because the Int payload
of this message is intended to be the value (the payment reference Int) received
by C in the preceding confirm message.

Explicit connection actions allow this use case to be safely captured as a single
global type, as given by TravelAgency and its two subprotocols (aux) in our ex-
tended Scribble in Fig. 1. Line 1 declares the root protocol with the three roles
C, A and S. The new explicit modifier means that every inter-role connection
used for message passing must first be established by explicitly specified connec-
tion actions. A session starts by C connect to A (line 3), creating a bidirectional
channel (e.g., TCP) between client C and server A.

We then enter the Nego subprotocol by the do-statement, with the do argu-
ment roles playing the target parameter roles (given the same names in this
example). The choice at C on line 9 means C makes an internal choice between

5

the two cases (the or-separated blocks), to be explicitly communicated as an
external choice to other roles as appropriate. In the first case, a message of sig-
nature query(Str) (a message with header/label query, and one payload value
of type Str) is sent from C to A. A replies with a quote(Int), and the choice is
repeated by the recursive do on line 12. A and C thus perform the query/quote
exchange some number of times (possibly zero, in this simplified version). Fi-
nally, in Pay, C has two further options. C may connect to S, thereby dynamically
bringing S into the session: C exchanges payment details pay(Str) for a payment
reference confirm(Int) with S, and forwards the reference to A. Otherwise, C

sends a reject to A, and the session ends without involving S. Note that these
syntactically nested choices actually amount to a single choice at C, between
mixed kinds of actions to different roles: the connect to S, and the sends to A.

Extending MPST with explicit connection actions allows such protocols be-
cause, e.g., the connect from C to S, serves to delimit the scope of S’s involve-
ment to the relevant choice case only. From S’s view, the whole session starts and
ends, by interactions with C, in this one case, if the session indeed proceeds this
way at run-time—while S remains unconnected, we can consider it as “inactive”
with regards to session safety and progress. At the same time, this solution re-
duces the gap between MPST-based descriptions and real protocols, like Internet
application RFCs, by recognising that the client/server connection actions are as
important in a rigorous specification as the message passing (e.g., the STARTTLS

“re-connection” in SMTP [28], and FTP’s active/passive modes [39]).
The communication model promoted by our extended MPST is at most one

(as opposed to exactly one) connection between any pair of roles. Consider the
following explicit protocol with roles A, B and C:

connect A to B; rec X { [ii]
choice at A { 1() from A to B; 2() connect B to C; disconnect B and C;continue X;

} or { 3() from A to B; } }

The disconnect is necessary, inside the recursion rec X { ...continue X; }, to
ensure there is never more than one connection between B and C (similarly in P2

in § 1). We can assume implicit disconnect actions at the end of a protocol.

2.2 Overview of 1-Bounded Global Type Validation and Examples

The restrictions employed in standard MPST are convenient for reasoning about
the MPST safety properties. Aside from surface syntax details, systems like [12]
ensure safety by essentially requiring pairwise syntactic duality of per-role views
at all points in a protocol (called consistency [12] or coherence [22]). By contrast,
our proposed extensions allow additional safe protocols, but also (syntactically)
allow protocols with errors that were previously precluded. E.g., consider the
choice from P1 in § 1, where it is safe, but now without the recursion: either B or
C is unsafely left hanging at the end of a session.

choice at A { 1() from A to B; } or { 2() from A to C; } [iii]

To deal with such additional errors, and those related to explicit connection
actions, we validate global types by (1) a lighter set of syntactic conditions, in

6

comparison to standard MPST; complemented by (2) explicit error checking on
a 1-bounded model of the protocol. The key conditions of (1) are:

Role enabling. For any given choice, we consider the subject (the at role)
to be enabled by default; other roles become enabled after receiving a message.
Only enabled roles may connect or send messages to other roles. Role enabling
checks that this transitive propagation of the enabled status is respected.

Consistent external choices. Every potentially incoming message in an input
choice (i.e., either accept or receive) must be directed from the same role.

These basic conditions, in conjunction with the inherent pairing of role-to-role
actions in global types, serve the soundness of (2) in the presence of asynchrony
and recursion (in general, the state space of an MPST protocol may be un-
bounded; e.g., P1 in § 1). We note that the latter condition is implicitly imposed
by the standard projection in existing MPST [12,22] (and by projections ex-
tended with merging [46,18]), with the additional restriction of directed choice
to send every output choice message to the same role.

1
A : B!1

B : A?1

A : C!2

C : A?2

1

A : B!1

B : A?1 A : C!2
C : A?2

A : C!2
C : A?2 A : B!1

A : B?1

1

2

3

A : B!1

B : A?1
A : B!1

A : C!2

C : A?2
A : C!2

(a) (b) (c)

We first demonstrate the validation by illustrating some models used by our
tool for some previous examples; the details will be covered in § 3 and § 4. Initial
states are labelled 1; the notation, e.g., A : B!1 means A performs the local send B!1.
(a) is for Ex. [iii]: the two terminals are unfinished role errors (§ 3.2), where the
system is terminated but either B or C is not locally terminated. (b) is for P1 from
§ 1 assuming output choice fairness, i.e., that both the B!1 and C!2 options are
always viable; this model passes the validation. (c) is the contrary view for P1,
where A commits exclusively to a single choice case after the first selection. Our
tool additionally constructs this variant to expose such role progress violations
(§ 3.2), where an unfinished role never progresses along some infinite execution,
e.g., C does not progress in the cycle between 2 and 3. (a) is not affected by the
fairness assumption, as there is no recursion.

The “unfair” model for P2 (not shown) has the same structure as (c), but with
connects/disconnects in place of the sends/receives. It would not violate progress
because either B or C remains in a local connection-accept “guard” state, which
is not considered unfinished (rather, “inactive”). TravelAgency satisfies progress
(i.e., wrt. S) regardless of output choice fairness for the same reason.

3 MPST with Explicit Connection Actions

3.1 Global Types, Local Types and Sessions

Syntax. A core syntax of global types G and local types L is defined in Fig. 2.
Global types have guarded choices Σi∈Iπi.Gi, with connection r�r′:l, messaging

7

Roles A,B, . . . ∈ R ranged over by r, r′, . . .
Message labels 1, 2, 3, . . . ∈ L l, l′, . . .
Recursion variables X,Y, . . . ∈ X X,Y, . . .
Paired interactions (R× {→,�} × R× L) ∪ (R× {#} × R) π, π′, . . .
Localised actions A ⊆ (R× {!, ?, !!, ??} × L) ∪ (R× {#}) α, α′, . . .

G ::= Σi∈Iπi.Gi | µX.G | X | end L ::= Σi∈Iαi.Li | µX.L | X | end |I| ≥ 1

r1 † r2 : l.G�∆r =


r2[[†]]•l.(G�∅r) r = r1

r1[[†]]◦l.(G�∅r) r = r2

G�∆r r 6∈ {r1, r2}

r1 # r2.G�∆r ={
r′#.(G�∅r) r, r′ ∈ {r1, r2}, r 6= r′

G�∆r otherwise

[[→]]•=! [[→]]◦=? [[�]]•=!! [[�]]◦=??

Σi∈IGi�∆r
(|I|>1)

=


X (resp. end) ∀i ∈ I.Gi�∆r = X (resp. ∀i ∈ I.Gi�∆r = end)

Σj∈J⊆I(Lj =Gj �∆r) |J |> 0, ∀k ∈ I\J(Gk �∆r = end or X∈∆), and

either

{
∀j ∈ J.Lj = α•j .L

′
j

∃r′∀j ∈ J.Lj = α◦j .L
′
j ∧ subj(α◦j) = r′

µX.G�∆r =

{
end G�∆∪{X}r =X ′ or end

µX.(G�∆∪{X}r) otherwise

X �∆r = X
end�∆r = end

Fig. 2. Core syntax and global-to-local type projection.

r→r′ :l and disconnection r#r′ actions; recursion µX.G and X; and termination
end. As an example, TravelAgency from Fig. 1 may be written (assuming an
empty label nil for the initial connect, and “flattening” the nested choices):

C� A : nil.µTravelAgency. (C→ A : query.A→ C : quote.TravelAgency
+ C� S : pay.S→ C : confirm.C→ A : accpt.end + C→ A : reject.end)

Local types are the same except for localised actions: connect r!!l, accept r??l,
send r!l, receive r?l, and disconnect r#. For a local action α = r†l, the annotation
α◦ means † ∈ {?, ??}; and α• means either α with † ∈ {!, !!} or an action r#. We
sometimes omit end.

The projection of G onto r, written G � r, is the L given by G�∅ r in Fig. 2,
where the ∆ is a set {Xi}i∈I . Our projection is more “relaxed” than in standard
MPST, in that we seek only to regulate some basic conditions to support the
later validation (see below). ∆ is simply used to prune X that become unguarded
in choices during projection onto r, when the recursive path does not involve
r; e.g., projecting TravelAgency onto S: C??pay.C!confirm.end). Note: this core
formulation simplifies and omits certain features of the Scribble implementation,
e.g., we omit payload types and flattening of nested choice projections [23].

We assume some basic constraints (typical to MPST) on any given G. (1)

For all π† = r † r′ : l, † ∈ {→,�}, and all π# = r#r′, we require r 6= r′.
We then define: subj(π†) = {r}, obj(π†) = {r′}, lab(π†) = l; and subj(π#) =
{r, r′}, obj(π#) = ∅. (2) G is closed, i.e., has no free recursion variables. (3) G
features only deterministic choices in its projections. We write: r ∈G to mean
r occurs in G; and α ∈ L to mean L′ = Σi∈Iαi.Li, where L′ is obtained from L

8

(Sessions) S ::= (P,Q) P ::= {Lr}r∈R Q : (R× R) 7→ {⊥} ∪ ~l

[Conn] ∃i′ ∈ I, j′ ∈ J αi′ = r′!!l α′j′ = r??l Q(r, r′) =Q(r′, r) =⊥

({(Σi∈Iαi.Li)r, (Σj∈Jα′j .L′j)r′} ∪ P,Q)→k ({(Li′)r, (L′j′)r′} ∪ P,Q[r, r′ 7→ ε][r′, r 7→ ε])

[Send]
∃j ∈ I αj = r′!l Q(r, r′) 6=⊥ Q(r′, r) =~l |~l|< k

({Σi∈Iαi.Li}r ∪ P,Q)→k ({Lj}r ∪ P,Q[r′, r 7→ ~l · l])

[Recv]
∃j ∈ I αj = r′?l Q(r, r′) = l ·~l

({Σi∈Iαi.Li}r ∪ P,Q)→k ({Lj}r ∪ P,Q[r, r′ 7→ ~l])

[Dis] Q(r, r′) = ε

({r′#.L}r ∪ P,Q)→k ({L}r ∪ P,Q[r, r′ 7→ ⊥])
[Rec]

({L[µX.L/X]}r ∪ P,Q)→k (P ′, Q′)

({µX.L}r ∪ P,Q)→k (P ′, Q′)

Fig. 3. Sessions (pairs of participants and message queues), and session reduction.

by some number (possibly zero) of recursion unfoldings, with α= αi for some i.
(Unfolding is the substitution on recursions unf(µX.G)=G[µX.G/X]; unf(G)=G
otherwise.) We use RG to denote {r | r ∈ G}, omitting the subscript G where
clear from context.

Well-formed global type. For a given G, let ϕ(G) be the global type resulting
from the once-unfolding of every recursion µX.G′ occurring within G (defined by
ϕ(µX.G) = ϕ(G[end/X]), and homomorphic for the other constructors). Role
enabling (outlined in § 2) on global types R ` G, R ⊆ R, is defined by R ` end
for any R, and:

subj(π)⊆R R ∪ obj(π) ` G
R ` π.G

|I|> 1 ∃r ∈R ∀i ∈ I.subj(πi) = {r} ∧ {r} ∪ obj(πi) ` Gi
R ` Σi∈Iπi.Gi

A global type G is well-formed, wf(G), if RG ` ϕ(G), and for all r ∈ RG,
G � r is defined. A consequence is that disconnects are not prefixes in non-unary
choices. Also, every local choice in a projection of a wf(G) comprises only α• or
α◦ actions, with a consistent subject r in all cases of the latter.

Sessions (Fig. 3) are pairs of a set of participant local types P and inter-role
message queues Q. ⊥ designates a disconnected queue. We use the notation
Q[K 7→ V] to mean Q′ where Q′(K) = V , and Q′(K ′) = Q(K ′) for K 6= K ′.
Session reduction (Fig. 3), S →k S′, is parameterised on a maximum queue
size k ∈ N1 ∪ {ω}. If two roles are mutually disconnected, [Conn] establishes
a connection, synchronising on a common label l. If both sides are connected,
[Send] asynchronously appends a message to destination queue if there is space.
If the local queue is still connected: [Recv] consumes the first message, if any;
and [Dis] disconnects the queue if it is empty.

For a wf(G) with roles R, we define: (1) →∗k is the reflexive and transitive
closure of →k; (2) the k-reachable set of a session S for some k is RSk(S) =
{S′ |S →∗k S′}; we say S′∈RSk(S) is k-reachable from S; (3) the initial session
is the session S0 = ({G � r}r∈R, QR0), where QR0 = {r, r′ 7→ ⊥ | r, r′ ∈ R}; and

9

(4) a k-final session S is such that @S′(S →k S
′). We may annotate a reduction

step S
r−→k S

′ by a subject role r of the step: in Fig. 3, in [Send], [Recv] and
[Dis] the subject is r; in [Conn], both r and r′ are subjects. Given S, r and k,

S
r−→k stands for ∃S′(S r−→k S

′). For k = ω, we often omit the ω.

3.2 MPST Safety and Progress

The following defines MPST safety errors and progress for this formulation.
Assume a wf(G) with initial session S0 and S ∈RSk(S0) for some k. For r∈RG,
we say: r is inactive in S, where S = (P,Q) and Lr ∈ P , if (1) Lr = end; or (2)

Lr =G � r = Σi∈Ir
′??li.Li. Otherwise, r is active in S.

Then, session S = (P,Q) is a k-safety error, k-Err, if:
(i) Lr ∈ P and any of the following holds:

(Reception error) Lr = Σi∈Ir
′?li.Li, Q(r, r′) = l ·~l and l 6∈ {li}i∈I ;

(Connection error) r is active in S, r′??l ∈ Lr and Q(r, r′) 6=⊥;
(Disconnect error) r′#∈Lr and Q(r, r′) 6= ε;
(Unconnected error) r′?l ∈ Lr and Q(r, r′) =⊥;
(Synchronisation error) r′!!l ∈ Lr, (Σi∈Ir??li.Li)r′ ∈ P , and l 6∈ {li}i∈I ;

or (ii) S is either:
(Orphan message) r ∈G is inactive in S and ∃r′(Q(r, r′) 6∈ {ε,⊥});
(Unfinished role) S is k-final and r ∈G is active in S.

Session S satisfies k-progress if, for all S′ = (P,Q) ∈RSk(S), we have: (Role

progress) for all r∈R, if r is active in S′, then S′ →∗k
r−→k; (Eventual connection) if

Lr∈P and r′!!l∈Lr, then S′
σ−→k (P ′, Q′) where Lr′∈P ′, r′??l∈Lr′ and r 6∈subj(σ);

and (Eventual reception) S′
σ−→k (P ′, Q′) such that ∀r, r′ ∈ RG.Q′(r, r′) ∈ {ε,⊥}

and r′ 6∈ subj(σ). A session S is k-safe if @k-Err∈RSk(S). We simply say session
S is safe if it is ω-safe; and S satisfies progress if it satisfies ω-progress.

The following establishes the soundness of our framework. Our approach is
to adapt the CFSM-based methodology of [18,6], by reworking the notion of
multiparty compatibility developed there, in terms of our syntactic and explicitly
checked 1-bounded conditions. See [23] for the remaining definitions and proofs.

Theorem 1. (Soundness of 1-bounded validation). Let S0 be the initial session of
a wf(G) that is 1-safe and satisfies 1-progress. Then S0 is safe and satisfies progress.

4 Implementation

4.1 Modelling MPSTs by CFSMs with Dynamic Connections

We have developed a prototype implementation [43] that adapts the preceding
formulation by constructing and checking explicit state models of our extended
global types, based on a correspondence between MPST and communicating
FSMs (CFSMs) [18,15,30]. In this setting, our extensions correspond to CFSMs
with dynamic connection actions. An Endpoint FSM (EFSM) for a role is:

(EFSM) M = (S,R, s0,L, δ) (States) s, s′, . . . ∈ S (Transitions) δ ⊆ S× A× S

10

where s0 is the initial state; R, L and A are as defined in Fig. 2. We write δ(s) to
denote {α | ∃s′.δ(s, α) = s′}. EFSMs are given by a (straightforward) translation
from local types, for which we omit the full details [23]: an EFSM essentially
captures the structure of the syntactic local type with recursions reflected as
cycles. E.g., for C in TravelAgency (Fig. 1), omitting payload types:

1 2 3 4 5 6
A!! A!query

A?quote

S!!pay S?confirm A!accpt

A!reject

The execution of EFSM systems is adapted from basic CFSMs [9] following
Fig. 3 in the expected way [23]. Then, assuming an initial configuration c0 (the
system with all endpoints in their initial EFSM states and unconnected) for a
wf(G), the (base) model of G is the set of configurations that can be reached by
1-bounded execution from c0. We remark that the model of a wf(G) is finite.

Based on § 3.2, G can be validated by its model as follows. The MPST safety
errors pertain to individual configurations: this allows to simply check each con-
figuration by adapting the Err-cases to this setting. E.g., an unfinished role error
is a terminal configuration where role r is in a non-terminal state sr, and sr is not
an accept-guarded initial state. MPST progress for potentially non-terminating
sessions can be characterised on the finite model in terms of closed subsets of
mutually reachable configurations (sometimes called terminal sets). E.g., a role
progress violation manifests as such a closure in which an active role is not
involved in any transition (e.g., configs. 2 and 3, wrt. C, in (c) on p. 6).

Choice subtyping vs. progress. A projected local choice is either an output choice
(connects, sends) or an input choice (accepts, receives). While input choices
are driven by the received message, output choices are driven by process-level
procedures that global and local types abstract from. The notion of session
subtyping [20,13] was developed to allow more flexible implementations against
a local type. E.g., the projection of P1 from § 1 onto A is µX.(B!1.X + C!2.X)
which says A repeatedly has the choice of sending 1 to B or 2 to C: intuitively, it
is safe here to implement an A that always opts to send 1 (e.g., a process P (x) =
x⊕〈B, 1〉.P 〈x〉, where x is A’s session channel, ⊕ is the select primitive [12]). For
our relaxed form of multiparty choice, however, such an (naive) interpretation
of subtyping raises the possibility of progress errors (in this case, for C).

To allow our validation approach to be integrated with the various methods
of verifying local types in mainstream languages, we consider this issue from
the perspective of two basic assumptions on implementations of output choices.
One is to simply assume output choice fairness (the basic interpretation that an
infinite execution of an output choice selects each recursive case infinitely many
times), which corresponds to the model construction as presented so far.

The other interpretation is developed as a “worst case” view, where we do
not assume any direct support for session typing or subtyping (fair or otherwise)
in the target language (e.g., native Java), and allow the implementation of every
recursive output choice to be reduced to only ever following one particular case.
Our tool implements this notion as a transformation on each EFSM, by refining

11

the continuations of output choices such that the same case is always selected if
that choice is repeated in the future. We outline the transformation below (see
[23] for the definition):

– For each non-unary output choice s•, we clone the subgraph reachable via an
action α∈δ(s•) in each case that s• is reachable via α, i.e., if s•∈RS(δ(s•, α)).

– In each subgraph cloned via α, all α′∈δ(s•) edges, s.t. α′ 6=α, are pruned from
the clone of s•. We redirect the α-edge from s• to the clone of its successor
δ(s•, α) in the cloned subgraph. (States no longer connected are discarded.)

– This transformation is applied recursively on the cloned subgraphs, until
every recursive output choice is reduced to a single action.

This transformation reflects endpoint implementations that push output choice
subtyping to exercise a minimum number of different recursive cases along a
path. To expose progress violations under subtyping when fairness is not as-
sumed, our tool uses the transformed EFSMs to additionally construct and check
the “unfair” 1-bounded global model in the same manner as above.

1

B!1

C!1

1
B!1

B!1

C!2

C!2

1
B!!1

B#
B!!1

C!!2

C#
C!!2

1

A??2 A#

(d) (e) (f) (g)

We illustrate some examples. (d) is the base EFSM, i.e., assuming output
choice fairness, for A in P1 from § 1. (e) is the transformed EFSM: if A starts by
selecting the 1 case it will continue to select this case only; similarly for 2. (The
transformation does not change B or C.) Using (e) gives the global model for P1

in (c) on p. 6, raising the role progress violations for B and C. By contrast, (f)

is the transformed EFSM for A in P2 from § 1: as in (e), A commits exclusively
to whichever case is selected first. However, P2 does not violate progress, despite
the transformation of A in (f), because the involvement of C is guarded by the
initial connection-accept actions in (g); similarly for B.

4.2 Type-Checking Endpoint Programs by Local Type Projections

Java endpoint implementation via API generation. We demonstrate an integra-
tion of the above developments with an existing approach for using local types
to verify endpoint programs. Concretely, we extend the approach of [24], to gen-
erate Java APIs for implementing each role of a global type, including explicit
connection actions, via the translation of projections to EFSMs. The idea is to
reify each EFSM state as a Java class for a state-specific channel, offering meth-
ods for exactly the permitted I/O actions. These channel classes are linked by
setting the return type of each method to its successor state. Session safety is
assured by static (Java) typing of the I/O method calls, combined with run-time
checks (built into the API) that each instance of a channel class is used exactly
once, for the linear aspect of session typing. An endpoint implementation thus
proceeds, from a channel instance of the initial state, by calling one I/O method
on the current channel to obtain the next, up to the end of the session (if any).

12

1 TravelAgency sess = new TravelAgency(); // Generated session class

2 try (ExplicitEndpoint<TravelAgency, C> ep = new ExplicitEndpoint<>(sess, C) {

3 Buf<Integer> b = new Buf<>();

4 TravelAgency_C_2 C2 = new TravelAgency_C_1(ep) // Generated channel classes

5 .connect(A, SocketChannelEndpoint::new, host_A, port_A); // TCP client

6 for (int i = 0; i < queries.length; i++) // Assume queries: String[]

7 C2 = C2.send(A, query, queries[i]).receive(A, quote, b);

8 C2.connect(S, SocketChannelEndpoint::new, host_S, port_S, // TCP client

9 pay, "..paymentInfo..").receive(S, confirm, b)

10 .send(A, accpt, b.val); // C simplified to always accept the quote

11 } // (reject option unused)

Fig. 4. Safe Java implementation of C in TravelAgency (Fig. 1) using generated APIs.

Fig. 4 illustrates the incorporation of explicit connect, accept and disconnect
actions from local types into the API generated for C in TravelAgency; this code
can be compared against the EFSM on p. 10. TravelAgency C 1 is the initial
state channel (cf. EFSM state 1), for which the only permitted I/O method is
the connect to A; attempting any other session operation is simply a Java type
error. (The various constants, such as A and query, are singleton type values in the
API.) The connect returns a new instance of TravelAgency C 2, offering exactly
the mixed choice between the non-blocking query (line 7) or reject (unused, cf.
§ 4.1, output choice subtyping) to A, or the blocking connect to S (line 8).

If the programmer respects the linear channel usage condition of the gen-
erated API, as in Fig. 4, then Java typing statically ensures the session code
(I/O actions and message types) follows its local type. The only way to violate
the protocol is to violate linearity, in which case the API will raise an exception
without actually performing the offending I/O action. Our toolchain, from val-
idated global types to generated APIs, thus assures safe executions of endpoint
implementations up to premature termination.

Correlating dynamic binary connections in multiparty sessions. Even aside from
explicit connections, session initiation is one aspect in which applications of
session type theory, binary and multiparty, to real distributed systems raises
some implementation issues. The standard π-calculus theory assumes a so-called
shared channel used by all the participants for the initiation synchronisation.2

The formal typing checks, on a “centralised” view of the entire process sys-
tem, that each and every role is played by a compliant process, initiated via the
shared channel. These assumptions transfer to our distributed, binary-connection
programs as relying on correct host and port argument values in, e.g., the
connect calls in C in Fig. 4 (lines 5 and 8); similarly for the arguments to the
SocketChannelServer constructor and accept call in the A and S programs [23].

Existing π-calculus systems could be naively adapted to explicit connection
actions by assigning a (binary) shared channel to each accept-point in the ses-
sion, since the type for any given point in a protocol is fixed. Unfortunately,

2
E.g., a in a[1](y).P1 |...|a[n−1](y).Pn−1 |ā[n](y).Pn, initiating a session between n processes [12].

13

reusing a shared channel for dynamic accepts across concurrent sessions may
lead to incorrect correlation of the underlying binary connections. E.g., consider
A�B..A�C..B�C.., where the C process uses multithreading to concurrently
serve multiple sessions: if the same shared channel is used to accept all connec-
tions from the A’s, and likewise for B’s, there is no inherent guarantee that the
connection accepted from a B by a given server thread will belong to the same
session as the earlier connection from A, despite being of the expected type.

In practice, the correlation of connections to sessions may be handled by
various mechanisms, such as passing session identifiers or port values. Consider
the version of the Pay subprotocol (from Fig. 1), modified to use port passing
(cf. FTP [39]), on the left:

choice at C { accpt() from C to A;

connect A to S;

port(Int) from S to A;

port(Int) from A to C;

pay(Str) connect C to S;

confirm(Int) from S to C;

} or { reject() from C to A; }

// Extended Scribble annotations: [iv]
// S opens a (fresh) Int port for C

port(p:Int) from S to A; @open=p:C
port(p) from A to C; // A forwards p

pay(Str) connect C to S; @port=p
// C connects using p as the port

C sends accpt to A, and then A connects to S; S sends A an Int port value, which
A forwards to C; C then connects to S at that port. To capture this intent ex-
plicitly, we adapt an extension of Scribble with assertions [34] to support the
specification on the right. In general, value-based constraints, like forwarding
and connecting to p, can be generated into the API as implicit run-time Java
assertions. However, we take advantage of the API generation approach to di-
rectly generate statically safe operations for these actions. N.B., in the following,
port is simply the message label API constant ; assigning, sending and using the
actual port value is safely handled internally by the generated operations.

In S: S.send(A, port).accept(C, pay, b).. // ‘port’ is the msg label (API const.)

// API internally opens fresh port p, and sends value; accepts conn. on p

In A: A.receive(S, port).send(C, port)...

// API internally caches the received value of p; and forwards that value

In C: C.receive(A, port).connect(S, SocketChanEndpoint::new, host_S, pay, "..")..

// API internaly caches the value of p; and connects using p as the port

This combination of explicit connection actions, assertions, and typed API gen-
eration is essentially a practical realisation of (private) shared channel passing
from session π-calculi for our binary connection setting in Java.

To facilitate integration with some existing implementations of session typed
languages, our toolchain also supports an optional syntactic restriction on types
where: each projection of a Scribble protocol may contain at most one ac-
cept-choice constructor, and only as the top-most choice constructor (cf. the
commonly used replicated-server process primitives in process calculus works).
This constraint allows many useful explicit connection action patterns, including
nested connects and recursive accepts, while ruling out correlation errors; apart
from Ex. [iv], all of the examples in this paper satisfy this constraint.

14

5 Related Work and Concluding Remarks

Dynamic participants in typed process calculi and message sequence charts. To
our knowledge, this paper is the first session types work that allows a single
session to have optional roles, and dynamic joining and leaving of roles.

[16] presents a version of session types where a role designates a dynamic set
of one or more participant processes. Their system does not support optional
nor dynamic roles (every role is played by at least one process; the number of
processes varies, but the set of active roles is fixed). It relies on a special-purpose
run-time locking mechanism to block dynamically joining participants until some
safe entry point, hindering its use in existing applications. Implementations of
sessions in Python [15] and Erlang [19] have used a notion of subsession [14]
as a coarse-grained mechanism for dynamically introducing participants. The
idea is to launch a separate child session, by the heavyweight atomic multiparty
initiation, involving a subset of the current participants along with other new
participants; unlike this paper, where additional roles enter the same, running
session by the connect and accept actions between the two relevant participants.

The conversation calculus [10] models conversations between dynamic con-
texts. A behavioural typing ensures error-freedom by characterising processes
more directly; types do not relate to roles, as in MPST. Their notion of dynamic
joining is more abstract (akin to standard MPST initiation), allowing a context
n to interact with all other conversation members after a single atomic join ac-
tion by n; whereas our explicit communication actions are designed to map more
closely to concrete operations in standard network APIs.

Dynamic message sequence charts (DMSCs) in [31] support fork-join patterns
with potentially unbounded processes. Model checking against a monadic second
order logic is decidable, but temporal properties are not studied. [7] studies the
implementability of dynamic communication automata (DCA) [8] against MSCs
as specifications. The focus of study of DCA and DMSCs is more about dynamic
process spawning ; whereas we target dynamic connections (and disconnects) be-
tween a set of roles with specific concern for MPST safety and progress. Our
implementation goes another “layer” down from the automata (i.e., local type)
model, applying the validated session types to Java programs with consideration
of issues such as choice subtyping and connection correlation.

Well-formedness of session types and choreographies. Various techniques involv-
ing bounded executions have been used for multiparty protocols and choreogra-
phies. [4,41,3] positions choreography realisability in terms of synchronisability,
an equivalence between a synchronous global model and the 1-bounded execu-
tion of local FSMs; this reflects a stricter perspective of protocol compliance, de-
manding stronger causality between global steps than session type safety. Their
communication model has a single input queue per endpoint, while asynchronous
session types has a separate input queue per peer: certain patterns are not syn-
chronisable in the former while valid in the latter. [2] develops more general
realisability conditions (in the single-queue model) than the above by determin-
ing an upper-bound on queue sizes w.r.t. equivalent behaviours. Our validation
of MPST with explicit connection actions remains within a 1-bounded model.

15

[18] characterises standard MPST w.r.t. CFSMs by multiparty compatibility,
a well-formedness condition expressed in terms of 1-reachability; it corresponds
to the syntactic restrictions of standard MPST in ensuring safety. This paper
relaxes some of these restrictions with other extensions, by our 1-bounded vali-
dation, to support our use cases. [30] develops a bottom-up synthesis of graphical
choreographies from CFSMs via a correspondence between synchronous global
models and local CFSMs. These works and the above works on choreographies:
(1) do not support patterns with optional or dynamic participants; and (2) study
single, pre-connected sessions in isolation without consideration of certain issues
of implementing endpoint programs in practice (type checking, subtyping, con-
current connection correlation).

Advanced subtyping of local types with respect to liveness is studied theo-
retically in [37]. Our present work is based on a coarser-grained treatment of
fairness in the global model, to cater for applications to existing (mainstream)
languages where it may be difficult to precisely enforce a particular subtyping
for sessions via the native type system. We plan to investigate the potential for
incorporating their techniques into our approach in future work.

Implementations of session types. The existing version of Scribble [47,24] follows
the established theory through syntactic restrictions to ensure safety (e.g., the
same set of roles must be involved in every choice case, precluding optional par-
ticipation). [24] concerns only the use of local types for API generation; it has no
formalism, and does not discuss global type validation or projection. This paper
is motivated by use cases to relax existing restrictions and add explicit connec-
tion actions to types. [38] develops a tool for checking or testing compatibility,
adapted from [18], in a local system of abstract concurrent objects. It does not
consider global types nor endpoint programs.

Recent implementation works [42,24,32,36,27,35,45,26,40,25], as discussed in
§ 1, have focused more on applying standard session types, rather than devel-
oping session types to better support real use cases. This is in contrast to the
range of primarily theoretical extensions (e.g, time [6,33], asynchronous inter-
rupts [15], nested subsessions [14], assertions [5], role parameterisation [46], event
handling [29], multi-process roles [16], etc.), which complicates tool implemen-
tation because each has its own specific restrictions to treat the subtleties of its
setting. The approach of this paper, shifting the emphasis from outright syntac-
tic well-formedness to a more uniform validation of the types, may be one way
to help bring some of these scattered features (and those in this paper) together
in practical MPST implementations. We plan to investigate such directions in
future work, in addition to closer integrations of MPST tools, that treat concepts
like role projections, endpoint program typing, subtyping and channel passing,
with established model checking tools and optimisations.

Acknowledgements. We thank Gary Brown and Steve Ross-Talbot for collabo-
rations, and Rumyana Neykova and Julien Lange for discussions. This work is
partially supported by EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1,
EP/N027833/1, and EP/N028201/1; and by EU FP7 612985 (UPSCALE).

16

References

1. D. Ancona et al. Behavioral types in programming languages. Foundations and
Trends in Programming Languages, 3(2-3):95–230, 2016.

2. S. Basu and T. Bultan. Automatic verification of interactions in asynchronous
systems with unbounded buffers. In ASE ’14, pages 743–754. ACM, 2014.

3. S. Basu and T. Bultan. Automated choreography repair. In FASE ’16, volume
9633 of LNCS, pages 13–30. Springer, 2016.

4. S. Basu, T. Bultan, and M. Ouederni. Deciding choreography realizability. In
POPL ’12, pages 191–202. ACM, 2012.

5. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract
for distributed multiparty interactions. In CONCUR ’10, volume 6269 of LNCS,
pages 162–176. Springer, 2010.

6. L. Bocchi, J. Lange, and N. Yoshida. Meeting deadlines together. In CONCUR
’15, volume 42 of LIPIcs, pages 283–296. Schloss Dagstuhl, 2015.

7. B. Bollig, A. Cyriac, L. Hélouët, A. Kara, and T. Schwentick. Dynamic commu-
nicating automata and branching high-level MSCs. In LATA ’13, volume 7810 of
LNCS, pages 177–189. Springer, 2013.

8. B. Bollig and L. Hélouët. Realizability of dynamic MSC languages. In CSR ’10,
volume 6072 of LNCS, pages 48–59. Springer, 2010.

9. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,
30:323–342, April 1983.

10. L. Caires and H. T. Vieira. Conversation types. Theor. Comput. Sci., 411(51-
52):4399–4440, 2010.

11. G. Cécé and A. Finkel. Verification of programs with half-duplex communication.
Inf. Comput., 202(2):166–190, 2005.

12. M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global progress for
dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 760:1–65, 2015.

13. R. Demangeon and K. Honda. Full abstraction in a subtyped pi-calculus with
linear types. In CONCUR ’11, volume 6901 of LNCS, pages 280–296. Springer,
2011.

14. R. Demangeon and K. Honda. Nested protocols in session types. In CONCUR ’12,
volume 7454 of LNCS, pages 272–286. Springer, 2012.

15. R. Demangeon, K. Honda, R. Hu, R. Neykova, and N. Yoshida. Practical inter-
ruptible conversations: Distributed dynamic verification with multiparty session
types and python. Formal Methods in System Design, pages 1–29, 2015.

16. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL ’11,
pages 435–446. ACM, 2011.

17. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating
automata. In ESOP ’12, volume 7211 of LNCS, pages 194–213. Springer, 2012.

18. P.-M. Deniélou and N. Yoshida. Multiparty compatibility in communicating au-
tomata: Characterisation and synthesis of global session types. In ICALP ’13,
volume 7966 of LNCS, pages 174–186. Springer, 2013.

19. S. Fowler. An erlang implementation of multiparty session actors. In ICE ’16,
volume 223 of EPTCS, pages 36–50, 2016.

20. S. Gay and M. Hole. Subtyping for session types in the pi-calculus. Acta Infor-
matica, 42(2/3):191–225, 2005.

21. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL ’08, pages 273–284. ACM, 2008.

17

22. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9, 2016.

23. R. Hu and N. Yoshida. Explicit Connection Actions in Multiparty Session Types
(Long Version). https://www.doc.ic.ac.uk/~rhu/scribble/explicit.html.

24. R. Hu and N. Yoshida. Hybrid session verification through endpoint API genera-
tion. In FASE ’16, volume 9633 of LNCS, pages 401–418. Springer, 2016.

25. R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in Java.
In ECOOP ’08, volume 5142, pages 516–541. Springer, 2008.

26. K. Imai, S. Yuen, and K. Agusa. Session type inference in haskell. In PLACES,
volume 69 of EPTCS, pages 74–91, 2010.

27. T. B. L. Jespersen, P. Munksgaard, and K. F. Larsen. Session types for rust. In
WGP ’15, pages 13–22. ACM, 2015.

28. J. Klensin. IETF RFC 5321 Simple Mail Transfer Protocol. https://tools.ietf.
org/html/rfc5321.

29. D. Kouzapas, N. Yoshida, R. Hu, and K. Honda. On asynchronous eventful session
semantics. Mathematical Structures in Computer Science, 26(2):303–364, 2016.

30. J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to graphical
choreographies. In POPL ’15, pages 221–232. ACM, 2015.

31. M. Leucker, P. Madhusudan, and S. Mukhopadhyay. Dynamic message sequence
charts. In FSTTCS ’02, volume 2556 of LNCS, pages 253–264. Springer, 2002.

32. S. Lindley and J. G. Morris. Lightweight Functional Session Types. http://

homepages.inf.ed.ac.uk/slindley/papers/fst-draft-february2015.pdf.
33. R. Neykova, L. Bocchi, and N. Yoshida. Timed runtime monitoring for multiparty

conversations. In BEAT ’14, volume 162 of EPTCS, pages 19–26, 2014.
34. R. Neykova, N. Yoshida, and R. Hu. SPY: Local verification of global protocols.

In RV ’13, volume 8174 of LNCS, pages 363–358. Springer, 2013.
35. N. Ng, J. Coutinho, and N. Yoshida. Protocols by default: Safe MPI code genera-

tion based on session types. In CC ’15, LNCS, pages 212–232. Springer, 2015.
36. L. Padovani. FuSe homepage. http://www.di.unito.it/~padovani/Software/

FuSe/FuSe.html.
37. L. Padovani. Fair subtyping for multi-party session types. Mathematical Structures

in Computer Science, 26(3):424–464, 2016.
38. R. Perera, J. Lange, and S. J. Gay. Multiparty compatibility for concurrent objects.

In PLACES ’16, volume 211 of EPTCS, pages 73–82, 2016.
39. J. Postel and J. Reynolds. IETF RFC 959 File Transfer Protocol. https://tools.

ietf.org/html/rfc959.
40. R. Pucella and J. A. Tov. Haskell session types with (almost) no class. In Haskell

’08, pages 25–36. ACM, 2008.
41. G. Salaün, T. Bultan, and N. Roohi. Realizability of choreographies using process

algebra encodings. IEEE Trans. Services Computing, 5(3):290–304, 2012.
42. A. Scalas and N. Yoshida. Lightweight session programming in scala. In ECOOP

’16, volume 56 of LIPIcs, pages 21:1–21:28. Schloss Dagstuhl, 2016.
43. Scribble. GitHub repository. https://github.com/scribble/scribble-java.
44. Scribble homepage. http://www.scribble.org.
45. K. C. Sivaramakrishnan, M. Qudeisat, L. Ziarek, K. Nagaraj, and P. Eugster.

Efficient sessions. Sci. Comput. Program., 78(2):147–167, 2013.
46. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty

session types. In FoSSaCs’ 10, volume 6014 of LNCS, pages 128–145. Springer,
2010.

47. N. Yoshida, R. Hu, R. Neykova, and N. Ng. The scribble protocol language. In
TGC ’13, volume 8358 of LNCS, pages 22–41. Springer, 2013.

https://www.doc.ic.ac.uk/~rhu/scribble/explicit.html
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5321
http://homepages.inf.ed.ac.uk/slindley/papers/fst-draft-february2015.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/fst-draft-february2015.pdf
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://github.com/scribble/scribble-java
http://www.scribble.org

	Explicit Connection Actions in Multiparty Session Types

