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Abstract
We introduce MultiCrustyT , a Rust toolchain de-
signed to facilitate the implementation of safe affine
timed protocols. MultiCrustyT leverages generic
types and the time library to handle timed commu-
nications, integrated with optional types for affinity.
This artifact allows to evaluate our approach by
running examples from the literature, real-world
use cases and protocols from real-time systems,
featured in the related article, showcasing the cor-
rectness by construction of our approach. We allow

to see the performance of our solution by running
benchmarks and generating graphs, highlighting a
less than 10% compile-time and runtime overhead
compared with an untimed implementation. We
also demonstrate how to implement, step by step,
your own timed protocols, from a very basic one
with only two parties and simple interactions, to
complex ones with more than three parties, choices
and recursion.
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1 Scope

The purpose of this document is to describe in detail the steps required to assess the artifact
associated with our paper. We claim our artifact to be functional, reusable and available as follows:

1. Functionality:

MultiCrustyT can be used for safe affine timed communication programming in Rust. In
particular, you should be able to verify claims from the paper:

use MultiCrustyT to write and verify affine timed protocols with ATMP and νScrT ,
following the top-down approach explained in Section 2 of the related paper;
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observe the detected errors due to incompatible types, as explained in Section 2 of the
related paper.

With this artifact, you can reproduce the benchmarks in Section 6 of the related paper (i.e.,
Figure 11):

1 claim on expressiveness (Section 6.2 of the related paper): examples in Figure 11 can be
implemented using MultiCrustyT .

2 claim on compile-time performance (Section 6.1 of the related paper, Figure 11):
the more participants there are, the higher is the compilation time for MultiCrustyT .

3 claim on run-time performance (Section 6.1 of the related paper, Figure 11):
MultiCrustyT is nearly as fast as MultiCrusty, the AMPST implementation, when
there are a large number of interactions and participants (in the full-mesh protocol);
the worst-case scenario for MultiCrustyT occurs in protocols with many participants
but no causal dependencies between them, resulting in a slowdown compared to
MultiCrusty (in the ring protocol);
MultiCrustyT has a negligible overhead in comparison to MultiCrusty.

Instructions for reproducing Figure 11 are available in the README.md file.

2. Reusability: MultiCrustyT can be used to verify custom communication protocols and
programs, follow the instructions in the README.md file.

3. Availability: The artifact is available under the Creative Commons CC BY license (https:
//creativecommons.org/licenses/by/4.0/).

For more details, please consult Section 6 in the related article, Appendix G in the full version [1],
and the README file in the artifact.

2 Content

The Docker image serves as the artifact submission. It contains:

mpst_rust_github/: Source code, Examples, Benchmarks, and Tests of MultiCrustyT :

src/: Source code.
examples/: Examples:
∗ timed/: Examples of Table 2 in the related paper.
∗ artifact_atmp/: Functionality badge examples.
scripts/: Result reproduction scripts.
benches/: Benchmarks:
∗ mesh/timed/ and ring/timed/: Figure 11 (top) examples.
∗ timed/: Figure 11 (bottom) benchmarks.
tests/: Tests.
graphs_bench/: Generated graphs from the benchmarks (Figure 11).

nuscr/: νScrT library source code.

The artifact contains additional subfolders that are not essential for understanding the tool-
chain’s functionality but are necessary for its operation.
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3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://zenodo.org/doi/10.5281/zenodo.11032195. The source files can be accessed at
https://github.com/NicolasLagaillardie/mpst_rust_github.

4 Tested platforms

The artifact has been tested under:

Windows 10 (22H2)
Linux (Arch Linux, XFCE 4.18, kernel 6.6.25-1)
MacOS (Sonoma 14.4.1, M2)

All machines had at least 16 GB of RAM and 50 GB of disk space. In principle, the artifact
should be able to run under a correct installation of Docker.

5 License

The artifact is available under the Creative Commons CC BY license (https://creativecommons.
org/licenses/by/4.0/).

6 MD5 sum of the artifact

06073a8a89f4c520990f87157ca132ed

7 Size of the artifact

16.1 GB

A Additional Information

For additional information, readers are invited to consult the README.md file accompanying the
Docker image, which provides instructions on how to use the artifact. Alternatively, the README file
is available online at https://github.com/NicolasLagaillardie/ECOOP24-Artefact/blob/
main/README.md.
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