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ABSTRACT. This paper proposes a bisimulation theory based on multiparty session types where a
choreography specification governs the behaviour of session typed processes and their observer. The
bisimulation is defined with the observer cooperating with the observed process in order to form
complete global session scenarios and usable for proving correctness of optimisations for globally
coordinating threads and processes. The induced bisimulation is strictly more fine-grained than the
standard session bisimulation. The difference between the governed and standard bisimulations only
appears when more than two interleaved multiparty sessions exist. This distinct feature enables to
reason real scenarios in the large-scale distributed system where multiple choreographic sessions
need to be interleaved. The compositionality of the governed bisimilarity is proved through the
soundness and completeness with respect to the governed reduction-based congruence. Finally, its
usage is demonstrated by a thread transformation governed under multiple sessions in a real usecase
in the large-scale cyberinfrustracture.

1. INTRODUCTION

Backgrounds. Modern society increasingly depends on distributed software infrastructure such
as the backend of popular Web portals, global E-science cyberinfrastructure, e-healthcare and e-
governments. An application in such distributed environments is typically organised into many
components that communicate through message passing. Thus an application is naturally designed
as a collection of interaction scenarios, or multiparty sessions, each following an interaction pattern,
or choreographic protocol. The theory for multiparty session types [24] captures these two natural
abstraction units, representing the situation where two or more multiparty sessions (choreographies)
can interleave for a single point application, with each message clearly identifiable as belonging to
a specific session.
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Figure 1: Resource Managment Example: (a) before optimisation; (b) after optimisation

This article introduces a behavioural theory which can reason about distributed processes that
are controlled globally by multiple choreographic sessions. Typed behavioural theory has been one
of the central topics of the study of the π-calculus throughout its history, for example, reasoning
about various encodings into the typed π-calculi [42, 47]. Our theory treats the mutual effects of
multiple choreographic sessions which are shared among distributed participants as their common
knowledge or agreements, reflecting the origin of choreographic frameworks [9]. These features
related to multiparty session type discipline make our theory distinct from any type-based bisimu-
lations in the literature and also applicable to a real choreographic usecase from a large-scale dis-
tributed system. We say that our bisimulation is globally governed,since it uses global multiparty
specifications to regulate the conversational behaviour of distributed processes.

Multiparty session types. To illustrate the idea for globally governed semantics, we first explain
the mechanisms of multiparty session types [24]. Consider the simplest communication protocol
where the participant implementing 1 sends a message of type bool to the participant implementing
2. A global type [24] is used to describe the protocol as:

G1 = 1→ 2 : 〈bool〉.end
where→ denotes the flow of communication and end denotes protocol termination.

Global type G1 is used as an agreement for the type-check specifications of both Server1 and
Server2. We type-check implementations of both servers against the projection of G1 into local
session types. The following type

[2]!〈bool〉;end
is the local session type from the point of view of participant 1, that describes the output of a bool-
type value towards participant 2, while local type:

[1]?(bool);end

is the local session type from the point of view of 2 that describes the input of a bool-type value
from 1.

Resource management usecase. We will use a simplified usecase, UC.R2.13 “Acquire Data From
Instrument”, c.f. § 6 of [1], to explain the main intuition of globally governed semantics and give
insights on how our theory can reason about choreographic interactions.

Consider the scenario in Figure 1(a) where a single threaded Client3 (participant 3) uses two
services: from the single threaded Server1 (participant 1) and from the dual threaded Server2 (par-
ticipant 2). In Figure 1, the vertical lines represent the threads in the participants. Additionally
Server1 sends an internal signal to Server2. The communication patterns are described with the use
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of the following global protocols:

Ga = 1→ 3 : 〈ser〉.2→ 3 : 〈ser〉.end
Gb = 1→ 2 : 〈sig〉.end

with Ga describing the communication between the two servers and the Client3 and Gb describ-
ing the internal communication between the two servers. Participants 1,2 and 3 are assigned to
processes P1, P2 and P3, respectively in order to implement a usecase as:

P1 = a[1](x).b[1](y).x[3]!〈v〉;y[2]!〈w〉;0
P2 = a[2](x).b[2](y).(y[1]?(z);0 | x[3]!〈v〉;0)
P3 = a[3](x).x[1]?(z);x[2]?(y);0

Shared name a establishes the session corresponding to Ga, where Client3 (P3) uses prefix a[3](x)
to initiate a session that involves three processes: Server1 (P1) and Server2 (P2) participate to the
session with prefixes a[1](x) and a[2](x), respectively. In a similar way the session corresponding
to Gb is established between Server1 and Server2.

The above scenario is subject to an optimisation due to the fact that the internal signal between
Server1 and Server2 is invisible to clients because the communication link created after the session
initiation is local. The optimisation is illustrated in Figure 1(b), where we require a single threaded
service for Server2 to avoid the overhead of an extra thread creation. The new implementation of
participant 2 is:

R2 = a[2](x).b[2](y).y[1]?(z);x[3]!〈v〉;0
It is important to note that both P2 and R2 are typable under both Ga and Gb.

The motivation of this work is set when we compare the two server interfaces that are exposed
towards Client3, here implemented by process P3. The two different interfaces are given by the two
different implementations P1 | P2 and P1 | R2.

Untyped and linear bisimulations. It is obvious that in the untyped setting [45], P1 | P2 and
P1 | R2 are not bisimilar since P2 can exhibit the output action sa[2][3]!〈v〉 before the input action
sb[2][1]?〈w〉 (assuming that variable x is substituted with session sa and variable y is substituted
with session sb after the session initiation actions take place). More concretely we can analyse
their transitions as follows where a[{1,2}](sa) is the label to start the session with Client3 while
sa[2][3]!〈v〉 is an output of value v from Server2 to Client3:

P1 | P2
a[{1,2}](sa)−→ τ−→sa[2][3]!〈v〉−→

P1 | R2
a[{1,2}](sa)−→ τ−→

sa[2][3]!〈v〉
6−→

The same transitions are observed if we restrict the transition semantics to respect the traditional
linearity principle based on session local types [30]. The full definition of the multiparty session
bisimulation which follows the usual linearity property is found in § 4. We also give the detailed
interaction patterns in Example 4.11 to explain why both untyped and linear bisimulations cannot
equate P1 | P2 and P1 | R2.
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Globally governed bisimulation. In the global setting, the behaviours of P1 | P2 and P1 | R2 are
constrained by the specification of the global protocols, Ga and Gb. The service provided by Server2
is available to Client3 only after Server1 sends a signal to Server2. Protocol Ga dictates that action
sa[2][3]!〈v〉 can only happen after action sb[2][1]?〈w〉 in P2. This is because Client3, which uses the
service interface as a global observer, is also typed by the global protocol Ga and can only interact
with action sa[2][3]!〈v〉 from Server1 after it interacts with action sa[1][3]!〈v〉 from Server2.

Hence in a globally typed setting, processes P1 |P2 and P1 |R2 are not distinguishable by Client3
and thus the thread optimisation of R2 is behaviourally justified.

Note that processes P2 and R2 (i.e. without the parallel composition P1) are not observationaly
equivalent under any set of session typed or untyped observational semantics. The governed bisim-
ulation between P1 | P2 and P1 | R2 is achieved if we introduce an internal message of the session
created on shared channel b between processes P1 and P2 and P1 and R2, respectively.

Changing a specification. A global protocol directly affects the behaviour of processes. We
change global type Ga with global type:

G′a = 2→ 3 : 〈ser〉.1→ 3 : 〈ser〉.end
Processes P1 | P2 and P1 | R2 are also typable under protocol G′a but now process R2 can perform
both the output to Client3 and the input from Server1 concurrently and according to the protocol G′a
that states that Client3 can receive a message from Server2 first. Hence P1 | P2 and P1 | R2 are no
longer equivalent under global type Ga.

The above example gives an insight for our development of an equivalence theory that takes
into account a global type as a specification. The interaction scenario between processes refines
the behaviour of processes. To achieve such a theory of process equivalence we require to observe
the labelled transitions together with the information provided by the global types. Global types
define additional knowledge about how an observer (in the example above the observer is Client3)
will collaborate with the observed processes so that different global types (i.e. global witnesses) can
induce the different behaviours.

Contributions and outline. This article introduces two classes of typed bisimulations based on
multiparty session types. The first bisimulation definition is based on the typing information de-
rived by local (endpoint) types, hence it resembles the standard linearity-based bisimulation for
session types ([30]). The second bisimulation definition, which we call globally governed session
bisimilarity, uses the information from global multiparty session types to derive the interaction pat-
tern of the global observer. We prove that both bisimilarities coincide with a corresponding standard
contextual equivalence [22] (see Theorems 4.10 and 5.15). The globally governed semantics give
a more fine-grained bisimilarity equivalence comparing to the locally typed linear bisimulation re-
lation. We identify the condition when the two semantic theories coincide (see Theorem 5.16).
Interestingly our next theorem (Theorem 5.17) shows that both bisimilarity relations differ only
when processes implement two or more interleaved global types. This feature makes the theory for
govern multiparty bisimulation applicable to real situations where multiple choreographies are used
to compose a single, large application. We demonstrate the use of governed bisimulation through
the running example, which is applicable to a thread optimisation of a real usecase from a large
scale distributed system [1].

This article is a full version of the extended abstract published in [29] and the first author’s
thesis [28]. Here we include the detailed definitions, expanded explanations, full reasoning of the
usecases and complete proofs. The rest of the paper is organised as follows: Section 2 introduces a
synchronous version of the calculus for the multiparty sessions. Section 3 defines a typing system
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P ::= u[p](x).P Request
| u[p](x).P Accept
| c[p]!〈e〉;P Sending
| c[p]?(x);P Receiving
| c[p]⊕ l;P Selection
| c[p]&{li : Pi}i∈I Branching

u ::= x | a Identifier
n ::= s | a Name
e ::= v | x | e = e′ | . . .

| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| (ν n)P Hiding
| µX .P Recursion
| X Variable

c ::= s[p] | x Session
v ::= a | tt | ff | s[p] Value

Expression

Figure 2: Syntax for synchronous multiparty session calculus

and proves its subject reduction theorem. Section 4 presents the typed behavioural theory based
on the local types for the synchronous multiparty sessions and proves that the typed bisimulation
and reduction-based barbed congruence coincide. Section 5 introduces the semantics for globally
governed behavioural theory and proves the three main theorems of this article. Section 6 presents
a real-world usecase based on UC.R2.13 “Acquire Data From Instrument” from the Ocean Obser-
vatories Initiative (OOI) [1] and shows that the governed bisimulation can justify an optimisation
of network services. Finally, Section 7 concludes with the related work. The appendix includes the
full proofs.

Acknowledgement. The first author is funded by EPSRC Post Doctal Fellowship. The work has
been partially sponsored by the Ocean Observatories Initiative, EPSRC EP/K011715/1, EP/K034413/1,
EP/G015635/1 and EP/L00058X/1, and EU project FP7-612985 UpScale. We thank Rumyana
Neykova for her suggestion of the usecase.

2. SYNCHRONOUS MULTIPARTY SESSIONS

This section defines a synchronous version of the multiparty session types. The syntax and typ-
ing follow the work in [7] without the definition for session endpoint queues (which are used for
asynchronous communication). We choose to define our theory in the synchronous setting, since it
allows the simplest formulations for demonstrating the essential concepts of bisimulations. An ex-
tension of the current theory to the asynchronous semantics is part of the work in [28], where session
endpoint queues are used to provide asynchronous interaction patterns between session endpoints.

2.1. Syntax. The syntax of the synchronous multiparty session calculus is defined in Figure 2. We
assume two disjoint countable sets of names: one ranges over shared names a,b, . . . and another
ranges over session names s,s1, . . . . Variables range over x,y, . . . . Roles range over the natural
numbers and are denoted as p,q, . . . , labels range over l, l1, . . . and constants range over tt,ff, . . . .
In general, when the sessions are interleaved, a participant may implement more than one roles.
We often call p,q, ... participants when there is no confusion. Symbol u is used to range over
shared names or variables. Session endpoints are denoted as s[p],s[q], . . . . The symbol c ranges
over session endpoints or variables. Values range over shared names, constants (we can extend
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P≡ P | 0 P | Q≡ Q | P (P | Q) | R≡ P | (Q | R) P≡α Q µX .P≡ P{µX .P/X}
(ν n)(ν n′)P≡ (ν n′)(ν n)P (ν n)0≡ 0 (ν n)(P) | Q≡ (ν n)(P | Q) n /∈ fn(Q)

Figure 3: Structural Congruence for Synchronous Multiparty Session Calculus

a[n](x).Pn |Πi={1,..,n−1}a[i](x).Pi −→ (ν s)(Pn{s[n]/x} |Πi={1,..,n−1}Pi{s[i]/x}) [Link]

s[p][q]!〈e〉;P | s[q][p]?(x);Q −→ P | Q{v/x} (e ↓ v) [Comm]

s[p][q]⊕ lk;P | s[q][p]&{li : Pi}i∈I −→ P | Pk (k ∈ I) [Label]

if e then P else Q−→ P (e ↓ tt) [If-F] if e then P else Q−→ Q (e ↓ ff) [If-T]

P−→ P′

(ν n)P−→ (ν n)P′
[Res]

P−→ P′

P | Q−→ P′ | Q
[Par]

P≡ P′ −→ Q′ ≡ Q
P−→ Q

[Str]

Figure 4: Operational semantics for synchronous multiparty session calculus

constants to include natural numbers 1,2, . . . ) and session endpoints s[p]. Expressions e,e′, . . . are
either values, logical operations on expressions or name matching operations n = n′.

The first two prefixes are the primitives for session initiation: u[p](x).P initiates a new session
through identifier u (which represents a shared interaction point) on the other multiple participants,
each of the shape u[q](x).Qq where 1 ≤ q ≤ p−1. The (bound) variable x will be substituted with
the channel used for session communication. The basic session endpoint communication (i.e. the
communication that takes place between two endpoints) is performed with the next two pairs of
prefixes: the prefixes for sending (c[p]!〈e〉;P) and receiving (c[p]?(x);P) a value and the prefixes
for the selecting (c[p]⊕ l;P) and branching (c[p]&{li : Pi}i∈I) processes, where the former prefix
chooses one of the branches offered by the latter prefix. Specifically, process c[p]!〈e〉;P denotes the
intention of sending a value to role p; in a similar way, process c[p]?(x);P denotes the intention of
receiving a value from role p. A similar interaction pattern holds for the selection/branching pair of
communication, with the difference that the intention is to send (respectively receive) a label that
eventually determines the reduction of the branching process. Process 0 is the inactive process. The
conditional process if e then P else Q offers processes P and Q according to the evaluation of
expression e. Process P | Q is the parallel composition, while (ν n)P restricts name n in the scope
of P. We use the primitive recursor µX .P with X as the recursive variable. We write fn(P)/bn(P)
and fv(P)/bv(P) to denote the set of free/bound names and free/bound variables, respectively in
process P. A process is closed if it is a term with no free variables.

2.2. Operational semantics. The operational semantics is defined in Figure 4. It uses the usual
structure congruence relation (denoted by ≡), which is defined as the least congruence relation that
respects the rules in Figure 3. Structural congruence is an associative and commutative monoid over
the parallel ( | ) operation with the inactive process (0) being the neutral element. It respects alpha-
renaming and recursion unfolding. The order of the name restriction operators has no effect with
respect to structural congruence. Finally, the scope opening rule extends the scope of the restriction
on a name from a process to a paralleled process, provided that the name does not occur free in the
latter. We often write (ν n1n2 · · ·nm)(P) for (ν n1)((ν n2)(· · ·(ν nm)(P))).
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Global
G ::= p→ q : 〈U〉.G′ exchange

| p→ q : {li : Gi}i∈I branching
| µt.G recursion
| t variable
| end end

Exchange
U ::= S | T

Sort
S ::= bool | 〈G〉

Local
T ::= [p]!〈U〉;T send

| [p]?(U);T receive
| [p]⊕{li : Ti}i∈I select
| [p]&{li : Ti}i∈I branch
| µt.T recursion
| t variable
| end end

Figure 5: Global and local types

The reduction semantics of the calculus is defined in Figure 4. Rule [Link] defines synchronous
session initiation and requires that all session endpoints must be present for a synchronous reduc-
tion, where each role p creates a session endpoint s[p] on a fresh session name s. The maximum
participant with the maximum role (a[n](x).P) is responsible for requesting a session initiation. Rule
[Comm] describes the semantics for sending a value to the corresponding receiving process. We as-
sume an evaluation context e ↓ v, where expression e evaluates to value v. Session endpoint s[p]
sends a value v to session endpoint s[q], which in its turn waits to receive a value from role p. The
interaction between selection and branching processes is defined by rule [Label], where we expect
the selection part s[p] of the interaction to choose the continuation on the branching part s[q] of the
interaction.

The rest of the rules follow the usual π-calculus rules. Rule [If] evaluates the boolean expression
e. If the latter is true it proceeds with the first branch process defined; otherwise it proceeds with the
second branch process defined. Rules [Res] and [Par] are inductive rules on the parallel and name
restriction operators. Finally, rule [Str] closes the reduction relation under structural congruence
closure. We write→→ for (−→∪≡)∗ [22, 45].

3. TYPING FOR SYNCHRONOUS MULTIPARTY SESSIONS

This section defines a typing system for the synchronous multiparty session calculus. The system
is a synchronous version of one presented in [7]. We first define multiparty session types and then
summarise the typing system for the synchronous multiparty session calculus. At the end of the
section, we prove the subject reduction theorem (Theorem 3.9).

3.1. Global and local types. We first give the definition of the global type and then define the local
session type as a projection of the global type.

Global types, ranged over by G,G′, . . . describe the whole conversation scenario of a multiparty
session as a type signature. The grammar of the global types is given in Figure 5 (left).

The global type p→ q : 〈U〉.G′ describes the interaction where role p sends a message of type
U to role q and then the interaction described in G′ takes place. The exchange type U,U ′, ... consists
of sort types S,S′, . . . for values (either base types or global types), and local session types T,T ′, . . .
for channels (local types are defined in the next paragraph). Type p→ q : {li : Gi}i∈I describes the
interaction where role p selects one of the labels li against role q. If l j is selected, the interaction
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described in G j takes place. We assume that p 6= q. Type µt.G is the recursive type. Type variables
(t, t′, . . . ) are guarded, i.e., type variables only appear under some prefix and do not appear free in the
exchange types U . We take an equi-recursive view of recursive types, not distinguishing between
µt.G and its unfolding G{µt.G/t} [41, §21.8]. We assume that G in the grammar of sorts has no
free type variables (i.e. type variables do not appear freely in carried types in exchanged global
types). Type end represents the termination of the session.

Local types. Figure 5 (right) defines the syntax of local types. They correspond to the communi-
cation actions, representing sessions from the view-point of a single role. The send type [p]!〈U〉;T
expresses the sending to p of a value of type U , followed by the communications of T . Similarly,
the select type [p]⊕{li : Ti}i∈I represents the transmission of label li to role p. Label li is chosen
in the set {li}i∈I and the selection prefix is followed by the communications described by Ti. The
receive and branch types are described as dual types for the send and select types, respectively. In
the receive type [p]?(U);T we expect that the typed process will receive a value of type U from role
p while in the branch type [p]&{li : Ti}i∈I we expect a selection label l j ∈ {li}i∈I from role p. The
rest of the local types are the same as global types. Recursion µt.T uses type variables t to perform
a recursion via substitution T{µt.T/t}. The inactive type is written as end.

We define the roles occurring in a global type and the roles occurring in a local type.

Definition 3.1 (Roles).
• We define roles(G) as the set of roles in protocol G:

roles(end) = /0 roles(t) = /0 roles(µt.G) = roles(G)

roles(p→ q : 〈U〉.G) = {p,q}∪roles(G)

roles(p→ q : {li : Gi}i∈I) = {p,q}∪{roles(Gi) | i ∈ I}
• We define roles(T ) on local types as:

roles(end) = /0 roles(t) = /0 roles(µt.T ) = roles(T )
roles([p]!〈U〉;T ) = {p}∪roles(T ) roles([p]?(U);T ) = {p}∪roles(T )
roles([p]⊕{li : Ti}i∈I) = {p}∪{roles(Ti) | i ∈ I}
roles([p]&{li : Ti}i∈I) = {p}∪{roles(Ti) | i ∈ I}

Global and local projections. The relation between global and local types is formalised by the
usual projection function [7, 24], where the projection of a global type G over a role p results in a
local type T .1

1For a simplicity of the presentation, we take the projection function from [7, 24], which does not use the mergeability
operator [15]. The extension does not affect to the whole theory.
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Definition 3.2 (Global projection and projection set). The projection of a global type G onto a role
p results in a local type and it is defined by induction on G:

p′→ q : 〈U〉.Gdp =

 [q]!〈U〉;Gdp p= p′

[p′]?(U);Gdp p= q

Gdp otherwise

p′→ q : {li : Gi}i∈Idp =

 [q]⊕{li : Gidp}i∈I p= p′

[p′]&{li : Gidp}i∈I p= q

G1dp if ∀ j ∈ I. G1dp= G jdp

(µt.G)dp =

{
µt.(Gdp) Gdp 6= t
end otherwise

tdp= t enddp= end

A projection of G is defined as proj(G) = {Gdp | p ∈ roles(G)}.

Inactive end and recursive variable t types are projected to their respective local types. Note
that we assume global types have roles starting from 1 up to some n, without skipping numbers in
between.

We project p′→ q : 〈U〉.G to party p as a sending local type if p = p′ and as a receiving local
type if p= q. In any case the continuation of the projection is Gdp.

For p→ q : {li : Gi}i∈I , the projection is the select local type for p = p′ and the branch local
type p = q. Otherwise we use the projection of one of the global types {Gi | i ∈ I} (all types Gi
should have the same projection with respect to p).

The first side condition of the recursive type µt.G ensures that it does not project to an invalid
local type µt.t.

We use the local projection function to project a local type T onto a role p to produce binary ses-
sion types. We use the local projection to extract technical results (well-formed linear environment)
later in this section.

We use the usual binary session types, [21, 50], for the definition of local projection:

Definition 3.3 (Binary session types).
B ::= !〈U〉;B | ?(U);B | ⊕{li : Bi} | &{li : Bi} | µt.B | t | end
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Definition 3.4 (Local projection). The projection of a local type T onto a role p is defined by
induction on T :

[p]!〈U〉;Tdq =

{
!〈U〉;Tdq q= p

Tdq otherwise

[p]?(U);Tdq =

{
?(U);Tdq q= p

Tdq otherwise

[p]⊕{li : Ti}i∈Idq =

{
⊕{li : Tidq}i∈I q= p

T1dq if ∀i ∈ I.Tidq= T1dq

[p]&{li : Ti}i∈Idq =

{
&{li : Tidq}i∈I q= p

T1dq if ∀i ∈ I.Tidq= T1dq

(µt.T )dp =

{
µt.(Tdp) Tdp 6= t
end otherwise

tdp= t enddp= end

An inactive local type, a recursive variable and a recursive type are projected to their corre-
sponding binary session type syntax. Types [p]!〈U〉;T and [p]?(U);T are projected with respect to
q to binary send and receive session types, respectively under the condition p = q, and continue
with the projection of T on q. If p 6= q, the local projection continues with the projection of T . A
similar argument is applied for [p]⊕{li : Ti}i∈I and [p]&{li : Ti}i∈I if p= q. For the case p 6= q, we
project one of the continuations in {Ti}i∈I since we expect all the projections of {Ti}i∈I to be the
same [7, 24].

We inductively define the notion of duality as a relation over the projected local types:

Definition 3.5 (Duality). We define the duality function over binary session types as:

end= end t= t µt.B = µt.B !〈U〉;B =?(U);B ?(U);B =!〈U〉;B
⊕{li : Bi}i∈I = &{li : Bi}i∈I &{li : Bi}i∈I =⊕{li : Bi}i∈I

We assume only session types with tail recursion as in [7, 24] (note that the inductive duality
on non-tail recursive session types, i.e. session prefixes that carry a recursive variable as an object)
is shown to be unsound [6]).

The result of the following proposition is used on the well-formedness criteria of a linear envi-
ronment.

Proposition 3.6. If p,q ∈ roles(G) with p 6= q then (Gdp)dq= (Gdq)dp.

Proof. The proof is done by induction on the structure of global types.

3.2. Typing system. We define the typing system for the synchronous multiparty session calculus.
The typing judgements for expressions and processes are of the shapes:

Γ ` e : S and Γ ` P.∆

where Γ is the shared environment which associates variables to sort types (i.e. base types or global
types), shared names to global types and process variables to session environments; and ∆ is the
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Γ ·u : S ` u : S [Name] Γ ` tt,ff : bool [Bool]

Γ ` ei : bool
Γ ` e1 and e2 : bool

[And]
Γ ` n1 : U Γ ` n2 : U

Γ ` n1 = n2 : bool
[Match]

Γ ` a : 〈G〉 Γ ` P.∆ · x : Gdp
max(roles(G)) = p

Γ ` a[p](x).P.∆
[MReq]

Γ ` a : 〈G〉 Γ ` P.∆ · x : Gdp
1≤ p< max(roles(G))

Γ ` a[p](x).P.∆
[MAcc]

Γ ` e : S Γ ` P.∆ · c : T
Γ ` c[q]!〈e〉;P.∆ · c : [q]!〈S〉;T

[Send]
Γ · x : S ` P.∆ · c : T

Γ ` c[q]?(x);P.∆ · c : [q]?(S);T
[Recv]

Γ ` P.∆ · c : T
Γ ` c[q]!〈c′〉;P.∆ · c : [q]!〈T ′〉;T · c′ : T ′

[Deleg]
Γ ` P.∆ · c : T · x : T ′

Γ ` c[q]?(x);P.∆ · c : [q]?(T ′);T
[SRecv]

Γ ` P.∆ · c : T
Γ ` c[q]⊕ l;P.∆ · c : [q]⊕{l : T}

[Sel]
Γ ` Pi .∆ · c : Ti ∀ i ∈ I

Γ ` c[q]&{li : Pi}i∈I .∆ · c : [q]&{li : Ti}i∈I
[Bra]

Γ ` P1 .∆1 Γ ` P2 .∆2 dom(∆1)∩dom(∆2) = /0
Γ ` P1 | P2 .∆1 ·∆2

[Conc]
Γ ` e : bool Γ ` P.∆ Γ ` Q.∆

Γ ` if e then P else Q.∆
[If]

Γ ` 0. /0 [Inact]
Γ ` 0.∆

Γ ` 0.∆ · c : end
[Complete]

Γ ·a : 〈G〉 ` P.∆

Γ ` (ν a)P.∆
[NRes]

fco({s[1] : T1 . . .s[n] : Tn})
Γ ` P.∆ · s[1] : T1 . . .s[n] : Tn

Γ ` (ν s)P.∆
[SRes]

Γ ·X : ∆ ` X .∆ [Var]
Γ ·X : ∆ ` P.∆

Γ ` µX .P.∆
[Rec]

Figure 6: Typing system for synchronous multiparty session calculus

session environment (or linear environment) which associates channels to session types. Formally
we define:

Γ ::= /0 | Γ ·u : S | Γ ·X : ∆ and ∆ ::= /0 | ∆ · c : T
assuming we can write Γ · u : S if u 6∈ dom(Γ). We extend this to a concatenation for typing envi-
ronments as ∆ ·∆′ = ∆∪∆′. We use the following definition to declare the coherence of session
environments.

Definition 3.7 (Coherency). Typing ∆ is coherent with respect to session s (notation co(∆(s))) if
for all s[p] : Tp ∈ ∆ there exists s[q] : Tq ∈ ∆ such that Tpdq= Tqdp. A typing ∆ is coherent (notation
co(∆)) if it is coherent with respect to all s in its domain. We say a typing ∆ is fully coherent
(notation fco(∆)) if it is coherent and if s[p] : Tp ∈ ∆ then for all q ∈ roles(Tp), s[q] : Tq ∈ ∆.

Figure 6 defines the typing system. The typing rules presented here are essentially identical to
the communication typing system for programs in [7], due to the fact that our calculus is synchro-
nous (i.e. we do not use session endpoint queues).

Rule [Name] types a shared name or a shared variable in environment Γ. Rule [Bool] assigns the
type bool to constants tt,ff. Logical expressions are also typed with the bool type via rule [And],
etc. Rule [Match] ensures that the name matching operator has the boolean type.
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Rules [MReq] and [MAcc] type the request and accept processes, respectively. Both rules check
that the type of session variable x agrees with the global type of the session initiation name a that
is projected on the corresponding role p. Furthermore, in rule [MReq] we require that the initiating
role p is the maximum among the roles of the global type G of a while in rule [MAcc] we require
that role p is less than the maximum role of global type G. Note that these session initiation rules
allow processes to contain some but not all of the roles in a session. Rules [MReq] and [MAcc] ensure
that a parallel composition of processes that implement all the roles in a session can proceed with a
sound session initiation.

Rules [Send] and [Recv] are used to type the send, c[p]!〈v〉;P, and receive, c[p]?(x);P, session
prefixes. Both rules prefix the local type of c in the linear environment the send type [p]!〈U〉;T , and
receive type [p]?(U);T , respectively. The typing is completed with the check of the object types
v and x, respectively, in the shared environment Γ. The delegation of a session endpoint is typed
under rules [Deleg] and [Srecv]. Both rules prefix the local type of c in the linear environment with
the send and receive prefixes, respectively, in a similar way with rules [Send] and [Recv]. They check
the type for the delegating object in the linear environment ∆, and a delegation respects the linearity
of the delegating endpoint (in this case c′ and x, respectively), i.e. when an endpoint is sent ([Deleg])
it should not be present in the linear environment of the continuation P. Similarly, when an endpoint
is received ([Srecv]) the receiving endpoint should not be present before the reception.

Rules [Sel] and [Bra] type selecting and branching processes, respectively. A selection prefix is
typed on a select local type, while a branching prefix is typed on a branch local type. A selection
prefix with label l for role c uses label l to select the continuation on name c in the select local type.
A branching process with labels li branches the local types of c in the corresponding Pi in the branch
local type. Furthermore, all Pi processes should have the same linear type on names other than c.

Rule [Conc] types a parallel composition of processes. The disjointness condition on typing
environments ∆1 and ∆2 ensures the linearity of the environment ∆1 ·∆2. Rule [If] types conditional
process, where we require that the expression e to be of bool type and that the branching processes
have the same linear environment. Rule [Inact] types the empty process with the empty linear en-
vironment. Rule [Complete] does an explicit weakening on the linear typing of an inaction process
to achieve a complete linear environment. A complete linear environment is defined as the linear
typing where every session endpoint is mapped to the inactive local type end. Rule [Nres] defines
the typing for shared name restriction. A restricted shared name should be present in the shared
environment Γ before restriction and should not appear in Γ after the restriction. Rule [Sres] uses the
full coherency property to restrict a session name. Full coherency requires that all session endpoints
of a session are present in the linear environment before restriction and furthermore, it requires that
their local projections are mutually dual. A restricted session name does not appear in the domain
of the linear environment.

Rule [Var] returns the linear environment ∆ that is assigned to process variable X in environment
Γ. Rule [Rec] checks that the process P under the recursion has the same linear environment ∆ as
the recursion variable X .

Further examples of typing and typable processes can be found in [11].
Finally, we call the typing judgement Γ ` P.∆ coherent if co(∆).

3.3. Type soundness. We proceed with the proof of a subject reduction theorem to show the sound-
ness of the typing system.

Before we state the subject reduction theorem we define the reduction semantics for local types
extended to include session environments. The reduction on a session environment of a process
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shows the change on the session environment after a possible reduction on the process. We use the
approach from [7, 24] to define session environment reduction.

Definition 3.8 (Session environment reduction).
(1) {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} −→ {s[p] : T · s[q] : T ′}.
(2) {s[p] : [q]⊕{li : Ti}i∈I · s[q] : [p]&{l j : T ′j} j∈J} −→ {s[p] : Tk · s[q] : T ′k} I ⊆ J,k ∈ I.
(3) ∆∪∆′ −→ ∆∪∆′′ if ∆′ −→ ∆′′.

Note that the second rule of the session environment reduction makes the reduction ∆ −→∗ ∆′

non-deterministic (i.e. not always confluent). The typing system satisfies the subject reduction
theorem [7]:

Theorem 3.9 (Subject reduction). If Γ ` P.∆ is coherent and P→→ P′ then Γ ` P′ .∆′ is coherent
with ∆−→∗ ∆′.

Proof. See Appendix A.

4. SYNCHRONOUS MULTIPARTY SESSION SEMANTICS

This section presents the session typed behavioural theory for synchronous multiparty sessions. The
typed bisimulation uses a labelled transition system (LTS) on environment tuples (Γ,∆) to control
the behaviour of untyped processes. The LTS on environments introduces a constrain that captures
accurately multiparty session interactions and lies at the heart of the session typed semantics. The
bisimulation theory presented in this section is extended in the next section to define a bisimulation
theory that uses a more fine-grained LTS, defined using the additional typing information of the
global observer.

4.1. Labelled transition system. We use the following labels (`,`′, . . . ) to define the labelled tran-
sition system:

` ::= a[A](s) | a[A](s) | s[p][q]!〈v〉 | s[p][q]!(a)
| s[p][q]!(s′[p′]) | s[p][q]?〈v〉 | s[p][q]⊕ l | s[p][q]&l | τ

Note that label s[p][q]!〈s′[p′]〉 is subsumed in label s[p][q]!〈v〉. Symbol A denotes a role set, which
is a set of roles. Labels a[A](s) and a[A](s) define the accept and request of a fresh session s by
roles in set A, respectively. Actions on session channels are denoted with the labels s[p][q]!〈v〉 and
s[p][q]?〈v〉 for output and input of value v from p to q on session s. Bound output values can be
shared channels or session endpoints (delegation). s[p][q]⊕ l and s[p][q]&l define the select and
branch, respectively. Label τ is the unobserved transition.

Dual label definition is used to define the parallel rule in the label transition system:

Definition 4.1 (Dual Labels). We define a duality relation� between two labels which is generated
by the following axioms and synmetric ones:

s[p][q]!〈v〉 � s[q][p]?〈v〉 s[p][q]!(v)� s[q][p]?〈v〉 s[p][q]⊕ l � s[q][p]&l

Dual labels are input and output (respectively select and branch) on the same session channel
and on complementary roles. For example, in s[p][q]!〈v〉 and s[q][p]?〈v〉, role p sends to q and role
q receives from p.

We define the notion of complete role set, used for defining session initiation transition seman-
tics later:
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〈Req〉 a[p](x).P
a[{p}](s)−→ P{s[p]/x} 〈Acc〉 a[p](x).P

a[{p}](s)−→ P{s[p]/x}

〈Send〉 s[p][q]!〈e〉;P
s[p][q]!〈v〉−→ P (e ↓ v) 〈Rcv〉 s[p][q]?(x);P

s[p][q]?〈v〉−→ P{v/x}

〈Sel〉 s[p][q]⊕ l;P
s[p][q]⊕l−→ P 〈Bra〉 s[p][q]&{li : Pi}i∈I

s[p][q]&lk−→ Pk

〈Tau〉 P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`)∩bn(`′))(P′ | Q′)
〈Par〉 P `−→ P′ bn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q

〈Res〉 P `−→ P′ n /∈ fn(`)

(ν n)P `−→ (ν n)P′

〈OpenS〉 P
s[p][q]!〈s′[p′]〉−→ P′ s 6= s′

(ν s′)P
s[p][q]!(s′[p′])−→ P′

〈OpenN〉 P
s[p][q]!〈a〉−→ P′

(ν a)P
s[p][q]!(a)−→ P′

〈Alpha〉 P≡α P′ P′ `−→ Q′

P `−→ Q
〈AccPar〉 P1

a[A](s)−→ P′1 P2
a[A′](s)−→ P′2 A∩A′ = /0

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈ReqPar〉 P1
a[A](s)−→ P′1 P2

a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ not complete w.r.t max(A′)

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈TauS〉 P1
a[A](s)−→ P′1 P2

a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ complete w.r.t max(A′)

P1 | P2
τ−→ (ν s)(P′1 | P′2)

We omit the synmetric case of 〈Par〉 and conditionals.

Figure 7: Labelled transition system for processes

Definition 4.2 (Complete role set). We say the role set A is complete with respect to n if n =max(A)
and A = {1,2, . . . ,n}.

A complete role set means that all global protocol participants are present in the set. For
example, {1,3,4} is not complete, but {1,2,3,4} is with respect to 4 and not complete with number
n > 4. We use fn(`) and bn(`) to denote a set of free and bound names in ` and set n(`) =
bn(`)∪fn(`).

Labelled transition system for processes. Figure 7 defines the untyped labelled transition system.
Rules 〈Req〉 and 〈Acc〉 define that processes a[p](x).P and a[p](x).P produce the accept and request
labels, respectively for a fresh session s on role p. Rules 〈Send〉 and 〈Rcv〉 predict that processes
s[p][q]!〈v〉;P and s[p][q]?(x);P produce the send and receive label, respectively for value v from
role p to role q in session s. Similarly, rules 〈Sel〉 and 〈Bra〉 define that the select and branch labels
are observed on processes s[p][q]⊕ l;P and s[p][q]&{li : Pi} respectively.

The last three rules collect and synchronise the multiparty participants together. Rule 〈AccPar〉
accumulates the accept participants and records them into role set A. Rule 〈ReqPar〉 accumulates the
accept participants and the request participant into role set A. Note that the request action role set
always includes the maximum role number among the participants.
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Finally, rule 〈TauS〉 checks that a role set is complete (i.e. all roles are present), thus a new
session can be created under the τ-action (synchronisation). Other rules follow the usual inductive
rules for the π-calculus labelled transition system.

Rule 〈Tau〉 synchronises two processes that exhibit dual labels, while rules 〈Par〉 and 〈Res〉 close
the labelled transition system under the parallel composition and name restriction operators. Note
that 〈Par〉 allows the output transition to the role q even the endpoint at q is in Q. This will be
disallowed by the environment LTS defined in Figure 8 later.

Rules 〈OpenS〉 and 〈OpenN〉 are used for name extrusion. Finally, rule 〈Alpha〉 closes the LTS
under structural congruence.

We write =⇒ for the reflexive and transitive closure of−→, `
=⇒ for the transitions =⇒ `−→=⇒

and
ˆ̀

=⇒ for `
=⇒ if ` 6= τ otherwise =⇒.

Typed labelled transition relation. We define the typed LTS on the basis of the untyped one. This
is realised by defining an environment labelled transition system, defined in Figure 8, which uses
the same labels defined for the untyped LTS. We write (Γ,∆)

`−→ (Γ′,∆′) as the notation where an
environment (Γ,∆) allows an action ` to take place, resulting in environment (Γ′,∆′).

The intuition for this definition is that the observables on session channels occur when the
corresponding endpoint is not present in the linear typing environment ∆, and the type of an action’s
object respects the environment (Γ,∆). In the case when new names are created or received, the
environment (Γ,∆) is extended according to the new name.

Rule {Req} says that a reception of a message via a is possible when a’s type 〈G〉 is recorded
into Γ and the resulting session environment records projected types from G ({s[i] : Gdi}i∈A). Rule
{Acc} is for the send of a message via a and it is dual to the first rule. The next four rules are free
value output {Send}, bound name output {OpenN}, free value input {Recv} and name input {RecvN}.
The rest of rules are free session output {SendS}, bound session output {OpenS}, and session input
{RecvS} as well as selection {Sel} and branching {Bra} rules. The bound session output {OpenS}
records a set of session types s′[pi] at opened session s′. Rule {Tau} follows the reduction rules for
linear session environment defined in § 3.3 (∆ = ∆′ is the case for the reduction at hidden sessions).
Note that if ∆ already contains destination (s[q]), the environment cannot perform the visible action,
but only the final τ-action.

The typed LTS requires that a process can perform an untyped action ` and that its typing
environment (Γ,∆) can match the action `.

Definition 4.3 (Typed transition). A typed transition relation is a typed relation Γ1 ` P1 .∆1
`−→

Γ2 ` P2 .∆2 if (1) P1
`−→ P2 and (2) (Γ1,∆1)

`−→ (Γ2,∆2) with Γi ` Pi .∆i.

4.2. Synchronous multiparty behavioural theory. We begin with the definition of the typed re-
lation as the binary relation over closed, coherent and typed processes.

Definition 4.4 (Typed relation). A relation R as typed relation if it relates two closed, coherent
typed terms, written:

Γ ` P1 .∆1 R Γ ` P2 .∆2

We often write Γ ` P1 .∆1 R P2 .∆2.

Next we define the barb [3] with respect to the judgement:

Definition 4.5 (Barbs). We write:
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Γ(a) = 〈G〉 s /∈ dom(∆)

(Γ,∆)
a[A](s)−→ (Γ,∆ · {s[i] : Gdi}i∈A)

{Req} Γ(a) = 〈G〉 s /∈ dom(∆)

(Γ,∆)
a[A](s)−→ (Γ,∆ · {s[i] : Gdi}i∈A)

{Acc}

Γ ` v : U s[q] /∈ dom(∆)

(Γ,∆ · s[p] : [q]!〈U〉;T )
s[p][q]!〈v〉−→ (Γ,∆ · s[p] : T )

{Send}

s[q] /∈ dom(∆) a 6∈ dom(Γ)

(Γ,∆ · s[p] : [q]!〈U〉;T )
s[p][q]!(a)−→ (Γ ·a : U,∆ · s[p] : T )

{OpenN}

Γ ` v : U s[q] /∈ dom(∆)

(Γ,∆ · s[p] : [q]?(U);T )
s[p][q]?〈v〉−→ (Γ,∆ · s[p] : T )

{Recv}

a 6∈ dom(Γ) s[q] /∈ dom(∆)

(Γ,∆ · s[p] : [q]?(U);T )
s[p][q]?〈a〉−→ (Γ ·a : U,∆ · s[p] : T )

{RecvN}

s[q] /∈ dom(∆)

(Γ,∆ · s′[p′] : T ′ · s[p] : [q]!〈T ′〉;T )
s[p][q]!〈s′[p′]〉−→ (Γ,∆ · s[p] : T )

{SendS}

s[q] /∈ dom(∆)

(Γ,∆ · s[p] : [q]!〈T ′〉;T )
s[p][q]!(s′[p′])−→ (Γ,∆ · s[p] : T · {s′[pi] : Ti})

{OpenS}

s[q],s′[p′] /∈ dom(∆)

(Γ,∆ · s[p] : [q]?(T ′);T )
s[p][q]?〈s′[p′]〉−→ (Γ,∆ · s′[p′] : T ′ · s[p] : T )

{RecvS}

s[q] /∈ dom(∆)

(Γ,∆ · s[p] : [q]⊕{li : Ti}i∈I)
s[p][q]⊕lk−→ (Γ,∆ · s[p] : Tk)

{Sel}

s[q] /∈ dom(∆)

(Γ,∆ · s[p] : [q]&{li : Ti}i∈I)
s[p][q]&lk−→ (Γ,∆ · s[p] : Tk)

{Bra} ∆−→ ∆′ or ∆ = ∆′

(Γ,∆)
τ−→ (Γ,∆′)

{Tau}

Figure 8: Labelled transition system for environments

• Γ ` P.∆ ↓s[p][q] if P≡ (ν ãs̃)(s[p][q]!〈v〉;R | Q) with s /∈ s̃ and s[q] /∈ dom(∆).
• Γ ` P.∆ ↓a if P≡ (ν ãs̃)(a[n](x).R |Q) with a /∈ ã. Then we write m for either a or s[p][q].

We define Γ ` P.∆ ⇓m if there exists Q such that P→→ Q and Γ ` Q.∆′ ↓m.

The set of contexts is defined as follows:
C ::= − | C | P | P |C | (ν n)C | if e then C else C′ | µX .C |

s!〈v〉;C | s?(x);C | s⊕ l;C | s&{li : Ci}i∈I | a(x).C | a(x).C

C[P] substitutes process P for each hole (−) in context C. We say C[P] is closed if fv(C[P]) = /0.
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Definition 4.6 (Linear environment convergence). We write ∆1 
 ∆2 if there exists ∆ such that
∆1 −→∗ ∆ and ∆2 −→∗ ∆.

We expect processes with the same behaviour to have linear environments that converge since
they should follow the same session behaviour.

Note that the convergence condition is not related with the fact that reduction on a linear envi-
ronment is non-deterministic (see Definition 3.8) and two linear environments ∆1 and ∆2 which are
non-deterministic may converge.

We define the reduction-closed congruence based on the definition of barb and [22].

Definition 4.7 (Reduction-closed congruence). A typed relation R is a reduction-reduction con-
gruence if it satisfies the following conditions for each Γ ` P1 .∆1 R P2 .∆2:

(1) ∆1 
 ∆2
(2) Γ ` P1 .∆1 ⇓m iff Γ ` P2 .∆2 ⇓m.
(3) • P1→→ P′1 implies that there exists P′2 such that P2→→ P′2 and Γ ` P′1 .∆′1 R P′2 .∆′2 with

∆′1 
 ∆′2.
• the symmetric case.

(4) For all closed context C and for all ∆′1 and ∆′2, such that Γ `C[P1] .∆′1 and Γ `C[P2] .∆′2
then ∆′1 
 ∆′2 and Γ `C[P1].∆′1 R Γ `C[P2].∆′2.

The union of all reduction-closed congruence relations is denoted as ∼=s.

We now define the synchronous multiparty session bisimilarity as the greatest fixed point on
the weak labelled transition relation for the pairs of co-directed processes.

Definition 4.8 (Synchronous multiparty session bisimulation). A typed relation R over closed pro-
cesses is a (weak) synchronous multiparty session bisimulation or often a synchronous bisimulation
if, whenever Γ ` P1 .∆1 R P2 .∆2, it holds:

(1) Γ ` P1 .∆1
`−→ Γ′ ` P′1 .∆′1 implies Γ ` P2 .∆2

ˆ̀
=⇒ Γ′ ` P′2 .∆′2 such that Γ′ ` P′1 .∆′1 R P′2 .

∆′2.
(2) The symmetric case.

The maximum bisimulation exists which we call synchronous bisimilarity, denoted by ≈s. We
sometimes leave environments implicit, writing e.g. P≈s Q.

Lemma 4.9. If Γ ` P1 .∆1 ≈s P2 .∆2 then ∆1 
 ∆2.

Proof. The proof uses the co-induction method and can be found in Appendix B.1.

Theorem 4.10 (Soundness and completeness). ∼=s = ≈s.

Proof. The proof is a simplification of the proof of Theorem 5.15 in Appendix B.5.

Example 4.11 (Synchronous multiparty bisimulation). We use the running example from the in-
troduction, § 1, for a demonstration of the bisimulation semantics developed in this section. In the
introduction we considered transition under the untyped setting [45]. If we follow the typed labelled
transition system developed in this section we obtain similar interaction patterns.

Recall the definition of processes P1, P2, P3 and R2 from § 1. The linear types for these processes
are empty since they have no free session names.

Γ ` P1 . /0, Γ ` P2 . /0, Γ ` P3 . /0, and Γ ` R2 . /0

where Γ = a : Ga ·b : Gb with

Ga = 1→ 3 : 〈U〉.2→ 3 : 〈U〉.end
Gb = 1→ 2 : 〈U〉.end
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We follow the untyped LTS from Figure 7 to obtain the following processes by 〈Acc〉 and 〈Req〉:

P1
a[{1}](sa)−→ P′1 = b[1](y).sa[1][3]!〈v〉;y[2]!〈w〉;0

P2
a[{2}](sa)−→ P′2 = b[2](y).(y[1]?(z);0 | sa[2][3]!〈v〉;0)

P3
a[{3}](sa)−→ P′3 = sa[3][1]?(z);sa[3][2]?(y);0

R2
a[{2}](sa)−→ R′2 = b[2](y).(y[1]?(z);sa[2][3]!〈v〉;0)

The corresponding environment transitions are defined as:

(Γ, /0)
a[{1}](sa)−→ (Γ, sa[1] : [3]!〈U〉;end)

(Γ, /0)
a[{2}](sa)−→ (Γ, sa[2] : [3]!〈U〉;end)

(Γ, /0)
a[{3}](sa)−→ (Γ, sa[3] : [1]?(U); [2]?(U);end)

We can now observe the typed transitions as follows:

Γ ` P1 . /0
a[{1}](sa)−→ Γ ` P′1 . sa[1] : [3]!〈U〉;end

Γ ` P2 . /0
a[{2}](sa)−→ Γ ` P′2 . sa[2] : [3]!〈U〉;end

Γ ` P3 . /0
a[{3}](sa)−→ Γ ` P′3 . sa[3] : [1]?(U); [2]?(U);end

By 〈AccPar〉, we have

P1 | P2
a[{1,2}](sa)−→ P′1 | P′2

By 〈ReqPar〉, another process combination would invoke

P1 | P3
a[{1,3}](sa)−→ P′1 | P′3

If we compose the missing process in either of both processes, the role set {1,2,3} is now complete
with respect to 3, so that by synchronisation 〈TauS〉 we may observe:

P1 | P2 | P3
τ−→ (ν sa)(P′1 | P′2 | P′3)

Furthermore, we can also observe the corresponding typed transition, since (Γ,∆) can always per-
form a τ action:

Γ ` P1 | P2 | P3 . /0 τ−→ Γ ` (ν sa)(P′1 | P′2 | P′3). /0
Now we demonstrate the intuition given in § 1, i.e. the bisimulation developed in this section

cannot equate P1 | P2 and P1 | R2. We have the following transitions:

Γ ` P′1 | P′2 .∆0
τ−→

Γ ` (ν sb)(sa[1][3]!〈v〉;sb[1][2]!〈w〉;0 | sb[2][1]?(z);0 | sa[2][3]!〈v〉;0) = Q1 .∆0

Γ ` P′1 | R′2 .∆0
τ−→

Γ ` (ν sb)(sa[1][3]!〈v〉;sb[1][2]!〈w〉;0 | sb[2][1]?(z);sa[2][3]!〈v〉;0) = Q2 .∆0

with ∆0 = sa[1] : [3]!〈U〉;end · sa[2] : [3]!〈U〉;end.
From this point, we can check:

Γ ` Q1 .∆0 6≈s
Γ ` Q2 .∆0
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due to the fact that (Γ,∆0)
sa[2][3]!〈v〉−→ and

Γ ` Q1 .∆0
sa[2][3]!〈v〉−→

Γ ` Q2 .∆0

sa[2][3]!〈v〉
6−→

The next result distinguishes the semantics of the typed equivalence semantics developed in
this section from the untyped equivalence semantics [45].

Γ ` Q1 | P′3 .∆0 · sa[3] : [1]?(U); [2]?(U);end≈s 0. sa[a] : end · sa[2] : end · sa[3] : end

since

(Γ,∆)
`
6−→

for any ` 6= τ with ∆ = ∆0 · sa[3] : [1]?(U); [2]?(U);end (by the condition of {Send} in Figure 8).
However the untyped labelled transition semantics do not equate the two processes Q1 | P′3 6≈ 0

since Q1 | P′3
sa[1][3]!〈v〉−→ .

5. GLOBALLY GOVERNED BEHAVIOURAL THEORY

We introduce the semantics for globally governed behavioural theory. In the previous section, the
local typing (∆) is used to constrain the untyped LTS and give rise to a local typed LTS. In a
multiparty distributed environment, communication follows the global protocol, which controls both
an observed process and its observer. The local typing is not sufficient to maintain the consistency
of transitions of a process with respect to a global protocol. In this section we refine the environment
LTS with a global environment E to give a more fine-grained control over the LTS of the processes.
We then show a bisimulation-based reasoning technique which equates the two processes P1 | P2 and
P1 | R2 in § 1 by the governed bisimulation, which cannot be equated by the standard synchronous
typed bisimulation ≈s studied in the previous section.

5.1. Global environments and configurations. We define a global environment (E,E ′, ...) as a
mapping from session names to global types.

E ::= E · s : G | /0

We extend the projection definition on global environments E as follows:

proj(E) =
⋃

s:G∈E

proj(s : G)

where proj(s : G) associates the projection of type G with session name s as follows: proj(s : G) =
{s[p] : Gdp | p ∈ roles(G)}. Note that E is a mapping from a session channel to a global type,
while Γ is a mapping from a shared channel to a global type.

We define a labelled reduction relation over global environments which corresponds to ∆0 −→
∆′0 defined in § 3.3. We use the labels:

λ ::= s : p→ q : U | s : p→ q : l

to annotate reductions over global environments. We define out(λ ) and inp(λ ) as:

out(s : p→ q : U) = out(s : p→ q : l) = p

inp(s : p→ q : U) = inp(s : p→ q : l) = q

and write p ∈ ` if p ∈ {out(`)}∪{inp(`)}.
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Definition 5.1 (Global environment reduction). We define the relation E λ−→ E ′ as the smallest
relation generated by the following rules:

{s : p→ q : 〈U〉.G} s:p→q:U−→ {s : G} (Inter) {s : p→ q : {li : Gi}i∈I}
s:p→q:lk−→ {s : Gk} (SelBra)

{s : G} λ−→ {s : G′} p,q /∈ λ

{s : p→ q : 〈U〉.G} λ−→ {s : p→ q : 〈U〉.G′}
(IPerm)

∀i ∈ I {s : Gi}
λ−→ {s : G′i} p,q /∈ λ

{s : p→ q : {li : Gi}i∈I}
λ−→ {s : p→ q : {li : G′i}i∈I}

(SBPerm)
E λ−→ E ′

E ·E0
λ−→ E ′ ·E0

(GEnv)

We often omit the label λ by writing−→ for λ−→ and−→∗ for ( λ−→)∗. Rule (Inter) is the axiom
for the input and output interaction between two parties; rule (SelBra) reduces on the select/branch
choice; Rules (IPerm) and (SBPerm) define the case where we can permute action λ to be performed
under p → q if p and q are not related to the participants in λ . Note that in our synchronous
semantics, we can permute two actions with no relevance in the participating roles without changing
the interaction semantics of the entire global protocol. Finaly rule (GEnv) is a congruence rule over
global environments.

As a simple example of the above LTS, consider the global type:

s : p→ q : 〈U1〉.p′→ q′ : {l1 : end, l2 : p′→ q′ : 〈U2〉.end}
Since p,q,p′,q′ are pairwise distinct, we can apply the second and third rules to obtain:

s : p→ q : 〈U1〉.p′→ q′ : {l1 : end, l2 : p′→ q′ : 〈U2〉.end}
s:p′→q′:l1−→ s : p→ q : 〈U1〉.end

Next we introduce the governance judgement which controls the behaviour of processes by the
global environment.

Definition 5.2 (Governance judgement). Let Γ ` P .∆ be coherent. We write E,Γ ` P .∆ if ∃E ′
such that E −→∗ E ′ and ∆⊆ proj(E ′).

The global environment E records the knowledge of both the environment (∆) of the observed
process P and the environment of its observer. The side conditions ensure that E is coherent with ∆:
there exist E ′ reduced from E whose projection should cover the environment of P since E should
include the observer’s information together with the observed process information recorded into ∆.
The reason that E is allowed to have a few reduction steps behind the local environment ∆ is that the
observer has more informative global knowledge (in the form of a global type) before the moment
the session was actually reduced to ∆ which coincides with the projection of E ′.

Next we define the LTS for well-formed environment configurations.

Definition 5.3 (Environment configuration). We write (E,Γ,∆) if ∃E ′ such that E −→∗ E ′ and
∆⊆ proj(E ′).

The up-to reduction requirement on E allows a global environment E to configure linear envi-
ronments ∆ that also differ up-to reduction. Specificaly a global environment E configures pairs of
linear environments that type equivalent processes.

We refined the reduction relation on ∆ in § 3.3 as a labelled reduction relation on ∆, which is
used for defining a labelled transition system over environment configurations:

Definition 5.4 (Linear typing labelled reduction).
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s /∈ dom(E) (Γ,∆1)
a[A](s)−→ (Γ,∆2)

(E,Γ,∆1)
a[A](s)−→ (E · s : G,Γ,∆2)

[Acc]
s /∈ dom(E) (Γ,∆1)

a[A](s)−→ (Γ,∆2)

(E,Γ,∆1)
a[A](s)−→ (E · s : G,Γ,∆2)

[Req]

(Γ,∆1)
s[p][q]!〈v〉−→ (Γ,∆2) E1

s:p→q:U−→ E2

(E1,Γ,∆1)
s[p][q]!〈v〉−→ (E2,Γ,∆2)

[Out]

(Γ,∆1)
s[p][q]?〈v〉−→ (Γ · v : U,∆2) E1

s:q→p:U−→ E2

(E1,Γ,∆1)
s[p][q]?〈v〉−→ (E2,Γ · v : U,∆2)

[In]

(Γ,∆1)
s[p][q]!(a)−→ (Γ ·a : 〈G〉,∆2) E1

s:q→p:〈G〉−→ E2

(E1,Γ,∆1)
s[p][q]!(a)−→ (E2,Γ ·a : 〈G〉,∆2)

[ResN]

(Γ,∆1)
s[p][q]!(s′[p′])−→ (Γ,∆2 · {s′[pi] : Ti}i∈I) ∀i ∈ I.Gdpi = Ti s′ /∈ dom(E1) E1

s:q→p:Tp′−→ E2

(E1,Γ,∆1)
s[p][q]!(s′[p′])−→ (E2 · s′ : G,Γ,∆2 · {s′[pi] : Ti}i∈I)

[ResS]

(Γ,∆1)
s[p][q]⊕l−→ (Γ,∆2) E1

s:p→q:l−→ E2

(E1,Γ,∆1)
s[p][q]⊕l−→ (E2,Γ,∆2)

[Sel]
(Γ,∆1)

s[p][q]&l−→ (Γ,∆2) E1
s:q→p:l−→ E2

(E1,Γ,∆1)
s[p][q]&l−→ (E2,Γ,∆2)

[Bra]

(∆1 = ∆2,E1 = E2)∨ (∆1 −→ ∆2,E1
λ−→ E2)

(E1,Γ,∆1)
τ−→ (E2,Γ,∆2)

[Tau]

E1 −→∗ E ′1 (E ′1,Γ1,∆1)
`−→ (E2,Γ2,∆2)

(E1,Γ1,∆1)
`−→ (E2,Γ2,∆2)

[Inv]

Figure 9: Labelled transition system for environment configuations

(1) {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} s:p→q:U−→ {s[p] : T · s[q] : T ′}.
(2) {s[p] : [q]⊕{li : Ti}i∈I · s[q] : [p]&{l j : T ′j} j∈J}

s:p→q:lk−→ {s[p] : Tk · s[q] : T ′k} I ⊆ J,k ∈ I.

(3) ∆∪∆′
λ−→ ∆∪∆′′ if ∆′

λ−→ ∆′′.

Figure 9 defines an LTS over environment configurations that refines the LTS over environments
(i.e (Γ,∆)

`−→ (Γ′,∆′)) in § 4.1.
Each rule requires a corresponding environment transition (Figure 8 in § 4.1) and a corre-

sponding labelled global environment transition in order to control a transition following the global
protocol. Rule [Acc] defines the acceptance of a session initialisation by creating a new mapping
s : G which matches Γ in a governed environment E. Rule [Req] defines the request for a new session
and it is dual to [Acc].

The next six rules are the transition relations on session channels and we assume the condition
proj(E1) ⊇ ∆1 to ensure the base action of the environment matches one in a global environment.
[Out] is a rule for the output where the type of the value and the action of (Γ,∆) meets those in
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E. [In] is a rule for the input and dual to [Out]. [ResN] is a scope opening rule for a name so that
the environment can perform the corresponding type 〈G〉 of a. [ResS] is a scope opening rule for a
session channel which creates a set of mappings for the opened session channel s′ corresponding to
the LTS of the environment. [Sel] and [Bra] are the rules for select and branch, which are similar to
[Out] and [In]. Rule [Tau] defines the silent action for environment configurations, where we require
that reduction on global environments matches reduction on the linear typing. At the same time we
allow a silent action with no effect on the environment configuration. Rule [Inv] closes the labelled
transition system with respect to the global environment. Global environment E1 reduces to E ′1 to
perform the observer’s actions, hence the observed process can perform the action w.r.t. E ′1.

Hereafter we write −→ for τ−→.

Example 5.5 (LTS for environment configuration).
Let:

E = s : p→ q : 〈U〉.p→ q : 〈U〉.G
Γ = v : U
∆ = s[p] : [q]!〈U〉;Tp

with Gdp= Tp, Gdq= Tq and roles(G) = {p,q}.
Tuple (E,Γ,∆) is an environment configuration since there exists E ′ such that:

E −→ E ′ implies proj(E ′)⊃ ∆

Recall that we can write E −→ E ′ for E λ−→ E ′. Indeed we can see that:

E
s:p→q:U−→ s : p→ q : 〈U〉.G

proj(s : p→ q : 〈U〉.G) = s[p] : [q]!〈U〉;Tp · s[q] : [p]?(U);Tq
proj(s : p→ q : 〈U〉.G) ⊃ ∆

An environment configuration transition takes a place on environment configuration (E,Γ,∆) if we
apply the condition of rule [Out] to obtain:

s : p→ q : 〈U〉.G s:p→q:U−→ s : G

(Γ,s[p] : [q]!〈U〉;Tp)
s[p][q]!〈v〉−→ (Γ,s[p] : Tp)

thus we can obtain:

(s : p→ q : 〈U〉.G,Γ,∆)
s[p][q]!〈v〉−→ (s : G,Γ,s[p] : Tp)

By last result and the fact that:
E −→ s : p→ q : 〈U〉.G

we use rule [Inv], to obtain:

(E,Γ,∆)
s[p][q]!〈v〉−→ (s : G,Γ,s[p] : Tp)

as required.
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Governed reduction-closed congruence. To define the reduction-closed congruence, we first refine
the barb, which is controlled by the global witness where observables of a configuration are defined
with the global environment of the observer.

Definition 5.6 (Governed barb).

s[q] /∈ dom(∆) ∃E ′ such that E −→∗ E ′
s:p→q:U−→ ∆ · s[p] : [q]!〈U〉;T ⊆ proj(E ′)

(E,Γ,∆ · s[p] : [q]!〈U〉;T ) ↓s[p][q]

s[q] /∈ dom(∆) ∃E ′ such that E −→∗ E ′
s:p→q:lk−→ , ∆ · s[p] : [q]⊕{li : Ti}i∈I ⊆ proj(E ′) k ∈ I

(E,Γ,∆ · s[p] : [q]⊕{li : Ti}i∈I) ↓s[p][q]

a ∈ dom(Γ)
(E,Γ,∆) ↓a

We write (E,Γ,∆) ⇓m if (E,Γ,∆)−→∗ (Γ,∆′,E ′) and (Γ,∆′,E ′) ↓m.
We define the binary operator t over global environments based on the inclusion of the syntax

tree for global types. The operation is used to define the typed relation with respect to a global
witness and the governed bisimulation. The operatort is used to relate two different, but compatible
observers, E1 and E2.

Definition 5.7. Let T1 and T2 denote local types as defined in § 3. We write T1 v T2 if the syntax tree
of T2 includes one of T1 as a leaf. We extend to G1 vG2 by defining ∀s[p] : T1 ∈ proj(s : G1),∃s[p] :
T2 ∈ proj(s : G2) and T1 v T2. We define: E1 tE2 = {s : Ei(s) | E j(s) v Ei(s), i, j ∈ {1,2}, i 6=
j}∪{s : E1(s),s′ : E2(s′) | s /∈ dom(E2),s′ /∈ dom(E1)}.

As an example for global types inclusion consider that:

[q]?(U ′);T v [p]!〈U〉; [q]?(U ′);T

As an example of E1tE2, let us define:

E1 = s1 : p→ q : 〈U1〉.p′→ q′ : 〈U2〉.p→ q : 〈U3〉.end · s2 : p→ q : 〈W2〉.end
E2 = s1 : p→ q : 〈U3〉.end · s2 : p′→ q′ : 〈W1〉.p→ q : 〈W2〉.end

Then

E1tE2 = s1 : p→ q : 〈U1〉.p′→ q′ : 〈U2〉.p→ q : 〈U3〉.end · s2 : p′→ q′ : 〈W1〉.p→ q : 〈W2〉.end
The behavioural relation w.r.t. a global witness is defined below.

Definition 5.8 (Configuration relation). The relation R is a configuration relation between two
configurations E1,Γ ` P1 .∆1 and E2,Γ ` P2 .∆2, written

E1tE2,Γ ` P.∆1 R P2 .∆2

if E1tE2 is defined.

Proposition 5.9 (Decidability).
(1) Given E1 and E2, a problem whether E1tE2 is defined or not is decidable and if it is defined,

the calculation of E1tE2 terminates.
(2) Given E, a set {E ′ | E −→∗ E ′} is finite.

Proof. (1) since T1 v T2 is a syntactic tree inclusion, it is reducible to a problem to check the
isomorphism between two types. This problem is decidable [50].

(2) the global LTS has one-to-one correspondence with the LTS of global automata in [14]
whose reachability set is finite.
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Definition 5.10 (Global configuration transition). We write E1,Γ1 ` P1 .∆1
`−→ E2,Γ2 ` P2 .∆2 if

E1,Γ1 ` P1 .∆1, Γ1 ` P1 .∆1
`−→ Γ2 ` P2 .∆2 and (E1,Γ1,∆1)

`−→ (E2,Γ2,∆2).

Note that Γ2 ` P2 .∆2 immediately holds by Definition 4.3.
The proposition below states that the configuration LTS preserves the well-formedness.

Proposition 5.11 (Invariants).

(1) (E1,Γ,∆1)
`−→ (E2,Γ2,∆2) implies that (E2,Γ2,∆2) is an environment configuration.

(2) If Γ ` P.∆ and P−→ P′ with co(∆), then E,Γ ` P.∆−→ E,Γ ` P′ .∆′ and co(∆′).

(3) If E1,Γ1 ` P1 .∆1
`−→ E2,Γ2 ` P2 .∆2 then E2,Γ2 ` P2 .∆2 is a governance judgement.

Proof. The proof for Part 1 and Part 3 can be found in Appendix B.3. Part 2 is verified by simple
transitions using [Tau] in Figure 9. co(∆′) is derived by Theorem 3.9.

The definition of the reduction-closed congruence for governance follows. Below we define
E,Γ ` P.∆ ⇓m if P ⇓m and (E,Γ,∆) ⇓m.

Definition 5.12 (Governed reduction-closed congruence). A configuration relation R is governed
reduction-closed congruence if E,Γ ` P1 .∆1 R P2 .∆2 then

(1) E,Γ ` P1 .∆1 ⇓n if and only if E,Γ ` P2 .∆2 ⇓n
(2) • P1→→ P′1 if there exists P′2 such that P2→→ P′2 and E,Γ ` P′1 .∆′1 R P′2 .∆′2.

• the symmetric case.
(3) For all closed context C, such that E,Γ `C[P1].∆′1 and E,Γ `C[P2].∆′2 then E,Γ `C[P1].

∆′1 R C[P2].∆′2.
The union of all governed reduction-closed congruence relations is denoted as ∼=s

g.

5.2. Globally governed bisimulation and its properties. This subsection introduces the globally
governed bisimulation relation definition and studies its main properties.

Definition 5.13 (Globally governed bisimulation). A configuration relation R is a globally gov-
erned weak bisimulation (or governed bisimulation) if whenever E,Γ ` P1 .∆1 R P2 .∆2, it holds:

(1) E,Γ ` P1 .∆1
`−→ E ′1,Γ

′ ` P′1 .∆′1 implies E,Γ ` P2 .∆2
ˆ̀

=⇒ E ′2,Γ
′ ` P′2 .∆′2 such that E ′1t

E ′2,Γ
′ ` P′1 .∆′1 R P′2 .∆′2.

(2) The symmetric case.
The maximum bisimulation exists which we call governed bisimilarity, denoted by ≈s

g. We some-
times leave environments implicit, writing e.g. P≈s

g Q.

Lemma 5.14.
(1) ≈s

g is congruent.
(2) ∼=s

g ⊆ ≈s
g.

Proof. The proof of (1) is by a case analysis on the context structure. The interesting case is the
parallel composition, which uses Proposition 5.11. See Appendix B.4.

The proof uses the technique from [19] (the external actions can be always tested). The proof
can be found in Appendix B.5.

Theorem 5.15 (Soundness and completeness). ≈s
g =
∼=s

g.

Proof. The fact that ≈s
g⊆∼=s

g comes directly from the first part of Lemma 5.14. The proof is com-
pleted using the second part of Lemma 5.14.
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The next theorem clarifies the relation between the locally controlled bisimilarity ≈s and globally
governed bisimilarity ≈s

g.

Theorem 5.16. If for all E such that E,Γ ` P1 .∆1 ≈s
g P2 .∆2 then Γ ` P1 .∆1 ≈s P2 .∆2. Also if

Γ ` P1 .∆1 ≈s P2 .∆2, then for all E, E,Γ ` P1 .∆1 ≈s
g P2 .∆2.

Proof. The proof is based on the properties that exist between semantics of the environment tuples
(Γ,∆) and the semantics of the environment configurations (E,Γ,∆). The full proof can be found in
Appendix B.6.

To clarify the above theorem, consider the following processes:

P1 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s1[2][3]!〈v〉;s2[2][1]?(x);s2[2][3]!〈x〉;0
P2 = s1[1][3]!〈v〉;0 | s2[1][2]!〈w〉;0 | s1[2][3]!〈v〉;s2[2][1]?(x);s2[2][3]!〈x〉;0

We can show that P1 ≈s P2. By Theorem 5.16, we expect that for all E, we have E,Γ ` P1 .∆1 and
E,Γ ` P2 .∆2 then E ` P1 ≈s

g P2. This is in fact true because the possible E that can type P1 and P2
are:

E1 = s1 : 1→ 3 : 〈U〉.2→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈W 〉.2→ 3 : 〈W 〉.end
E2 = s1 : 2→ 3 : 〈U〉.1→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈W 〉.2→ 3 : 〈W 〉.end

and all the up-to weakening instances E (see Lemma B.1) of E1 and E2.
To clarify the difference between ≈s and ≈s

g, we introduce the notion of a simple multiparty
process defined in [24]. A simple process contains only a single session so that it satisfies the
progress property as proved in [24]. Formally a process P is simple when it is typable with a
type derivation where the session typing in the premise and the conclusion of each prefix rule is
restricted to at most a single session (i.e. any Γ ` P .∆ which appears in a derivation, ∆ contains
at most one session channel in its domain, see [24]). Since there is no interleaving of sessions in
simple processes, the difference between ≈s and ≈s

g disappears.

Theorem 5.17 (Coincidence). Assume P1 and P2 are simple. If there exists E such that E,Γ `
P1 .∆1 ≈s

g P2 .∆2, then Γ ` P1 .∆1 ≈s P2 .∆2.

Proof. The proof follows the fact that if P is simple and Γ ` P .∆
`−→ P′ .∆′ then ∃E such that

E,Γ`P.∆
`−→P′.∆′ to continue that if P1 and P2 are simple and there exists E such that E,Γ`P1.

∆1 ≈s
g P2 .∆2 then ∀E,E,Γ ` P1 .∆1 ≈s

g P2 .∆2. The result then comes by applying Theorem 5.16.
The details of the proof are in the Appendix B.7.

To clarify the above theorem, consider:

P1 = s[1][2]?(x);s[1][3]!〈x〉;0 | s[2][1]!〈v〉;0
P2 = s[1][3]!〈v〉;0

It holds that for
E = s : 2→ 1 : 〈U〉.1→ 3 : 〈U〉.end

We can easily reason that E ` P1 ≈s
g P2 hence P1 ≈s P2.

Example 5.18 (Governed bisimulation). Recall the example from § 1 and Example 4.11. Q1 is the
process corresponding to a sequential thread (this corresponds to P1 | P2 in § 1), while Q2 has a
parallel thread instead of the sequential composition (this corresponds to P1 | R2 in § 1).

Q1 = (ν sb)(sa[1][3]!〈v〉;sb[1][2]!〈w〉;0 | sb[2][1]?(x);0 | sa[2][3]!〈v〉;0)
Q2 = (ν sb)(sa[1][3]!〈v〉;sb[1][2]!〈w〉;0 | sb[2][1]?(x);sa[2][3]!〈v〉;0)
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Assume:
Γ = a : Ga ·b : Gb

∆0 = sa[1] : [3]!〈S〉;end · sa[2] : [3]!〈S〉;end
Then we have Γ ` Q1 .∆0 and Γ ` Q2 .∆0. Now assume the two global witnesses as:

E1 = sa : 1→ 3 : 〈S〉.2→ 3 : 〈S〉.end
E2 = sa : 2→ 3 : 〈S〉.1→ 3 : 〈S〉.end

Then the projection of E1 and E2 is given as:
proj(E1) = sa[1] : [3]!〈S〉;end · sa[2] : [3]!〈S〉;end · sa[3] : [1]?(S); [2]?(S);end
proj(E2) = sa[1] : [3]!〈S〉;end · sa[2] : [3]!〈S〉;end · sa[3] : [2]?(S); [1]?(S);end

with ∆0 ⊂ proj(E1) and ∆0 ⊂ proj(E2). The reader should note that the difference between E1 and
E2 is the type of the participant 3 at sa (the third mapping in E1 and E2).

By definition of the global environment configuration, we can write:
Ei,Γ ` Q1 .∆0 and Ei,Γ ` Q2 .∆0 for i = 1,2.

Both processes are well-formed global configurations under both witnesses. Now we can observe

Γ ` Q1 .∆0
sa[2][3]!〈v〉−→ Γ ` Q′1 .∆

′
0

but

Γ ` Q2 .∆0

sa[2][3]!〈v〉
6−→

Hence Γ ` Q1 .∆0 6≈s Q2 .∆0 as detailed in Example 4.11.
Similarly, we have:

E2,Γ ` Q1 .∆0 6≈s
g Q2 .∆0

because E2 allows to output action sa[2][3]!〈v〉 by [Out] in Figure 9 (since E2
sa:2→3:S−→ E ′2).

On the other hand, since E1 forces to wait for sa[2][3]!〈v〉,

E1,Γ ` Q1 .∆0

sa[2][3]!〈v〉
6−→

because we cannot apply [Out] in Figure 9. E1 does not allow to output action sa[2][3]!〈v〉 (since

E1 6
sa:2→3:S−→ ). Hence Q1 and Q2 are bisimilar under E1, i.e. E1,Γ `Q1 .∆0 ≈s

g Q2 .∆0. This concludes
the optimisation illustrated in § 1 is correct.

6. USECASE: UC.R2.13 “ACQUIRE DATA FROM INSTRUMENT” FROM THE OCEAN
OBSERVATORIES INITIATIVE (OOI) [1]

The running example for the thread transformation in the previous sections is the minimum to
demonstrate a difference between ≈s

g and ≈s. This discipline can be applied to general situations
where multiple agents need to interact following a global specification. Our governance bisimu-
lation can be useful in other large applications, for example, it can be applied to the optimisation
and verification of distributed systems, and the correctness of service communication. In this sec-
tion, we present a reasoning example based on the real world usecase, UC.R2.13 “Acquire Data
From Instrument”, from the Ocean Observatories Initiative (OOI) [1], and show the optimisation
and verification of network services.

In this usecase, we assume a user program (U) which is connected to the Integrated Observatory
Network (ION). The ION provides the interface between users and remote sensing instruments. The
user requests, via the ION agent services (A), the acquisition of processed data from an instrument
(I). More specifically the user requests from the ION two different formats of the instrument data.
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Instrument Agent User

s2[i][a1]!〈rd〉

s1[a1][u]!〈pd1〉

s2[a1][i]!〈ack〉

s1[i][u]!〈pd2〉

Usecase 1

Instrument Agent1 Agent2 User

s2[i][a1]!〈rd〉

s1[a1][u]!〈pd1〉

s2[a1][i]!〈ack〉

s2[i][a2]!〈rd〉

s1[a2][u]!〈pd2〉
s2[a2][i]!〈ack〉

Usecase 2

Instrument Agent1 Agent2 User
s2[i][a1]!〈rd〉

s2[i][a2]!〈rd〉

s1[a1][u]!〈pd1〉

s1[a2][u]!〈pd2〉

s2[a1][i]!〈ack〉

s2[a2][i]!〈ack〉

Usecase 3

Figure 10: Three usecases from UC.R2.13 “Acquire Data From Instrument” in [1]

In the above usecase we distinguish two points of communication coordination: i) an internal ION
multiparty communication and ii) an external communication between ION instruments and agents
and the user. In other words it is natural to require the initiation of two multiparty session types
to coordinate the services and clients involved in the usecase. The behaviour of the multiparty
session connection between the User (U) and ION is dependent on the implementation and the
synchronisation of the internal ION session.

Below we present three possible implementation scenarios and compare their behaviour with
respect to the user program. Depending on the ION requirements we can choose the best imple-
mentation with the correct behaviour.

6.1. Usecase Scenario 1. In the first scenario (depicted in Usecase 1 in Figure 10) the user program
(U) wants to acquire the first format of data from the instrument (I) and at the same time acquire the
second format of the data from an agent service (A). The communication between the agent (A) and
the instrument happens internally in the ION on a separate private session.

(1) A new session connection s1 is established between (U), (I) and (A).
(2) A new session connection s2 is established between (A) and (I).
(3) (I) sends raw data through s2 to (A).
(4) (A) sends processed data (format 1) through s1 to (U).
(5) (A) sends the acknowledgement through s2 to (I).
(6) (I) sends processed data (format 2) through s1 to (U).
The above scenario is implemented as follows:

I0 | A |U
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where

I0 = a[i0](s1).b[i0](s2).s2[i0][a1]!〈rd〉;s2[i0][a1]?(x);s1[i0][u]!〈pd〉;0
A = a[a1](s1).b[a1](s2).s2[a1][i0]?(x);s1[a1][u]!〈pd〉;s2[a1][i0]!〈ack〉;0
U = a[u](s1).s1[u][a1]?(x);s1[u][i0]?(y);0

and i0 is the instrument role, a1 is the agent role and u is the user role.

6.2. Usecase scenario 2. Use case scenario 1 implementation requires from the instrument pro-
gram to process raw data in a particular format (format 2) before sending them to the user program.
In a more modular and fine-grain implementation, the instrument program should only send raw
data to the ION interface for processing and forwarding to the user. A separate session between
the instrument and the ION interface and a separate session between the ION interface and the user
make a distinction into different logical and processing levels.

To capture the above implementation we assume a scenario (depicted in Usecase 2 in Figure 10)
with the user program (U), the instrument (I) and agents (A1) and (A2):

(1) A new session connection s1 is established between (U), (A1) and (A2).
(2) A new session connection s2 is established between (A1), (A2) and (I).
(3) (I) sends raw data through s2 to (A1).
(4) (A1) sends processed data (format 1) through s1 to (U).
(5) (A1) sends the acknowledgement through s2 to (I).
(6) (I) sends raw data through s2 to (A2).
(7) (A2) sends processed data (format 2) through s1 to (U).
(8) (A2) sends the acknowledgement through s2 to (I).

The above scenario is implemented as follows:

I1 | A1 | A2 |U
where

I1 = b[i](s2).s2[i][a1]!〈rd〉;s2[i][a1]?(x);s2[i][a2]!〈rd〉;s2[i][a1]?(x);0
A1 = a[a1](s1).b[a1](s2).s2[a1][i]?(x);s1[a1][u]!〈pd〉;s2[a1][i]!〈ack〉;0
A2 = a[a2](s1).b[a2](s2).s2[a2][i]?(x);s1[a2][u]!〈pd〉;s2[a2][i]!〈ack〉;0
U = a[u](s1).s1[u][a1]?(x);s1[u][a2]?(y);0

and i is the instrument role, a1 and a2 are the agent roles and u is the user role. Furthermore, for
session s1 we let role i0 (from scenario 1) as a2, since we maintain the session s1 as it is defined in
the scenario 1.

6.3. Usecase scenario 3. A step further is to enhance the performance of usecase scenario 2 if
the instrument (I) code in usecase scenario 2 can have a different implementation, where raw data
is sent to both agents (A1, A2) before any acknowledgement is received. ION agents can process
data in parallel resulting in an optimised implementation. This scenario is depicted in Usecase 3 in
Figure 10.

(1) A new session connection s1 is established between (U), (A1) and (A2).
(2) A new session connection s2 is established between (A1), (A2) and (I).
(3) (I) sends raw data through s2 to (A1).
(4) (I) sends raw data through s2 to (A2).
(5) (A1) sends processed data (format 1) through s1 to (U).
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(6) (A1) sends acknowledgement through s2 to (I).
(7) (A2) sends processed data (format 2) through s1 to (U).
(8) (A2) sends acknowledgement through s2 to (I).
The process is now refined as

I2 | A1 | A2 |U
where

I2 = b[i](s2).s2[i][a1]!〈rd〉;s2[i][a2]!〈rd〉;s2[i][a1]?(x);s2[i][a1]?(x);0

and i implements the instrument role, a1 and a2 are the agent roles and u is the user role.

6.4. Bisimulations. The main concern of the three scenarios is to implement the Integrated Ocean
Network interface respecting the multiparty communication protocols.

Having the user process as the observer we can see that typed processes:

Γ ` I0 | A.∆0 and Γ ` I1 | A1 | A2 .∆1

are bisimilar (using ≈s) since in both process we observe the following transition relations (recall
that i0= a2) :

Γ ` I0 | A.∆0
a[s](a1,i0)−→ τ−→ s1[a1][u]!〈pd〉−→ s1[i0][u]!〈pd〉−→

and
Γ ` I1 | A1 | A2 .∆1

a[s](a1,a2)−→ τ−→ s1[a1][u]!〈pd〉−→ s1[a2][u]!〈pd〉−→
Next we give the bisimulation closure. Let:

Γ ` I0 | A.∆0
a[s](a1,a2)−→ Γ ` P1 .∆01

τ−→ Γ ` P2 .∆02
τ−→ Γ ` P3 .∆03

s1[a1][u]!〈pd〉−→ Γ ` P4 .∆04
τ−→ Γ ` P5 .∆05

s1[i0][u]!〈pd〉−→ Γ ` P6 .∆06

Γ ` I1 | A1 | A2 .∆1
a[s](a1,a2)−→ Γ ` Q1 .∆11

τ−→ Γ ` Q2 .∆12
τ−→ Γ ` Q3 .∆13

s1[a1][u]!〈pd〉−→ Γ ` Q4 .∆14
τ−→ Γ ` Q5 .∆15

τ−→ Γ ` Q6 .∆16
s1[a2][u]!〈pd〉−→ Γ ` P7 .∆17

τ−→ Γ ` Q8 .∆18

The bisimulation closure is:
R = {(Γ ` I0 | A.∆0,Γ ` I1 | A1 | A2 .∆1),(Γ ` P1 .∆01,Γ ` Q1 .∆11)

(Γ ` P2 .∆02,Γ ` Q2 .∆12),(Γ ` P3 .∆03,Γ ` Q3 .∆13)
(Γ ` P4 .∆04,Γ ` Q4 .∆14),(Γ ` P5 .∆05,Γ ` Q5 .∆15)
(Γ ` P5 .∆05,Γ ` Q6 .∆16),(Γ ` P6 .∆06,Γ ` Q7 .∆17)
(Γ ` P6 .∆06,Γ ` Q8 .∆18)}

The two implementations (scenario 1 and scenario 2) are completely interchangeable with re-
spect to ≈s.

If we proceed with the case of the scenario 3 we can see that typed process Γ ` I2 | A1 | A2 .∆2
cannot be simulated (using ≈s) by scenarios 1 and 2, since we can observe the execution:
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Γ ` I1 | A1 | A2 .∆1
τ−→ a[s](a1,a2)−→ s1[a2][u]!〈pd〉−→

By changing the communication ordering in the ION private session s2 we change the commu-
nication behaviour on the external session channel s1. Nevertheless, the communication behaviour
remains the same if we take into account the global multiparty protocol of s1 and the way it governs
the behaviour of the three usecase scenarios.

Hence we use ≈s
g. The definition of the global environment is as follows:

E = s1 : a1→ u : 〈PD〉.a2→ u : 〈PD〉.
The global protocol governs processes I1 | A1 | A2 (similarly, I0 | A) and I2 | A1 | A2 to always observe

action
s1[a2][u]!〈pd〉−→ after action

s1[a1][u]!〈pd〉−→ for both processes.
Also note that the global protocol for s2 is not present in the global environment, because s2 is

restricted. The specification and implementation of session s2 are abstracted from the behaviour of
session s1.

7. RELATED AND FUTURE WORK

Session types [21, 46] have been studied over the last decade for a wide range of process calculi
and programming languages, as a typed foundation for structured communication programming.
Recently several works developed multiparty session types and their extensions. While typed be-
havioural equivalences are one of the central topics of the π-calculus, surprisingly the typed be-
havioural semantics based on session types have been less explored and focusing only on binary
(two-party) sessions.

In this section we first compare our work in a broader context in relation with the previous
work on typed behavioural theories in the π-calculus. We then discuss and compare our work with
more specific results: behavioural theories in the binary session types and bisimulations defined
with environments.

Typed behavioural theories in the π-calculus. An effect of types to behaviours of processes was
first studied with the IO-subtyping in [42]. Since types can limit contexts (environments) where
processes can interact, typed equivalences usually offer coarse semantics than untyped semantics.
After [42], many works on typed π-calculi have investigated correctness of encodings of known
concurrent and sequential calculi in order to examine semantic effects of proposed typing systems.

The type discipline closely related to session types is a family of linear typing systems. The
work [26] first proposed a linearly typed barbed congruence and reasoned a tail-call optimisation
of higher-order functions which are encoded as processes. The work [47] had used a bisimulation
of graph-based types to prove the full abstraction of encodings of the polyadic synchronous π-
calculus into the monadic synchronous π-calculus. Later typed equivalences of a family of linear
and affine calculi [4, 5, 48] were used to encode PCF [33, 43], the simply typed λ -calculi with sums
and products, and system F [18] fully abstractly (a fully abstract encoding of the λ -calculi was an
open problem in [34]). The work [49] proposed a new bisimilarity method associated with linear
type structure and strong normalisation. It presented applications to reason secrecy in programming
languages. A subsequent work [23] adapted these results to a practical direction. It proposes new
typing systems for secure higher-order and multi-threaded programming languages. In these works,
typed properties, linearity and liveness, play a fundamental role in the analysis. In general, linear
types are suitable to encode “sequentiality” in the sense of [2, 25].
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Our first bisimulation ≈s is classified as one of linear bisimulations, capturing a mixture be-
tween shared behaviours (interactions at shared names) and linear behaviours (interactions at session
names). Hence it is coarser than the untyped semantics (see Example 4.11). Contrast to these linear
bisimulations, the governance bisimulation offers more fine-grained equivalences since the same
typable processes are observed in different ways depending on a witness (global types). See the last
paragraph for a relationship with environment bisimulations.

Behavioural theories in the binary session types. Our work in [30, 31] develops an asynchronous
binary session typed behavioural theory with event operations. A labelled transition system is de-
fined on session type process judgements and ensures properties, such as linearity in the presence
of asynchronous queues. We then apply the theory to validate a transformation between threaded
and event servers based on the Lauer-Needham duality [32]. For reasoning this transformation, we
use a confluence technique developed in [40]. We have established several up-to techniques using
confluence and determinacy properties on reductions on typed session names. These useful up-to
techniques are still applicable to our standard and governed bisimulations since the up-to bisim-
ulation obtained in [30, 31] is only concerned on the local τ-actions on session names. It is an
interesting future work to investigate the up-to techniques or useful axioms which are specific to the
governed bisimulation.

The work [39] proves that the proof conversions induced by a Linear Logic interpretation of ses-
sion types coincide with an observational equivalence over a strict subset of the binary synchronous
session processes. The approach is extended to the binary asynchronous and binary synchronous
polymorphic session processes in [16] and [8], respectively.

The main focus of our paper is multiparty session types and governed bisimulation, whose
definitions and properties crucially depend on information of global types. In the first author’s
PhD thesis [28], we studied how governed bisimulations can be systematically developed under
various semantics including three kinds of asynchronous semantics by modularly changing the LTS
for processes, environments and global types. For governed bisimulations, we can reuse all of the
definitions among four semantics by only changing the conditions of the LTS of global types to suit
each semantics.

Another recent work [13] gives a fully abstract encoding of a binary synchronous session typed
calculus into a linearly typed π-calculus [4].2 We believe the same encoding method is smoothly
applicable to ≈s since it is defined solely based on the projected types (i.e. local types). However a
governed bisimulation requires a global witness, hence the additional global information would be
required for full abstraction.

Behavioural semantics defined with environments. The constructions of our work are hinted by
[20] which studies typed behavioural semantics for the π-calculus with IO-subtyping where an LTS
for pairs of typing environments and processes is used for defining typed testing equivalences and
barbed congruence. On the other hand, in [20], the type environment indexing the observational
equivalence resembles more a dictator where the refinement can be obtained by the fact that the
observer has only partial knowledge on the typings, than a coordinator like our approach. Several
papers have developed bisimulations for the higher-order π-calculus or its variants using the infor-
mation of the environments. In [44] the authors take a general approach for developing a behavioural
theory for higher order processes, both in the λ -calculus and the π-calculus. The bisimulation rela-
tions are developed in the presence of an environment knowledge for higher order communication.

2The work [12] also uses linear types to encode binary session types for the first and higher-order π-calculi [35], but
it does not study full abstraction results with respect to a behavioural equivalence or bisimulation.
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Congruence and compositionality of processes are restricted with respect to the environment. A
recent paper [27] uses a pair of a process and an observer knowledge set for the LTS. The knowl-
edge set contains a mapping from first order values to the higher-order processes, which allows a
tractable higher-order behavioural theory using the first-order LTS.

We record a choreographic type as the witness in the environment to obtain fine-grained bisim-
ulations of multiparty processes. The highlight of our bisimulation construction is an effective use
of the semantics of global types for LTSs of processes (cf. [Inv] in Figure 9 and Definition 5.10).
Global types can guide the coordination among parallel threads giving explicit protocols, hence it is
applicable to a semantic-preserving optimisation (cf. Example 5.18 and § 6).

Future work. While it is known that it is undecidable to check P ≈ Q in the full π-calculus, it
is an interesting future topic to investigate automated bisimulation-checking techniques or finite
axiomatisations for the governed bisimulations for some subset of multiparty session processes.

More practical future direction is incorporating with, not only well-known subtyping of session
types [13, 17] but also advanced refinements for communication optimisation (such as asynchro-
nous subtyping [36, 37] and asynchronous distributed states [10]) to seek practical applications of
governed bisimulations to, e.g. parallel algorithms [38] and distributed computing [1].
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APPENDIX A. PROOF FOR THEOREM 3.9

We first state a substitution lemma, used in the proof of the subject reduction theorem (Theorem 3.9).
The statement is from the substitution lemma in [7].

Lemma A.1 (Substitution).
• If Γ · x : S ` P.∆ and Γ ` v : S then Γ ` P{v/x}.∆.
• If Γ ` P.∆ · y : T then Γ ` P{s[p]/y}.∆ · s[p] : T

Proof. The proof is a standard induction on the typing derivation.

We state Subject congruence.

Lemma A.2 (Subject Congruence). Let Γ ` P1 .∆ and P1 ≡ P2. Then Γ ` P2 .∆.

Proof. The proof is standard and straightforward by induction.

A.1. Proof for Theorem 3.9.

Proof. For the subject reduction proof we apply induction on the structure of the reduction relation.
We present the two key cases: the rest is similar with the subject reduction theorem for the commu-
nication typing system in [7].

Case: [Link]
Let:

P = a[p](x1).P1 | . . . | a[n](xn).Pn

We apply the typing rules [MAcc], [MReq] and [Conc] to obtain Γ ` P.∆ with co(∆). Next assume
that:

P−→ P′ = (ν s)(P1{s[1]/x1} | . . . | Pn{s[n]/xn})
From rule [Conc] and Lemma A.1, we obtain:

Γ ` P1{s[1]/x1} | . . . | Pn{s[n]/xn}.∆ · s[1] : T1 . . .s[n] : Tn

with fco({s[1] : T1 . . .s[n] : Tn}) (since each Ti is a projection of Γ(a)). We apply rule [SRes] to
obtain Γ ` P′ .∆, as required.

Case: [Comm]
Let:

P = s[p][q]!〈v〉;P1 | s[q][p]?(x);P2

and
P−→ P1 | P2{v/x}

We apply typing rules [Send], [Rcv] and [Conc] to obtain: Γ ` P.∆ with:

∆ = ∆1 · s[p] : [q]!〈U〉;Tp · s[q] : [p]?(U);Tq
and using Lemma A.1 we obtain that Γ ` P1 | P2{v/x}.∆1.
From the induction hypothesis we know that co(∆). From the coherency of ∆ and from Proposi-
tion 3.6 we obtain:

co(∆1)

([q]!〈U〉;Tp)dq = ([p]?(U);Tq)dp
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The latter result implies that !〈U〉;(Tpdq) = ?(U);(Tqdp), which in turn implies that Tpdq = Tqdp.
From the last result and the coherency of ∆1 we get:

co(∆1 · s[p] : Tp · s[q] : Tq)

Hence Γ ` P1 | P2{v/x}.∆′ with ∆′ = ∆1 · s[p] : Tp · s[q] : Tq, and ∆′ is coherent.

APPENDIX B. PROOFS FOR BISIMULATION PROPERTIES

B.1. Proof for Lemma 4.9.

Proof. We use the coinductive method based on the bisimilarity definition. Assume that for Γ `
P1 .∆1 ≈s P2 .∆2, we have ∆1 
 ∆2. Then by the definition of 
, there exists ∆ such that:

∆1 −→∗ ∆ and ∆2 −→∗ ∆ (B.1)

Now assume that Γ ` P1 .∆1
`−→ P′1 .∆′1 then, Γ ` P2 .∆2

`
=⇒ P′2 .∆′2 and by the typed transition

definition we obtain (Γ,∆1)
`−→ (Γ,∆′1) and (Γ,∆2)

`
=⇒ (Γ,∆′2). We need to show that ∆′1 
 ∆′2.

We prove by a case analysis on the transition `−→ on (Γ,∆1) and (Γ,∆2).

Case `= τ:
We use the fact that τ−→ with ≡ coincides with −→. By Theorem 3.9, we obtain that if Γ ` P1 .∆1
and P1 −→ P′1 then Γ ` P′1 .∆′1 and ∆1 −→ ∆′1 or ∆1 = ∆′1.

For environment ∆2 we obtain that if Γ ` P2 .∆2 and P2→→ P′2 then Γ ` P′2 .∆′2 and ∆2 −→∗ ∆′2.
From the coinductive hypothesis in (B.1), we obtain that there exists ∆ such that:

∆1 −→ ∆′1 −→∗ ∆

∆2 −→∗ ∆′2 −→∗ ∆

or
∆1 = ∆′1 −→∗ ∆

∆2 −→∗ ∆′2 −→∗ ∆

as required.

Case `= a[p](s) or `= a[p](s):
The environment tuple transition on ` is:

(Γ,∆1)
`−→ (Γ,∆1 · s[p] : Tp · . . . · s[q] : Tq)

(Γ,∆2) =⇒ `−→=⇒ (Γ,∆′′2 · s[p] : Tp · . . . · s[q] : Tq)

We set
∆
′ = ∆ · s[p] : Tp · . . . · s[q] : Tq

to obtain:

∆1 · s[p] : Tp · . . . · s[q] : Tq −→∗ ∆
′

∆
′′
2 · s[p] : Tp · . . . · s[q] : Tq −→∗ ∆

′

by the coinductive hypothesis (B.1).

Case `= s[p][q]!〈v〉:
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We know from the definition of environment transition, s[q] /∈ dom(∆1) and s[q] /∈ dom(∆2) and thus
s[q] /∈ dom(∆).

From the typed transition we know that ∆1 and ∆2 have the form:

∆1 = s[p] : [q]!〈v〉;T ·∆′′1
∆2 = s[p] : [q]!〈v〉;T ·∆′′2

and from the coinductive hypothesis (B.1), there exists ∆ = s[p] : [q]!〈v〉;T ·∆′′ such that:

∆1 −→∗ ∆

∆2 −→∗ ∆

Note that there is no reduction on s[p] because s[q] /∈ dom(∆).
From the environment transition relation we obtain that:

∆
′
1 = s[p] : T ·∆′′1

∆
′
2 = s[p] : T ·∆′′2

The last step is to set ∆′ = s[p] : T ·∆′′ to obtain ∆′1 −→∗ ∆′ and ∆′2 −→∗ ∆′ as required.

Case `= s[p][q]!(s′[p′]):
This case follows a similar argumentation with the case `= s[p][q]!〈v〉.
We know from the definition of environment transition, s[q] /∈ dom(∆1) and s[q] /∈ dom(∆2), thus
s[q] /∈ dom(∆).

From the typed transition we know that ∆1 and ∆2 have the form:

∆1 = s[p] : [q]!〈T ′〉;T ·∆′′1
∆2 = s[p] : [q]!〈T ′〉;T ·∆′′2

and from the coinductive hypothesis (B.1), there exists ∆ = s[p] : [q]!〈T ′〉;T ·∆′′ such that:

∆1 −→∗ ∆

∆2 −→∗ ∆

From the environment transition relation we obtain that:

∆
′
1 = s[p] : T ·∆′′1

∆
′
2 = s[p] : T ·∆′′2

The last step is to set ∆′ = s[p] : T ·∆′′ to obtain ∆′1 −→∗ ∆′ and ∆′2 −→∗ ∆′, as required.

The remaining cases on session channel actions are similar.

B.2. Weakening and strengthening. The following lemmas are essential for invariant properties.

Lemma B.1 (Weakening). (1) If E,Γ ` P.∆ then
• E · s : G,Γ ` P.∆.
• E = E ′ · s : G and ∃G′ such that {s : G′} −→∗ {s : G} then E ′ · s : G′,Γ ` P.∆.

(2) If (E,Γ,∆) `−→ (E,Γ′,∆′) then

• (E · s : G,Γ,∆)
`−→ (E · s : G,Γ′,∆′)

• If E = E ′ · s : G and {s : G′} −→∗ {s : G} then (E ′ · s : G′,Γ,∆) `−→ (E ′ · s : G′,Γ′,∆′)
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(3) If E,Γ ` P1 .∆2 ≈s
g P2 .∆2

• E · s : G,Γ ` P1 .∆2 ≈s
g P2 .∆2

• If E = E ′ · s : G and {s : G′} −→∗ {s : G} then E ′ · s : G′,Γ ` P1 .∆2 ≈s
g P2 .∆2

Proof. We only show Part 1. Other parts are similar.
• From the governance judgement definition we have that E −→∗ E ′ and proj(E ′)⊇ ∆. Let

E · s : G−→ E ′ · s : G. Then proj(E ′ · s : G) = proj(E ′)∪proj(s : G)⊇ proj(E ′)⊇ ∆.
• From the governance judgement definition we have that there exist E1 an G1 such that

E ′ ·s : G−→∗ E1 ·s : G1 and proj(E1 ·s : G1)⊇∆. Let E ′ ·s : G′−→∗ E ′ ·s : G−→∗ E1 ·s : G1.
Hence the result is immediate.

Lemma B.2 (Strengthening). (1) If E · s : G,Γ ` P.∆ and
• If s /∈ fn(P) then E,Γ ` P.∆

• If ∃G′,G1 s.t. E · s : G −→∗ E2 · s : G′ −→∗ E1 · s : G1 with proj(E1 · s : G1)⊇ ∆, then
E · s : G′,Γ ` P.∆

(2) If (E · s : G,Γ,∆)
`−→ (E ′ · s : G,Γ′,∆′) then

• (E,Γ,∆) `−→ (E ′,Γ′,∆′)
• If ∃G′ s.t. E · s : G −→∗ E2 · s : G′ −→∗ E1 · s : G1 with proj(E1 · s : G1) ⊇ ∆, (E · s :

G′,Γ,∆) `−→ (E ′ · s : G′,Γ′,∆′)
(3) If E · s : G,Γ ` P1 .∆2 ≈s

g P2 .∆2
• If s /∈ fn(P) then E,Γ ` P1 .∆2 ≈s

g P2 .∆2
• If ∃G′ s.t. E · s : G −→∗ E2 · s : G′ −→∗ E1 · s : G1 with proj(E1 · s : G1) ⊇ ∆, E · s :

G′,Γ ` P1 .∆2 ≈s
g P2 .∆2

Proof. We prove for part 1. Other parts are similar.
• From the governance judgement definition we have that E ·s : G−→∗ E1 ·s : G1 and proj(E1 ·

s : G1) = proj(E1)∪ proj(s : G1) ⊇ ∆. Since s /∈ fn(P) then s /∈ dom(∆), then proj(s :
G1)∩∆ = /0. So proj(E1)⊇ ∆ and E −→∗ E1.
• The result is immediate from the definition of governance judgement.

B.3. Configuration Transition Properties.

Lemma B.3.

• If E
s:p→q:U−→ E ′ then {s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(E) and {s[p] : Tp,s[q] :

Tq} ⊆ proj(E ′).

• If E
s:p→q:l−→ E ′ then {s[p] : [q]⊕{li : Tip},s[q] : [p]&{li : Tiq}}⊆ proj(E) and {s[p] : Tkp,s[q] :

Tkq} ⊆ proj(E ′)

Proof. Part 1: We apply inductive hypothesis on the structure of the definition of s : p→ q : U . The
base case

{s : p→ q : 〈U〉.G} s:p→q:U−→ {s : G}
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is easy since

{s[p] : (p→ q : 〈U〉.G)dp,s[q] : (p→ q : 〈U〉.G)dq}=
{s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(s : p→ q : 〈U〉.G)

and

{s[p] : Gdp,s[q] : Gdq}= {s[p] : Tp,s[q] : Tq} ⊆ proj(s : G)

The main induction rule concludes that:

{s : p′→ q′ : 〈U〉.G} s:p→q:U−→ {s : G}

if p 6= p′ and q 6= q′ and {s : G} s:p→q:U−→ {s : G′}. From the induction hypothesis we know that:

{s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(s : G)

{s[p] : Tp,s[q] : Tq} ⊆ proj(s : G′)

to conclude that:

{s[p] : (p′→ q′ : 〈U〉.G)dp,s[q] : (p′→ q′ : 〈U〉.G)dq}=
{s[p] : Gdp,s[q] : Gdq}=

{s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(s : G)

and

{s[p] : (p′→ q′ : 〈U〉.G′)dp,s[q] : (p′→ q′ : 〈U〉.G′)dq}=
{s[p] : G′dp,s[q] : G′dq}=

{s[p] : Tp,s[q] : Tq} ⊆ proj(s : G′)

as required.
Part 2: Similar.
Part 3: From the global configuration transition relation (Definition 5.10), we obtain that

(E1,Γ1,∆1)
`−→ (E2,Γ2,∆2)

Γ1 ` P1 .∆1
`−→ Γ2 ` P2 .∆2

Then from the definition of governed environment, we can show that E2,Γ2 ` P2 .∆2 is a governed
judgement: this is because (E2,Γ2,∆2) is an environment configuration, hence ∃E ′2, E2 −→ E ′2 and
proj(E ′2)⊇ ∆2.

Proof for Proposition 5.11.

Proof. (1) We apply induction on the definition structure of `−→.
Basic Step:
Case: `= a[s](A). From rule [Acc] we obtain

(E1,Γ1,∆1)
`−→ (E1 · s : G,Γ1,∆1 · {s[pi] : sdpi}pi∈A)

From the environment configuration definition we obtain that

∃E ′1 such that E1 −→∗ E ′1, proj(E ′1)⊇ ∆1
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We also obtain that proj(s : G)⊇ {s[pi] : Gdpi}i∈A. Thus we can conclude that

E1 · s : G−→∗ E ′1 · s : G
proj(E1 · s : G)⊇ ∆1 · {s[pi] : Gdpi}pi∈A

Case: `= a[s](A). Similar as above.

Case: `= s[p][q]!〈v〉. From rule [Out] we obtain

(E1,Γ,∆ · s[p] : [q]!〈U〉;T ) `−→ (E2,Γ,∆ · s[p] : T ) (B.2)
proj(E1) ⊇ ∆ · s[p] : [q]!〈U〉;T (B.3)

E1
s:p→q:U−→ E2 (B.4)

From (B.3), we obtain proj(E1)⊇ ∆ · {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} and from (B.4) and
Lemma B.3, we obtain that proj(E2)⊇ ∆ · {s[p] : T · s[q] : T ′}.

Case: `= s[p][q]!(s′[p′]).

(E1,Γ,∆ · s[p] : [q]!〈Tp′〉;T ) `−→ (E2 · s : G,Γ,∆ · s[p] : T · {s[pi] : Gdpi}) (B.5)
proj(E1) ⊇ ∆ · s[p] : [q]!〈T ′p〉;T (B.6)

E1
s:p→q:T ′p−→ E2 (B.7)

proj(s : G) ⊇ {s[pi] : Gdpi} (B.8)

From (B.6) we obtain proj(E1) ⊇ ∆ · {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} and from (B.7) and
Lemma B.3 we obtain that proj(E2) ⊇ ∆ · {s[p] : T · s[q] : T ′} ⊃ ∆ · s[p] : T . From (B.8) we ob-
tain that proj(E2 · s : G)⊇ ∆ · s[p] : T · {s[pi] : Gdpi}, as required.
The rest of the base cases are similar.

Inductive Step:
The inductive rule for environment configuration is [Inv]. Let (E1,Γ1,∆1)

`−→ (E2,Γ2,∆2). From
rule [Inv] we obtain:

E1 −→∗ E ′1 (B.9)

(E ′1,Γ1,∆1)
`−→ (E2,Γ2,∆2) (B.10)

From the inductive hypothesis we know that, from (B.10), there exists E3 such that E2 −→∗ E3 and
∆2 ⊆ proj(E3). Then the result is by (B.9).

Lemma B.4.

(1) If (E,Γ,∆1)
`−→ (E ′,Γ′,∆2) then (Γ,∆1)

`−→ (Γ′,∆2)

(2) If (E,Γ,∆1)
`−→ (E ′,Γ′,∆′1) and ∆1 
 ∆2 then (E,Γ,∆2)

`
=⇒ (E ′,Γ′,∆′2)

(3) If (Γ,∆1)
`−→ (Γ′,∆2) then there exists E such that (E,Γ,∆1)

`−→ (E ′,Γ′,∆2)

(4) If (E,Γ,∆ · s[p] : Tp)
`−→ (E ′,Γ,∆′ · s[p] : Tp) then (E,Γ,∆) `−→ (E ′,Γ,∆′)

(5) If (E,Γ,∆1)
`−→ (E ′,Γ,∆2) then (E,Γ,∆1 ·∆)

`−→s (E ′,Γ,∆2 ·∆) provided that if (E,Γ,∆) `′−→
(E,Γ,∆′) then ` 6� `′
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Proof. Part 1:
The proof for part 1 is easy to be implied by a case analysis on the configuration transition definition
with respect to environment transition definition.

Part 2:
By the case analysis on `.
Case `= τ: The result is trivial.
Case `= a[p](s) or `= a[p](s): The result comes from a simple transition.
Case ` = s[p][q]!〈v〉: ∆1 
 ∆2 implies ∆1 −→∗ ∆ and ∆2 −→∗ ∆ for some ∆ and ∆ = ∆′ · s[p] :
[q]!〈U〉;T .

Hence (E,Γ,∆2) =⇒ (E,Γ,∆) `−→ as required.
Case ` = s[p][q]!(s′[p′]): ∆1 
 ∆2 implies ∆1 −→∗ ∆ and ∆2 −→∗ ∆ for some ∆ and ∆ = ∆′ · s[p] :
[q]!〈T ′〉;T .

(E,Γ,∆2) =⇒ (E,Γ,∆) `−→ as required. The remaining cases are similar.
Part 3:

We do a case analysis on `.
Cases `= τ, `= a[p](s), `= a[p](s): The result holds for any E.
Case ` = s[p][q]!〈v〉 : ∆1 = ∆′1 ·∆′′1 with ∆′′1 = s[p] : [q]!〈U〉;Tp · . . . · s[r] : Tr Choose E = E ′ · s : G
with ∆′′1 ⊆ proj(s : G) and s[q] : [p]?(U);Tq ∈ proj(s : G) and ∆1 ⊆ proj(E). By the definition of

configuration transition relation, we obtain (E,Γ,∆) `−→ (E,Γ′,∆2), as required.
Remaining cases are similar.
Part 4:

(E,Γ,∆ · s[p] : Tp)
`−→ (E ′,Γ,∆′ · s[p] : Tp) implies that s[p] /∈ subj(`). The result then follows from

the definition of configuration transition.
Part 5:

Case `= τ, `= a[p](s), `= a[p](s): The result holds by definition of the configuration transition.

Case ` = s[p][q]!〈U〉: we have that ∆1 = ∆′1 · s[p] : [q]!〈U〉;T and E
s:p→q:U−→ E ′. s[q] ∈ ∆, then by

definition of weak configuration pair we have ∆ = ∆′′ · s[q] : [p]?(U);T and (E,Γ,∆)
s[q][p]?〈U〉−→ . But

this contradicts with the assumption ` 6� `′, so s[q] /∈ ∆. By the definition of configuration pair

transition we obtain that (E,Γ,∆1 ·∆)
s[p][q]!〈U〉−→ (E,Γ,∆2 ·∆). Remaining cases are similar.

B.4. Proof for Lemma 5.14 (1).

Proof. Since we are dealing with closed processes, the interesting case is parallel composition. We
need to show that if E,Γ ` P.∆1 ≈s

g E,Γ ` Q.∆2 then for all R such that E,Γ ` P | R.∆3,E,Γ `
Q | R.∆4 then E,Γ ` P | R.∆3 ≈s

g Q | R.∆4.
We define the following configuration relation.

S = {(E,Γ ` P | R.∆3, E,Γ ` Q | R.∆4) |
E,Γ ` P.∆1 ≈s

g Q.∆2,
∀R such that E,Γ ` P | R.∆3,E,Γ ` Q | R.∆4}
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Before we proceed to a case analysis, we extract general results. Let Γ ` P.∆1,Γ `Q.∆2,Γ `
R.∆5,Γ ` P | R.∆3,Γ ` Q | R.∆4 then from typing rule [Conc] we obtain

∆3 = ∆1∪∆5 (B.11)
∆4 = ∆2∪∆5 (B.12)

∆1∩∆5 = /0 (B.13)
∆2∩∆5 = /0 (B.14)

We prove that S is a bisimulation. There are three cases:
Case: 1

E,Γ ` P | R.∆3
`−→ E ′1,Γ ` P′ | R.∆

′
3

with bn(`)∩fn(R) = /0.
From typed transition definition we have that:

P | R `−→ P′ | R (B.15)

(E,Γ,∆3)
`−→ (E ′1,Γ,∆

′
3) (B.16)

Transition (B.15) and rule 〈Par〉 (LTS in Figure 7) imply:

P `−→ P′ (B.17)

From (B.11), transition (B.16) can be written as (E,Γ,∆1 ∪∆5)
`−→ (E ′1,Γ,∆

′
1 ∪∆5), to conclude

from part 4 of Lemma B.4, that:

(E,Γ,∆1)
`−→ (E ′1,Γ,∆

′
1) (B.18)

subj(`) /∈ dom(∆5) (B.19)

Transitions (B.17) and (B.18) imply E,Γ ` P.∆1
`−→ E ′1,Γ ` P′ .∆′1. From the definition of set S

we obtain E,Γ ` Q.∆2
`

=⇒ E ′2,Γ ` Q′ .∆′2.
From the typed transition definition we have that:

Q `
=⇒ Q′ (B.20)

(E,Γ,∆2)
`

=⇒ (E ′2,Γ,∆
′
2) (B.21)

From (B.19) and part 5 of Lemma B.4 we can write: (E,Γ,∆2 ∪∆5)
`

=⇒ (E ′2,Γ,∆
′
2 ∪∆5), which

implies, from (B.20), E,Γ ` Q | R.∆4
`

=⇒ E ′2,Γ ` Q′ | R.∆′4. Furthermore, we can see that:

(E ′1tE ′2,Γ ` P′ | R.∆
′
4 , E ′1tE ′2,Γ ` Q′ | R.∆

′
4) ∈ S

as required, noting E ′1tE ′2 is defined by the definition of S.

Case: 2

E,Γ ` P | R.∆3
τ−→ E ′ ` P′ | R′ .∆

′
3

From the typed transition definition, we have that:

P | R τ−→ P′ | R′ (B.22)

(E,Γ,∆3)
τ−→ (E ′,Γ,∆′3) (B.23)
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From (B.22) and rule 〈Tau〉, we obtain

P `−→ P′ (B.24)

R `′−→ R′ (B.25)

From (B.11), transition (B.23) can be written (E,Γ,∆1∪∆5)
τ−→ (E ′,Γ,∆′1∪∆′5), to conclude that

(E,Γ,∆1)
`−→ (E ′,Γ,∆′1) (B.26)

(E,Γ,∆5)
`′−→ (E ′,Γ,∆′5) (B.27)

From (B.24) and (B.26), we conclude that E,Γ ` P .∆1
`−→ E ′,Γ ` P′ .∆′1 and from (B.25) and

(B.27), we have E,Γ ` R.∆5
`′−→ E ′,Γ ` R′ .∆′5.

From the definition of set S, we obtain that E,Γ ` Q.∆2
`

=⇒ E,Γ ` Q′ .∆′2 implies

Q `
=⇒ Q′ (B.28)

(E,Γ,∆2)
`

=⇒ (E ′,Γ,∆′2) (B.29)

From (B.25), we obtain that Q | R τ
=⇒ Q′ | R′ and (E,Γ,∆2∪∆5)

τ
=⇒ (E ′,Γ,∆′2∪∆′5), implies:

E,Γ ` Q | R.∆4
τ

=⇒ E ′ ` Q′ | R′ .∆
′
4

with
(E ′,Γ ` P′ | R′ .∆

′
4 , E ′,Γ ` Q′ | R′ .∆

′
4) ∈ S

as required.

Case: 3

E,Γ ` P | R.∆3
`−→ E ′,Γ ` P | R′ .∆

′
3

This case is similar with the above cases.

B.5. Proof for Lemma 5.14 (2). The proof for the completeness follows the technique which uses
the testers in [19]. We need to adapt the testers to multiparty session types.

Definition B.5 (Definability). Let obj(`) and subj(`) to denote a set of object and subject of `,
respectively. Let N be a finite set of shared names and session endpoints for testing the receiving
objects defined as N ::= /0 | N ·s[p] | N ·a. An external action ` is definable if for a set of names
N, fresh session succ, n is the dual endpoint of subj(`) (i.e. the dual endpoint of s[p][q] is s[q]),
there is a testing process T 〈N,succ, `〉 with the property that for every process P and fn(P)⊆ N,

• E1,Γ ` P.∆1
`−→ E ′1,Γ

′ ` P′ .∆′1 implies that E,Γ ` T 〈N,succ, `〉 | P.∆→→
E ′,Γ ` (ν bn(`),b)(P′ | succ[1][2]!〈obj(`),n〉;0).∆′

• E,Γ ` T 〈N,succ, `〉 | P .∆→→ E ′,Γ ` Q .∆′ and E ′,Γ ` Q .∆′ ⇓ succ implies for some

E1,Γ ` P.∆1
`−→ E ′1,Γ

′ ` P′ .∆′1, we have Q≡ (ν bn(`),b)(P′ | succ[1][2]!〈obj(`),n〉;0).

Hereafter we omit the environments if they are obvious from the context.

Lemma B.6 (Definability). Every external action is definable.

Proof. The cases of the input actions and the session initialisation (accept and request) are straight-
forward [19]:
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(1) T 〈N,succ,a[A](s)〉=
(ν b)(a[n](x).succ!〈tt〉;b[1](x).R | a[p1](x).b[1](x).R1 | · · · | a[pm](x).b[1](x).Rm)

with p1, . . . ,pm /∈ A and {p1, . . . ,pm}∪A complete w.r.t. n = max({p1, . . . ,pm}∪A).
(2) T 〈N,succ,s[p][q]?〈v〉〉= s[q][p]!〈v〉; succ[1][2]!〈s[q]〉;0
(3) T 〈N,succ,s[p][q]&l〉= s[q][p]⊕ l; succ[1][2]!〈s[q]〉;0
(4) T 〈N,succ,a[A](s)〉= (ν b)(a[p1](x).succ!〈tt〉;b[1](x).R1 | . . . | a[pm](x).;b[1](x).Rm)

with p1, . . . ,pm /∈ A and {p1, . . . ,pm}∪A complete w.r.t. max({p1, . . . ,pm}∪A).
The requirements of Definition B.5 is verified straightforwardly.

For the output cases, we use the matching operator as [19, § 2.7].
(5) T 〈N,succ,s[p][q]!〈v〉〉=

s[q][p]?(x);
if x = v then succ[1][2]!〈x,s[q]〉;0 else (ν b)(b[1](x).succ[1][2]!〈x,s[q]〉;0)

(6) T 〈N,succ,s[p][q]!(v)〉=
s[q][p]?(x);
if x /∈ N then succ[1][2]!〈x,s[q]〉;0 else (ν b)(b[1](x).succ[1][2]!〈x,s[q]〉;0)

(7) T 〈N,succ,s[p][q]⊕ lk〉=
s[q][p]&{lk : succ[1][2]!〈s[q]〉;0, li : (ν b)(b[1](x).succ[1][2]!〈s[q]〉;0)}i∈I\k

The requirements of Definition B.5 are straightforward to verify. Note that we need to have process
succ[1][2]!〈s[q]〉;0 on both conditions in the if-statement since succ is a session channel (see [If] in
Figure 6 in § 3).

The next lemma follows [19, Lemma 2.38].

Lemma B.7 (Extrusion). Assume succ is fresh and b 6∈ {~m}∪fn(P)∪fn(Q) and {~m} ⊆ fn(v) ⊆
{~n}.

E,Γ ` (ν~m,b)(P | succ[1][2]!〈~n,s[q]〉;0 |∏
i

Ri).∆1 (B.30)

∼= (ν~m,b)(Q | succ[1][2]!〈~n,s[q]〉;0 |∏
i

Ri).∆2 (B.31)

with Ri = b[1](x).R′i then

E ′,Γ′ ` P.∆
′
1
∼= Q.∆

′
2 (B.32)

Proof. Let relation

S = {(E ′,Γ′ ` P.∆′1,E
′,Γ′ ` Q.∆′2) |

E,Γ ` (ν~m,b)(P | succ[1][2]!〈~n,s[q]〉;0 | ∏i Ri).∆1 ∼=s
g

(ν~m,b)(Q | succ[1][2]!〈~n,s[q]〉;0 | ∏i Ri).∆2}
where we assume succ is fresh and b 6∈ {~m}∪ fn(P)∪ fn(Q). We will show that S is governed
reduction-closed.

Typability. We show S is a typed relation. From the definition of S , we have ∆′1 ./ ∆′2. By using
typing rules [NRes], [SRes], [Conc], we obtain (Γ′ ` P.∆′1,Γ

′ `Q.∆′2) is in the typed relation. Then
we can set E ′ = E ∪E0∪{succ : 1→ 2 : U.end} where E0 = {s : Gs} if s = ~m; otherwise E0 = /0 to
make S a governed relation.

Reduction-closedness. Immediate by the assumption that succ is fresh and ∏i Ri 6−→.
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Barb preserving. Suppose E ′,Γ′ ` P.∆′1 ↓n with n 6∈ ~m. Then

E,Γ ` (ν~m,b)(P | succ[1][2]!〈~n,s[q]〉;0 |∏
i

Ri).∆1 ↓n

by the freshness of succ. This implies E,Γ ` (ν~m,b)(Q | succ[1][2]!〈~n,s[q]〉;0 | ∏i Ri).∆2 ⇓n. Since
succ[1][2]!〈~n,s[q]〉;0 | ∏i Ri does not reduce, we have E ′,Γ′ ` Q.∆′2 ⇓n, as required.

Suppose E ′,Γ′ ` P.∆′1 ↓s[p]. Then we chose T 〈N,succ′, `〉 such that

E,Γ ` (ν~m,b)(P | succ[1][2]!〈~n,s[q]〉;0 | ∏i Ri | succ[2][1]?(~y,x);T 〈N,succ′, `〉).∆′′1 →→
P′ | ∏i Ri | succ′[1][2]!〈~n,s[q]〉;0.∆′′′1

which implies

E,Γ ` (ν~m,b)(Q | succ[1][2]!〈~n,s[q]〉;0 | ∏i Ri | succ[2][1]?(~y,x);T 〈N,succ′, `〉).∆′′2 →→
Q′ | ∏i Ri | succ′[1][2]!〈~n,s[q]〉;0.∆′′′1

which implies E,Γ ` Q.∆′2 ⇓s[p].

Contextual property. The only interesting case is if E ′,Γ′ ` P.∆′1 S E ′,Γ′ ` Q.∆′2 then E ′′,Γ′ `
P | R.∆′′1 S E ′′,Γ′ ` Q | R.∆′′2 for all R.

We compose with O = succ[2][1]?(~y,x);(R | succ′[1][2]!〈~z,x〉;0).
(ν~m,b)(P | succ[1][2]!〈v,s[q]〉;0 | ∏i Ri | O) ∼=s

g (ν~m,b)(Q | succ[1][2]!〈v,s[q]〉;0 | ∏i Ri | O)
implies
(ν~m,b)(P | R | succ′[1][2]!〈v,s[q]〉;0 | ∏i Ri) ∼=s

g (ν~m,b)(Q | R | succ′[1][2]!〈v,s[q]〉;0 | ∏i Ri)
implies
P | RS Q | R

We can now we prove the completness direction
We prove:

if E,Γ ` P.∆1 ∼=s
g E,Γ ` Q.∆2 and E,Γ ` P.∆1

`−→ E ′,Γ′ ` P′ .∆′1, then

E,Γ ` Q.∆2
ˆ̀

=⇒ E ′,Γ′ ` Q′ .∆′2 such that E ′,Γ′ ` P′ .∆′1
∼=s

g E ′,Γ′ ` Q′ .∆′2
The case `= τ is trivial by the definition of ∼=s

g.
For the case of ` 6= τ , we use Lemma B.6 and Lemma B.7. Since the governed witness and

session environments do not change the proof, we omit environments. Suppose P ∼=s
g Q and P `−→

P′. We must find a matching weak transition from Q. Choose N to contain all the free names in
both P and Q and choose succ and b to be fresh for both P and Q. We denote the tester by T for
convenience.

Because ∼=s
g is contextual, we know T | P∼=s

g T | Q. We also know

T | P−→∗ (ν bn(`),b)(P′ | succ[1][2]!〈obj(`),n〉;0)
and therefore T | Q−→∗ Q′′ for some Q′′ such that

(ν bn(`),b)(P′ | succ[1][2]!〈obj(`),n〉;0)∼=s
g Q′′

and Q′′ ⇓ succ. Thus by Lemma B.6, we can set Q′′ ≡ (ν bn(`),b)(Q′ | succ[1][2]!〈obj(`),n〉;0)
where Q `

=⇒ Q′. Since ≡ is included in ∼=s
g, we have:

(ν bn(`),b)(P′ | succ[1][2]!〈obj(`),n〉;0)∼=s
g (ν bn(`),b)(Q′ | succ[1][2]!〈obj(`),n〉;0)
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By Lemma B.7, we have P′ ∼=s
g Q′, as required.

B.6. Proof for Lemma 5.16.

Proof. We prove direction if ∀E,E,Γ ` P1 .∆1 ≈s
g P2 .∆2 then Γ ` P1 .∆1 ≈s Γ ` P2 .∆2.

If Γ ` P1 .∆1
`−→ P′1 .∆′1 then P1

`−→ P′1 and (Γ,∆1)
`−→ (Γ′,∆′1).

From part 3 of Lemma B.4 we choose E such that (E,Γ,∆1)
`−→ (E ′,Γ′,∆′1). Since ∀E,E,Γ `

P1 . ∆1 ≈s
g P2 . ∆2 it can now be implied that, E,Γ ` P1 . ∆1

`−→ E ′,Γ ` P′1 . ∆′1 implies E,Γ `
P2 .∆2

`
=⇒ E ′,Γ ` P′2 .∆′2 which implies P2

`
=⇒ P′2 and (E,Γ,∆2)

`
=⇒ (E ′,Γ′,∆′2).

From part 1 of Lemma B.4 we obtain (Γ,∆2)
`

=⇒ (Γ′,∆′2) implies Γ`P2.∆2
`

=⇒P′2.∆′2 as required.

We prove direction if Γ ` P1 .∆1 ≈s Γ ` P2 .∆2 then ∀E,E,Γ ` P1 .∆1 ≈s
g P2 .∆2.

Let E,Γ ` P1 .∆1
`−→ P′1 .∆′1 then

P1
`−→ P′1 (B.33)

(E,Γ,∆1)
`−→ (E ′,Γ′,∆′1) (B.34)

If Γ ` P1 .∆1
`−→ P′1 .∆′1 then P1

`−→ P′1,(Γ,∆1)
`−→ (Γ′,∆′1) and Γ ` P2 .∆2

`−→ P′2 .∆′2.
From the last implication we obtain

P2
`

=⇒ P′2 (B.35)

(Γ,∆2)
`

=⇒ (Γ′,∆′2) (B.36)
∆1 
 ∆2 (B.37)

We apply part 2 of Lemma B.4 to (B.34) and (B.37) to obtain (E,Γ,∆2)
`

=⇒ (E ′,Γ′,∆′2). From the

last result and (B.35), we obtain E,Γ ` P2 .∆2
`

=⇒ E ′,Γ ` P′2 .∆′2.

B.7. Proof for Theorem 5.17.

Proof. Γ ` P.∆
`−→ Γ′ ` P′ .∆′ implies (Γ,∆) `−→ (Γ′,∆′) by definition. This implies there exists

E such that (E,Γ,∆) `−→ (E ′,Γ′,∆′) by part 3 of Lemma B.4. Then by definition, if Γ ` P.∆
`−→

Γ′ ` P′ .∆′ then ∃E such that E,Γ ` P.∆
`−→ E ′,Γ′ ` P′ .∆′. Similarly, we have if Γ ` P.∆

ˆ̀
=⇒

Γ′ ` P′ .∆′ then ∃E such that E,Γ ` P.∆
ˆ̀

=⇒ E ′,Γ′ ` P′ .∆′.
Suppose P is simple. Then by definition, we can set P ≡ (ν ~a~s)(P1 | P2 | · · · | Pn) where Pi

contains either zero or a single session name s, which is not used in process Pj, i 6= j.
Suppose Γ ` P .∆. Then it is derived from Γ ·Γ0 ` Pi .∆i where ∆i contains a zero or sin-

gle session name and ∆ ·∆0 = ∆1 · · ·∆n where Γ0 and ∆0 correspond to the environments of the
restrictions ~a and ~s, respectively. If Ei,Γ ·Γ0 ` Pi .∆i and (Γ ·Γ0,∆i)

`−→ (Γ′ ·Γ′0,∆′i), then since

∆i contains at most only a single session, the condition E λ−→ E ′ in the premise in [Out, In, Sel,
Bra, Tau] in Figure 9 is always true. Hence (Ei,Γ · Γ0,∆i)

`−→ (E ′i ,Γ
′ · Γ′0,∆′i). From here, we
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obtain for all Ei such that Ei,Γ ·Γ0 ` Pi .∆i, if Γ ·Γ0 ` Pi .∆i
`−→ Γ′ ·Γ′0 ` P′i .∆′i, then we have

Ei,Γ ·Γ0 ` Pi .∆i
`−→ E ′i ,Γ

′ ·Γ′0 ` P′i .∆′i. Similarly, for the case of Γ ·Γ0 ` Pi .∆i
`

=⇒ Γ′ ·Γ′0 ` P′i .∆′i.
Now by applying the parallel composition, we can reason for all E such that E −→∗ tiEi, if

E,Γ ` P .∆ and Γ ` P .∆
`−→ Γ′ ` P′ .∆′, there exits Γ ·Γ0 ` Pi .∆i

`−→ Γ′ ·Γ′0 ` P′i .∆′i, which

implies E,Γ ` P.∆
`−→ E ′,Γ′ ` P′ .∆′, with E −→∗ tiEi

λ−→tiE ′i = E ′.

By this, if P is simple and Γ ` P .∆
`−→ Γ′ ` P′ .∆′, for all E such that E,Γ ` P .∆, E,Γ `

P.∆
`−→ E ′,Γ′ ` P′ .∆′. Hence if there exits E such that E,Γ ` P.∆

`−→ E ′,Γ′ ` P′ .∆′, then for
all E0, E0,Γ ` P.∆

`−→ E ′0,Γ
′ ` P′ .∆′. Similarly, for E,Γ ` P.∆

`
=⇒ E ′,Γ′ ` P′ .∆′.

Now suppose if P1 and P2 are simple and ∃E such that E,Γ ` P1 .∆1 ≈s
g P2 .∆2. From the above

result and part 2 of Lemma B.4, if P1 and P2 are simple and ∃E such that E,Γ ` P1 .∆1 ≈s
g P2 .∆2

then ∀E,E,Γ ` P1 .∆1 ≈s
g P2 .∆2. By applying Lemma 5.16 we are done.


