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Abstract. This paper proposes a new hybrid session verification method-
ology for applying session types directly to mainstream languages, based
on generating protocol-specific endpoint APIs from multiparty session
types. The API generation promotes static type checking of the be-
havioural aspect of the source protocol by mapping the state space of
an endpoint in the protocol to a family of channel types in the tar-
get language. This is supplemented by very light run-time checks in the
generated API that enforce a linear usage discipline on instances of the
channel types. The resulting hybrid verification guarantees the absence
of protocol violation errors during the execution of the session. We im-
plement our methodology for Java as an extension to the Scribble frame-
work, and use it to specify and implement compliant clients and servers
for real-world protocols such as HTTP and SMTP.

1 Introduction

Application of session types to practice. Session types [14,15,4] are a type
theory for communications programming which can guarantee the absence of
communication errors in the execution of a session, such as sending an unex-
pected message or failing to handle an incoming message, and deadlocks due to
mutual input dependencies between the participants. One direction of applying
session types to practice has investigated extending existing languages with the
necessary features, following the theory, to support static session typing. This
includes extensions of Java [17,39] with first-class channel I/O primitives and
mechanisms for restricting the aliasing of channel objects, that perform static
session type checking as a preprocessor step alongside standard Java compila-
tion. New languages have also been developed from session type concepts. The
design of SILL [33,40] is based on a Curry-Howard isomorphism between propo-
sitions in linear logic and session types, giving a language with powerful linear
and session typing features, but that requires programmers to shape their data
structures and algorithms according to this paradigm.

To apply session types more directly to existing languages, another direction
has investigated dynamic verification of sessions. In [8], multiparty session types
(MPST) are used as a protocol specification language from which run-time end-
point monitors can be automatically generated. The framework guarantees that
each monitor will allow its endpoint to perform only the I/O actions permitted
according to the source protocol [1]. Although flexible, dynamic verification loses
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benefits of static type checking such as compile-time error detection and IDE
support. Session types have been also applied through code generation to specific
target contexts. [30] develops a framework for MPI programming in C that uses
MPST as a language for specifying parallel processing topologies, from which a
skeleton implementation of the communication structure using MPI operations
is generated. The skeleton is then merged with user supplied functions for the
computations around the communicated messages to obtain the final program.

This paper presents a new methodology for applying session types directly to
mainstream statically typed languages. There are two main novel elements:

Hybrid session verification. A trend in recent works [12,7,6,2,41] has involved
the study of explicit relationships between session types and linear types. In
this work, we continue in the direction of developing session types as a system
for tracking correct communication behaviour, in terms of I/O channel actions,
built on top of a linear usage discipline for channel resources (every instance of
a channel should be used exactly once). We apply this formulation practically as
hybrid session verification: we statically verify the behavioural aspect through
the native type system of the target language, supplemented by very light run-
time checks on linear channel usage.

Endpoint API generation. In this work, we use multiparty session types as a pro-
tocol specification language from which we can generate APIs for implementing
the endpoints in a statically typed target language. Taking a finite state machine
(FSM) representation of the endpoint behaviour in the protocol [10,20], the API
generation (i.e. type generation) reifies each state as a distinct channel type in
the target language that permits only the exact I/O operations in that state
according to the source protocol. These state channels are linked up as a call-
chaining API for the endpoint that returns a new instance of the successor state
channel for the action performed. Our hybrid form of session type safety is thus
ensured by static typing of I/O behaviour on each state channel, in conjunction
with run-time checks that every instance of a state channel is used linearly.

Our methodology is a practical compromise that combines benefits from
static session type systems with the utility of code generation approaches. First,
this methodology allows protocol conformance to be statically checked in main-
stream languages like Java, up to the linear channel usage contract of the gener-
ated API, by constraining outputs to the specified message types and promoting
exhaustive handling of inputs. Second, by directly targetting existing languages,
user implementations of session endpoints using generated APIs can be readily
integrated with native language features, existing libraries and IDE support.

We present the implementation of our methodology for Java as an exten-
sion to Scribble [37], a practical protocol description language based on MPST.
Beyond the core safety benefits of regulating session type behaviour through
endpoint FSMs, we take advantage of hybrid verification and API generation
to support additional practically motivated features for session programming in
Java, and to apply further features from session type theory. The former includes
value-switched session branching and the abstraction of nominal state channel
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1 type <java> "java.lang.Integer" from "rt.jar" as Int;

2

3 global protocol Adder(role C, role S) {

4 choice at C { // Internal choice by C

5 Add(Int, Int) from C to S; // Message sig: op(payload)

6 Res(Int) from S to C;

7 do Adder(C, S); // Recursive protocol def

8 } or {

9 Bye() from C to S;

10 Bye() from S to C; // Protocol end

11 } }

1 2

3

4

S!Bye()

S?Bye()

S!Add(Int, Int)

S?Res(Int)

Fig. 1. (a) A Scribble global protocol. (b) The Endpoint FSM for C.

types as I/O interfaces. Examples of the latter are the generation of state-specific
input futures to support aspects of non-blocking inputs [16], safe permutations
of I/O actions [25,3] and affine inputs [33,24]; and the generation of Java subtype
hierarchies for I/O interfaces to reflect session subtyping [11]. We have tested
our framework by using our API generation to implement compliant clients and
servers for real-world protocols such as HTTP and SMTP.

Outline. § 2 describes the Scribble toolchain that this paper builds on, and
gives an overview of the proposed methodology for hybrid session verification
through API generation. § 3 presents our implementation that generates Java
endpoint APIs from Scribble protocol specifications. § 4 discusses SMTP as a
use case, and practically motivated extensions to the core API generation related
to session programming in Java and more advanced session type features. § 5
discusses related work. An extended version of this paper and other resources
can be found at http://www.doc.ic.ac.uk/~rhu/scribble.

2 Overview

The Scribble toolchain. The Scribble [37,43] framework starts from specifying
a global protocol, a description of the full protocol of interaction in a multiparty
communication session from a neutral perspective, i.e. all potential and necessary
message exchanges between all participants from the start of a session until
completion. The communication model for Scribble protocols is designed for
asynchronous but reliable message transports with ordered delivery between each
pair of participants, which encompasses standard Internet applications and Web
services that use TCP, HTTP, etc.

Global protocol specification. We use as the first running example a simple
client-server protocol for a service that adds two integers, written in Scribble
in Fig. 1 (a). The main elements of the protocol specification are as follows.

The protocol signature (line 3) declares the name of the protocol (Adder) and
the abstraction of each participant as a named role (C and S). Payload format
types (line 1) give an alias (e.g. Int) to data type definitions from an external

http://www.doc.ic.ac.uk/~rhu/scribble
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language (java.lang.Integer) used to define the wire protocols for message for-
matting. A message signature (e.g. Add(Int, Int)) declares an operator name
(Add) as an abstract message identifier (which may correspond concretely to,
e.g., a header field value), and some number of payload types (a pair of Int).
Message passing (e.g. line 5) is output-asynchronous: dispatching the message is
non-blocking for the sender (C), but the message input is blocking for the receiver
(S). Located choice (e.g. line 4) states the subject role (C) for which selecting one
of the listed protocol blocks to follow is a mutually exclusive internal choice. This
decision is an external choice to all other roles involved in each block, which must
be appropriately coordinated by explicit messages. Recursive protocol definitions
(line 7) describe recursive interactions between the roles involved. Non-recursive
do statements can be used to factor out common subprotocols.

Scribble performs an initial validation on global protocols to assert that the
protocol can indeed be soundly realised by a system of independent endpoint
processes. For instance, in this example, the validation ensures that the two
choice cases are communicated by C to S unambiguously (a simple error would
be, e.g., if C firstly sends a Bye to S in both cases).

Local protocol projection and Endpoint FSMs. Following a top-down interpreta-
tion of formal MPST systems, Scribble syntactically projects a valid source global
protocol to a local protocol for each role. Projection essentially extracts the parts
of the global protocol in which the target role is directly involved, giving the lo-
calised behaviour required of each role in order for a session to execute correctly
as a whole. Projecting Adder for C gives: rec X { choice at C { Add(Int, Int) to S;

Res(Int) from S; continue X; } or { Bye() to S; Bye() from S; } }. A further vali-
dation step is performed on each projection of the source protocol for role-
sensitive properties, such as reachability of all relevant protocol states per role.
The validation also restricts recursive protocols to tail recursion. A valid global
protocol with valid projections for each role is a well-formed protocol.

Building on a formal correspondence between syntactic local MPST and com-
municating FSMs, Scribble can transform the projection of any well-formed pro-
tocol for each of its roles to an equivalent Endpoint FSM (EFSM). Fig. 1 (b)
depicts the EFSM of the projection for C. The nodes delineate the state space of
the endpoint in the protocol, and the transitions the explicit I/O actions between
protocol states. The notation, e.g., S!Bye() means output of message Bye() to S;
? dually denotes input.

The core features of the Scribble protocol language are based on and extend
those of [5], to which we refer the reader for formal definitions of global and
local protocols (i.e. multiparty session types). The global-local projection [5,4]
and EFSM transformation [9,20] performed by the Scribble toolchain implement
and extend those formalised in the afore-cited works to support the additional
features of Scribble (such as located choice, sequencing and subprotocols).

Hybrid session verification through endpoint API generation. This
paper proposes a methodology for applying session types to practice that confers
communication safety through a hybrid verification approach.
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Static type checking of I/O behaviour. We consider the EFSMs derived from a
source global protocol to represent the behavioural aspect of the session type.
Our methodology is to generate a protocol-specific endpoint implementation API
for a target role by capturing its EFSM via the native type system of a statically
typed target language. The key points of the Endpoint API generation are:

– The Scribble toolchain is used to validate the source global protocol, project
to the local protocol, and generate the EFSM for the target role.

– Each state in the EFSM is reified as a distinct channel type in the type
system of the target language. We refer to channels of these generated types
as state channels.

– The only I/O operations permitted by a generated channel type are safe
actions according to the corresponding EFSM state in the protocol.

– The return type of each generated I/O operation is the channel type for
the next state following the corresponding transition from the current state.
Performing an I/O operation on a state channel returns a new instance of
the successor channel type.

Starting from a state channel of the initial protocol state and performing an I/O
operation on each state channel returned by the previous operation, the gener-
ated API statically ensures that an endpoint implementation conforms to the
encapsulated EFSM and thus observes the protocol. Consequently, the implicit
usage contract of the generated API is to use every state channel returned by an
API call exactly once up to the end of the session, to respect EFSM semantics
in terms of following state transitions linearly up to the terminal state.

Run-time checking of linear state channel usage. Due to the lack of support for
statically verifying linear usage of values or objects in most mainstream lan-
guages, we take the practical approach of checking linear usage of state channel
instances at run-time. These checks are inlined into the Endpoint API as part of
the API generation. There are two cases for state channel linearity to be violated.

Repeat use. Every state channel instance maintains a boolean state value indi-
cating whether an I/O operation has been performed. The generated API guards
each I/O operation permitted by the channel type with a run-time check on this
boolean to ensure the state channel is not used more than once.

Unused. All state channels for a given session instance share a boolean state
value indicating whether the session is complete for the local endpoint. The
generated API sets this flag when a terminal operation, i.e. an I/O action lead-
ing to the terminal EFSM state, is performed. In conjunction with a language
mechanism for delimiting the scope of a session implementation, such as stan-
dard exception handling constructs, the generated API checks session completion
when program execution leaves the scope of the session.

If any state channel remains unused (possibly discarded, e.g. garbage col-
lected) on leaving the scope of a session implementation, then it is not possible
for the completion flag to be set.
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Hybrid session safety. Together, a statically typed Endpoint API with run-time
state channel linearity checking satisfies the following properties. (1) If state
channel linearity is respected by session endpoint implementations, then com-
munication safety (in the sense of e.g. [15, error-freedom]) is statically ensured by
the generated API types. (2) Regardless of state channel linearity, any statically
type-safe endpoint implementation will never perform a message passing action
whose execution trace is not accepted by the EFSM of the generated API.

The latter is because an implementation using an Endpoint API can only
attempt a non-conformant messaging action by violating state channel linear-
ity, which the API is generated to guard against. This hybrid form of session
verification thus guarantees the absence of protocol violation errors during the
execution of a session, up to premature termination (which is always a possibility
in practice due to program errors outside of the session code or failures).

3 Hybrid Endpoint API generation for Java

Our implementation of Endpoint API generation for Java takes an Endpoint
FSM derived from a Java-based Scribble protocol specification (i.e. a well-formed
global protocol with Java-defined payload format types), and outputs two main
protocol-specific components, the Session API and the State Channel API.

Endpoint FSMs (EFSMs) serve as an interface between source protocol valida-
tion and projection, and the subsequent API generation. Formally, an EFSM is
a tuple (R,L,T, Σ, S, δ). R and L are the sets of role names (ranging over r, r′, ..)
and message operator names (l, l′, ..) occurring in the source local protocol, and
T is the set of payload format types (T, T ′, ..) that it declares. The alphabet Σ

is a finite set of actions {αi}i∈I , where α is either an output r!l(~T ) or an input

r?l(~T ) with r ∈ R, l ∈ L and each Ti ∈ T. The set of states S is a finite non-empty
set of state identifiers ranging over S, S′, ... The transition function δ is a partial
function S×Σ → S. We additionally define δ(S) = {α | ∃S′ ∈ S.δ(S, α) = S′}.

Certain properties are guaranteed for any EFSM derived from a well-formed
protocol by the Scribble toolchain. (1) There is exactly one initial state Sinit ∈ S
such that @S′ ∈ S, α ∈ Σ.δ(S′, α) = Sinit. (2) There is at most one terminal state
Sterm ∈ S such that δ(Sterm) = ∅. (3) Every S ∈ S is one of three kinds: an output
state S!, input state S?, or Sterm. An output state means δ(S) = {αi}i∈I , |I| > 0
and every αi∈I is an output; similarly for input states. (4) For each S? with
δ(S?) = {αi}i∈I , every αi∈I specifies the same r.

Session API. The generated Endpoint APIs make use of a small collection of
protocol-independent base Java classes: Role, Op, Session, SessionEndpoint and
Buf. The first three are abstract classes. We explain them below.

The main class of the Session API (referred to as the Session Class) is a
generated final subclass of the base Session class with the same name as the
source protocol, e.g. Adder (Fig. 1 (a)). Its two main purposes are as follows.
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Reification of abstract names. Session types make use of abstract names as role
and message identifiers in types, that the type system expects to be present in the
program to drive the type checking. The Session API reifies these names as sin-
gleton Java types. For each role or operator name n ∈ R∪L, we generate the fol-
lowing. (1) A final Java class named n that extends the relevant base class (Role
or Op). The n class has a single private constructor, and a public static final field
of type n and with name n, initialised to a singleton instance of this class (i.e. an
eagerly initialised singleton pattern). E.g. public static final C C = new C();.
(2) In the Session Class, a public static final field of type n and with name n
that refers to the corresponding field constant in the n class.

The Session API is the Session Class with the role and message name classes.

Session instantiation. As a distributed computing abstraction, a run-time ses-
sion can be considered a unit of interaction that is an instance of a session type.
Following this intuition, the API user starts an endpoint implementation by
creating a new instance of the Session Class. The Session object is used by the
API to encapsulate static information, such as the source protocol, and run-time
state related to the execution of this session, such as the session ID.

A Session object is used to create a SessionEndpoint<S, R>, parameterised on
the parent Session and target role types, as on lines 2–3 in Fig. 3 (a). The first
two constructor arguments are the Session object and the singleton generated
for the target role, from which the type parameters are inferred, and the third is
an implementation of the Scribble MessageFormatter interface for this endpoint
using the declared format types for message serialization and deserialization.
The SessionEndpoint object encapsulates the state specific to this endpoint in
the session, such as the local role and networking state.

State Channel API. Based on the aforementioned properties of EFSMs, the
core State Channel API is given by generating the channel classes for each EFSM
state according to Fig. 2 (a). In the following, we use r, l, etc. to denote both
a session type name and its generated Java type (as described above); similarly,
we use S for an EFSM state and its generated Java channel type.

An output state is generated as a SendSocket with one send method for each
outgoing transition action α: the first two parameters are the role r and operator
l singleton types, followed by the sequence of Java payload format types (ε means
the empty sequence). The return type is EndSocket (which supports no session
I/O operations) if the successor state is the terminal state, or else the channel
class generated for the successor state. Unary and non-unary input states are
treated differently. Channel class generation for unary inputs is similar to that
for outputs. The main difference is that each payload format type is generated
as a Scribble Buf type with a supertype of the payload type as a type parameter.
A Scribble Buf is a simple parameterised buffer for a single payload value, which
is written by the generated receive API code when the message is received.
Non-unary inputs are explained later (Session branches).

Only the channel class corresponding to the initial EFSM state has a public
constructor (taking a single argument of type SessionEndpoint<S, R>). Every
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State kind Java state channel base class and session operation method signatures

S! SendSocket

For each α = r!l(~T ) ∈ δ(S!): Tret send(r role, l op [[~T ]]!)

Unary S? ReceiveSocket (|δ(S?)| = 1)

For α = r?l(~T ) ∈ δ(S?): Tret receive(r role, l op [[~T ]]?)

S? BranchSocket (|δ(S?)| > 1)

For α = r?l(~T ) ∈ δ(S?): CS? branch(r role)

where CS? is the following CaseSocket class
CaseSocket

For each α = r?l(~T ) ∈ δ(S?): Tret receive(l op, [[~T ]]?)

where [[~T ]]! = ε if |~T | = 0, else ‘, T1 pay1, . . .,Tn payn’

[[~T ]]? = ε if |~T | = 0, else ‘, Buf<? super T1> pay1,.., Buf<? super Tn> payn’
Tret = δ(S, α) if S 6= Sterm, else EndSocket

Gen. class Session operation methods

Adder C 1 Adder C 2 send(S role, Add op, Integer pay1, Integer pay2)

Adder C 3 send(S role, Bye op)

Adder C 2 Adder C 1 receive(S role, Res op, Buf<? super Integer> pay1)

Adder C 3 EndSocket receive(S role, Bye op)

Adder S 1 Adder S 1 Cases branch(C role)

Adder S 1 Cases Adder S 2 receive(Add op, Buf<? super Integer> pay1,
Buf<? super Integer> pay2)

Adder S 3 receive(Bye op)

Adder S 1 send(C role, Res op, Integer pay1)

Adder S 3 EndSocket send(C role, Bye op)

Fig. 2. (a) Java state channel class generation. (b) Generated State Channel API for
the C and S roles of Adder (using the default channel class naming scheme).

other state channel class is only instantiated internally by the method-chaining
API: each session method is generated to return a new instance of the successor
state channel. Fig. 2 (b) summarises the channel classes and session I/O methods
generated for the C and S roles of the Adder example (Fig.1). The API generation
promotes the use of the generated utility types to direct implementations as much
as possible. E.g. in Adder C 1, the two output options are distinguished as send

methods overloaded on the operator type (as well as the payload types).

Hybrid verification of endpoint implementations. Fig. 3 (a) lists an ex-
ample implementation of C using the generated API in Fig. 2 (b).

Session initiation and state channel chaining. Lines 1–5 are a typical preamble.
We create a new Adder session instance and a SessionEndpoint for role C. The
SessionEndpoint se is used to perform the client-side connect to S (first argu-
ment) as a standard TCP channel (second). The session connection phase is
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1 Adder adder = new Adder(); // New session object

2 try (SessionEndpoint<Adder, C> se =

3 new SessionEndpoint<>(adder, C, new AdderFormatter())) {

4 se.connect(S, SocketChannel::new, hostS, portS); // TCP channel

5 Adder_C_1 s1 = new Adder_C_1(se);

6 // State channel implementation of C starting from s1 of state type C_1

7 Buf<Integer> i = new Buf<>(1); // Field i.val stores the buffer value (Integer)

8 for (int j = 0; j < N; j++)

9 s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i); // C_1 -> C_2 -> C_1

10 s1.send(S, Bye).receive(S, Bye); // C_1 -> C_3 -> EndSocket

11 } // Session completion checked at run-time when se is (auto) closed

1 Adder_S_3 add(Adder_S_1 s1, Buf<Integer> i1, Buf<Integer> i2) throws ... {

2 Adder_S_1_Cases cases = s1.branch(C); // Receives message: S_1 -> S_1_Cases

3 switch (cases.op) { // op enum field set by API according to the received message

4 case Add: return add(cases.receive(Add, i1, i2) // S_1_Cases -> S_2..

5 .send(C, Res, i1.val+i2.val), i1, i2); // .. -> S_1

6 case Bye: return cases.receive(Bye); // S_1_Cases -> S_3

7 } } // Exhaustive handling of enum cases can be generated or checked by an IDE

Fig. 3. Examples using the generated APIs from Fig. 2 (b): (a) session initiation and
endpoint implementation for C, and (b) the main loop and branch of S.

concluded when se is given as a constructor argument to create an initial state
channel of type Adder C 1, to commence the implementation of the C endpoint.

Lines 7–10 give a simple imperative style implementation of C that repeatedly
adds an integer, stored in the Buf<Integer> i, to itself. In each protocol state,
given by the channel class, the generated API ensures that any session operation
performed is indeed permitted by the protocol, e.g. state channel s1 permits only
a send(S, Add, int, int) or a send(S, Bye). The method-chaining API is used
as a fluent interface (the implicit state transitions are in comments), chaining
the receive onto the send Add, which returns a new instance of C 1 following the
recursive protocol. The recursion is enacted N times by the for-loop, linearly
assigning the new C 1 to the existing s1 variable in each iteration, before the
final Bye exchange after the loop terminates. Naturally, the API also allows the
equivalent safe implementation for a fixed N , unfolding the recursion:

s1.send(S, Add, i.val, i.val).receive(S, Res, i)..Add/Res chainedN−1 more times..
.send(S, Bye).receive(S, Bye);

The flexibility of the Endpoint API as a native language API is demonstrated
by the following Fibonacci client using Adder in a different recursive method style.

Adder_C_3 fib(Adder_C_1 s1, Buf<Integer> i1, Buf<Integer> i2, int i) throws ... {

return (i < N) ? fib(s1.send(S, Add, i1.val, i1.val=i2.val) // C_1 -> C_2..

.receive(S, Res, i2), i1, i2, i+1) // .. -> C_1

: s1.send(S, Bye); } // C_1 -> C_3

While the structure of the session code in (a) corresponds quite directly to that of
the source protocol, the more obfuscated session control flow here demonstrates
the value of the session type based Endpoint API in guiding the implementation
and promoting safe protocol conformance. The Java API ensures that the nested
send-receive argument expression safely returns the endpoint to the S 1 state
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for each recursive method call, and that the recursion terminates according to
the S 3 return state.

State channel linearity. Linear usage of every session channel object in an end-
point implementation is enforced by inlining run-time checks into the generated
Java API following the two cases of the basic approach outlined in § 2.

Repeat use of a state channel raises a LinearityException. The boolean state
indicating linear object consumption, and the associated guard method called by
every generated session operation method, are inherited from the LinearSocket

superclass of all the base channel classes in Fig. 2 (a) (except EndSocket).

Session completion is treated by generating the SessionEndpoint object to im-
plement the Java AutoCloseable interface. The Endpoint API requires the user
to declare the SessionEndpoint in a try-with-resource statement (as in Fig. 3 (a),
line 2), allowing the API to check that a terminal session operation has been
performed when control flow leaves the try-statement; if not, then an excep-
tion is raised. Java IDEs, such as Eclipse, support compile-time warnings when
AutoCloseable resources are not safely handled in an appropriate try statement.

We observe that certain implementation styles using a generated API, taking
advantage of fluent method-chaining (e.g. as above), can help avoid linearity bugs
by reducing the use of intermediate protocol state variables and state channel
aliasing due to assignments.

Session branches. The theoretical languages for which session types were devel-
oped typically feature a special-purpose input branching primitive, e.g. c&(r, {li :
Pi}i∈I) [5], that atomically inputs a message on a channel c from role r and,
according to the received message label li, reduces to the corresponding process
continuation Pi. For languages like Java that lack such I/O primitives, the API
generation approach enables some different options.

The basic option, intended for use in standard switch patterns (or if-else
cases, etc.), separates the branch input action from the subsequent case analy-
sis on the received message operator by generating a pair of BranchSocket and
CaseSocket classes (non-unary inputs in Fig. 2 (a)). To delimit the cases of a
branch state in a type-directed manner, the API generation creates an enum
covering the permitted operators in each BranchSocket class, e.g. for S in Adder:

enum Adder_S_1_Enum implements OpEnum { Add, Bye } // Generated in Adder_S_1

Fig. 3 (b) lists the main loop and branch in an implementation of S in Adder.
The branch operation of the BranchSocket s1 blocks until the message is received,
and returns the corresponding CaseSocket with the op field, of the enum type
Adder S 1 Enum, set according to the received operator. Using a switch statement
on the op enum, the user calls the appropriate receive method on the CaseSocket

to obtain the corresponding state channel continuation. The API raises an excep-
tion if the wrong receive is used (like a cast error) thus introducing an additional
run-time check to maintain this hybrid form of session type safety. Java IDEs
are, however, able to statically check exhaustive enum handling, which could be
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global protocol Smtp(role C, role S) { // Main protocol decl (start of SMTP)

220 from S to C; // "220 smtp2.cc.ic.ac.uk ESMTP Exim 4.85 ..."

do Init(C, S); // First init exchange on plain TCP connection

do StartTls(C, S); // Negotiate secure connection

do Init(C, S); // Second init exchange on secure connection

... // Remainder of SMTP session over secure connection

}

global protocol Init(role C, role S) { // "Initiation exchange" subprotocol

Ehlo from C to S; // "EHLO user.test.com"

rec X { choice at S { 250d from S to C; // "250-smtp2.cc.ic.ac.uk Hello ..."

continue X; } // "250-SIZE 26214400", "250-8BITMIME", etc.

or { 250 from S to C; } } // "250 HELP" (no dash after 250)

}

global protocol StartTls(role C, role S) {

StartTls from C to S; // "STARTTLS"

220 from S to C; // "220 TLS go ahead"

}

Fig. 4. Simplified excerpt from a Scribble specification of SMTP.

supplemented by developing, e.g., an Eclipse plugin to statically check that the
receive methods are correctly matched up in basic switch (etc.) patterns.

The alternative option supported by our implementation is the generation of
callback interfaces for branch states. These confer fully static safety for branch
handling, but require the user to program in an event-driven callback style.

4 Use case and further Endpoint API generation features

We have used Scribble and our Java API generation to specify and implement
standardised Internet applications, such as HTTP and SMTP, as real-world use
cases. Using examples from the SMTP use case, we discuss practically motivated
extensions to the core Endpoint API generation methodology presented so far.

SMTP [18] is an Internet standard for email transmission. We have specified
a subset of the protocol in Scribble [38] that includes authenticating a secure
connection and conducting the main mail transaction. Using the generated End-
point API, it is straightforward to implement a compliant Java client (e.g. [38])
that is interoperable with existing SMTP servers.

For this section, we use the simplified excerpt from the opening stages of Smtp
in Fig. 4. On a plain TCP connection, the client (C) receives the 220 welcome
message from the Server (S) and the initiation exchange (client EHLO, and the
server 250-/250 list of service extensions) is performed. The client then starts
the negotiation to secure the channel by StartTls. Once secured, the client and
server perform the initiation exchange again (different service extensions may
now be valid), and the remainder of the session is conducted over the secure
channel. In this running example, we omit payload types for brevity.

State-specific input futures. There are many works on extending session
type theory to support more advanced communication patterns while retaining
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the desired safety properties. The API generation approach offers a platform for
exploring the application of some of these features in practice.

One extension we have implemented to the core API generation is the gener-
ation of state-specific input futures. For each unary input state, we generate: (1)
a subclass of a base InputFuture class that performs the input when forced; and
(2) an additional async method for the ReceiveSocket (Fig. 2 (a)) of this state.

Tret async(r role, l op, Buf<? super FS?> fut)

The r, l and Tret types are as for the corresponding receive method, and FS? is
the generated input future class type. In contrast to receive, async is generated
to return immediately, regardless of whether the expected message has arrived,
returning instead a new input future for this state (via the supplied Buf) and
the successor state channel. The future is forced, i.e. the input is performed, by
a sync method, which blocks the caller until the message is received and writes
the received payload values to generated fields (e.g. pay1) of the future.

Consider the Ehlo message in Init (Fig. 4) from C to S, which, in this exam-
ple, is necessarily preceded by a 220 from S to C for both occurrences of Init.
Assuming an initial state channel s1 of type Smtp C 1, we can implement this
exchange at C using the input future generated for the 220 (Smtp C 1 Future) by:

Buf<Smtp_C_1_Future> buf = new Buf<>(); // For the generated Smtp_C_1 InputFuture

s1.async(S, _220, buf).send(S, Ehlo); // S?220 "postponed"; S!Ehlo done first

String pay1 = buf.val.sync().pay1; // Postponed input done via the Smtp_C_1_Future

Calling sync on an input future implicitly forces all pending prior futures, in or-
der, for the same peer role. This safely preserves the FIFO messaging semantics
between each pair of roles in a session, and endpoint implementations using gen-
erated input futures thus retain the same safety properties as implementations
using only blocking receives. (With this extension, receive is simply generated
as async and sync in one step.) Repeat forcing of an input future has no effect.

Generating input futures captures aspects of several advanced session type
features, which we explain by the above example. (1) async enables safe non-
blocking input in session implementations (the key element towards event-driven
sessions [16]). async essentially allows the input transition in the local EFSM to
be decoupled in the user program from the actual message input action in safe
situations. (2) Postponing input actions supports natural communication pat-
terns that exploit asynchronous messaging for safe permutations of I/O actions
at an endpoint [25,3]. In the example, the input future allows C to safely permute
the actions: send Ehlo first, then receive 220. (Note the reverse permutation at S

is unsafe, due to the potential for deadlock by mutual inputs.) (3) Input futures
are not linear objects (cf. state channels), so may be discarded unused, treating
the input as an affine action [33,24]. In session types, input actions are tradition-
ally (e.g. [14,15]) treated linearly to prevent unread messages in input queues
corrupting later inputs. Here, safety is preserved by the implicit completion of
pending futures, clearing any potential garbage preceding the current future.

Interfaces for abstract I/O states. The SMTP use case raised a practical
issue in generating Java State Channel APIs from session types. While formal
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syntactic session types offer a structural abstraction of communication behaviour
by focusing on the I/O actions between implicit protocol states, the API gen-
eration reifies these states explicitly as nominal Java types. Nominal channel
types can be good for protocol documentation (the default numbering scheme
for states can be replaced by a user-supplied mapping to more meaningful class
names); this example, however, shows a situation where the nominal types limit
code reuse within a session implementation using Endpoint APIs as generated so
far. The repeated initiation exchange is factored out in the Scribble as a subpro-
tocol (Init), but the two exchanges correspond to distinct parts of the resulting
EFSM as a whole, and are thus generated as distinct “unrelated” channel types,
preventing this pattern from being factored out in the implementation code.

To address this issue, our approach is to supplement the nominal Java channel
types by generating interfaces for abstract I/O states, which we explain through
the current example. There are four main elements:

(1) For every I/O action, we generate an Action Interface named according to
its session type characterisation. E.g. In S$250 means input of 250 from S:

interface In_S$250<_S1 extends Succ_In_S$250> { _S1 receive(S role, _250 op); }

Each Action Interface is parameterised on a corresponding Successor Interface.

(2) For every I/O action, we generate a Successor Interface, to be implemented
by every I/O State Interface (explained next) that succeeds the action. E.g.

interface Succ_Out_S$Ehlo { // For all I/O States that may succeed an S!Ehlo..

default Branch_S$250$_250d<?, ?> to(Branch_S$250$_250d<?, ?> c) {

return (Branch_S$250$_250d<?, ?>) this; // Generated cast

} } // ..i.e. the input branch between 250 and 250d

Every Successor Interface is generated with a default to “cast” method for each
I/O state that implements it: in the above, only Branch S$250$ 250d (see next).

(3) For every state, we generate a Send, Receive or Branch/Case I/O State Inter-
face named according to its session type characterisation, e.g. Branch S$250$ 250d

is a branch state for the cases of 250 and 250d from S (the action suffixes are
ordered lexically). This interface: (a) extends all the Successor Interfaces for the
actions that lead to a state with this I/O characterisation; (b) extends all the
Action Interfaces permitted by this state; and (c) is parameterised on each of its
possible successors, passed through to the corresponding Action Interface.

interface Branch_S$250$_250d<_S1 extends Succ_In_S$250,_S2 extends Succ_In_S$250d>

extends Succ_Out_S$Ehlo, Succ_In_S$250d { // (a) Can succeed S!Ehlo or S?250d

public static final Branch_S$250d$_250<?, ?> cast = null; // Used for "to" casts

Case_S$250d$_250<_S1, _S2> branch(S role);

} // Branch states are generated as a pair of Branch/Case I/O State Interfaces

interface Case_S$250$_250d<_S1 extends Succ_In_S$250, _S2 extends Succ_In_S$250d>

extends In_S$250<_S1>, In_S$250d<_S2> { ... } // (b) Can do S?250 or S?250d

(4) Finally, each concrete channel class (e.g. Smtp C 3) implements its charac-
terising I/O State Interface, instantiating the generic parameters to its concrete
successors. The other contents of the channel class are generated as previously.

class Smtp_C_3 implements Branch_S$250$_250d<Smtp_C_4, Smtp_C_3> {..} // Init #1

class Smtp_C_7 implements Branch_S$250$_250d<Smtp_C_8, Smtp_C_7> {..} // Init #2
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1 Succ_In_S$250 doInit(Send_S$Ehlo<?> s) { // Take a S!Ehlo chan; return succ(S?250)

2 Branch_S$250$_250d<?, ?> b = s.send(S, Ehlo).to(Branch_S$250$_250d.cast);

3 for (Cases_S$250$_250d<?, ?> c = b.branch(S); true; c = b.branch(S))

4 switch (c.getOp()) {

5 case _250: return c.receive(S, _250);

6 case _250d: { b = c.receive(S, _250d).to(Branch_S$250$_250d.cast); break; }

7 } } // (Message payloads omitted in this running example for brevity)

Fig. 5. Using the generated I/O Interfaces to factor out the initiation exchange.

The naming scheme for these generated I/O interfaces is not dissimilar to for-
mal notations for session types, but restricted to the current state and immediate
actions, with the continuations captured in the successor type parameters.

Using the State Channel API generated for C, including the I/O interfaces
as above, we factor out one method to implement both initiation exchanges
in Fig. 5. The method accepts any state channel with the Send S$Ehlo I/O
State Interface and performs the send. This returns the Successor Interface
Succ Out S$Ehlo, for which the only I/O State Interface (in this example) is
Branch S$250$ 250d. Hence the call to the generated to on line 2, although oper-
ationally a run-time type cast on the state channel reference, is a safe cast as it
is guaranteed to be valid for all possible successor states at this point. The cast
returns a state channel with this interface, and the branch is implemented using
a switch according to the relevant I/O State Interfaces. We directly return the
Succ In S$250 Successor Interface after receiving the 250 in the first case.

doInit( // Second init exchange on secure channel

doInit(new Smtp_C_1(se).async(S, _220) // First init exchange on plain TCP

.to(Send_S$StartTls.cast).send(S,StartTls).to(Receive_S$220.cast).async(S,_220)

.to(Send_S$Ehlo.cast).wrapClient(S, SSLSocketChannelWrapper::new) // SSL/TLS

)....; // Remainder of session

As doInit is implemented using I/O State Interfaces only, it can be reused to
perform both initiation exchanges as above. Unfortunately, because the return
type of doInit is just Succ In S$250, which may concretely be the state after the
first initiation exchange (send StartTls) or the second (remainder of session),
safety of the immediately subsequent to casts relies on the run-time check. How-
ever, all to casts can in fact be eliminated from both doInit and the above by
reimplementing doInit, leveraging type inference for generics, with the signature:

<S1 extends Branch_S$250$_250d<S2, S1>, S2 extends Succ_In_S$250> // S2 is bound..
S2 doInit(Send_S$Ehlo<S1> s) throws ... //..as the successor of the 250 case

5 Related work

Much programming languages research based on session types has been devel-
oped in the past decade: see [42] for a comprehensive survey. Some of the most
closely related work was mentioned in § 1; here we give additional discussions.

Static session type checking. A static MPST system uses local types to type
check programs (binary session types are the special case of two-party MPST).
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An implementation of static session type checking, following standard presen-
tations [14,15,4], typically requires two key elements: (1) a syntactic correspon-
dence between local type constructors and I/O language primitives, and (2) a
mechanism, such as linear or uniqueness typing, or restrictions on pointer/ref-
erence aliasing, that enables precise tracking of channel endpoints through the
control flow of the program. [17] is an extension of Java for binary session types,
and [39] for multiparty session types, along these lines. Both introduce new syn-
tax for declaring session types and special session constructs to facilitate typing,
with an additional analysis to deal with aliasing of channels. Without such exten-
sions, it is difficult to perform static session type checking in a language like Java
without being extremely conservative in the programs that pass type checking.
Our API generation approach confers benefits of session types directly to native
Java programming, and can be readily generalised for other existing languages.

Other session-based systems that would also require syntax extensions or
annotations to be implemented as static typing for most mainstream languages
include: Mungo [26] and Bica [13] based on typestates in Java; Links [22,21]
and Jolie [19] for Web services; Pabble [31] and ParTypes [23] based on indexed
dependent types for parallel programs. We believe our hybrid API generation ap-
proach is a practical alternative for applying various forms of behavioural types.
Implementations of static session typing in Haskell [35,34] are able to benefit
from rich typing features (here, indexed parameterised monads) to ensure ses-
sion linearity without language extensions, but with various usability tradeoffs.
In [27], session code is restricted to a single channel to simplify the treatment of
linearity. Outside of API generation, combining static and run-time mechanisms
for session safety is being explored in other settings: [32] is an ML library for
binary sessions with a focus on type inference, and [36] for actors in Scala.

Dynamic session verification and code generation from session types. Run-time
monitoring of I/O actions [8,29,28] is the primary verification method in Scrib-
ble [37], and is subject to the common tradeoffs of dynamic verification (§ 1).
Monitoring can be applied directly to existing languages, but endpoint imple-
mentations must still use a specific API or be instrumented with appropriate
hooks for the monitor to intercept the actions. Monitoring also verifies only the
observed execution trace, not the implementation itself. Our lightweight hybrid
verification approach allows certain benefits of static typing to be reclaimed
for free, including static protocol error detection, up to the linearity condition
on state channels, and other IDE assistance for session programming, such as
code generation (e.g. session method completion, branch case enumeration) and
partial static checking of linearity (e.g. unused state channel variables).

The code generation framework in [30] (§ 1) works by targetting a specific
context, that is, parallel MPI programs in C. In contrast, our API generation
approach uses session types for lighter-weight generation of types, rather than
final programs. Programming using a generated Endpoint API is amenable to
varied user implementations in terms of local control flow style (e.g. imperative
or functional) and concurrency (e.g. multithreaded or event-driven) via standard
Java language features and existing libraries.
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