Grading call-by-push-value, explicitly and implicitly

Dylan McDermott

University of Oxford

¥ dylan@dylanm.org

mailto:dylan@dylanm.org

Two developments in computational effects

Grading (Katsumata 2014, and others)
Static analysis of computational effects

Call-by-push-value (Levy 1999)
A calculus for studying computational effects

Two developments in computational effects

Grading (Katsumata 2014, and others)
Static analysis of computational effects

Call-by-push-value (Levy 1999)
A calculus for studying computational effects

Grading call-by-push-value, explicitly and implicitly

A paradigm for staticanalysis of effectful programs

Choose a collection of grades e

Instantiate language-specificinference rules, to
associate a grade to each effectful syntactic element

Prove properties of “‘computations of grade e”

Grading example: type-and-effect analysis

“has grade

. means
e C {get, put, raise, ... }"

“does not use any operation
thatisnotine”

x < get();
if x then raise() else returnx

X < get();
put(true);
if x then raise() else returnx

has grade {get, raise}

does not have grade {get, raise}

Grading example: type-and-effect analysis

“has grade heans “does not use any operation
e C {get, put, raise, ... }" thatisnotine”

x < get();

if xthen raise() else returnx has grade {get, raise}

Some of the inference rules:

thasgraded wuhasgradee thasgraded dCe

return(v) hasgrade{} (x<t; u)hasgrade(dUe) thasgradee

Grading example: session types

gradese :=, end| Dic; p'¥;. e; | &ic/p?¥;. ¢;

recv,{(price, x). send, (yes); returnx} hasgrade p?price(int}.(p]yes'e”d)

@p'no. end

Grading example: session types

gradese :=, end| Dic; p'¥;. e; | &ic/p?¥;. ¢;

recv,{(price, x). send, (yes); returnx} hasgrade p?price(int}.(p]yes'e”d>

@p'no. end

Some of the inference rules:

thasgraded uhasgradee thasgraded d%e

return(v) hasgradeend (x < t; u)hasgrade (dﬁe) thas gradee \

end-e =e¢ session subtyping

(®icipli. di) - e = Bicip™¥;. (d; - e)
(&icip?i. d;) - e = &icip?4;. (d; - e)

Grades e are elements of an ordered monoid

(E <1,)

thasgraded wuhasgradee thasgraded d<e

return(v) hasgrade1 (x < t; u)hasgrade (d - e) thas gradee

Call-by-push-value (without grades)

Split syntax into values V, W : A, B and computations M, N : C, D

(D=

FA and any result has type A

returners: running M : FA may have effects,

| A— C functions: applicationof M : A — CtoV : A hastype C

| [T, G tuples: the ith projection of M : T |

C; hastype C;

i€l l

Call-by-push-value (without grades)

Split syntax into values V, W : A, B and computations M, N : C, D

returners: running M : FA may have effects,

CD:=FA and any result has type A

| A— C functions: applicationof M : A — CtoV : A hastype C

| [T, G tuples: the ith projection of M : T], C; has type C;

i€l l

Computations include:
TEV:A 'EM:FA T,x:AFN:C
["FreturnV : FA 'FMtox.N:C
op:A~B TFV:A T,y:BFM:C get: 1~ bool

e.g. raise : 1 ~» empty
'Fdoy <+ opVthenM:C send, ya) : A~ 1

Call-by-push-value (without grades)

Split syntax into values V, W : A, B and computations M, N : C, D

CD:=FA and any result has type A

| [T, G tuples: the ith projection of M : T |

returners: running M : FA may have effects,

| A— C functions: applicationof M : A — CtoV : A hastype C

C; hastype C;

i€l l

Computations include:

F'x:AFM:C
'EAX:AM:A—=C

This work: grading call-by-push-value

Key insights:
Grades are for tracking observable effects
We observe effects at returner type

returners: running M : FA may have effects,

CD=FA and any result has type A

| A— C functions: applicationof M : A — CtoV : A hastype C
| [Lic;C; tuples: the ith projection of M : [[, C; has type C;

Call-by-push-value with effects

returners: running M : F,A may have effects of gradee,
and any result has type A

C,D:=FA

| A— C functions: applicationof M : A — CtoV : A hastype C

| [T,/ G tuples: the ith projection of M : T], C; has type C;

Call-by-push-value with effects

C.D:=F.A returners: running M : F,A may have effects of gradee,

and any result has type A
| A— C functions: applicationof M : A — CtoV : A hastype C

| [T,/ G tuples: the ith projection of M : T], C; has type C;

Subtyping A <: Band C <: D:

Action {d)C of E on computation types:
di<e A<B

(d)(F.A)=F;.A

F/A <:F.B (d) (I Ties ©) =T Ties ()G
+congruence rules (d)(A = C)=A— (d)C

Call-by-push-value with effects

returners: running M : F,A may have effects of gradee,
and any result has type A

C,D:=FA

| A— C functions: applicationof M : A — CtoV : A hastype C

| [T,/ G tuples: the ith projection of M : T], C; has type C;

Computations include:

r—9v:A 'FIM:F,A Tox:AFIN:C THFIM:C C<D
I'F9 returnV : KA M9 Mtox. N : (d)C I -9 coercep M : D
op:A~yB THIV:A T,y:BFIM:C get : 1~z bool

e.g. raise : 1 ~> (i) empty

M9 doy < opVthenM: (d)C sendp g(a) : A ~pieia).end 1

Call-by-push-value with effects

returners: running M : F,A may have effects of gradee,
and any result has type A

C,D:=FA

| A— C functions: applicationof M : A — CtoV : A hastype C

| [T,/ G tuples: the ith projection of M : T], C; has type C;

Computations include:

F'x:AFIM:C
FIAX:AM:A—C

x < get();

if x then raise() else returnx has grade {get, raise}

CBPVE computation of type Figet raise;bool:
do x < get() then
match x with{ true. doz < raise() then match z with {}
, false. coercer,_ bool (return x)}

Graded algebra models

We get a denotational semantics from any
strong graded monad T on a bicartesian closed category, equipped with
amorphism kop: [A] — T[B]d foreachop: A ~~; B

value type A object [A]
computation type C T-algebra [C]
typing context I’ object [I']

value subtyping A <: B
computation subtyping C <:
valuel'F9 V :
computation" -9 M :

morphism [A <: B]: [A] — [B]
algebra morphism [C <: D]: [C] — [D]
morphism [V]: [T] — [A]

morphism [M]: [T'] — [C],

L L LL LD

0 >0

Call-by-push-value with effects

A calculus for studying graded computational effects

Subsumes graded versions of (fine-grain) call-by-value, and of
call-by-name

Grades are explicit in the syntax

Grading as analysis

We have a judgment

FIM:C

— N

CBPVE typing context
CBPVE computation

But we want

rtm:C

CBPVE computation type

— N

CBPVE typing context
CBPV computation

CBPVE computation type

'FIM:C C<:D

"9 coercep M : D
'x:AFIM:C

'FIAX:AM:A—C

w)

r-tm:c c<
r-tm:D
Fx:A'FHM:C

FH Ax:AM:A" = C

(where A’ is A annotated with grades)

Implicit grades

Define

FrHEEM:C if IM. M |=MATHEIM :C

where

| coercep M| = M|

|—|: CBPVE — CBPV
[Ax:A.M] =Ax: |A]. [M]

erases grades and coerce.

Models forimplicit grades

IfI" =1 M : C, then define
IM] = [M'] where [M|=MATHFIM :C
assuming coherence:

M| = [M)] = [M]=[M] forallT oM :C

Models forimplicit grades

IfI" =1 M : C, then define
IM] = [M'] where [M|=MATHFIM :C
assuming coherence:

M| = [M)] = [M]=[M] forallT oM :C

But coherence is false in general for graded algebra models.

Proving coherence

Assume the ordered monoid of grades has left-cancellative upper bounds:

d-e;<d >d-e;, = Fel.eg<e' >e, Nd-e/ <d
J q
7 /14
a-a a-e d-e "d-ez

Any join-semilattice such that multiplication left-distributes overjoins
d-(e;Uey) = (d-e;) U (d-ey)):takee’ = e Le,

e.g. (P{get, put, raise, ...}, C,{}, U)

Not session types

Examples:

Proving coherence

Assume the ordered monoid of grades has left-cancellative upper bounds:

d-e;<d >d-e;, = Fel.eg<e' >e, Nd-e/ <d

@ i
5 [#4)
R e,
d-e d-e, o, ‘d-ez

Then coherence holds:

M| = [M)] = [M]=[M] foralll+oM :C

Use logical relations: relate ' 9 N; : D;toI" -9 N, : D,, where |D,| = |D,|, by TT-
lifting

Three devlopments in computational effects

Grading (Katsumata 2014, and others)
Static analysis of computational effects

Call-by-push-value (Levy 1999)

A calculus for studying computational effects
Call-by-push-value with effects (this paper)

A calculus for studying graded computational effects
(With implicit grades, assuming coherence)

