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Multiparty session types (MPST) are a specification and verification framework for distributed message-

passing systems. The communication protocol of the system is specified as a global type, from which a

collection of local types (local process implementations) is obtained by endpoint projection. A global type

is a single disciplining entity for the whole system, specified by one designer that has full knowledge of

the communication protocol. On the other hand, distributed systems are often described in terms of their

components: a different designer is in charge of providing a subprotocol for each component. The problem

of modular specification of global protocols has been addressed in the literature, but the state of the art

focuses only on dual input/output compatibility. Our work overcomes this limitation. We propose the first

MPST theory of multiparty compositionality for distributed protocol specification that is semantics-preserving,

allows the composition of two or more components, and retains full MPST expressiveness. We introduce

hybrid types for describing subprotocols interacting with each other, define a novel compatibility relation,
explicitly describe an algorithm for composing multiple subprotocols into a well-formed global type, and
prove that compositionality preserves projection, thus retaining semantic guarantees, such as liveness and

deadlock freedom. Finally, we test our work against real-world case studies and we smoothly extend our novel

compatibility to MPST with delegation and explicit connections.
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1 INTRODUCTION
With the current growth in scale and complexity of systems, their design has become of central

importance for industry and society in general. Choreographies for interactions among multiple

participants, or (communication) protocols, arise naturally in numerous fields: authorisation stan-

dards [Hardt 2012; MIT 2022], the BPMN graphical specification for business processes [OMG

2022], or smart contracts for financial transactions [Ethereum 2022].

The literature on programming languages offers a variety of formal frameworks for protocol

description [Barbanera et al. 2020a; Honda et al. 2016; Montesi 2013], aimed at the verification

of behavioural properties of distributed implementations that comply with the communication

discipline prescribed by the protocol. Such theories focus on distributed implementations of partici-

pants, but rarely feature modularity in the design of protocols, which are instead seen as standalone,

monolithic entities. Mostly, when modularity is considered, it is either conceived in terms of nesting

[Demangeon and Honda 2012; Tabareau et al. 2014] or it substantially modifies protocol description,

by adding additional structure [Carbone et al. 2018; Montesi and Yoshida 2013; Savanovic et al.

2020]. To the best of our knowledge, only in [Barbanera et al. 2021] and [Stolze et al. 2021] the

result of composition is a well-formed protocol.
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This paper presents hybrid multiparty session types: a novel, general theory that offers composi-
tionality for distributed protocol specification, improves on the state of the art, and is immediately
compatible with existing multiparty session types systems.

Multiparty session types (MPST) [Coppo et al. 2015; Honda et al. 2016; Yoshida and Gheri 2020]

provide a typing discipline for message-passing concurrency, ensuring deadlock freedom for two or

more distributed processes. A global type or protocol, which describes an entire interaction scenario,

is projected into a collection of local types onto the respective participants (endpoint projection).

MPST cater for the safe implementation of distributed processes: as long as the process for each

participant is independently type-checked against its local type, its communication behaviour is

disciplined by the semantics of the global type, and its execution does not get stuck.

Although alternatives to the top-down approach (i.e., endpoint projection from a global type)

have been proposed [Deniélou and Yoshida 2013; Lange et al. 2015; Lange and Yoshida 2019; Scalas

and Yoshida 2019], the benefits of an explicit, concise design of the communication protocol for

the whole system have been recognised by the research community, since the first appearance

of MPST [Honda et al. 2008], until more recent times, e.g., see [Cledou et al. 2022; Glabbeek et al.

2021]. Furthermore, the top-down approach has been extended, e.g., to fault tolerance [Viering et al.

2021], timed specification [Bocchi et al. 2014], refinements [Gheri et al. 2022; Zhou et al. 2020],

cost awareness [Castro-Perez and Yoshida 2020], exception handling [Lagaillardie et al. 2022], or

explicit connections and delegation [Castellani et al. 2020; Hu and Yoshida 2017].

Concretely, the underlying assumption to top-down MPST systems is that a single designer

has full knowledge of the communication protocol and can give its formal specification in terms

of a global type. Distributed systems, however, are designed modularly, by multiple designers.

Recently, the literature has addressed the problem of obtaining a single coherent global type from

independently specified subprotocols (components of a protocol) and some solutions have been

offered: Barbanera et al. [2021] achieve direct composition of two global types, through a dual

compatibility relation that matches inputs and outputs, based on gateways [Barbanera et al. 2018,

2019, 2020b]. Stolze et al. [2021] describe a dual methodology beyond gateways, but severely restrict

the syntax for global types. In contrast to this approach, our theory substitutes dual compatibility,

based only on input/output matching, with the notion of compatibility through projection. Thus, we
improve on the state of the art: (1) we can compose more than two subprotocols into a well-formed

global type and (2) we retain the full expressiveness of MPST (including recursion and parallel

composition). See §6 for a broader, in-detail discussion. Moreover, metathoretical results about the

semantics of traditional MPST systems [Deniélou and Yoshida 2013; Honda et al. 2016] immediately

translate to ours (semantics preservation): from distributed specifications in terms of subprotocols,

our theory synthesises a global protocol for the whole system; we prove once and for all, as a

metatheoretical result, that such global protocol is a traditionally well-formed global type.

Contributions. This paper develops a theory of compositionality for distributed protocol descrip-
tion in MPST systems and introduces the following novel MPST concepts:

• hybrid types, a generalisation of both global and local types, for the specification of commu-

nicating subprotocols (Definition 3.3);

• generalised projection onto sets of roles (Definition 3.6), which well-behaves with respect to

set inclusion (Theorem 4.9);

• localiser (Definition 3.8), a novel operator that isolates, in a subprotocol, the inter-component

communication from the intra-component one;

• compatibility based on projection and localiser (Equation C, §4.1);
• build-back, an explicit algorithm to compose two or more subprotocols into a more general

one (Definitions 4.1 and 4.6 and Theorems 4.4 and 4.7).
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𝐺1
. . . 𝐺𝑛

𝐿11 . . . 𝐿1𝑘1 . . . 𝐿𝑛1 . . .𝐿𝑛𝑘𝑛 =

𝐺

𝐿11 . . . 𝐿1𝑘1 . . . 𝐿𝑛𝑘𝑛

↾ ↾ ↾ ↾ ↾ ↾ ↾
composition

Fig. 1. Distributed Protocol Specification, Naively

To the best of our knowledge, our approach is the first that:

• enables the correct composition of two or more subprotocols into a global type, while capturing
full MPST expressiveness: branching, parallel composition, and recursion (Corollary 4.10);

• operates at a purely syntactic level, thus retaining previously developed MPST semantics

results (semantics preservation); correctness is guaranteed by compositionality resulting in a

traditionally well-formed global type and preserving endpoint projection (Corollary 4.10);

• provides a notion of compatibility that is more expressive than dual input/output matching
and hence suitable for extension to more sophisticated MPST systems (Example 5.7).

We discuss the applicability and generality of our work, through case studies. (1)We give a distributed

specification of the real-world protocol OAuth 2.0 [Hardt 2012], which showcases modularity

features of our theory (§5.2) and leads to an optimisation (§5.3, Corollary 5.1). (2) We extend our

theory beyond traditional MPST, to delegation and explicit connections (§5.4).

Outline. §2 gives an overview of our development, with a simple, but realistic, application scenario.

§3 and §4 are dedicated to our technical contributions. §5 tests the strengths of our theory with

case studies. §6 discusses in detail, with examples, related work. §8 concludes with future work.

Further detail for definitions and proofs can be found in Appendix B of [Gheri and Yoshida 2023].

2 OVERVIEW OF OUR DEVELOPMENT
This work achieves distributed protocol specification for MPST: different (protocol) designers specify
protocols (naively as global types, Figure 1) for different components of the communicating system;

then, these compose into a single global type for the whole system. Composition must preserve
(endpoint) projection (indicated with ↾): local types, for the distributed implementation of roles
(or participants), need to be obtained by projection of each separate component, but, also, they

need to be projections of the same global type (obtained by composition), if we want semantic

guarantees (e.g., deadlock freedom) to hold. In other words, our protocol-compositionality theory

relies on multiparty compatibility, guaranteed by a well-formed global type, and on semantics proofs

from previous work (e.g., [Deniélou and Yoshida 2013]). This approach makes our development

semantics-preserving: it endows existing MPST systems with distributed protocol specification.

Traditionally, a global type is a “closed” standalone entity that describes a one-component

communication protocol: all interactions among participants are internal to such component. We

consider instead the distributed specification of a system, in terms of multiple components (disjoint

sets of participants). Each participant can send both internal messages, within its component, or

external, to other components. Therefore, we “open” the syntax of global types, so that it allows

not only for intra-component communication, but also for inter-component communication. By

extending the syntax of global types with an interface for inter-component communication, we

obtain hybrid types. The communication protocol of each component of the system is specified as

a hybrid type; multiple components can be composed into a well-formed global type thanks to a

novel notion of compatibility, based on projection.
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𝐺str = d → ad :prod(nat).d → ad :{ok.end, stop.end}
𝐺sales = s → w :{publish.end, stop.end}
𝐺fin = f1 → f2 :prod(nat) .f2 → f1 :{price(nat) .end, stop.end}

(a) Global Types for Internal Communication

𝐻 ′
str = d → ad :prod(nat). d!s;prod(nat) . d!f1;prod(nat) .d → ad :{ok.end, stop.end}

𝐻 ′
sales = d?s;prod(nat) .s → w :{publish.end, stop.end}

𝐻 ′
fin = d?f1;prod(nat) .f1 → f2 :prod(nat) .f2 → f1 :{price(nat) .end, stop.end}

(b) Hybrid Types for Basic Inter-Department Interactions

𝐻str = d → ad :prod(nat).d!s;prod(nat).d!f1;prod(nat).𝜇𝑋 .f1?d;{ok.d → ad :go.end,wait.d → ad :wait.𝑋 }
𝐻sales = d?s;prod(nat) .𝜇𝑋 .f1?s;{price(nat).s → w :publish.end,wait.s → w :wait.𝑋 }

𝐻fin = d?f1;prod(nat).f1 → f2 :prod(nat).𝜇𝑋 .f2 → f1 :

{
price(nat).f1!d;ok.f1!s;price(nat).end,
wait.f1!d;wait.f1!s;wait.𝑋

}
(c) More Expressive Hybrid Types

Fig. 2. Types for Interactions in the Company

In what follows: we consider a three-component system: a company with three departments, for

each of which, a different (protocol) designer is in charge of describing the communication protocol.

The departments, with respective (internal) roles, are the following: (a) the strategy team, the roles

of which are the director d of the company and the advertisement team ad; (b) the sales department,
with a salesman s and the website administrator w; (c) the finance department, with two employees,

f1 and f2. We assume that internal roles of different components are distinct.
Global Types for Intra-Component Communication. When no inter-component communi-

cation happens, each protocol designer gives a global type for the internal communication of their

department (Figure 2a). In𝐺str, the global type for the strategy department, the director d sends the
product ID to the responsible for advertisement ad; then, d gives an ok or asks ad to stop. For the
sales department (𝐺sales) s decides whether w can publish some content on the company website. In

the financial department (𝐺fin), f1 sends the product ID to f2 and gets back either a price or a stop.
Hybrid Types for Inter-Component Interactions. The components of a distributed system

are expected to communicate with each other. Therefore, we introduce a hybrid syntax of global
and local constructs (and we call hybrid types the terms of this syntax): to the global-type syntax

(e.g., d → ad), for intra-component communication, we add local send and receive constructs (e.g.,

d!s and d?f1), as the interface for inter-component communication. In our example, a first message

is sent by d, with a product ID prod, externally, to the other two departments (Figure 2b): d!s and
d!f1. These are dually received by the sales team d?s and by the finance team d?f1, respectively (as

highlighted in Figure 2b).

Remark 2.1 (Generalising Global and Local Types). We observe that hybrid types are a generalisa-

tion of both global and local types. A global type is a “closed” hybrid type, where only internal

messages are exchanged. The intuition for local types is more subtle: a local type can be interpreted

as a basic, one-participant component of a communicating system, which communicates only exter-

nally, with participants of other components. E.g., the local type ?p;ℓ1.!r;ℓ2.end, for the participant
q, can be written as the hybrid type p?q;ℓ1 .q!r;ℓ2.end: q is the only internal participant that first

receives from p and then sends to r (both p and r are of other components). Being able to express
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global and local types as hybrid types is fundamental: it makes our results correct and compatible

with existing MPST theories (see Remark 2.2 below, and Corollary 4.10 in §4).

Expressiveness and Compatibility. We describe a more expressive version of the protocols

(Figure 2c) that combines inter-component messages with branching and recursion. Figure 3 shows

the communication for each component of the system, as described by the protocol designer of each

department. We imagine that the price of the product prod is decided within the finance department:

the finance expert f2 either gives a price or asks all processes to wait in a recursive loop; then, the

decision is communicated to the other departments. Figure 3c shows the execution of the protocol

for the finance department, where f2 makes such choice. Figure 2c shows the formal specifications,

as hybrid types, of the three protocols. We observe that, to compose 𝐻str, 𝐻sales, and 𝐻fin (and, in

general, to compose, more than two communicating protocols), dual relations are not sufficient for

compatibility (for a broader discussion see §6). Our proposal is to give separately the specification

of a communication discipline for inter-component interactions only: intra-component interactions

are left to the designer of each respective component and some chief designer gives the description
of one more protocol, for global guidance of inter-component communication. For our example, we

collect all the interactions between any two different departments in the protocol in Figure 4a, and

we formalise it with a compatibility (global) type:

𝐺†
:= d → s :prod(nat) .d → f1 :prod(nat).𝜇𝑋 .f1 → d :

{
ok.f1 → s :price(nat) .end,
wait.f1 → s :wait.𝑋

}
Compatibility of subprotocols 𝐻str, 𝐻sales, and 𝐻fin, with 𝐺†

, is achieved by asking that the

(generalised) projection ↾, of 𝐺†
, with respect to the internal participants of each subprotocol, is

equal to the localisation loc, of that subprotocol, where “localising a protocol” means isolating its

inter-component communication (by retaining only its local constructs). E.g., we consider 𝐻str and

its internal participants {d, ad}.

𝐺†↾{d,ad} = loc 𝐻str = d!s;prod(nat) .d!f1;prod(nat).𝜇𝑋 .f1?d;{ok.end,wait.𝑋 }

Analogously we require that 𝐺†↾{s,w} = loc 𝐻sales and 𝐺
†↾{f1,f2 } = loc 𝐻str.

We observe that not only we have enriched the syntax of global types with local constructs to

get hybrid types, but also we have generalised projection to sets of participants, introduced a new

operator (localiser) to isolate external communication, and, based on these, defined compatibility.

Compositionality and Correctness. Our theory (§3 and §4) provides an explicit function B
that builds back a single global type for the communication in the company, from the distributed

specification above: 𝐺 = B (𝐺†) ( [𝐻str, 𝐻sales, 𝐻fin]). It holds that 𝐺↾d = 𝐻str↾d, 𝐺↾f1 = 𝐻fin↾f1 ,
and analogously for all participants: projection is preserved. A figure, representing such𝐺 for our

example, can be found in Appendix A of [Gheri and Yoshida 2023].

More generally (see Figure 4b), from a compatibility type 𝐺†
and hybrid types 𝐻𝑖 for each

component (with set of internal participants 𝐸𝑖 ), such that they are compatible 𝐺† ↾𝐸𝑖= loc 𝐻𝑖 ,

our theory synthesises a global type 𝐺 = B (𝐺†) ( [𝐻1, . . . , 𝐻𝑛]) (Definition 4.6 and Theorem

4.7). Correctness of our theory is given by Corollary 4.10. Formally, this result guarantees that

the local types, projections of 𝐺 on each participant, are the same as if obtained by the respective
subprotocol 𝐻𝑖 : 𝐺↾p = 𝐻𝑖↾p if p is a participant of the 𝑖-th subprotocol 𝐻𝑖 . We have achieved

distributed protocol specification: we can both obtain local types for implementation in a distributed

fashion, by projection of the respective component 𝐻𝑖 (no designer or programmer needs the full

knowledge of 𝐺), and rest assured that all local types (for all participants, in all components) are

projections of a single, well-formed global type. This makes our development compatible with

existing MPST theories, with no need for developing new semantics (semantics preservation): a
well-formed global type projecting on all participants gives traditional multiparty compatibility,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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d ad s f1

prod

prod

prod

ok

go

wait

wait

(a) Strategy Department

s w d f1

prod

price

publish

wait

wait

(b) Sales Department

f1 f2 d s

prod

prod

price

ok

price

wait

wait

wait

(c) Finance Department

p internal participant q external participant

internal interaction external interaction

choice

loop (recursion)

Fig. 3. Communication for Each Department in the Company

which, thanks to the semantics results in the literature [Coppo et al. 2015; Deniélou and Yoshida

2013; Honda et al. 2016], leads to guarantees, such as liveness and deadlock freedom.

Remark 2.2 (Hybrid Types and Generalised Projection). With reference to Figure 4b, Let us consider

the set of participants 𝐸𝑖 of the generic 𝐻𝑖 , and p ∈ 𝐸𝑖 . Generalised projection takes a hybrid type

and returns a hybrid type; since global and local types are hybrid types (Remark 2.1), e.g., we can

project 𝐺†
onto 𝐸𝑖 for compatibility (𝐺† ↾𝐸𝑖= loc 𝐻𝑖 ), or 𝐺 onto 𝐸𝑖 and verify that it is equal to 𝐻𝑖

(see Theorem 4.7, §4). Most importantly, Theorem 4.9 in §4 guarantees that projection composes

over set inclusion𝐺↾p = (𝐺↾𝐸𝑖 )↾p = 𝐻𝑖↾p: by projecting 𝐻𝑖 and𝐺 onto the participant p, we obtain
the same local type for p. Namely, we can obtain local types from the specific component 𝐻𝑖 and

then implement them in a distributed fashion, but also they all are projections of a well-formed

global type 𝐺 .

To summarise (see Figure 4b), our proposal for distributed protocol specification is the following:

(1) a different designer specifies, for each component of the system, a hybrid type 𝐻𝑖 ;

(2) a chief designer gives the compatibility type 𝐺†
to discipline inter-component interactions;

(3) compatibility is a simple equality check: 𝐺†↾𝐸𝑖 = loc 𝐻𝑖 (𝐸𝑖 is the set of participants for 𝐻𝑖 ).

In return, as a metatheoretical result proved once and for all by our theory, the designers obtain

B (𝐺†) ( [𝐻1, . . . , 𝐻𝑛]), a global type for the whole communication, for which projections are preserved
(and, hence, MPST semantic guarantees hold).

In §3 and §4 we detail our compositionality theory, including generalised projection, localiser,

compatibility, build-back, and correctness results.

3 HYBRID TYPES FOR PROTOCOL SPECIFICATION
3.1 Background: Preliminaries of Multiparty Session Types
We give a short summary of multiparty session types [Coppo et al. 2015; Honda et al. 2016; Scalas

et al. 2019; Yoshida and Gheri 2020]; specifically, our theory is based on the formulation in [Deniélou
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d s f1

prod

prod

ok

price

wait

wait

(a) Inter-Component
Communication

𝐺†

𝐻 ′
1

𝐻 ′
2

. . . 𝐻 ′
𝑛

𝐻1 𝐻2
. . . 𝐻𝑛

𝐿11 . . . 𝐿
1𝑘1 𝐿21 . . . 𝐿

2𝑘2
. . . 𝐿𝑛1 . . . 𝐿𝑛𝑘𝑛 =

𝐺

𝐿11 . . . 𝐿
1𝑘1 𝐿21

. . . 𝐿𝑛𝑘𝑛

↾ ↾ ↾

loc loc loc

↾ ↾ ↾ ↾ ↾ ↾

↾ ↾ ↾ ↾

composition

(b) Distributed Protocol Specification, Compatibility through Projection

Fig. 4. Inter-Component Communication and Compatibility via Projection

and Yoshida 2013], extended to parallel composition of global types. The notation for our MPST

system is standard (directly adapted from [Castro-Perez et al. 2021]).

Atoms of our syntax are: a set of roles (or participants), ranged over by p, q, . . . , a set of (type)
variables, ranged over by 𝑋,𝑌, . . . ; and a set of labels, ranged over by ℓ0, ℓ1, . . . , ℓ𝑖 , ℓ𝑗 , . . . .

Definition 3.1 (Sorts, Global Types, and Local Types). Sorts, global types, and local types, ranged
over by S, 𝐺 , and 𝐿 respectively, are inductive datatypes generated by:

S ::= unit || nat || int || bool || S+S || S*S 𝐺 ::= end || 𝑋 || 𝜇𝑋 .𝐺 || p → q : {ℓ𝑖 (S𝑖 ).𝐺𝑖 }𝑖∈𝐼 || 𝐺1 |𝐺2

𝐿 ::= end || 𝑋 || 𝜇𝑋 .𝐿 || !q; {ℓ𝑖 (S𝑖 ) .𝐿𝑖 }𝑖∈𝐼 || ?p; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼

where, p ≠ q, 𝐼 ≠ ∅, and ℓ𝑖 ≠ ℓ𝑗 when 𝑖 ≠ 𝑗, for all 𝑖, 𝑗 ∈ 𝐼 , in p → q : {ℓ𝑖 (S𝑖 ).𝐺𝑖 }𝑖∈𝐼 , !q; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼 ,
and ?p; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼 .

The global message p → q : {ℓ𝑖 (S𝑖 ).𝐺𝑖 }𝑖∈𝐼 describes a protocol where participant p sends to q
one message with label ℓ𝑖 and a value of sort S𝑖 as payload, for some 𝑖 ∈ 𝐼 ; then, depending on

which ℓ𝑖 was sent by p, the protocol continues as 𝐺𝑖 . The type end represents a terminated protocol.
Recursive protocol is modelled as 𝜇𝑋 .𝐺 , where recursion variable 𝑋 is bound. The parallel construct
𝐺1 |𝐺2 describes a protocol composed by two independent ones. The participants of𝐺1 and𝐺2 are

required to be disjoint: no communication happens between𝐺1 and𝐺2, but only internally in each

one of them (for a broader discussion, see §5.1). The intuition for local types end, 𝑋 and 𝜇𝑋 .𝐿 is

the same as for global types. The send type !q; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼 says that the participant implementing

the type must choose a labelled message to send to q; if the participant chooses the label ℓ𝑖 , it
must include in the message to q a payload value of sort S𝑖 , and continue as prescribed by 𝐿𝑖 . The

receive type ?p; {ℓ𝑖 (S𝑖 ) .𝐿𝑖 }𝑖∈𝐼 requires to wait to receive a value of sort S𝑖 (for some 𝑖 ∈ 𝐼 ) from the

participant p, via a message with label ℓ𝑖 ; then the process continues as prescribed by 𝐿𝑖 .

We are interested in types that are (1) guarded—e.g., 𝜇𝑋 .p → q :ℓ (nat).𝑋 is a valid global type,

whereas 𝜇𝑋 .𝑋 is not—(detail in Appendix B.1 of [Gheri and Yoshida 2023], Definition B.1) and (2)

closed, i.e., all variables are bound by 𝜇𝑋 . In messages, sends and receives, the payload type can be

omitted (e.g., p → q :ℓ . . . .), when only a label is exchanged. We assume that global and local types

are always guarded, and that, in 𝐺1 |𝐺2, 𝐺1 and 𝐺2 are closed.

Projection plays a central role in MPST theories: it connects the protocol discipline, provided by

the global type, with the local types that separately describe the behaviour of each participant.
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Definition 3.2 (Projection for Global Types). The projection of a global type onto a role r is a partial

function defined by recursion on 𝐺 , whenever the recursive call is defined:

[proj-end] end↾r = end [proj-var] 𝑋↾r = 𝑋

[proj-rec] (𝜇𝑋 .𝐺)↾r = 𝜇𝑋 .(𝐺↾r) if 𝜇𝑋 .(𝐺↾r) is guarded, else, if (𝜇𝑋 .𝐺) is closed, (𝜇𝑋 .𝐺)↾r = end
[proj-par] 𝐺1 |𝐺2↾r = 𝐺𝑖↾r if r is a participant of 𝐺𝑖 , end otherwise
[proj-send] p → q : {ℓ𝑖 (S𝑖 ).𝐺𝑖 }𝑖∈𝐼 ↾r = !q;{ℓ𝑖 (S𝑖 ) .(𝐺𝑖↾r)}𝑖∈𝐼 if r = p
[proj-recv] p → q : {ℓ𝑖 (S𝑖 ).𝐺𝑖 }𝑖∈𝐼 ↾r = ?p;{ℓ𝑖 (S𝑖 ) .(𝐺𝑖↾r)}𝑖∈𝐼 if r = q
[proj-merge] p → q : {ℓ𝑖 (S𝑖 ).𝐺𝑖 }𝑖∈𝐼 ↾r =

⊔
𝑖∈𝐼 (𝐺𝑖↾r) if r ≠ p and r ≠ q

𝐺↾r is undefined if none of the above applies. Merging (⊔) is defined as a partial operator over

two local types such that: 𝐿⊔𝐿 = 𝐿 for every type, it delves inductively inside all constructors (e.g.,

!q; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼⊔!q; {ℓ𝑖 (S𝑖 ).𝐿′𝑖 }𝑖∈𝐼 = !q;{ℓ𝑖 (S𝑖 ).(𝐿𝑖⊔𝐿′𝑖 )}𝑖∈𝐼 ), and ?p; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼⊔?p; {ℓ 𝑗 (S𝑗 ) .𝐿′𝑗 }𝑗 ∈𝐽 =

?p;{ℓ𝑘 (S𝑘 ) .𝐿𝑘⊔𝐿′𝑘 }𝑘∈𝐼∩𝐽 ∪ {ℓ𝑘 (S𝑘 ) .𝐿𝑘 }𝑘∈𝐼\𝐽 ∪ {ℓ𝑘 (S𝑘 ).𝐿′𝑘 }𝑘∈𝐽 \𝐼 .

We describe the clauses of Definition 3.2. [proj-end], [proj-var], and [proj-rec] are standard. [proj-send]

(resp. [proj-recv]) states that a global type starting with a message from r to q (resp. from p to r)
projects onto a sending (resp. receiving) local type !q;{ℓ𝑖 (S𝑖 ).𝐺𝑖↾r} (resp. ?p;{ℓ𝑖 (S𝑖 ).𝐺𝑖↾r}), provided
that the continuations 𝐺𝑖↾r are also projections of the corresponding global-type continuations 𝐺𝑖 .

[proj-merge] states that, if the projected global type starts with an interaction between p and q, and
if we are projecting it onto a third participant r, then the projection is defined (and we can skip

the message p → q :) if all the continuations project onto mergeable types (according to the merge

operator ⊔ defined above). [proj-par] states that projecting a parallel type𝐺1 |𝐺2 on r is the same as

projecting 𝐺1 or 𝐺2 onto r, depending on whether r is a participant of one or the other type.

By projecting a global type 𝐺 onto all participants (𝐺↾r = 𝐿r, for the generic role r), we obtain
a collection of local types {𝐿r}, where 𝐿r is the behavioural type for r. Existing MPST theories

(e.g., [Deniélou and Yoshida 2013]) guarantee that a session of well-typed implementations of the

participants inherits semantic guarantees for its communication, from𝐺 . Our development in §4 is

compatible with such theories: result of composition is a well-formed 𝐺 , thus, implementations of

projected local types benefit from well-established semantics results from the literature.

3.2 Hybrid Types
To allow the specification of interacting subprotocols, we enrich the syntax of global types with

local constructs. We thus obtain “hybrid” types, which use global messages for intra-protocol

communication and local sends and receives as openings for inter-protocol communication.

Definition 3.3 (Hybrid Types). Hybrid types are defined inductively by:

𝐻 ::= end || 𝑋 || 𝜇𝑋 .𝐻 || 𝐻 1 |𝐻 2 || p!q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 || p?q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 || p → q : {ℓ𝑖 (𝑆𝑖 ).𝐻 𝑖 }𝑖∈𝐼
where, in p → q : {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 , p!q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 , and p?q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 , p ≠ q, 𝐼 ≠ ∅, and ℓ𝑖 ≠ ℓ𝑗
when 𝑖 ≠ 𝑗, for all 𝑖, 𝑗 ∈ 𝐼 . We indicate the datatype of hybrid types with the notation H .

The intuition behind each construct is the same as inDefinition 3.1, butwewrite p!q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼
in place of !q; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼 , and p?q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 in place of ?p; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼 . For local types,
!q; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼 (resp. ?p; {ℓ𝑖 (S𝑖 ).𝐿𝑖 }𝑖∈𝐼 ) describes the communication of the participant p sending

a message to q (resp. q receiving a message from p), and then continuing with interactions all
involving p (resp. q) as a subject. Therefore, such subject can be left implicit. For hybrid types, instead,

different (internal) subjects interact both with internal and external participants. For instance:

(𝑎)p!q;ℓ1. (𝑏)p → r :ℓ2 .
(𝑐)q?r;ℓ3 . (𝑑)end

(𝑎) p sends an external message to q; (𝑏) p exchanges a message internally with r; (𝑐) r receives
an external message from q; and (𝑑) the protocol terminates.
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Definition 3.4 (Internal and External Participants). We define the sets of internal participants and
external participants of a hybrid type 𝐻 by recursion:

ipart(end) = ∅ ipart(𝑋 ) = ∅
ipart(𝜇𝑋 .𝐻 ) = ipart(𝐻 )
ipart(𝐻1 |𝐻2) = ipart(𝐻1) ∪ ipart(𝐻2)
ipart(p!q; {ℓ𝑖 (S𝑖 ) .𝐻 𝑖 }𝑖∈𝐼 ) = {p} ∪⋃

𝑖∈𝐼 ipart(𝐻𝑖 )
ipart(p?q; {ℓ𝑖 (S𝑖 ) .𝐻 𝑖 }𝑖∈𝐼 ) = {q} ∪⋃

𝑖∈𝐼 ipart(𝐻𝑖 )
ipart(p → q : {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 ) = {p, q} ∪⋃

𝑖∈𝐼 ipart(𝐻𝑖 )

epart(end) = ∅ epart(𝑋 ) = ∅
epart(𝜇𝑋 .𝐻 ) = epart(𝐻 )
epart(𝐻1 |𝐻2) = epart(𝐻1) ∪ epart(𝐻2)
epart(p!q; {ℓ𝑖 (S𝑖 ) .𝐻 𝑖 }𝑖∈𝐼 ) = {q} ∪⋃

𝑖∈𝐼 epart(𝐻𝑖 )
epart(p?q; {ℓ𝑖 (S𝑖 ) .𝐻 𝑖 }𝑖∈𝐼 ) = {p} ∪⋃

𝑖∈𝐼 epart(𝐻𝑖 )
epart(p → q : {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 ) =

⋃
𝑖∈𝐼 epart(𝐻𝑖 )

We define, for hybrid types, guardedness and closedness, as for global and local types (Definition

3.1). We require that all hybrid types in this paper are guarded (detail in Appendix B.1 of [Gheri and

Yoshida 2023], Definition B.1) and that, for all 𝐻 , ipart(𝐻 ) ∩ epart(𝐻 ) = ∅. Also, we require well-
formedness for parallel constructs: for𝐻1 |𝐻2,𝐻1 and𝐻2 must be closed and (ipart(𝐻1)∪epart(𝐻1))
∩(ipart(𝐻2)∪epart(𝐻2)) = ∅. Namely, the parallel construct describes communication that happens

independently, within two separate groups of participants. We express global and local types in
terms of hybrid types, with two predicates on H : 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐻 ) holds iff 𝐻 is formed only by global

constructs (global type syntax in Definition 3.1); and 𝑖𝑠𝐿𝑜𝑐𝑎𝑙 (𝐻 ) holds iff ipart(𝐻 ) contains at most

one element (hence 𝐻 contains only local constructs, see local types in Definition 3.1).

Example 3.5. We use as a recurring example the company from §2. A designer, 𝐷str, describes

the protocol 𝐻str for the strategic team, as in Figure 2c:

𝐻str := d → ad :prod(nat) .d!s;prod(nat).d!f1;prod(nat) .𝜇𝑋 .f1?d;

{
ok.d → ad :go.end,
wait.d → ad :wait.𝑋

}
First, d sends internally a product ID to ad, then a similar external message to s, of the sales

department, and to f1, of the finance department. d waits in a recursive loop for f1 to give the

ok. When this happens, d internally communicates to ad that they can proceed with the product

advertisement. For 𝐻str, the sets of internal and external participants are ipart(𝐻str) = {d, ad} and
epart(𝐻str) = {s, f1}. We observe that 𝐷str is not concerned with the communication that happens

internally to the sales department or the financial one, nor with the communication between these

two. Designers 𝐷sales and 𝐷fin independently give protocols for the sales and financial departments

respectively (as in Figure 2c):

𝐻sales = d?s;prod(nat) .𝜇𝑋 .f1?s;

{
price(nat) .s → w :publish(nat).end,
wait.s → w :wait.𝑋

}
𝐻fin = d?f1;prod(nat) .f1 → f2 :prod(nat).𝜇𝑋 .f2 → f1 :

{
price(nat) .f1!d;ok.f1!s;price(nat) .end,
wait.f1!d;wait.f1!s;wait.𝑋

}
In the sales department, once d has communicated the product, s waits in a loop for the decision

about the price from the financial department, then gives to the website administrator w the com-

mand to publish. We have that ipart(𝐻sales) = {s, w} and epart(𝐻sales) = {d, f1}. The decision about

the price of the product is taken by f2, and communicated internally to the financial department

with f2 → f1 :. . .; then f1 communicates the decision to the other departments, which can continue

with their internal communication. We have that ipart(𝐻fin) = {f1, f2} and epart(𝐻fin) = {d, s}.
In §4, we prove the above types compatible and compose them into a single global type.

3.3 Projection and Localiser
We introduce projection and localiser for hybrid types. These operators play are fundamental for

defining compatibility and, ultimately, achieving compositionality.

Definition 3.6 (Projection). The (generalised) projection of a hybrid type on the set of participants

𝐸, is a partial operator, _ ↾𝐸 : H → H , recursively defined by the following clauses (whenever the
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recursive call is defined):

[proj-end] end ↾𝐸= end [proj-var] 𝑋 ↾𝐸= 𝑋

[proj-rec]

𝜇𝑋 .𝐻↾𝐸 = 𝜇𝑋 .(𝐻↾𝐸 ) if 𝜇𝑋 .(𝐻↾𝐸 ) is guarded,
else, if (𝜇𝑋 .𝐻 ) is closed, (𝜇𝑋 .𝐻 )↾𝐸 = end

[proj-par]

𝐻1 |𝐻2↾𝐸 = 𝐻 𝑖↾𝐸
if 𝐸 ∩ ipart(𝐻 j) = ∅, with 𝑖, 𝑗 ∈ {1, 2} and 𝑖 ≠ 𝑗

[proj-send]

p!q; {ℓ𝑖 (S𝑖 ) .𝐻 𝑖 }𝑖∈𝐼 ↾𝐸 ={
p!q;{ℓ𝑖 (S) .(𝐻 𝑖↾𝐸 )}𝑖∈𝐼 if p ∈ 𝐸 and q ∉ 𝐸⊔

𝑖∈𝐼 (𝐻 𝑖↾𝐸 ) if p, q ∉ 𝐸

[proj-recv]

p?q; {ℓ𝑖 (S𝑖 ) .𝐻 𝑖 }𝑖∈𝐼 ↾𝐸 ={
p?q;{ℓ𝑖 (S) .(𝐻 𝑖↾𝐸 )}𝑖∈𝐼 if p ∉ 𝐸 and q ∈ 𝐸⊔

𝑖∈𝐼 (𝐻 𝑖↾𝐸 ) if p, q ∉ 𝐸

[proj-msg]

p → q : {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 ↾𝐸 =
p → q :{ℓ𝑖 (S) .(𝐻 𝑖↾𝐸 )}𝑖∈𝐼 if p, q ∈ 𝐸

p!q;{ℓ𝑖 (S) .(𝐻 𝑖↾𝐸 )}𝑖∈𝐼 if p ∈ 𝐸 and q ∉ 𝐸

p?q;{ℓ𝑖 (S) .(𝐻 𝑖↾𝐸 )}𝑖∈𝐼 if p ∉ 𝐸 and q ∈ 𝐸⊔
𝑖∈𝐼 (𝐻 𝑖↾𝐸 ) if p, q ∉ 𝐸

and undefined otherwise.

Merging (⊔) is defined as a partial commutative operator over two hybrid types such that:

for all 𝐻 , 𝐻⊔𝐻 = 𝐻 , it delves inductively inside all constructors (e.g., p → q : {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼⊔
p → q : {ℓ𝑖 (S𝑖 ).𝐻 ′

𝑖 }𝑖∈𝐼 = p → q :{ℓ𝑖 (S𝑖 ).(𝐻𝑖⊔𝐻 ′
𝑖 )}𝑖∈𝐼 ), and p?q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼⊔p?q; {ℓ𝑗 (S𝑗 ).𝐻 ′

𝑗
}𝑗 ∈𝐽 = p?q;

{ℓ𝑘 (S𝑘 ) .𝐻𝑘⊔𝐻 ′
𝑘
}𝑘∈𝐼∩𝐽 ∪{ℓ𝑘 (S𝑘 ) .𝐻𝑘 }𝑘∈𝐼\𝐽 ∪ {ℓ𝑘 (S𝑘 ) .𝐻 ′

𝑘
}𝑘∈𝐽 \𝐼

With respect to Definition 3.2, we now allow projection onto a set of participants, and we

introduce rules for projecting send and receive constructs. We highlight the differences below:

• [proj-msg] defines p → q : {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼 to be projected onto 𝐸, if both p ∈ 𝐸 and q ∈ 𝐸; in this

case the structure of the global message p → q : is maintained in the projected type;

• [proj-send] defines projection when the sender p is in 𝐸 and q is not, and when both p, q ∉ 𝐸;

• [proj-recv] defines projection when the receiver q is in 𝐸 and p is not, and when both p, q ∉ 𝐸.

Remark 3.7. Projection is defined only onto sets of internal participants; e.g., p?q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼
can be projected onto q, but not onto p; also, ipart(𝐻↾𝐸) ⊆ ipart(𝐻 ). If we project a hybrid type

onto a singleton, we obtain a local type: 𝑖𝑠𝐿𝑜𝑐𝑎𝑙 (𝐻↾{p}). Furthermore, if 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐻 ), then 𝐻↾{p}
is exactly the traditional MPST projection of the global type 𝐻 onto p, 𝐻↾p (Definition 3.2).

Definition 3.8 (Localiser). The localiser of a hybrid type is a partial operator, loc _ : H → H ,

recursively defined by the following clauses (whenever the recursive call is defined):

[loc-end] loc end = end [loc-var] loc 𝑋 = 𝑋 [loc-par] loc (𝐻1 |𝐻2) = loc 𝐻1 |loc 𝐻2

[loc-rec] loc 𝜇𝑋 .𝐻 = 𝜇𝑋 .(loc 𝐻 ) if 𝜇𝑋 .(loc 𝐻 ) is guarded, else, if 𝜇𝑋 .𝐻 is closed, loc 𝜇𝑋 .𝐻 = end
[loc-send] loc (p!q; {ℓ𝑖 (S𝑖 ) .𝐻 𝑖 }𝑖∈𝐼 ) = p!q; {ℓ𝑖 (S𝑖 ) .loc 𝐻 𝑖 }𝑖∈𝐼
[loc-recv] loc (p?q; {ℓ𝑖 (𝑆𝑖 ) .𝐻 𝑖 }𝑖∈𝐼 ) = p?q; {ℓ𝑖 (𝑆𝑖 ).loc 𝐻 𝑖 }𝑖∈𝐼
[loc-msg] loc (p → q : {ℓ𝑖 (𝑆𝑖 ).𝐻 𝑖 }𝑖∈𝐼 ) =

⊔𝐿
𝑖∈𝐼 loc (𝐻 𝑖 )

and undefined otherwise.

Merging for the localiser (⊔𝐿
) is a partial commutative operator over two hybrid types such

that: for all 𝐻 , 𝐻⊔𝐿𝐻 = 𝐻 , it delves inductively inside all constructors (e.g., p!q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼
⊔𝐿p!q; {ℓ𝑖 (S𝑖 ) .𝐻 ′

𝑖 }𝑖∈𝐼 = p!q;{ℓ𝑖 (S𝑖 ) .(𝐻 𝑖⊔𝐿𝐻 ′
𝑖 )}𝑖∈𝐼 ), and p!q; {ℓ𝑖 (S𝑖 ).𝐻 𝑖 }𝑖∈𝐼⊔𝐿p!q; {ℓ𝑗 (S𝑗 ).𝐻 ′

𝑗
}𝑗 ∈𝐽 =

p!q;{ℓ𝑘 (S𝑘 ).𝐻𝑘⊔𝐿𝐻 ′
𝑘
}𝑘∈𝐼∩𝐽 ∪{ℓ𝑘 (S𝑘 ).𝐻𝑘 }𝑘∈𝐼\𝐽 ∪ {ℓ𝑘 (S𝑘 ).𝐻 ′

𝑘
}𝑘∈𝐽 \𝐼

The localiser is a forgetful operator that preserves local constructs and discards global messages.

[loc-end], [loc-var], [loc-rec], and [loc-par] preserve the non-message structure of the type, into its locali-

sation. [loc-send] and [loc-recv] state that send construct (an internal participant p sends to an external

participant q) and receive construct (an internal participant q receives from an external participant

p) are to be maintained and their continuations 𝐻𝑖 localised into loc 𝐻𝑖 . [loc-msg] is the central rule:

each global message has to be skipped and its continuations need to be merged.
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Remark 3.9. The merge operator for the localiser, ⊔𝐿
, is dual to the merge for projection, ⊔. To

build the intuition behind this, let us consider the following hybrid type: 𝐻 = p → q :{ℓ1.p!r;ℓ3.end,
ℓ2 .p!r;ℓ4.end}. First, p chooses on which branch to take, by internally sending either ℓ1 or ℓ2 to

q; then according to the chosen branch, p itself sends a different external message to r. When

we localise the above type we obtain loc 𝐻 = p!r;{ℓ3.end, ℓ4 .end}, namely we have merged send

constructs with different labels, p!rℓ3 and p!rℓ4. From the point of view of the external receiver r, it
makes no difference whether such choice has been taken by p at the time p sends to r (with p!r;), or
at a precedent stage of communication, internal to 𝐻 (with p → q). This intuition is proven correct

by the results from the next section, when we define a compatibility notion, based on localiser and

projection, and we prove compositionality.

4 COMPOSITIONALITY FOR DISTRIBUTED SPECIFICATION
In §3, we have set definitions in place to compose subprotocols. In particular, following the overview

of Figure 4b, §2, what we need is:

• hybrid types 𝐻1, 𝐻2, . . . , 𝐻𝑁 for the multiple components of the communicating system;

• a compatibility hybrid type 𝐻 †
(we sometimes use the notation𝐺†

, when 𝐻 †
is a global type,

namely when 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐻 †)) that disciplines the inter-component communication; and

• the property that 𝐻 †
projects onto the localisations of 𝐻1, 𝐻2, . . . , 𝐻𝑁 (compatibility).

In this section, we present our journey to multiparty compositional specification in three steps:

(1) we focus on a single hybrid type 𝐻𝑖 , for which compatibility holds: 𝐻 †↾𝐸𝑖 = loc 𝐻𝑖 ; we build

a new type B1

𝐸𝑖
(𝐻 †) (𝐻𝑖 ), whose projection on 𝐸𝑖 coincides with 𝐻𝑖 , and which contains the

information for external communication from 𝐻 †
(Theorem 4.4);

(2) we show how Step 1 is a base case for composing multiple compatible protocols: from B1
,

we recursively define B (𝐻 †) ( [𝐻1, . . . , 𝐻𝑁 ]), which projects onto 𝐻𝑖 for all 𝑖 = 1, . . . , 𝑁

(compositionality, Theorem 4.7);

(3) we prove that projection composes over the subset relation (Theorem 4.9); this guarantees

the applicability and correctness of our result: if 𝐻 †
is a global type, we obtain a well-formed

global type 𝐺 = B (𝐻 †) ( [𝐻1, . . . , 𝐻𝑁 ]) for the whole system, the projections of which, onto

every participant, are the same as the projections of the subprotocols 𝐻𝑖 (Corollary 4.10).

4.1 Step 1: Building Back a Single Subprotocol
Our first step towards compositionality is also the most technical of the three. In this section we

present the main design choices, both in constructions and in proofs, that make our theory sound.

For more details, we refer to Appendix B.1 of [Gheri and Yoshida 2023].

We are given 𝐻 †
, the compatibility type disciplining communication happening among subpro-

tocols, and with one of these subprotocols 𝐻𝐸
, describing the communication from the point of

view of its internal participants, contained in the set 𝐸. The local constructs of 𝐻𝐸
are compatible

with what prescribed by 𝐻 †
for communicating externally, formally:

𝐻 †↾𝐸 = loc 𝐻𝐸
(C)

The above notion is designed for the direct composition of multiple subprotocols: the hybrid type

𝐻𝐸
for one component is checked compatible, not against other components, but against 𝐻 †

, which

gives global guidance for inter-component communication. This design choice differentiates our

theory from previous work, where compatibility is checked by directly matching the inputs and

outputs of two separate components (see §6 for further discussion). With such compatible types,

we build 𝐻 = B1

𝐸
(𝐻 †) (𝐻𝐸) that retains the information about external communication of 𝐻 †

and

about internal communication in the component 𝐻𝐸
.
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B1

𝐸
(end) (𝐻𝐸 ) = 𝐻𝐸 B1

𝐸
(𝑋 ) (𝐻𝐸 ) = 𝐻𝐸

B1

𝐸
(𝜇𝑋 .𝐻†′) (𝐻𝐸 ) =


(𝜇𝑋 .𝐻†′) |𝐻𝐸

if ipart(𝐻†′) ∩ 𝐸 = ∅ and both 𝜇𝑋 .𝐻†′
and 𝐻𝐸

are closed

s → r :{ℓ𝑖 (S).(B1

𝐸
(𝜇𝑋 .𝐻†′) (𝐻𝐸

𝑖
))}𝑖∈𝐼 if ipart(𝐻†′) ∩ 𝐸 = ∅,

𝐻𝐸 = s → r :{ℓ𝑖 (S𝑖 )𝐻𝐸
𝑖
}𝑖∈𝐼 , and one of 𝜇𝑋 .𝐻†′

and 𝐻𝐸
is not closed

𝜇𝑋 .(B1

𝐸
(𝐻†′) (𝐻𝐸 ′)) if ipart(𝐻†′) ∩ 𝐸 ≠ ∅ and 𝐻𝐸 = 𝜇𝑋 .𝐻𝐸 ′

B1

𝐸
(𝐻†

1
|𝐻†

2
) (𝐻𝐸 ) =

{
(B1

𝐸
(𝐻†

1
) (𝐻𝐸 )) |𝐻†

2
if ipart(𝐻†

2
) ∩ 𝐸 = ∅

𝐻
†
1
| (B1

𝐸
(𝐻†

2
) (𝐻𝐸 )) if ipart(𝐻†

2
) ∩ 𝐸 ≠ ∅ and ipart(𝐻†

1
) ∩ 𝐸 = ∅

B1

𝐸
(p!q;{ℓ𝑖 (S𝑖 ) .𝐻†

𝑖
}𝑖∈𝐼 ) (𝐻𝐸 ) =

p!q;{ℓ𝑖 (S𝑖 ).(B1

𝐸
(𝐻†

𝑖
) (𝐻𝐸

𝑖
))}𝑖∈𝐼

if 𝐻𝐸 = p!q; {ℓ𝑖 (S𝑖 ) .𝐻𝐸
𝑖 }𝑖∈𝐼

s → r :{𝑚 𝑗 (S′𝑗 ).(B
1

𝐸
(UL𝑗 ) (𝐻𝐸

𝑗
))}𝑗 ∈𝐽

with UL𝑗 = 𝜋 𝑗 (unmL 𝐻† [loc 𝐻𝐸
𝑗
]𝑗 ∈𝐽 ),

if 𝐻𝐸 = s → r :{𝑚 𝑗 (S′𝑗 )𝐻
𝐸
𝑗
}𝑗 ∈𝐽 and p ∈ 𝐸

p!q;{ℓ𝑖 (S𝑖 ).(B1

𝐸
(𝐻†

𝑖
) (UP𝑖 ))}𝑖∈𝐼

with UP𝑖 = 𝜋𝑖 (unmP 𝐻𝐸 [𝐻†
𝑖
↾𝐸 ]𝑖∈𝐼 ), if p ∉ 𝐸

B1

𝐸
(p?q;{ℓ𝑖 (S𝑖 ).𝐻†

𝑖
}𝑖∈𝐼 ) (𝐻𝐸 ) =

p?q;{ℓ𝑖 (S𝑖 ) .(B1

𝐸
(𝐻†

𝑖
) (𝐻𝐸

𝑖
))}𝑖∈𝐼

if 𝐻𝐸 = p?q; {ℓ𝑖 (S𝑖 ) .𝐻𝐸
𝑖 }𝑖∈𝐼

s → r :{𝑚 𝑗 (S′𝑗 ) .(B
1

𝐸
(UL𝑗 ) (𝐻𝐸

𝑗
))}𝑗 ∈𝐽

with UL𝑗 = 𝜋 𝑗 (unmL 𝐻† [loc 𝐻𝐸
𝑗
]𝑗 ∈𝐽 ),

if 𝐻𝐸 = s → r :{𝑚 𝑗 (S′𝑗 )𝐻
𝐸
𝑗
}𝑗 ∈𝐽 and q ∈ 𝐸

p?q;{ℓ𝑖 (S𝑖 ) .(B1

𝐸
(𝐻†

𝑖
) (UP𝑖 ))}𝑖∈𝐼

with UP𝑖 = 𝜋𝑖 (unmP 𝐻𝐸 [𝐻†
𝑖
↾𝐸 ]𝑖∈𝐼 ), if q ∉ 𝐸

B1

𝐸
(p → q :{ℓ𝑖 (S𝑖 ) .𝐻†

𝑖
}𝑖∈𝐼 ) (𝐻𝐸 ) =



p → q :{ℓ𝑖 (S𝑖 ) .(B1

𝐸
(𝐻†

𝑖
) (𝐻𝐸

𝑖
))}𝑖∈𝐼

if 𝐻𝐸 = p!q;{ℓ𝑖 (S𝑖 ).𝐻𝐸
𝑖
}𝑖∈𝐼 or 𝐻𝐸 = p?q;{ℓ𝑖 (S𝑖 ).𝐻𝐸

𝑖
}𝑖∈𝐼

s → r :{𝑚 𝑗 (S′𝑗 ).(B
1

𝐸
(UL𝑗 ) (𝐻𝐸

𝑗
))}𝑗 ∈𝐽

with UL𝑗 = 𝜋 𝑗 (unmL 𝐻† [loc 𝐻𝐸
𝑗
]𝑗 ∈𝐽 ),

if 𝐻𝐸 = s → r :{𝑚 𝑗 (S′𝑗 ) .𝐻
𝐸
𝑗
}𝑗 ∈𝐽 and p ∈ 𝐸 or q ∈ 𝐸

p → q :{ℓ𝑖 (S𝑖 ) .(B1

𝐸
(𝐻†

𝑖
) (UP𝑖 ))}𝑖∈𝐼

with UP𝑖 = 𝜋𝑖 (unmP 𝐻𝐸 [𝐻†
𝑖
↾𝐸 ]𝑖∈𝐼 ), if {p, q} ∩ 𝐸 = ∅

Fig. 5. Build-Back of a Single Component: Equations

Definition 4.1 (Build-Back of a Single Component). Given a set of participants 𝐸, we define the

build-back of a single component as the partial recursive function B1

𝐸
(𝐻 †) (𝐻𝐸). The recursive

equations are given in Figure 5; if none of those apply or if ipart(𝐻𝐸) ⊈ 𝐸, B1

𝐸
(𝐻 †) (𝐻𝐸) is

undefined.

The rest of this subsection is dedicated to discussing the intuition behind the function B1

𝐸
and its

correctness (Theorem 4.4). First, let us consider the following equations from Definition 4.1:

B1

𝐸
(p → q : {ℓ𝑖 (S𝑖 ).𝐻†

𝑖 }𝑖∈𝐼 ) (p!q; {ℓ𝑖 (S𝑖 ) .𝐻𝐸
𝑖 }𝑖∈𝐼 ) = p → q :{ℓ𝑖 (S𝑖 ).(B1

𝐸
(𝐻†

𝑖
) (𝐻𝐸

𝑖
)}𝑖∈𝐼

B1

𝐸
(p → q : {ℓ𝑖 (S𝑖 ).𝐻†

𝑖 }𝑖∈𝐼 ) (p?q; {ℓ𝑖 (S𝑖 ) .𝐻𝐸
𝑖 }𝑖∈𝐼 ) = p → q :{ℓ𝑖 (S𝑖 ).(B1

𝐸
(𝐻†

𝑖
) (𝐻𝐸

𝑖
)}𝑖∈𝐼

The two equations above show how our compatibility (Equation C) comes into play when building

back a more general type. E.g., when the projection of 𝐻 † = p → q : {ℓ𝑖 (S𝑖 ).𝐻 †
𝑖 }𝑖∈𝐼 onto 𝐸 is equal

to the localisation of a send type 𝐻𝐸 = p!q; {ℓ𝑖 (S𝑖 ).𝐻𝐸
𝑖 }𝑖∈𝐼 (with p ∈ 𝐸) then their build-back is

p → q :{ℓ𝑖 (S𝑖 ).(B1

𝐸
(𝐻 †

𝑖
) (𝐻𝐸

𝑖 )}𝑖∈𝐼 . The case where 𝐻𝐸 = p?q; {ℓ𝑖 (S𝑖 ).𝐻𝐸
𝑖 }𝑖∈𝐼 is analogous.

The next example shows how the build-back retains the information both (1) internal to the

component of 𝐻𝐸
and (2) about the inter-component communication of the system, given by 𝐻 †

.

Example 4.2 (Build-Back, Intuition). We are given𝐻𝐸 = s → r :ℓ1 .s!p;ℓ2.end, with internal partici-
pants 𝐸 = {s, r}, 𝐻 † = p → q :ℓ0.s → p :ℓ2.end, for compatibility, describing inter-component com-

munication in the system: compatibility C holds. Following the equations in Figure 5, we first build
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back the prefix p → q :ℓ0, then recursively the prefix s → r :ℓ1, and ultimately we exploit compatibil-

ity and s!p;ℓ2 gets absorbed into s → p :ℓ2. Namely,B1

𝐸
(𝐻 †) (𝐻𝐸) = p → q :ℓ0.s → r :ℓ1 .s → p :ℓ2 .

end. We observe that B1

𝐸
(𝐻 †) (𝐻𝐸) contains all the interactions, both intra-component (in 𝐻𝐸

) and

inter-component (in 𝐻 †
); in other words, B1

𝐸
(𝐻 †) (𝐻𝐸) carries the information both in 𝐻𝐸

and in

𝐻 †
. This property of the build-back is formalised by conclusions (1) and (2) of Theorem 4.4.

Some detail from the previous example is hidden in the auxiliary “unmerge” functions unmP
and unmL, for projection and localiser respectively. They reproduce in B1

𝐸
(𝐻 †) (𝐻𝐸) a branching

structure that is faithful to the branching both in 𝐻 †
and in 𝐻𝐸

, where such branching may have

been merged when projecting 𝐻 †
on 𝐸 = {s, r} (with ⊔, see Definition 3.6) or when localising 𝐻𝐸

(with ⊔𝐿
, see Definition 3.8). We present the unmerge mechanism with the next example, while, for

formal details, we refer the interested reader to Appendix B.1 of [Gheri and Yoshida 2023].

Example 4.3 (Unmerge). We focus on the merge for the localiser ⊔𝐿
; the case for projection is

analogous. We are given 𝐻𝐸 = s → r :{ℓ11.s!p;ℓ21.end,ℓ12.s!p;ℓ22.end} and 𝐻 † = p → q :ℓ0 .s → p :

{ℓ21.end,ℓ22.end} In this case,𝐻 †↾𝐸 = loc 𝐻𝐸 = s!p;{ℓ21.end, ℓ22.end}. In particular, when computing

loc 𝐻𝐸
, a merge of branches happens: loc 𝐻𝐸 = s!p;{ℓ21.end}⊔𝐿s!p;{ℓ22.end}. When building back,

we need to unmerge and reproduce the original branching from 𝐻𝐸
. In particular

s → p :{ℓ21 .end, ℓ22 .end}↾𝐸 = (s!p;{ℓ21 .end})⊔𝐿 (s!p;{ℓ22 .end})
Under this hypothesis, unmL returns suitable branches for the build-back:

unmL (s → p :{ℓ21 .end, ℓ22 .end}) [s!p;{ℓ21 .end}, s!p;{ℓ22 .end}] = [ s → p :{ℓ21 .end} , s → p :{ℓ22 .end} ]

Then, by following the build-back algorithm we obtain:

B1

𝐸 (𝐻 †) (𝐻𝐸) = p → q :ℓ0.s → r :{ℓ11.s → p :ℓ21.end,ℓ12.s → p :ℓ22.end}

We observe that, above, the output of unmL, with arguments 𝐻 †′ = s → p :{ℓ21 .end, ℓ22.end}
[𝐻𝐿

1
, 𝐻𝐿

2
] = [s!p;{ℓ21.end}, s!p;{ℓ21.end}], is a list of two types [𝐻 †

1
, 𝐻

†
2
] = [s → p :{ℓ21.end},

s → p :{ℓ21.end}]; for these, in particular, the following properties hold: (𝑎) 𝐻 †
𝑖
↾𝐸 = 𝐻𝐿

𝑖 , for 𝑖 = 1, 2

(𝑏) 𝐻 †′↾𝐸′ = 𝐻
†
1
↾𝐸′⊔𝐿𝐻

†
2
↾𝐸′ , for any 𝐸 ′

, set of participants such that 𝐸 ∩ 𝐸 ′ = ∅. The nesting of

branching for general 𝐻 †
and 𝐻𝐸

may be intricate and tedious; the auxiliary functions unmP and

unmL take care of the detail (see Appendix B.1 of [Gheri and Yoshida 2023]), in a way that properties
(𝑎) and (𝑏) as above hold for unmL, and similar ones for unmP (Lemmas B.11 and B.15, Appendix

B.1, of [Gheri and Yoshida 2023]). Generally, such properties ensure that both conclusions (1) and
(2) (essential for composing multiple subprotocols), of Theorem 4.4, hold.

Finally, we can state our first compositionality result, which certifies the definition of B1
.

Theorem 4.4 (Building Back a Single Component). We fix a set of participants 𝐸, and we
are given hybrid types 𝐻 † and 𝐻𝐸 , such that: (a) ipart(𝐻𝐸) ⊆ 𝐸, (b) epart(𝐻𝐸) ∩ 𝐸 = ∅, and
(c) 𝐻 †↾𝐸 = loc 𝐻𝐸 , (compatibility C). We set 𝐻 = B1

𝐸
(𝐻 †) (𝐻𝐸) and we have:

(1) 𝐻↾𝐸 = 𝐻𝐸 and
(2) for all 𝐸 ′, such that 𝐸 ′ ∩ 𝐸 = ∅, 𝐻↾𝐸′ = 𝐻 †↾𝐸′ .

Moreover if 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐻 †) then 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐻 ).

The proof of Theorem 4.4 proceeds by induction on depth(𝐻 †) + depth(𝐻𝐸). Its inductive
structure follows the defining equations of B1

(Figure 5) and it is non-trivial; the full detail can be

found in Appendix B.1 of [Gheri and Yoshida 2023] (Theorem B.17), together with the auxiliary

lemmas for merging. Theorem 4.4 ensures that the result of building back (backwards, with respect

to the usual direction of projection) 𝐻 = B1

𝐸
(𝐻 †) (𝐻𝐸) contains both (1) the information for
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𝐻†

𝐻 ′
1

𝐻 ′
2

𝐻 ′
𝑁

𝐻1 𝐻2

. . .
𝐻𝑁

B1

𝐸1

(𝐻†) (𝐻1)

𝐻 ′
2

𝐻 ′
𝑁

𝐻1 𝐻2

. . .
𝐻𝑁

B (𝐻†) ( [𝐻1, . . . , 𝐻𝑁 ])

𝐻1 𝐻2

. . .
𝐻𝑁

↾ ↾ ↾

loc loc loc

↾ ↾

loc loc

↾ ↾ ↾ ↾
Theorem 4.4 Theorem 4.7

Fig. 6. Composing Multiple Protocols: Theorem 4.4 as the base case, Theorem 4.7 as the inductive step.

the internal communication in 𝐻𝐸
(i.e., 𝐻↾𝐸 = 𝐻𝐸

) and (2) the information for the external

communication prescribed by 𝐻 †
(i.e., for all 𝐸 ′

, such that 𝐸 ′ ∩ 𝐸 = ∅, 𝐻↾𝐸′ = 𝐻 †↾𝐸′). We describe

the algorithm of B1
and the proof outline of Theorem 4.4 below, via example.

Example 4.5 (Definition 4.1 and Theorem 4.4). From Example 3.5, we consider the subprotocol for

the strategy department.

𝐻str = d → ad :prod(nat).d!s;prod(nat) .d!f1;prod(nat) .𝜇𝑋 .f1?d;{ok.d → ad :go.end,wait.d → ad :wait.𝑋 }
The following protocol, described by the chief designer of the company 𝐷 , coordinates the com-

munication among the three departments (and ignores their internal one).

𝐺† = d → s :prod(nat).d → f1 :prod(nat) .𝜇𝑋 .f1 → d :{ok.f1 → s :price(nat) .end,wait.f1 → s :wait.𝑋 }
We observe that ipart(𝐻str) = {d, ad}, and that compatibility C holds:

loc 𝐻str = 𝐺†↾{d,ad} = d!s;prod(nat) .d!f1;prod(nat) .𝜇𝑋 .f1?d;{ok.end,wait.𝑋 }

To obtain 𝐻
†
1
= B1

{d,ad} (𝐺
†) (𝐻str), we first build back the internal global prefix in 𝐻str:

𝐻
†
1
= d → ad :prod(nat) .𝐻†

1

′

We then proceed by induction, namely 𝐻
†
1

′
is built by composing 𝐻 †

and the smaller hybrid type

obtained from 𝐻str, by removing this first prefix: d!s;prod(nat).d!f1;prod(nat) . . . .. We observe that

the first two send constructs correspond to the projection of the two initial messages of 𝐻 †
(this is

guaranteed by the compatibility condition C); we take:
𝐻
†
1
= d → ad :prod(nat) .d → s :prod(nat) .d → f1 :prod(nat).𝐻†

1

′′

To obtain 𝐻
†
1

′′
we observe that the compatibility condition takes care of the recursive construct

𝜇𝑋 . . . . and of the first message f1?d;. . .. After that, in each branch, we need to add first the internal

message in 𝐻str and then the external messages given by 𝐺†
. We obtain

𝐻
†
1

′′ = 𝜇𝑋 .f1 → d :{ok.d → ad :go.f1 → s :price(nat).end,wait.d → ad :wait.f1 → s :wait.𝑋 }

and, ultimately,

𝐻
†
1
= d → ad :prod(nat) .d → s :prod(nat).d → f1 :prod(nat) .

𝜇𝑋 .f1 → d :

{
ok.d → ad :go.f1 → s :price(nat) .end,
wait.d → ad :wait.f1 → s :wait.𝑋

}
Indeed,𝐻

†
1
contains all interactions from both𝐺†

and𝐻str. The recursive definition ofB1
(Definition

4.1) and the inductive proof of Theorem 4.4 follow the procedure presented in this example (Theorem

B.17, Appendix B.1 of [Gheri and Yoshida 2023]).

4.2 Step 2: Multiparty Compositionality
B1

𝐸
(𝐻 †) (𝐻𝐸) composes the subprotocol 𝐻𝐸

with the compatibility type 𝐻 †
. Here, we iterate this

process for an arbitrary number of subprotocols 𝐻1, . . . , 𝐻𝑁 , whenever compatible with respect

to 𝐻 †
(Equation C): we achieve full multiparty compositionality of subprotocols. The overview is

given in Figure 6.
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Definition 4.6 (Build-Back). Given a list of (disjoint) sets of participants 𝐿 = [𝐸1, . . . , 𝐸𝑁 ], we
define the partial recursive function B𝐿 (𝐻 †) ( [𝐻1, . . . , 𝐻𝑁 ]) as follows:

B[𝐸1 ] (𝐻†) ( [𝐻1]) = B1

𝐸1

(𝐻†) (𝐻1)
B[𝐸1,...,𝐸𝑛+1 ] (𝐻†) ( [𝐻1, . . . , 𝐻𝑛+1]) = B[𝐸2,...,𝐸𝑛+1 ] (B1

𝐸1

𝐻† 𝐻1) ( [𝐻2, . . . , 𝐻𝑛+1])

From now on, we leave implicit the first list argument (of sets of participants): we write

B (𝐻 †) ( [𝐻1, . . . , 𝐻𝑁 ]) for B𝐿 (𝐻 †) ( [𝐻1, . . . , 𝐻𝑁 ]).

Theorem 4.7 (Compositionality for Multiple Protocols). We are given 𝐸1, . . . , 𝐸𝑁 sets
of roles, and the hybrid types 𝐻1, 𝐻2, . . . , 𝐻𝑁 , and 𝐻 †, such that: (a) 𝐸𝑖 ∩ 𝐸 𝑗 = ∅ for all 𝑖 ≠ 𝑗 ,
(b) ipart(𝐻𝑖 ) ⊆ 𝐸𝑖 for all 𝑖 , (c) epart(𝐻𝑖 ) ∩ 𝐸𝑖 = ∅ for all 𝑖 , and (d) 𝐻 †↾𝐸𝑖 = loc 𝐻𝑖 (compatibility C).
We set 𝐻 = B (𝐻 †) ( [𝐻1, . . . , 𝐻𝑁 ]) and we have that, for all 𝑖 , 𝐻↾𝐸𝑖 = 𝐻𝑖 . Moreover if 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐻 †)
then 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐻 ).

Proof. By induction on 𝑁 . We add to the thesis: (dsj) for all 𝐸 ′
, 𝐸 ′ ∩⋃

𝑖=1,...,𝑁 𝐸𝑖 = ∅, 𝐻↾𝐸′ =

𝐻 †↾𝐸′ , since we need (dsj) within the induction hypothesis. The case 𝑁 = 1 is Theorem 4.4.

For 𝑁 = 𝑛 + 1, we set 𝐻 †′ = B1

𝐸1

(𝐻 †) (𝐻1) and we apply the induction hypothesis to 𝐻 =

B[𝐸2,...,𝐸𝑛+1 ] (𝐻 †′) ( [𝐻2, . . . , 𝐻𝑛+1]): we obtain that for 𝑖 = 2, . . . , 𝑛, 𝐻 ′↾𝐸𝑖 = 𝐻𝑖 . For 𝐸1, since 𝐸1 ∩⋃
𝑖=2,...,𝑛+1 𝐸𝑖 = ∅, thanks to (dsj), we have 𝐻↾𝐸1

= 𝐻 †′↾𝐸1
= 𝐻1 (by Theorem 4.4). For 𝐸 ′

, 𝐸 ′ ∩⋃
𝑖=1,...,𝑛+1 𝐸𝑖 = ∅, we have that 𝐸 ′ ∩ ⋃

𝑖=2,...,𝑛+1 𝐸𝑖 = ∅, and hence for (dsj), 𝐻↾𝐸′ = 𝐻 ′↾𝐸′ . We

conclude by observing that 𝐸 ′ ∩ 𝐸1 = ∅ and thus, by Theorem 4.4, 𝐻 ′↾𝐸′ = 𝐻 †↾𝐸′ . □

Example 4.8 (Theorem 4.7). In Example 4.5, we have seen how to build back 𝐺†
and 𝐻str into

𝐻
†
1
, a new hybrid type containing the information both for the inter-protocol communication

(from 𝐺†
) and for the communication inside the strategy department (from 𝐻str). We observe that

compatibility C holds not only for 𝐻str, but also for 𝐻sales and 𝐻fin, namely:

loc 𝐻str = 𝐺†↾{d,ad} = d!s;prod(nat) .d!f1;prod(nat) .𝜇𝑋 .f1?d;{ok.end,wait.𝑋 }
loc 𝐻sales = 𝐺†↾{s,w} = d?s;prod(nat).𝜇𝑋 .f1?s;{price(nat) .end,wait.𝑋 }
loc 𝐻fin = 𝐺†↾{f1,f2 } = d?f1;prod(nat).𝜇𝑋 .f1!d;{ok.f1!s;price(nat) .end,wait.f1!s;wait.𝑋 }

The hypothesis of Theorem 4.7 holds and thus we can build 𝐺 = B (𝐺†) ( [𝐻str, 𝐻sales, 𝐻fin]), such
that 𝐺↾{d,ad} = 𝐻str,𝐺↾{s,w} = 𝐻sales, and𝐺↾{f1,f2 } = 𝐻fin. To make the construction of𝐺 explicit,

we follow the inductive proof structure of Theorem 4.7. The base case is taken care of in Example

4.5, where we apply Theorem 4.4 and build 𝐻
†
1
, by composition of 𝐺†

and 𝐻str, we obtain :

𝐻
†
1
= d → ad :prod(nat).d → s :prod(nat).d → f1 :prod(nat) .

𝜇𝑋 .f1 → d :

{
ok.d → ad :go.f1 → s :price(nat) .end,
wait.d → ad :wait.f1 → s :wait.𝑋

}
We observe that 𝐻

†
1
↾{s,w} = 𝐺†↾{s,w} , hence, since C still holds, we can apply again the build-back

procedure and obtain:

𝐻
†
2
= d → ad :prod(nat) .d → s :prod(nat) .d → f1 :prod(nat) .

𝜇𝑋 .f1 → d :

{
ok.d → ad :go.f1 → s :price(nat) .s → w :publish(nat) .end,
wait.d → ad :wait.f1 → s :wait.s → w :wait.𝑋

}
𝐻

†
2
collects all the interactions from 𝐺†

, 𝐻str, and 𝐻sales. To obtain a type 𝐺 that also includes the

internal interactions of 𝐻fin, we perform one more induction step, building back from 𝐻
†
2
and 𝐻fin.

𝐺 = d → ad :prod(nat) .d → s :prod(nat) .d → f1 :prod(nat).f1 → f2 :prod(nat).

𝜇𝑋 .f2 → f1 :

{
price(nat).f1 → d :ok.d → ad :go.f1 → s :price(nat).s → w :publish(nat) .end,

wait.f1 → d :wait.d → ad :wait.f1 → s :wait.s → w :wait.𝑋

}
A graphical representation of 𝐺 can be found in Appendix A of [Gheri and Yoshida 2023].
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Theorem 4.7 gives a technique for composing multiple subprotocols into a more general one. The

next, conclusive step proves that compositionality well-behaves with respect to MPST projection.

4.3 Step 3: Compositionality through Projection
With Definition 3.6, we have generalised the MPST projection to hybrid types. We prove that

generalised projection well-behaves with respect to set inclusion.

Theorem 4.9 (Projection Composes over Set Inclusion). Given 𝐻 , 𝐸1 and 𝐸2, 𝐸2 ⊆ 𝐸1, if 𝐻↾𝐸1

is defined, then (𝐻↾𝐸1
)↾𝐸2

= 𝐻↾𝐸2
.

Proof. By structural induction on 𝐻 (see Appendix B.2 of [Gheri and Yoshida 2023]). □

Theorem 4.9 is the last fundamental ingredient to achieve distributed protocol specification.

Corollary 4.10 (Distributed Protocol Specification). Given 𝐸1, . . . , 𝐸𝑁 disjoint sets of par-
ticipants, a global type 𝐺†, and 𝐻1, . . . , 𝐻𝑁 hybrid types, such that: (a) ipart(𝐻𝑖 ) = 𝐸𝑖 for all 𝑖 ,
(b) epart(𝐻𝑖 ) ∩ 𝐸𝑖 = ∅ for all 𝑖 , (c) ipart(𝐺†) ⊆ ⋃

𝑖=1,...,𝑁 𝐸𝑖 , and (d)𝐺†↾𝐸𝑖 = loc 𝐻𝑖 (compatibility C);
there exists 𝐺 such that, for all 𝑖 , for all r ∈ 𝐸𝑖 , 𝐺↾{r} = 𝐻𝑖↾{r} .

Proof. We set𝐺 = B (𝐺†) ( [𝐻1, . . . , 𝐻𝑁 ]); by Theorem 4.7,𝐺 is global and such that𝐺↾𝐸𝑖 = 𝐻𝑖 .

Then, we apply Theorem 4.9 and we obtain, for r ∈ 𝐸𝑖 , 𝐺↾{r} = 𝐺↾𝐸𝑖↾{r} = 𝐻𝑖↾{r} . We observe

that 𝐺↾{r} is a local type, for all r, (Remark 3.7). □

Example 4.11. In Examples 4.5 and 4.8, the protocol designer for each department has given their

hybrid type, 𝐻str, 𝐻sales, and 𝐻fin, disciplining internal communication (with messages p → q) and
specifying the communication with other departments (with sends/receives, p!q/p?q). Compatibility

(Equation C) has been verified against 𝐺†
, as described by the chief designer 𝐷 . In (Example 4.8)

we build back 𝐺 (we observe that is 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐺†) implies 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐺)). Corollary 4.10 holds

and projections of components 𝐻str, 𝐻sales, and 𝐻fin onto single participants are local types, also

projections of 𝐺 (Theorem 4.9), the global type disciplining the whole system. For instance, if

we wanted to get the local type for d, traditionally, we would do so by projecting 𝐺 . With our

distributed protocol specification, it is enough to project 𝐻str onto d.

𝐺↾{d} = (𝐺↾{d,ad})↾{d} = 𝐻str↾{d} =

d!ad;prod(nat) .d!s;prod(nat).d!f1;prod(nat) .𝜇𝑋 .f1?d;{ok.d!ad;go.end,wait.d!ad;wait.𝑋 }
If instead want to implement processes for f1 and f2, we can obtain the local types from 𝐻fin.

𝐺↾{f1 } = 𝐻fin↾{f1 } = d?f1;prod(nat).f1!f2;prod(nat) .𝜇𝑋 .f2?f1;

{
price(nat) .f1!d;ok.f1!s;price(nat) .end,
wait.f1!d;wait.f1!s;wait.𝑋

}
𝐺↾{f2 }= 𝐻fin↾{f2 }= f1?f2;prod(nat).𝜇𝑋 .f2!f1;{price(nat).end,wait.𝑋 }
We can proceed analogously for all participants.

Remark 4.12 (Applicability and Preservation of Semantics). Example 4.11 displays the essence of

of our theory, formally captured by Corollary 4.10: for a system specified in a distributed way, with

components 𝐻1, . . . , 𝐻𝑁 and compatibility type 𝐺†
, there is no need for an explicit description of 𝐺 .

After compatibility checks (Equation C), our theory builds back a well-formed global type 𝐺 for

the whole system, and the session of local types, projections of 𝐺 , can be obtained, in a distributed

fashion, by directly projecting subprotocols, since, for p ∈ ipart(𝐻𝑖 ), 𝐻𝑖↾{p} = 𝐺↾{p} .
At the design stage, each designer 𝐷𝑖 gives the subprotocol 𝐻𝑖 and, with the simple equality

check C, they make sure that their protocol is compatible with 𝐺†
(described by the chief designer

𝐷). At the type-checking/implementation stage, the designer 𝐷𝑖 independently obtains local types

for well-behaved implementations directly from their specification 𝐻𝑖 . 𝐷𝑖 is never concerned

with the communication happening internally to, or among, other components. What guarantees
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global well-behaviour is the existence of 𝐺 , proved once and for all by our theory; no designer or

programmer needs its explicit description. We have achieved distributed protocol specification.
Desirable MPST semantic guarantees, such as liveness and deadlock freedom, are preserved by

our theory, thanks to its semantics preservation. Our compositionality-through-projection technique

can explicitly build back a protocol as a global type that is traditionally well-formed (see, e.g.,

[Deniélou and Yoshida 2013; Honda et al. 2016]). Thus, our theory brings modularity to the protocol

design phase, but, after such distributed specification, the result is a traditional MPST system, with

a single global type that projects on local types for all participants, which benefits from existing

semantics results from the MPST literature.

Remark 4.13 (On Hybrid Types). Central to this work is Definition 3.3 of hybrid types. Our theory

shows how “open” subprotocols, interacting with other components of the system, can be specified

as hybrid types, safely composed into a global type, and projected onto local types.
The syntax of hybrid types is simply the combination of the syntaxes of global and local types

and, through the predicates 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐻 ) and 𝑖𝑠𝐿𝑜𝑐𝑎𝑙 (𝐻 ), we can isolate global and local types

respectively, from the rest of hybrid types. This choice makes our development compatible with

existing MPST systems and is key to semantics preservation: in our compositionality theory,

well-formed global types guarantee semantics properties and local types are used for participant

implementation, exactly as in traditional MPST (see Corollary 4.10 and Remark 4.12).

At the same time, dealing with a single syntax (hybrid types) simplifies our theory significantly.

This paper proposes an approach to protocol compositionality that heavily relies on projection.

Traditional MPST projection operates on global types and returns local types for implementation.

Our generalised projection, instead, takes a hybrid type and returns a hybrid type, but, since global

and local types are hybrid types, our projection maintains and extends the functionalities of the

traditional operator. The main gain is flexibility: a function with the same domain as its codomain

can be composed with itself and this is central in our proofs (see Theorem 4.9 and its role in the

proof of Corollary 4.10). In other words, instead of working with multiple operators (which would

have very similar definitions) and proving them compatible, we rely on a single one: generalised

projection. In particular, we apply projection in the following key steps of our development:

• projecting the component 𝐻𝐸
of a system onto one of its internal participants p, gives—as it

is customary in the literature—the local type 𝐿p for implementing p;
• projecting the type 𝐺†

is necessary for compatibility C: 𝐺†↾𝐸 = loc 𝐻𝐸
; and

• the preservation of projection (Theorem 4.9) ensures applicability and correctness: local

types for implementation, obtained by separately projecting the distributed components,

are also projections of a single, well-formed global type for the whole system (equation

𝐺↾{r} = 𝐻𝑖↾{r} , Corollary 4.10).

5 CASE STUDIES
In this section, we evaluate our development with case studies. In §5.1, we discuss the role of the

parallel construct 𝐻1 |𝐻2 in our protocol composition. Then, we consider the industry-standard

protocol for authorisation, OAuth 2.0, [Hardt 2012; Horne 2020]: in §5.2, we observe the modularity
benefits of our theory, and, in §5.3, we reach an optimisation for it. In §5.4, we show how hybrid

types can be smoothly extended to feature delegation and explicit connections.

5.1 On the Parallel Construct and Compositionality
Our work enriches the type system of MPST with compositionality at the protocol-description level,

while retaining the traditional syntax of local types. Consequently, the targeted process language

is standard [Castro-Perez et al. 2021; Glabbeek et al. 2021]. In particular, local types and processes
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𝐻auth = ua?oa;{init(id, scp) .oa → ow :{login(id, scp) .ow → oa :
deny.oa!ua;close.oa!res;{release.end},

auth(name, pwd) .oa!ua;


close.oa!res;{release.end},
code(code) .ua?oa;{exchange(id, secret, code).oa!ua;
{close.oa!res;{release.end}, token(token) .oa!res;{pass.end}}}


}}

𝐻res = ua!oa;{init(id, scp) .oa?ua;


close.oa?res;{release.end},
code(code) .ua!oa;{exchange(id, secret, code).oa?ua;{

close.oa?res;{release.end},
token(token) .oa?res;{pass.𝐻 res_acc}

}
}

}
𝐻 res_acc = 𝜇𝑋 .ua → res :{request(token) .res → ua :{revoke.end, response(data) .𝑋 }}
𝐺
†
oa = ua → oa :{init(id, scp).oa → ua :
close.oa → res :{release.end},
code(code) .ua → oa :{exchange(id, secret, code).oa → ua :

{close.oa → res :{release.end}, token(token) .oa → res :{pass.end}}}

}
Fig. 7. Distributed Specification for OAuth 2.0

are single-threaded. On the other hand, to allow the description of protocols where two different

components execute independently, without exchanging messages with each other, we have added

the parallel construct to the syntax of hybrid (and global) types.

The parallel construct (or parallel composition) for global types appears in the first presentation

of MPST [Honda et al. 2008], but dismissed in subsequent literature [Bettini et al. 2008; Castro-

Perez et al. 2021; Coppo et al. 2015]. For achieving compositionality, without requiring further

well-formedness restrictions on global types, we need to explicitly add parallel composition 𝐻1 |𝐻2.

Let us consider the following distributed specification:

𝐺
†
par = p → r :ℓ .end 𝐻1

par = p!r;ℓ .𝜇𝑋 .p → q :{ℓ1 .𝑋, ℓ2 .end} 𝐻2

par = p?r;ℓ .𝜇𝑌 .r → s :{ℓ3 .𝑌 , ℓ4 .end}
Compatibility holds: 𝐺

†
par↾{p,q} = p!r;ℓ .end = loc 𝐻 1

par and 𝐺
†
par↾{r,s} = p?r;ℓ .end = loc 𝐻 1

par. Our

theory guarantees the existence of a well-formed global type for the whole system, which entails

a deadlock-free session: 𝐺par = p → r :ℓ .
(
𝜇𝑋 .p → q :{ℓ1.𝑋, ℓ2 .end}

)
|
(
𝜇𝑌 .r → s :{ℓ3.𝑌 , ℓ4 .end}

)
.

Without parallel composition, it is not clear how to compose 𝐻 1

par and 𝐻 2

par, even if they are

compatible with respect to 𝐺
†
par.

1
Indeed, recent work [Glabbeek et al. 2021] has drawn attention

to the role of the parallel construct in traditional MPST: by exploiting a similar example to the

𝐺par above, the authors show that, if the syntax does not include parallel composition, there are

non-deadlocked sessions that do not have a global type.

5.2 Distributed Specification for OAuth 2.0
We consider the industry-standard protocol for authorisation, OAuth 2.0, [Hardt 2012; Horne

2020]. In such protocol, the owner of a resource gives approval (through the OAuth server) for an

external application to access some resource; the OAuth server ensures, by means of tokens, that

the sensitive data of the owner are not shared with the external application.

We present a specification for the OAuth 2.0 protocol in two components (Figure 7): a first

designer 𝐷auth gives the hybrid type 𝐻auth for the OAuth server oa and the resource owner ow, while
a second 𝐷res is in charge of the interactions involving an untrusted app ua and the resource service
res, 𝐻res. Separately, a chief designer describes the compatibility type 𝐺

†
oa. Compatibility holds,

1
For more details on the role of parallel composition in the inductive proof of Theorem 4.4, see the full proof in Appendix

B.1 of [Gheri and Yoshida 2023], Theorem B.17
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𝐺
†
op = ua → oa :{init(id, scp).oa → ow :{login(id, scp).ow → oa :
deny.oa → ua :close.oa → res :{release.end},

auth(name, pwd) .oa!ua;


close.oa → res :{release.end},
code(code) .ua → oa :{exchange(id, secret, ).oa → ua :

{close.oa → res :{release.end}, token(token).oa → res :{pass.end}}}


}}

𝐻res (and 𝐻 res_acc) the same as in Figure 7

Fig. 8. Distributed for OAuth 2.0, Optimised

𝐺
†
oa↾{oa,ow} = loc 𝐻auth and 𝐺

†
oa↾{ua,res} = loc 𝐻res, and Corollary 4.10 guarantees the existence of

a well-formed global type for the whole protocol.

Let us focus on the component𝐻res, and in particular on its subcomponent𝐻 res_acc, which contains

exclusively internal interactions: once authorisation is granted, the untrusted app communicates

directly with the resource service. We observe then that 𝐻 res_acc can be specified modularly: the
designer 𝐷res could, at a later stage, specify a different protocol, 𝐻 ′

res_acc, for the interaction between

ua and res, without affecting compatibility. We recognise one extra benefit of our theory inmodular
specification for intra-component communication: a designer (𝐷res) can modify the specification of

their protocol (𝐻res) over time, in its internal interactions (𝐻 res_acc, 𝐻
′
res_acc), as long as its external

communication (loc 𝐻res)—and hence compatibility with respect to the prescription of the chief

designer (𝐺
†
oa)—is preserved.

5.3 Optimisation of OAuth 2.0 Specification
By inspecting the types in Figure 7, we notice that all inter-component interactions (between

𝐻auth and 𝐻res) go through the participant oa and, hence, they are all documented by 𝐺
†
oa , but also

in 𝐻auth. Here, describing explicitly 𝐺
†
oa looks redundant and we ask ourselves whether a more

efficient specification is possible. It turns out that we can omit the specification of 𝐺
†
oa for the

OAuth 2.0 protocol and optimise distributed specification (Corollary 4.10) in general.

Corollary 5.1 (Distributed MPST Specification, Optimisation). Given 𝐸, 𝐸1, . . . , 𝐸𝑁 disjoint
sets of participants, a global type𝐺†, and𝐻1, . . . , 𝐻𝑁 hybrid types, such that: (a) ipart(𝐻𝑖 ) = 𝐸𝑖 , for all
𝑖 = 1, . . . , 𝑁 , (b) epart(𝐻𝑖 )∩𝐸𝑖 = ∅, for all 𝑖 , (c) ipart(𝐺†) ⊆ (⋃𝑖=1,...,𝑁 𝐸𝑖 )∪𝐸, and (d)𝐺†↾𝐸𝑖 = loc 𝐻𝑖 ;
there exists 𝐺 such that, for all 𝑖 = 1, . . . , 𝑁 , for all r ∈ 𝐸𝑖 , 𝐺↾r = 𝐻𝑖↾{r} , and for all r ∈ 𝐸,
𝐺↾r = 𝐺†↾{r} .

The proof of the above corollary is analogous to the proof of Corollary 4.10 and entails the same

semantic guarantees, since it leads to the existence of a global type for the whole system. However,

in Corollary 5.1,𝐺†
plays a twofold role: (a) it is the hybrid type, communication subprotocol for

the component with set of participants 𝐸, and (b) it is the compatibility protocol, carrying all the

inter-component interactions of the system. For OAuth 2.0, by exploiting Corollary 5.1, we obtain a

more efficient distributed specification (Figure 8). Only two hybrid types, one for each component,

are specified, provided that one contains also the compatibility information. We observe, with

notations from Figures 7 and 8 that𝐻auth↾{p} = 𝐺
†
op↾{p} , for p ∈ {oa, ow}. Hence, for all participants,

in both specifications we obtain the same local types for implementation. However, in the optimised

case of Figure 8, for compatibility, we only need to check one equality: 𝐺
†
op↾{ua,res} = loc 𝐻res.

Remark 5.2 (Local Types from Partial Protocols). We observe that Corollaries 4.10 and 5.1 prescribe

differently how to obtain local types for implementation. In Corollary 4.10, we project each 𝐻𝑖

onto its internal participants (in 𝐸𝑖 ) to get the right local types. 𝐺†
has the sole role of disciplining

inter-component communication for compatibility, hence all its projections onto single participants
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(even if well-defined) are not meant for implementation. In Corollary 5.1, instead, the global type𝐺†

not only provides for compatibility, but also describes the internal communication of the component

that is concerned with the participants in 𝐸. Thus, if r ∈ 𝐸𝑖 , the respective local type is obtained by

𝐻𝑖↾{r} , while, if r ∈ 𝐸, the local type for implementing r is 𝐺†↾{r} .

5.4 An Extension to Delegation and Explicit Connections
The MPST literature offers a variety of formalisms that enrich the type system with expressive

features [Bocchi et al. 2014; Castro-Perez and Yoshida 2020; Lagaillardie et al. 2022; Viering et al.

2021; Zhou et al. 2020], while maintaining the central mechanism of projecting global types onto

local types for distributed implementation. This suggests that our compositional methodology

is general enough to capture more sophisticated formalisms than core MPST. In this section, we

support this intuition with a case study: we extend hybrid types to include delegation and explicit
connections. At the end of the section (Example 5.7), we show that this suitability for extensions is

a prerogative of our compositionality-through-projection, differently from other compositionality

approaches based on input/output matching [Barbanera et al. 2021; Stolze et al. 2021].

Both delegation and explicit connections are relevant and practical features, which have been

extensively studied by the literature on concurrency. Delegation—the mechanism in which a

participant appoints a different participant to act on their behalf—first appears in the context of

object-oriented concurrency [Agha 1990; Ungar and Smith 1987; Yonezawa and Tokoro 1986] and,

naturally, it has been implemented in mainstream object-oriented languages [Hu et al. 2008; Imai

et al. 2020; Scalas and Yoshida 2016]. Over the years, the session-type literature has investigated

the verification of concurrency in the presence of delegation [Bettini et al. 2008; Honda et al. 1998,

2008; Scalas et al. 2017]. In particular, we take the approach of Castellani et al. [2020], who treat

delegation as internal to the session, in contrast with channel-passing delegation, which requires

the interleaving of sessions. Thus, the authors can model (internal) delegation simply by adding

specific constructs to the syntax of global types. Moreover, global types from this paper benefit

from the flexibility of explicit connections: some participant may or may not take part in the

communication, depending on the choice made by some other participant at a previous stage of

execution. Explicit connections are common in the design of real-world protocols [Hardt 2012;

MIT 2022] and have been significantly addressed by the literature [Castellani et al. 2019; Gheri

et al. 2022; Harvey et al. 2021; Hu and Yoshida 2017]. Specifically, our approach is immediately

compatible with the type system and the semantics in [Castellani et al. 2020] (from which we take

most notation): we can compose subprotocols into a well-formed and well-delegated global type,

projecting on local session types for the whole communicating system. Thus, no new semantics is

needed, but MPST semantics guarantees (subject reduction, session fidelity, and progress) hold.

For this case study, we focus on our novel notion of compatibility through projection (Equation

C). Developing the full theory goes beyond the scope of this paper: the structure of the proofs

would be exactly the same as in our core theory (Section 4). Instead, we (𝑎) extend hybrid types to

delegation and explicit connections, (𝑏) generalise projection, (𝑐) define the localiser, and (𝑑) state
compatibility.

Definition 5.3 (Hybrid Types with Delegation). We define a set of prefixes for global and local

messages; when p establishes an explicit connection to q, we use the superscript 𝑒 .

𝛼 ::= p → q || p →𝑒 q 𝜋out
::= p!q || p!𝑒q 𝜋 in

::= p?q || p?𝑒q 𝜎 ::= 𝛼 || 𝜋out

Hybrid types with delegation are defined inductively by:

𝐻 ::= end || 𝑋 || 𝜇𝑋 .𝐻 || 𝐻 1 |𝐻 2 || ⊞𝑖∈𝐼𝜎p
𝑖
(ℓ𝑖 );𝐻 𝑖 ||

∧
𝑖∈𝐼 𝜋

in
𝑖 (ℓ𝑖 );𝐻 𝑖 ||

p◦⟨⟨•q;𝐻 || q•⟩⟩◦p;𝐻 || p◦⟨⟨•[q];𝐻 || [q]•⟩⟩◦p;𝐻 || [p]◦⟨⟨•q;𝐻 || q•⟩⟩◦[p];𝐻
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Without loss of generality, we omit payload types (sorts) from the syntax above: formally,

participants only exchange labels ℓ . For degenerate branchings (with a single branch, where no

actual choice happens) we omit the operators ⊞ and

∧
and we simply write the message (starting

with a prefix 𝛼, 𝜋out, 𝜋 in
).

Hybrid types with delegation (Definition 5.3) endow with local send/receive constructs the global

types from [Castellani et al. 2020]. In particular, global choices and union types from [Castellani et al.

2020] are particular cases of the above syntax. The global choice,⊞𝑖∈𝐼𝛼
p
𝑖
(ℓ𝑖 );𝐻 𝑖 , is obtained by asking

that, in ⊞𝑖∈𝐼𝜎
p
𝑖
(ℓ𝑖 );𝐻 𝑖 , all 𝜎

p
𝑖
are global messages, 𝛼

p
𝑖
. Local union (send) types,

∨
𝑖∈𝐼 𝜋

out
𝑖 (ℓ𝑖 );𝐻 𝑖 ,

are now written as ⊞𝑖∈𝐼𝜎
p
𝑖
(ℓ𝑖 );𝐻 𝑖 , where all 𝜎

p
𝑖
are send constructs 𝜋out

𝑖 . In what follows we discuss

how Definition 5.3 is a direct extension of Definition 3.3.

We observe that branching is more permissive than in Definition 3.3.

• In a single choice ⊞𝑖∈𝐼𝜎
p
𝑖
(ℓ𝑖 );𝐻 𝑖 the sender p is unique, but receivers may be different, internal

or external: in choices we allow the mixing of global messages 𝛼 and send constructs 𝜋out
.

• Intersection types

∧
𝑖∈𝐼 𝜋

in
𝑖 (ℓ𝑖 );𝐻 𝑖 combine receive constructs 𝜋 in

, possibly with different

senders (and receivers).

Remark 5.4 (Generalising Hybrid Types to Delegation). The syntax of hybrid types with delegation

(Definition 5.3) is a generalisation of the core syntax of hybrid types (Definition 3.3).
2
For each

construct in Definition 3.3, we show how it can be expressed in the formalism of 5.3.

• end, 𝑋 , 𝜇𝑋 .𝐻 , and 𝐻1 |𝐻2 are preserved.

• p!q; {ℓ𝑖 .𝐻 𝑖 }𝑖∈𝐼 can be written as ⊞𝑖∈𝐼𝜎
p
𝑖
(ℓ𝑖 );𝐻 𝑖 , with 𝜎

p
𝑖
= p!q for all 𝑖 ∈ 𝐼 .

• p?q; {ℓ𝑖 .𝐻 𝑖 }𝑖∈𝐼 can be written as

∧
𝑖∈𝐼 𝜋

in
𝑖 (ℓ𝑖 );𝐻 𝑖 , with 𝜋 in

𝑖 = p?q for all 𝑖 ∈ 𝐼 .

• p → q; {ℓ𝑖 .𝐻 𝑖 }𝑖∈𝐼 can be written as ⊞𝑖∈𝐼𝜎
p
𝑖
(ℓ𝑖 );𝐻 𝑖 , with 𝜎

p
𝑖
= p → q for all 𝑖 ∈ 𝐼 .

The global construct p◦⟨⟨•q;𝐻 models a forward delegation where p delegates their behaviour to

q; then, such behaviour is given back with the global construct for backward delegation, q•⟩⟩◦p;𝐻 .

The notation for local constructs is analogous: active forward delegation p◦⟨⟨•[q];𝐻 , passive back-
ward delegation [q]•⟩⟩◦p;𝐻 , passive forward delegation [p]◦⟨⟨•q;𝐻 , and active backward delegation
q•⟩⟩◦[p];𝐻 . As in our core theory (see Definition 3.3), local constructs carry both internal par-

ticipants and external ones (in square brackets): e.g., in p◦⟨⟨•[q];𝐻 , p (internal) delegates their

behaviour to the participant q of a different component (external).

Example 5.5 (Global Types with Delegation and Explicit Connections). Here, we consider two

simple examples that display in isolation the features of delegation and explicit connections. Let us

consider the following global protocols, written with the syntax of hybrid types with delegation

(Definition 5.3).

𝐺𝑑 = customer → seller(ok); seller◦⟨⟨•bank; customer → seller(card); bank•⟩⟩◦seller; end
In 𝐺𝑑 , after the customer has given the ok, the seller delegates to the bank their role in the

communication (seller◦⟨⟨•bank). Namely, when the customer sends their card number to the

seller, they are in fact sharing that information with the bank. With the construct bank•⟩⟩◦seller,
the bank delegates back their role to the seller.

𝐺𝑒𝑐 = user → website(location);⊞
{

website →𝑒 EUshop(open); EUshop → user(EUfrontpage); end
website →𝑒 UKshop(open); UKshop → user(UKfrontpage); end

}
In 𝐺𝑒𝑐 , after the website receives the user’s location, it decides whether to (explicitly) connect
them to the EUshop or to the UKshop. Then the EUshop (resp. the UKshop) sends the EUfrontpage
(resp. the UKfrontpage) to the user. Here in the first branch (resp. the second) of the choice, there is

2
In order to make the notation lighter, we ignore sorts in both syntaxes: only labels ℓ are sent.
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an explicit connection website →𝑒 EUshop (resp. website →𝑒 UKshop) to the participant EUshop
(resp. UKshop), which does not appear in the other branch.

We adopt the definition of well-delegated type from [Castellani et al. 2020] (Definition 4.11); in

particular a forward delegation (e.g., p◦⟨⟨•q;) is always followed by a corresponding backwards

one (e.g., p•⟩⟩◦q;); also, choices must not appear between corresponding forward and backward

delegation.

We define projection and localiser for hybrid types with delegation, by extending Definitions 3.6

and 3.8, §3.2. The main differences are listed below.

• Projection behaves on delegation constructs following the same intuition as for messages.

E.g., (p◦⟨⟨•q;𝐻 )↾𝐸 = p◦⟨⟨•q; (𝐻↾𝐸) if {p, q} ⊆ 𝐸, or (p◦⟨⟨•q;𝐻 )↾𝐸 = p◦⟨⟨•[q]; (𝐻↾𝑑 {(p,q) },𝐸)
if p ∈ 𝐸 and q ∉ 𝐸, where projection needs to keep track of p delegating to q, as indicated by

the notation 𝐻↾𝑑 {(p,q) },𝐸 .
• Branches with explicit connections of a participant s can be merged with branches where

s does not appear; e.g., if 𝐻 = ⊞{p → q(ℓ); end,p →𝑒 s(ℓ𝑒 ); s → q(ℓ ′); end}, then 𝐻↾{s} =
p?𝑒s(ℓ𝑒 ); s!q(ℓ ′); end.

• We allow merging of receive constructs with different senders; e.g., with 𝐻 as in the bullet

point above, 𝐻↾{q} =
∧{p?𝑒q(ℓ); end, s?𝑒q(ℓ ′); end}

• As in our core theory §3.2, the localiser skips global constructs and retains local ones; e.g.,

loc p◦⟨⟨•q;𝐻 = loc 𝐻 and loc p◦⟨⟨•[q];𝐻 = p◦⟨⟨•[q]; (loc 𝐻 ).
The partial function _↾𝑑 dE,𝐸 generalises the delegation projection functions _↾1 (p,q) and _↾2 (p,q)
from [Castellani et al. 2020] (Figure 6); this function is of a sequential nature: it is not defined

for branching, recursion, and parallel constructs. Full definitions of projection ↾, the auxiliary

delegation projection ↾𝑑 , and localiser loc are in Appendix B.3 of [Gheri and Yoshida 2023] and

compatible with [Castellani et al. 2020].

Example 5.6 (Projection with Delegation and Explicit Connections). Let us consider 𝐺𝑑 and 𝐺𝑒𝑐

from Example 5.5 and, in particular, their projections onto single participants

The intuition behind the delegation constructs in 𝐺𝑑 is well displayed by its projections.

𝐺𝑑↾{seller} = seller!customer(ok); seller◦⟨⟨•[bank]; [bank]•⟩⟩◦seller; end
𝐺𝑑↾{customer} = seller?customer(ok); customer!seller(card); end
𝐺𝑑↾{bank} = [seller]◦⟨⟨•bank; customer?bank(card); bank•⟩⟩◦[seller]; end

After actively delegating their role to the bank (seller◦⟨⟨•[bank]) and before passively being

delegated their role back ([bank]•⟩⟩◦seller), the seller is not involved in any communication

(𝐺𝑑↾seller). At the same time, the bank plays the opposite role: is passive in receiving the delega-

tion from seller ([seller]◦⟨⟨•bank) and active in delegating the role back (bank•⟩⟩◦[seller]).
Furthermore, we observe that, while the bank knows that they are receiving the card number from

the customer, the customer acts as if they are sending it directly to the seller: as expected, the
customer is not involved in the delegation process and hence ignores it.

When projecting 𝐺𝑒𝑐 onto its participants, we obtain the following types.

𝐺𝑒𝑐↾{user} = user!website(location);∧ {
EUshop?user(EUfrontpage); end
UKshop?user(UKfrontpage); end

}
𝐺𝑒𝑐↾{website} = user?website(location);⊞

{
website!𝑒EUshop(open); end
website!𝑒UKshop(open); end

}
𝐺𝑒𝑐↾{EUshop} = website?𝑒EUshop(open); EUshop!user(EUfrontpage); end
𝐺𝑒𝑐↾{UKshop} = website?𝑒UKshop(open); UKshop!user(UKfrontpage); end
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We observe that the participants EUshop and UKshop are concerned only with the interactions that

happen after their explicit connection (website?𝑒EUshop and website?𝑒UKshop respectively) and

not with the communication in the other branch, where they are not connected.

We now define compatibility. In the usual multi-component scenario, we give hybrid types (with

delegation and explicit connections) 𝐻1, 𝐻2, . . . , 𝐻𝑁 , for each component, and a compatibility type

𝐺†
. As in §4, we consider the generic 𝐻𝐸 ∈ {𝐻1, 𝐻2, . . . , 𝐻𝑁 } (with 𝐸 being the set of its internal

participants) in isolation and we state compatibility:

𝐺†↾𝐸 = loc 𝐻𝐸
(D)

Equation D is exactly the same as Equation C. This captures the generality of our technique: given

an existing top-down MPST system, first, we extend its syntax to hybrid types and generalise

projection to sets of participants; then we isolate the inter-component communication of each

protocol with the localiser; and, finally, we can state compatibility, prove compositionality, and

achieve distributed protocol specification. Such general design gives a clear advantage to our theory,

with respect to the dual approach from previous work [Barbanera et al. 2021; Stolze et al. 2021].

Example 5.7 (Compatibility Through Projection VS Input/Output Matching). We consider the

following three-component system 𝐻1, 𝐻2, 𝐻3, with 𝐺
†
for compatibility.

𝐺† = ⊞{p → q(ℓ); end, p →𝑒 s(ℓ𝑒 ); s → q(ℓ ′); end} 𝐻2 = q → q1 (ℓ1);
∧ {p?q(ℓ); end, s?q(ℓ ′); end}

𝐻1 = ⊞{p → p0 (ℓ0); p!q(ℓ); end, p!𝑒s(ℓ𝑒 ); p → p0 (ℓ0); end} 𝐻3 = p?𝑒s(ℓ𝑒 ); s →𝑒 r(ℓ𝑒
0
); s!q(ℓ ′); end

In 𝐻1, p makes a choice: on the first branch, first it sends an internal message and then an external

one to q in𝐻2; on the other branch p first makes an explicit connection to s in𝐻3 and then sends an

internal message. The component 𝐻2 (after an internal interaction) is waiting to receive either from

p in 𝐻1 or from s in 𝐻2. The third component 𝐻3 is concerned only with the second branch, in case

it is chosen by p. All types are compatible with respect to 𝐺†
: 𝐺†↾𝐸𝑖 = loc 𝐻𝑖 , with 𝐸1 = {p, p0},

𝐸2 = {q, q1}, and 𝐸3 = {s, r}. Indeed, we can build a well-formed global type for the whole system:

𝐺 = q → q1 (ℓ1);⊞
{
p → p0 (ℓ0); p → q(ℓ); end, p →𝑒 s(ℓ𝑒 ); s →𝑒 r(ℓ𝑒

0
); s → q(ℓ ′); p → p0 (ℓ0); end

}
We focus on 𝐻2 and we observe that, in the intersection of inputs, q is waiting to receive from p in

𝐻1, on the first branch, and from s in 𝐻3, on the second. Therefore, a match for inputs in 𝐻2 cannot

happen solely with outputs of 𝐻1, nor solely with outputs of 𝐻3. In this case, dual compatibility

relations would fail, while, with our approach based on projection, compatibility can be simply

stated with respect to the global guidance of 𝐺†
, through Equation D.

6 RELATEDWORK
Our work achieves protocol compositionality in MPST top-down systems, namely those systems

where the communication protocol is explicitly described as a global type and, subsequently, from

the projection of it, local types are obtained for implementation. We organise this section as a

progressive discussion of related work, with respect to our paper, from more distant to closer.

MPST Alternatives to the Top-Down Approach. Since their first appearance [Honda et al.

2008], MPST have evolved into a variety of frameworks for the specification and the verification

of concurrency, often beyond the original top-down approach. The works of Lange and Tuosto

[2012] and Deniélou and Yoshida [2013] explicitly give algorithms for the synthesis of global

types from communicating finite-state machines, while Lange et al. [2015] propose a similar

method to build graphical choreographies, expressed as global graphs. Scalas and Yoshida [2019]

develop a framework where global types are not necessary, relying instead on model- and type-

checking techniques for verifying safety properties of collections of local types. The advantage of

such approaches is that they offer analysis for pre-existent systems. However, before the need to
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hierarchically design a new communicating system, the top-down approach enables a high-level

specification of the system that guarantees safe interactions of distributed implementations. The

top-down approach has seen a variety of tools and implementations, e.g., [Carbone and Montesi

2013; Castro-Perez et al. 2021; Cruz-Filipe et al. 2021; Gheri et al. 2022; Honda et al. 2011; Neykova

and Yoshida 2019; Yoshida et al. 2013, 2021] and it has been investigated beyond MPST [Barbanera

et al. 2020a; Montesi 2013]. Recent research (e.g., [Cledou et al. 2022; Glabbeek et al. 2021; Jacobs

et al. 2022; Lagaillardie et al. 2022]) has kept exploring the possibilities offered by an explicit design

of systems through protocol specification. Our work adds compositionality to top-down protocol

specification.

Protocol Flexibility and Modularity beyond MPST. Caires and Vieira [2009]; Padovani et al.

[2014] do not address protocol compositionality, but, in defining conversation types, the authors

combine global and local constructs in the same syntax, for a flexible specification: messages can

be scheduled, while participants can be at first left unspecified, thus allowing for interleaving of

sessions. In the context of reactive programming, Carbone et al. [2018]; Savanovic et al. [2020] pro-

pose a technique for modular design: a communicating system is specified in terms of components,

each (composite) component contains a choreography (or, protocol) and for each role in the protocol

a new implementation (component) is specified. Intuitively speaking, each component comes with

an input/output interface allowed by the protocol, so to keep track of data-flow dependencies.

Montesi and Yoshida [2013] develop a compositional technique for choreographic programming:

the specification of partial choreographies is allowed, i.e., the implementation of some of the roles

can be left unspecified. These roles can be implemented by a different choreography at a later time;

compatibility is achieved through an additional typing relation on choreographies, which relies both

on global and local types. All the above work modifies the essence of the protocol structure. Our

theory differs from it, first, because our compatibility condition (Equation C) relies on projection,

instead of dual input/output matching. Then, compositionality based on hybrid types retains the

simplicity of traditional MPST protocol structure: the result of composition is a well-formed global

type and no new semantics need to be developed. Thanks to such semantics preservation and our

novel compatibility, our techniques are general enough to be applied to traditional MPST (§3 and

§4), as well as to more expressive specifications (§5.4).

Modular Global Types through Nesting. Global types are choreographic objects and, hence,
originally [Honda et al. 2008] intended as standalone entities. Given their monolithic nature,

techniques for making them more flexible have been proposed very early on; e.g., Demangeon and

Honda [2012] describe a methodology for nesting global types, via calls to a subprotocol from a

parent protocol. Tabareau et al. [2014] propose an alternative approach to nesting protocols, by

extending the syntax of global and local types with aspects [Kiczales et al. 1997]. Demangeon et al.

[2015] also explore nesting techniques for global types, and apply these to extend the Scribble

protocol description language [Honda et al. 2011; Neykova and Yoshida 2019; Yoshida et al. 2021]

with interruptible interactions. Our work does not establish a parent/offspring relation, but it

explores direct composition of subprotocols treated as peers.

State of The Art of Direct Composition of MPST Protocols. To the best of our knowledge,

only Barbanera et al. [2021] and Stolze et al. [2021] investigate the direct composition of protocols

for MPST, so that the result of composition is a well-formed global type. Our development differs from

this work, in primis, because of its semantics preservation: in our theory, global types are exactly

as in traditional MPST theories (e.g., [Deniélou and Yoshida 2013]); thus, our compositionality is

immediately compatible with those and benefits from their semantics results. Furthermore, our

theory can compose more than two protocols (missing in [Barbanera et al. 2021]) and captures the

full expressiveness of MPST, including parallel composition and recursion (missing in [Stolze et al.

2021]). Ultimately, our compatibility (Equation C) overcomes the limitations of dual input/output
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matching, on which both Barbanera et al. [2021] and Stolze et al. [2021] rely: our theory is general

enough to be applied to more sophisticated MPST systems (§5.4, Example 5.7). Below we expand

on the significance of our contribution, with respect to this related work, with detailed examples.

In [Barbanera et al. 2021], the composition of two global types is achieved with gateways [Bar-
banera et al. 2018, 2019, 2020b]: two participants, one for each subprotocol (global type), are selected

as forwarders (gateways) for communicating with the other; if the subprotocols are compatible, with

respect to the gateway choice, they can be composed into a more general global type. The central

difference between our design and [Barbanera et al. 2021] is the “interface” through which subpro-

tocols communicate. Instead of gateways, hybrid types use local constructs for inter-component

interactions and, instead of a dual input/output matching, they rely on projection for compatibility.

Thus, we can safely combine two or more protocols at once. Concretely, we consider the following

example involving three subprotocols, described as global types with gateways.

𝐺1 = p → h2 :ℓ .p → q :ℓ .h3 → q :ℓ .end 𝐺2 = k1 → r :ℓ .s → r :ℓ .r → k3 :ℓ .end
𝐺3 = t → u :ℓ .u → l1 :ℓ .l2 → u :ℓ .end

We identify (h2, k1), (h3, l1), and (k3, l2) as gateways; we choose the first one and compose.

𝐺1

h2↔k1𝐺2 = p → h2 :ℓ .h2 → k1 :ℓ .k1 → r :ℓ .p → q :ℓ .h3 → q :ℓ .s → r :ℓ .r → k3 :ℓ .end

The next steps of composition should happen between h3 and l1, and between k3 and l2. Applying
again gateway-composition does not work: after a first step (e.g., using h3 and l1) we would be left

with a single global type, i.e., no two types left to compose (e.g., using k3 and l2). While we could

try simultaneous composition for more than one pair of gateways at once, the simple example

in [Barbanera et al. 2021], Section 11, shows how this extension is unsound and could lead to

deadlocked systems. Another naïve attempt to improve on gateway composition is the following:

we force𝐺1 and𝐺2 to have the same participant for communicating with𝐺3 (relaxing the condition

from [Barbanera et al. 2021], where participants in two composing global types must be distinct):

𝐺 ′
1
= p → h :ℓ .l → p :ℓ .end 𝐺 ′

2
= k → q :ℓ .q → l :ℓ .end

𝐺 ′
3
= t → r :ℓ .r → t :ℓ .end

The communication is supposed to happen between h and k, and between l and t. If we allow non-

distinct participants in distinct global types, however, it is not immediate to achieve a well-defined

gateways compositionality. For example, the order in which we compose plays a key role: while

(𝐺2

k↔h𝐺1)l↔t𝐺3 is well defined, (𝐺1

h↔k𝐺2)l↔t𝐺3 is not. Also, associativity would not hold: we

cannot compose 𝐺3 with any of 𝐺1 and 𝐺2 and then finish composing with the remaining one.

We specify the system above in terms of hybrid types: in place of gateways, we use local constructs

for inter-component communication (highlighted), and we give the type 𝐺†
for compatibility.

𝐻1 = p!r; ℓ .p → q :ℓ . u?q; ℓ .end 𝐻2 = p?r; ℓ .s → r :ℓ . r!u; ℓ .end

𝐻3 = t → u :ℓ . u!q; ℓ . r?u; ℓ .end 𝐺† = p → r : ℓ . u → q : ℓ . r → u : ℓ .end

For all components, compatibility C holds and our theory can compose the three protocols into a

well-formed global type (Corollary 4.10), thus overcoming the binary limitation of gateways.

Stolze et al. [2021], develop a binary compatibility relation that partially improves on [Barbanera

et al. 2021]: they can compose more than two types, but put severe restrictions on the syntax.

Global types in [Stolze et al. 2021] are inductive, but with no recursion and no parallel construct,
thus making our work (and traditional MPST in general) strictly more expressive. The key role

of parallel composition for an inductive syntax is discussed in [Glabbeek et al. 2021] (Example

13 and following paragraph) and in §5.1. Recursion is paramount for expressiveness in MPST

[Coppo et al. 2015; Honda et al. 2008, 2016; Yoshida and Gheri 2020]: it allows typing processes

with loops and it is omnipresent in real-world protocols (e.g., see §5.2 and §5.3). As for semantics,

recursion allows for infinite executions and is a key element in the correspondence between

local types and communicating finite-state machines [Deniélou and Yoshida 2013], on which

practical implementations of the popular Scribble protocol language are based [Honda et al. 2011;
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Hu and Yoshida 2016; Neykova and Yoshida 2019; Yoshida et al. 2013, 2021]. Also, recursion (in

combination with branching) is among the most delicate aspects of MPST (see, e.g., Observation 3

in [Glabbeek et al. 2021] or Definition B.1 and the following well-formedness lemmas in Appendix

B.1 of [Gheri and Yoshida 2023]). E.g., the recursive types 𝐻1 = 𝜇𝑋 .p → q :ℓ1.p!r;ℓ .𝑋 and 𝐻2 =

𝜇𝑋 .p?r;ℓ .s → r :ℓ2 .𝑋 , are composable both with gateways [Barbanera et al. 2021] and with our

theory (𝐺† = 𝜇𝑋 .p → r :ℓ .𝑋 for compatibility), but they cannot be expressed in [Stolze et al. 2021].

In summary, our theory allows composing two or more subprotocols into a well-formed global

type, while retaining full expressiveness of MPST, thus improving on the state of the art [Barbanera

et al. 2021; Stolze et al. 2021]. Furthermore, previous work focuses on dual input/output matching,

which makes it inapplicable to more expressive MPST systems, where instead, to the best of our

knowledge, our novel compatibility C is the first notion to succeed (see §5.4, Example 5.7). We

observe that, as it happens for the extension of binary session types to multiparty session types,

when relying on projection instead of duality, we commit to the specification of one more global

object (what we called 𝐺†
), but, in return, we obtain full multiparty compatibility.

7 FUTUREWORK
The first envisioned application for our compositionality theory is its integration with practical

protocol design languages, such as Zooid [Castro-Perez et al. 2021] or Scribble [Honda et al. 2011;

Yoshida et al. 2013, 2021]. In what follows we briefly describe how this integration can be realised.

In the past ten years, Scribble has been employed as the protocol language of multiple toolchains,

supporting different programming languages and integrating a variety of expressive features [Castro

et al. 2019; Gheri et al. 2022; Honda et al. 2011; Hu and Yoshida 2017; Miu et al. 2021; Neykova

et al. 2018; Neykova and Yoshida 2019; Scalas et al. 2017; Yoshida et al. 2013, 2021; Zhou et al.

2020]. Independently of the specific implementation, the Scribble toolchain is generally designed

as follows.

(1) The designer specifies the communication protocol (a global type 𝐺) in Scribble.

(2) 𝐺 is projected onto local types 𝐿1, . . . , 𝐿𝑛—or, equivalently, their representation as CFSMs

[Deniélou and Yoshida 2013].

(3) From local types, APIs for the distributed implementation of all participants are generated

(following the approach of Hu and Yoshida [2016]).

Through API implementation, the communication for the multiparty system is MPST certified

and does not get stuck (semantic guarantees hold). Thanks to its semantics-preserving features

and its backwards compatibility with existing MPST systems, our compositionality framework

can be integrated with Scribble toolchains, with minimal effort. First, we will extend the Scribble

protocol design language to the syntax of hybrid types (Definition 3.3)—of which global types are a

particular case—with constructs p!q; and p?q;. Then, we will implement the localiser (Definition

3.8) and extend projection to Definition 3.6; here compatibility with previous implementations

is guaranteed by the considerations in Remark 3.7: Definition 3.6 generalises traditional MPST

projection (Definition 3.2). Finally, we will implement checks for 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐺†) and compatibility C
(𝐺†↾𝐸 = loc 𝐻𝐸

). With these simple changes, we will endow Scribble with compositionality, thus

enabling distributed protocol specification. “Compositional Scribble” will look as follows.

(1c) Multiple designers give 𝐻1, . . . , 𝐻𝑁 in a distributed fashion and a chief designer specifies 𝐺†
,

as hybrid types.
(2c) Internal checks are performed for 𝑖𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐺†) and compatibility C.
(3c) Each 𝐻𝑖 is projected onto local types 𝐿𝑖

1
, . . . , 𝐿𝑖𝑛𝑖—or, equivalently, their representation as

CFSMs [Deniélou and Yoshida 2013].

(4c) From local types, APIs for the distributed implementation of all participants are generated.
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We observe that, thanks to our theory, the checks in (2c) are enough to guarantee the existence of

a well-formed global type for the whole system, without the need for explicitly building back such

type (see also Corollary 4.10 and Remark 4.12). Moreover, since projection is preserved (Theorem

4.9 and Corollary 4.10), local types are the same as in traditional MPST: not only do semantic

guarantees still hold, but so does the correspondence between local types and CFSMs in [Deniélou

and Yoshida 2013].

With respect to traditional Scribble, nothing changes for the user, apart from the added function-

ality of distributed protocol specification: the safe distributed implementation of all participants is

still enabled, but, now, also protocols can be specified in a distributed fashion, in terms of their

components (as hybrid types 𝐻1, . . . , 𝐻𝑁 ).

Beyond its integration with existing protocol design languages, we plan to build on this work in

different directions. In Section 5.4, we have shown the potential of our approach to compositionality,

by adapting it to an MPST formalism that extends the traditional syntax of global types to include

the advanced features of delegation and explicit connections. Similarly, beyond our core composi-

tionality for global types, we envision future applications to the wide variety of MPST systems (e.g.,

featuring fault tolerance [Viering et al. 2021], timed specification [Bocchi et al. 2014], refinements

[Zhou et al. 2020], cost awareness [Castro-Perez and Yoshida 2020], or exception handling [La-

gaillardie et al. 2022]) and, orthogonally, future extensions that add flexibility to compositionality

itself (e.g., by factoring in renaming mechanisms for participants [Jacobs et al. 2022]). Another

promising perspective is the application of our techniques beyond MPST, to other protocol-design

formalisms based on projection, e.g., choreography automata [Barbanera et al. 2020a; Gheri et al.
2022] or choreographic programming [Montesi 2013].

8 CONCLUSION
We have developed a “compositionality-through-projection” technique that allows the distributed

specification of MPST protocols, in terms of hybrid types (Definition 3.3). Our work neatly improves

on the state of the art, by allowing for composition of more than two protocols, while retaining
the full expressiveness of global types. Our results (Corollaries 4.10 and 5.1) guarantee correctness

and make our theory compatible with existing MPST systems (semantics preservation). Our novel
compatibility relation (Equation C), based on generalised projection and localiser (Definitions 3.6

and 3.8), overcomes the limitations of dual input/output matching and it is general enough to

capture extensions beyond traditional MPST (e.g., to delegation and explicit connections §5.4).
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