
Iso-Recursive Multiparty Sessions and their
Automated Verification

Marco Giunti[0000−0002−7582−0308] and Nobuko Yoshida[0000−0002−3925−8557]

University of Oxford, UK

Abstract. Most works on session types take an equi-recursive approach
and do not distinguish among a recursive type and its unfolding. This
becomes more important in recent type systems which do not require
global types, also known as generalised multiparty session types (GMST).
In GMST, in order to establish properties as deadlock-freedom, the envi-
ronments which type processes are assumed to satisfy extensional prop-
erties holding in all infinite sequences. This is a problem because: (1) the
mechanisation of GMST and equi-recursion in proof assistants is utterly
complex and eventually requires co-induction; and (2) the implementa-
tion of GMST in type checkers relies on model checkers for environment
verification, and thus the program analysis is not self-contained.
In this paper, we overcome these limitations by providing an iso-recursive
typing system that computes the behavioural properties of environments.
The type system relies on a terminating function named compliance that
computes all final redexes of an environment, and determines when these
redexes do not contain mismatches or deadlocks: compliant environments
cannot go wrong. The function is defined theoretically by introducing the
novel notions of deterministic LTS of environments and of environment
closure, and can be implemented in mainstream programming languages
and compilers. We showcase an implementation in OCaml by using ex-
ception handling to tackle the inherent non-determinism of synchroni-
sation of branching and selection types. We assess that the implemen-
tation provides the desired properties, namely absence of mismatches
and of deadlocks in environments, by resorting to automated deductive
verification performed in tools of the OCaml ecosystem relying on Why3.

1 Introduction

Session types [32,51,33] are an effective method to control the behaviour of
software components that run in message-passing distributed systems. Multi-
party session types (MPST) [34,35] enhance session types by providing support
for sessions involving multiple participants, thus representing more expressive
scenarios. Various theories of MPST have been deployed in programming lan-
guages [55] allowing verification of industrial code at compile or run-time [21].

In most works on session types, recursive types follow an equi-recursive
view [47] and represent infinite trees that are manipulated co-inductively. This
representation does not have a direct counterpart in non-lazy programming lan-
guages, which typically resort to iso-recursive types [1,47] that are manipulated

2 M. Giunti, N. Yoshida

inductively. Moreover, lazy evaluation of predicates on equi-recursive trees might
not terminate, and is thus not effective for static program analysis. In practice,
MPST are embedded in non-lazy languages by encoding equi-recursive types;
for instance, [37] defines infinite sequence of types as polymorphic lenses [20] by
using OCaml generalised algebraic data types.

Our proposal to overcome this problem consists in introducing a theory of
iso-recursive multiparty session types relying on a type system that computes
the deadlock-freedom of type environments.

Lately, there have been several advances in MPST that can establish deadlock-
freedom without using global types, e.g. [38,50,49,5,24,46,30,7]: this bottom-up
approach is known as generalised multiparty session types (GMST). However, the
price to pay in GMST is that environments must satisfy extensional predicates
requiring that a certain property holds for all infinite sequences. This is a non-
integrated feature in GMST, which resort to external tools as model checkers
to assess these predicates. Moreover, mechanising equi-recursive GMST in proof
assistants is quite complex, and eventually relies on co-induction [17]. Specifi-
cally, formulations based on GMST are difficult to implement in programming
languages because of the interplay among equi-recursive types and the verifica-
tion of the semantic properties of environments. Another possibility is to proceed
top-down by using global types and ensure deadlock freedom without verifying
environments, while the analysis’ expressiveness is affected by projectability [52].

In this paper, we propose a formal system to compute the deadlock-freedom
of type environments compositionally at the typing of parallel processes, and we
provide an implementation that is automatically verified by using automated
deductive tools of the OCaml ecosystem [45,44,9] relying on Why3 [19].

1.1 Equi-recursive vs Iso-recursive Types: SSH/OAuth2 Example

We illustrate our methodology using a recursive variant of the OAuth 2.0 pro-
tocol (cf. [49]) which provides support for ssh [10]. Let us indicate send to and
receive from participant p as the types p!l(S).T and p?l(S).T , respectively, where
l is a label indicating the nature of the communication, S is the sort of the pay-
load, and T is the type of the continuation. Selection among (branching on)
different output (input) types is done by means of the binary operator +. Re-
cursion is provided by the construct µX.T , which binds the type variable X
in T . Termination is represented by type end. Sorts describe the types of string,
boolean, and unit values. The session types of the service (s), of the client (c),
and of the authorisation server (a) are:

Ts
def
= µX.(c!login(unit).a?auth(bool).X + c!cancel(unit).end)

Tc
def
= µX.(s?login(unit).(a!pwd(str).X + a!ssh(unit).X)+

s?cancel(unit).a!quit(unit).end)

Ta
def
= µX.Ra

Ra
def
= c?pwd(str).s!auth(bool).X + c?ssh(unit).s!auth(bool).X + c?quit(unit).end

Iso-Recursive Multiparty Sessions and their Automated Verification 3

The protocol says that the service (s) sends to the client (c) either a request to
login, or cancel; in the first case, c continues by sending the password (pwd,
carrying a string), or by sending ssh, to a, who in turn sends authentication to s
(auth, with a boolean, telling whether the client is authorised), and the session
restarts; in the second case, c sends quit to a, and the session ends.

A problem of equi-recursive GMST, e.g. [49], is that types are defined co-
inductively (cf. [17]). Recursive types can be infinitely folded and unfolded: for
instance, we have the following equi-recursive equations:

Ta = T ∗
a = T ∗∗

a = · · ·

T ∗
a

def
= c?pwd(str).s!auth(bool).Ta + c?ssh(unit).s!auth(bool).Ta + c?quit(unit).end

T ∗∗
a

def
= c?pwd(str).s!auth(bool).T ∗

a + c?ssh(unit).s!auth(bool).T ∗
a + c?quit(unit).end

This is particularly relevant when establishing the properties of the typing
system, e.g. safety [49, Definition 4.1], which are based on a notion of tran-
sition of session environments. To illustrate, the idea is to interpret types as
processes, cf. [41], and consider transitions of session environments mapping par-

ticipants p to types T . The environment Γ1
def
= s : c!login(unit).a?auth(bool).Ts+

c!cancel(unit).end can fire an output action c!login(unit) and reach s : a?auth(bool).
Ts, or can fire an output action c!cancel(unit) and reach s : end. The environment

Γ2
def
= c : s?login(unit).T ′

c + s?cancel(unit).a!quit(unit).end can fire an input ac-

tion s?login(unit) and reach c : T ′
c, where T ′

c
def
= a!pwd(str).Tc + a!ssh(unit).Tc,

or can fire an input action s?cancel(unit) and reach c : a!quit(unit).end. The en-
vironment Γ1, Γ2 can fire two synchronisation actions: (1) login@s ▷◁ c, which
indicates a synchronisation on the label login by the input participant s and the
output participant c, and reach the environment s : a?auth(bool).Ts, c : T

′
c; and

(2) cancel@s▷◁c, and reach the environment s : end, c : a!quit(unit).end.
In particular, the rule for recursive types in [49, Definition 2.8] states that a

recursive type µX.T inherits the transitions from its unfolding, that is the type
T{µX.T/X}. For instance, the rule can be instantiated with type Ta as

[Γ -µ]
Γ, a : T ∗

a

α
−→ Γ ′

Γ, a : Ta
α
−→ Γ ′

and allows for inferring the following transitions:

Γ, a : Ta
c?ssh(unit)
−−−−−−−−→ Γ, a : s!auth(bool).Ta

Γ, a : Ta
c?ssh(unit)
−−−−−−−−→ Γ, a : s!auth(bool).T ∗

a · · ·
We note that this elegant approach is appropriate for the theory, but less suited
for mechanising GMST in theorem provers, and for automated verification.

More specifically, the approach introduced in [49] and followed in many subse-
quent papers on GMST, e.g. [38,49,5,24,46,30,7], requires to type check sessions
with environments having certain extensional properties. Crucially, such proper-
ties must be established before typing by analysing all possible infinite transi-
tions of session environments. To illustrate, the paper [49] provides a companion

4 M. Giunti, N. Yoshida

artefact by using mCRL2 [29] featuring µ-calculus formulae that represent the
safety and deadlock freedom properties of environments [49, Figure 5], which are
defined by least and greatest fixed points.

Our solution. In this paper, we compute the semantic properties of the session
environment in the rule for type checking the session composition, hence achiev-
ing decidable type checking. This is possible because our types are iso-recursive
and have a finite structure.

In our setting, the types Ta, T
∗
a , and T ∗∗

a are all different, but isomorphic.
A recursive type µX.T can only be used to type-check a recursive process, or a
type variable. To type check an input or output process, we need to unfold µX.T
by applying the substitution µX.T/X to type T , denoted as T{µX.T/X}. That
is, we have the following iso-recursive equations:

T ∗
a = Ra{Ta/X} T ∗∗

a = Ra{T ∗
a /X} = Ra{(Ra{Ta/X})/X} · · ·

For instance, consider the authorisation process Qa below, whose syntax mirrors
the one of its type T ∗

a , but that the payload of input and output are (bound)
variables and expressions, respectively, and that there is a process variable χ:

Qa
def
= c?pwd(x).s!auth⟨false⟩.χ+ c?ssh(x).s!auth⟨true⟩.χ+ c?quit(x).0

In order to type check the recursive process µχ.Qa we use the typing judgement:

T-Rec
χ : Ta ⊢ Qa : T

∗
a

∅ ⊢ µχ.Qa : Ta

Now consider the process obtained by substituting χ in Qa with µχ.Qa, that is

process P ∗
a

def
= Qa{µχ.Qa/χ}, and the parallel execution of a◁ P ∗

a with s◁ Ps

and c◁Pc, where Ps, Pc are recursive processes implementing the service s typed
by Ts, and the client c typed by Tc, respectively. This session should be accepted
by the type system, since at runtime it behaves correctly, independently of the
fact that the authorisation service P ∗

a has been “unrolled” once.
That is, we want to infer the following judgement by using the rule for session

composition of the typing system for sessions, denoted ⊩:

T-Ses
∅ ⊢ Ps : Ts ∅ ⊢ Pc : Tc ∅ ⊢ P ∗

a : T
∗
a ∆ = s : Ts, c : Tc, a : T

∗
a comp(∆)

∅ ⊩ s◁ Ps ∥ c◁ Pc ∥ a◁ P ∗
a ▷∆

The predicate comp(∆) establishes compliance by using the computable function
comp. The goal is to calculate all possible final environments that are reachable
from ∆, and verify that they are not errors. Intuitively, an environment is final
when is stuck, or when it has already been encountered, reaching a fixed point.

Since we are interested in mechanising compliance, the calculation should
be achieved by relying on the novel notion of deterministic transition, denoted

−→d , such that ∆
α1

−→d ∆1 and ∆
α2

−→d ∆2 imply α1 = α2 and ∆1 = ∆2. The
key point is that a deterministic transition system can be encoded as a com-
putable function that can be deployed in type checkers and compilers. Moreover,

Iso-Recursive Multiparty Sessions and their Automated Verification 5

the properties of the function can be verified with automated deductive verifi-
cation tools as Why3 [19]. In particular, we propose the idea of closure of an
environment ∆: the function receives ∆ in input and returns in output a finite
set of final environments reachable from ∆ by multiple applications of −→d .

The compliance function decides when in all final environments reached by
transitions starting from ∆, there is not a communication mismatch or a dead-
lock. A communication mismatch arises when a participant p has a single I/O
type receiving from/sending to participant q, and q has a single I/O type re-
ceiving from/sending to participant p, and one of the following cases arise: (i)
both p and q are sending or receiving; (ii) the intersection among the labels used
by p and q is empty; (iii) p and q agree on a label but disagree on the label’s
sort. A deadlock arises when the environment ∆ cannot fire any transition and
there is at least a participant p s.t. ∆(p) ̸= end.

To see an example of environment rejected by the compliance function comp,
consider ∆′′ below. An authorisation server typed by T ′′

a only allows two subse-
quent attempts for ssh authentication: after that, it ends. Conversely, a client
typed by Tc performs an infinite number of requests of ssh authentication: for
this very reason, a system typed by ∆′′ can deadlock and must be rejected.

T ′
a

def
= µX.(c?pwd(str).s!auth(bool).X + c?ssh(unit).s!auth(bool).end+

c?quit(unit).end)

T ′′
a

def
= c?pwd(str).s!auth(bool).Ta + c?ssh(unit).s!auth(bool).T ′

a + c?quit(unit).end

∆′′ def
= s : Ts, c : Tc, a : T

′′
a

The closure of ∆′′ does return a set of environments containing the deadlocked
environment ∆lock, which depicts the scenario discussed above. Since ∆lock ∈
closure(∆′′) and ∆lock is a deadlock, we have ¬ comp(∆′′):

∆lock
def
= s : a?auth(bool).Ts, c : a!pwd(str).Tc + a!ssh(unit).Tc, a : end

Outline. § 2 introduces the syntax and semantics of multiparty sessions. § 3
presents the non-deterministic labelled transition semantics of session environ-
ments (cf. § 3.1), and its deterministic counterpart (cf. § 3.2): the former is used
to define deadlocks and to prove subject reduction; the latter is used in § 3.3 to
define closure and in turn to mechanise compliance. § 4 introduces the typing
system. We first analyse the typing rules for processes. Second, we analyse the
rule for typing sessions, which relies on a computable function calculating com-
pliance that is defined in § 4.1. Last, in § 4.2 we provide the proof of subject
reduction and we state a progress result. § 5 is devoted to the automated de-
ductive verification of compliance. We start in § 5.1 by outlining few details of
the implementation of compliance and of closure of deterministic transitions in
OCaml. § 5.2 verifies the behavioural specification of the implementation in au-
tomated deductive verification tools of the OCaml ecosystem relying on Why3.
§ 6 concludes by presenting related work and next directions. The full proofs
and omitted definitions can be found in [27] and the accompanying artefact can
be found at https://doi.org/10.5281/zenodo.14621028.

https://doi.org/10.5281/zenodo.14621028

6 M. Giunti, N. Yoshida

2 Multiparty Sessions

The syntax of types and processes is in Definition 1. We consider iso-recursive
types of the form µX.T where µX.T and its unfolding are not equal, but iso-
morphic. We stress that types have a finite representation rather than abstract
infinite trees (cf. equi-recursive types).

Definition 1 (Syntax of types and processes).

S := nat | int | str | bool | unit Sorts

T := r!l(S).T | r?l(S).T | T + T | end | µX.T | X Types

P := r!l⟨e⟩.P | r?l(x).P | P + P | µχ.P | χ | if e then P else Q | 0 Processes

M := p◁ P | ∥i∈I pi ◁ Pi Sessions

We require all terms to be contractive, i.e. µX1.µX2. . . . µXn.X1 is not al-
lowed as a sub-term for any n ≥ 1 [47, p. 300], which can be alternatively stated
as type variables occur guarded (by input or output prefixes) [14].1

We use p, q, r to range over participants, l to range over labels, and i, j to
range over indexes (natural numbers). X,Y range over type variables, e, e′ range
over expressions, v, w range over values, x, y range over variables, and χ range
over process variables. Sessions M belong to the set M. A single session or thread
is a process P indexed by a participant, denoted p▷ P . A multiparty session is
a composition of all threads, denoted ∥i∈I pi ◁ Pi or p1 ◁ P1 ∥ · · · ∥ pn ◁ Pn.

The constructor µ is a binder in types and processes, respectively: we let X
be bound in µX.T and free in T ; similarly, χ is bound in µχ.P and free in P .
The remaining binder for processes is input: variable x is bound in r?l(x).P and
free in P . Closed terms are those without free variables.

We assume the substitution of free occurrences of a type variable X in a
type T1 with a closed type T2, written T1{T2/X}. We assume the substitution
of free occurrences of a process variable χ in process P1 with a closed process
P2, written P1{P2/χ}, and the substitution of free occurrences of variable x in
process P with a value v, written P{v/x}. A type R is µ-guarded (guarded, for
short) if it is a sub-term of T in the definition µX.T .

The symbol = is reserved for Leibniz equality.

Definition 2 (Session notation).

⊕i∈Ir!li(Si).Ti
def
= r!l1(S1).T1 + · · ·+ r!ln(Sn).Tn I = (1, . . . , n), n ≥ 1

&i∈Ir?li(Si).Ti
def
= r?l1(S1).T1 + · · ·+ r?ln(Sn).Tn I = (1, . . . , n), n ≥ 1

The next step towards the definition of the typing system is to identify well-
formed types that correctly abstract multiparty sessions. The definition is in
the technical report [27]. We collect the labels of types in multi-sets, and the
polarities and the participants of types in sets. Intuitively, a sum type T1 + T2

is well-behaved when it has not duplicated labels, T1 and T2 have the same

1 Formally, contractiveness is mechanised in Coq [11] by relying on the reflexive-
transitive closure of the transition system of types introduced in § 3.

Iso-Recursive Multiparty Sessions and their Automated Verification 7

R-Inp

p◁ q?l(x).P
q?l(v)

−−−−→ p◁ P{v/x}
R-Out

e ↓ v

p◁ q!l⟨e⟩.P
q!l⟨v⟩

−−−−→ p◁ P

R-Sum-L
r◁ P

α
−→ r◁ P ′

r◁ P +Q
α
−→ r◁ P ′

R-Com
p◁ P

q?l(v)

−−−−→ p◁ P ′ q◁Q
p!l⟨v⟩

−−−−→ q◁Q′

p◁ P ∥ q◁Q ∥i∈I ri ◁Ri

l@p▷◁q

−−−−−→ p◁ P ′ ∥ q◁Q′ ∥i∈I ri ◁Ri

R-Rec
r◁ µχ.P ∥i∈I ri ◁Ri

τ
−→ r◁ P{µχ.P/χ} ∥i∈I ri ◁Ri

R-IfT
e ↓ true

r◁ if e then P else Q ∥i∈I ri ◁Ri

τ
−→ r◁ P ∥i∈I ri ◁Ri

R-Str
M′

1
== M1 M1

α
−→ M2 M2

== M′
2

M′
1

α
−→ M′

2

Fig. 1. Labelled transition rules for multiparty sessions (we omit R-IfF)

unique polarity, and the same unique participant. These assumptions eliminate
ill-types of the form e.g. p!l(S1).T1+p!l(S2).T2 or of the form e.g. p1?l1(S1).T1+
p2?l2(S2).T2 with p1 ̸= p2, as well as mixed choice types, e.g. p!l1(S1).T1 +
p?l2(S2).T2. A type T is well-formed, denoted WF(T), when it is well-behaved,
contractive, and closed.

Operational semantics of multiparty sessions. We assume an evaluation
function ↓ transforming expressions e into boolean, integer and unit values v,
written e ↓ v. The operational semantics of multiparty sessions are defined mod-
ulo a structural congruence relation over sessions M, denoted ==⊆ M ×M. We
let == be the least reflexive relation that satisfies the axiom

∥i∈I pi ◁ Pi
== ∥j∈J pj ◁ Pj (permutation(I, J))

The labelled transition rules are defined in Figure 1; we just present the left
rules. A computation is a sequence of α-transitions, α ∈ {τ, l@p▷◁q}, or reduc-

tions M1

α
−→ M2

α
−→ · · · . We are mainly interested in analysing computations

of well-typed sessions (cf. § 4).

Rule R-Inp says that a participant p waiting for a value from q on the label l
can do a transition labelled by q?l(v) and instantiate the formal parameter x
with the value v in the continuation P , noted as P{v/x}. Rule R-Out allows
a participant p sending to q on label l an expression e that can be evaluated
as v to do a transition labelled by q!l⟨v⟩ and continue as P . Non-deterministic
reductions are allowed by means of ruleR-Sum-L, which says that a participant r

8 M. Giunti, N. Yoshida

non-deterministically choosing among process P and Q, denoted P +Q, can do
a transition labelled by α and reach r ◁ P ′ whenever r ◁ P can fire the same
transition and reach the same redex.

Communication among two participants p and q is performed by means of
rule R-Com. Whenever p ◁ P can do a transition labelled by the input action
q?l(v) and reach the redex p ◁ P ′, and q ◁ Q can do a transition labelled by
the output action p!l⟨v⟩ and reach the redex q ◁ Q′, we can infer a transition
labelled with l@p▷◁q from the composition of p ◁ P and q ◁ Q and a session
∥i∈I ri ◁ Ri to the composition of p ◁ P ′ and q ◁ Q′ and ∥i∈I ri ◁ Ri. Rule
R-Rec allows a participant r recursively defined as µχ.P and running in parallel
with a session ∥i∈I ri◁Ri, to do an internal transition τ and unfold the body P
while instantiating the occurrences of χ in P with µχ.P , thus reaching the redex
r◁P{µχ.P/χ} ∥i∈I ri◁Ri. Rule R-IfT (R-IfF) says that a participant r with
the body if e then P else Q and running in parallel with a session ∥i∈I ri ◁ Ri,
can do a τ -transition and reach the redex r ◁ P ∥i∈I ri ◁ Ri (r ◁ Q ∥i∈I

ri◁Ri) whenever the expression e evaluates to true (false). RuleR-Str rearranges
processes with structural congruence.

Example 1. Consider the authorisation protocol in § 1.1 and

Qa
def
= c?pwd(x).s!auth⟨false⟩.χ+ c?ssh(x).s!auth⟨true⟩.χ+ c?quit(x).0

Ps
def
= µχ.(c!login⟨⟩.a?auth(x).χ+ c!cancel⟨⟩.0)

Pc
def
= µχ.(s?login(x).(a!pwd⟨“fido”⟩.χ+ a!ssh⟨⟩.χ) + s?cancel(x).a!quit⟨⟩.0)

M def
= s◁ Ps ∥ c◁ Pc ∥ a◁ P ∗

a

where process P ∗
a

def
= Qa{µχ.Qa/χ} implements the (unfolding of the) au-

thorisation server a, and processes Ps and Pc implement the service s and the
client c, respectively. We analyse transitions of the session introduced in § 1.1
and composing the service s, the client c, and the server a, here referred as M.

We want to analyse a communication of the server s with the client c depict-
ing a login transaction. A first application of rule R-Rec unfolds the service s:

M
τ

−→ s◁ P ∗
s ∥ c◁ Pc ∥ a◁ P ∗

a
def
= M1

where P ∗
s

def
= c!login⟨⟩.a?auth(x).Ps + c!cancel⟨⟩.0.

The next step consists in unfolding the client c. Since the client thread does
not occur in the left, we need to first apply R-Rec and then apply structural
congruence in rule R-Str:

R-Str

R-Rec

c◁ Pc ∥ s◁ P ∗
s ∥ a◁ P ∗

a

τ
−→ c◁ P ∗

c ∥ s◁ P ∗
s ∥ a◁ P ∗

a

M1

τ
−→ s◁ P ∗

s ∥ c◁ P ∗
c ∥ a◁ P ∗

a
def
= M2

where P ∗
c

def
= s?login(x).(a!pwd⟨“fido”⟩.Pc + a!ssh⟨⟩.Pc) + s?cancel(x).a!quit⟨⟩.0.

Now we apply rule R-Com to infer a communication among the service s and
the client c on the label login, followed by R-Str:

Iso-Recursive Multiparty Sessions and their Automated Verification 9

R-Str

R-Com
(A) (B)

c◁ P ∗
c ∥s◁ P ∗

s ∥a◁ P ∗
a

login@c▷◁s
−−−−−−−−→c◁ P ′

c ∥s◁ P ′
s ∥a◁ P ∗

a

M2

login@c▷◁s
−−−−−−−−→ M3

where M3
def
= s ◁ a?auth(x).Ps ∥ c ◁ P ′

c ∥ a ◁ P ∗
a , P

′
s

def
= a?auth(x).Ps,

P ′
c

def
= a!pwd⟨“fido”⟩.Pc + a!ssh⟨⟩.Pc, and

(A) R-Sum-L

R-Inp

s?login(x).P ′
c

s?login()
−−−−−−−→ P ′

c

c◁ P ∗
c

s?login()
−−−−−−−→ c◁ P ′

c

(B) R-Sum-L

R-Out

s◁ c!login⟨⟩.P ′
s

c!login⟨⟩
−−−−−−→ s◁ P ′

s

s◁ P ∗
s

c!login⟨⟩
−−−−−−→ s◁ P ′

s

As you can see, in session M3 the client c is ready to communicate the password,
or to send a ssh request, to the authorisation server a. ⊓⊔

3 Session Environment Reduction, Algorithmically

A central notion of multiparty session types is the interaction among parties. We
model this abstraction by depicting the behaviour of session environments ∆
assigning types T to participants p.

Our aim is to define a function that decides at compile-time when it is safe to
type-check a group of participants running in parallel and willing to communicate
with each other. This is reminiscent of the notion of type duality in binary
session types (e.g. [22,26]), but encompasses multiple participants. We will use
the function in the typing system introduced in § 4.

Definition 3 (Labelled transition system). A labelled transition system

(LTS) is a tuple (Ã,S1,A,S2,→), noted as Ã ▷ σ1

α
−→ σ2, whenever σ1 ∈ S1

and σ2 ∈ S2 and α ∈ A, where Ã is a (possibly empty) tuple of parameters, Si

are set of states, i = 1, 2, A is a set of actions, and → is a transition relation
s.t. →⊆ Ã × S1 × A × S2. A transition relation → is a partial function when-

ever Ã ▷ σ1

α′

−−→ σ′
2 and Ã ▷ σ1

α′′

−−→ σ′′
2 imply α′ = α′′ and σ′

2 = σ′′
2 . A LTS is

deterministic whenever its transition relation is a partial function.

3.1 Non-deterministic Transition System

We first define a non-deterministic LTS of session environments, and then in § 3.2
we outline its transformation to a deterministic LTS. Non-deterministic transi-
tions are used in the notion of deadlock (cf. Definition 10), and in the proof of

10 M. Giunti, N. Yoshida

Transition rules for types: T
α
−→ T

E-Out
∅ ⊢ v : S

r!l(S).T
r!l⟨v⟩

−−−−→ T

E-In
∅ ⊢ v : S

r?l(S).T
r?l(v)

−−−−→ T

E-Sel-L
T1

r!l⟨v⟩
−−−−→ T ′

T1 + T2

r!l⟨v⟩
−−−−→ T ′

E-Bra-L
T1

r?l(v)

−−−−→ T ′

T1 + T2

r?l(v)

−−−−→ T ′
E-Rec

µX.T
τ

−→ T{µX.T/X}

Transition rules for session environments: ∆
α
−→ ∆

Se-Rec
T

τ
−→ T ′

∆, p : T
τ

−→ ∆, p : T ′
Se-Com

Tp

q?l(v)

−−−−→ T ′
p Tq

p!l⟨v⟩
−−−−→ T ′

q

∆, p : Tp, q : Tq

l@p▷◁q

−−−−−→ ∆, p : T ′
p , q : T ′

q

Transition rule for configurations: D ⋄∆
α
−→ D ⋄∆

Se-Top
∆ ∈ D ∆

α
−→ ∆′

D ⋄∆
α
−→ D\∆ ⋄∆′

Fig. 2. Labelled transition system of session environments

subject reduction (cf. § 4.2). In the non-deterministic setting, the parameters Ã
are empty and S1 = S2.

We start by defining a non-deterministic LTS of types. Since we will also
use the transition system to match the actions of processes, it is practical to
use the same labels of the LTS of Figure 1. The left rules for types are in
Figure 2. The rules are designed for well-formed types (cf. § 2), as we discuss
below (cf. rules E-Sel-L, fitsE-Bra-L). Rule E-Out says that a type doing
an output to the participant r on label l with payload S and continuing as T
can fire the action r!l⟨v⟩ and reach the redex T whenever v is a value of sort
S. Dually, rule E-In allows an input type from r on label l with payload S and
continuing as T to do an action r?l(v) and reach the redex T , if v has sort S.
Rule E-Sel-L allows a sum type T1 + T2 to do an output action r!l⟨v⟩ and
reach the redex T ′ whenever T1 can fire this action and reach T ′. Dually, rule
E-Bra-L allows a sum type T1 + T2 to do an input action r?l(v) and reach the
redex T ′ if T1 can fire this action and reach T ′. Note that input and output are
the only actions that a sum type can fire. This is because types as e.g. T1+µX.T
or T1 + (µX.T + T2) are not well-formed.

The non-deterministic transition rules for session environments follow in Fig-

ure 2, and are the counterpart of the non-deterministic rules of the form Γ
α
−→ Γ

used in GMST (cf. [49]) to analyse the safety and deadlock freedom of multiparty

Iso-Recursive Multiparty Sessions and their Automated Verification 11

protocols. We consider a top-level rule of the form D ⋄∆
α
−→ D ⋄∆, where we

refer to D ⋄∆ as a configuration, and use C to range over it. D is a set of type
environments representing a decreasing set which is a subset of a fixed point : a
step can be taken only if ∆ is in the decreasing set D. The idea is the following:
since we are interested in computing all possible redexes of session environments,
we avoid to further analyse the same environment twice by removing the visited
environments from the (possibly infinite) set of all possible environments.

Rule Se-Top applies to configurations and checks that an environment ∆ is
in the decreasing set D, and ∆ can move to ∆′ with label α: in such case the
configuration D ⋄∆ moves to the configuration D\∆ ⋄∆′, where D\∆ notes the
decreasing set D less the environment ∆.

Rule Se-Rec applies to session environments and says that ∆, p : µX.T can
do an internal action τ and reach the environment ∆, p : T{µX.T/X}, thus un-
folding the type of the participant p. Rule Se-Com applies to session environ-
ments and depicts a communication: when a participant p has a type Tp that
can fire an input action q?l(v) and move to T ′

p, and a participant q has a type
Tq that can fire an output action p!l⟨v⟩ and move to T ′

q, then ∆, p : Tp, q : Tq can
fire a synchronisation action l@p▷◁q and move to ∆, p : T ′

p, q : T
′
q.

Example 2. Consider the protocol introduced in § 1.1 and take∆
def
= s : Ts, c : Tc,

a : T ∗
a . Consider a fixed point D such that ∆ ∈ D. A first application of E-Rec,

Se-Rec, Se-Top allows for unfolding the type of the service s, where we let

T ∗
s

def
= c!login(unit).a?auth(bool).Ts + c!cancel(unit).end:

D ⋄∆
τ

−→ D\∆ ⋄∆, s : T ∗
s , c : Tc, a : T

∗
a

def
= ∆1

To continue and unfold the type of the client c, we need to verify that∆1 ∈ D\∆:
this follows indeed from the property of a fixed point, that is to be closed
under transition, and from the fact ∆1 ̸= ∆, which holds because types are
iso-recursive, and in turn T ∗

s ̸= Ts. We proceed as above and infer the fol-

lowing transition, where T ∗
c

def
= s?login(unit).(a!pwd(str).Tc + a!ssh(unit).Tc) +

s?cancel(unit).a!quit(unit).end:

D\∆ ⋄∆1

τ
−→ D\∆,∆1

⋄∆, s : T ∗
s , c : T

∗
c , a : T

∗
a

def
= ∆2

Two non-deterministic transitions are available from ∆2, and involve the syn-
chronisation of s and c: one over the label login and the other over the label
cancel. The interaction below corresponds to the label login and is obtained by

applying E-Out, E-Sel-L, E-In, E-Bra-L, Se-Com, Se-Top, where T ′
c

def
=

a!pwd(str).Tc + a!ssh(unit).Tc and D2
def
= D\∆,∆1

and D3
def
= D2\∆2

:

D2 ⋄∆2

login@c▷◁s
−−−−−−−−→ D3 ⋄∆, s : a?auth(bool).Ts, c : T

′
c, a : T

∗
a

def
= ∆3

The interaction over the label cancel is obtained by applying E-Out, E-Sel-R,
E-In, E-Bra-R, Se-Com, Se-Top, where E-Sel-R and E-Bra-R are the right
rules of E-Sel-L and E-Bra-L, respectively:

D2 ⋄∆2

cancel@c▷◁s
−−−−−−−−−→ D3 ⋄∆, s : end, c : a!quit(unit).end, a : T ∗

a
def
= ∆′

3

12 M. Giunti, N. Yoshida

We conclude by noting that the transition system D ⋄ ∆
α
−→ D ⋄ ∆ is indeed

non-deterministic (Definition 3) by login@c▷◁s ̸= cancel@c▷◁s and ∆3 ̸= ∆′
3.
⊓⊔

3.2 Deterministic Session Environment Transitions

In this section, we define a deterministic LTS for environments that is the ba-
sis for the definition of closure in § 3.3, and in turn for the mechanisation of
compliance (cf. § 4.1) in deductive tools of the OCaml ecosystem (cf. § 5).

The transition system D⋄∆
α
−→ D′⋄∆′ is non-deterministic, for two reasons:

(1) threads can reduce or interact in any order; (2) label synchronisation among
two participants can occur on multiple labels and in any order.

To make the LTS deterministic (cf. Definition 3), we need four ingredients:
(i) To partition the environment into minimal environments, and invoke the
LTS on each minimal environment; (ii) To collect information about discarded
branches and selections in synchronisations; (iii) To pass an oracle Ω that given
an environment ∆ returns the next two engaging participants, or the next par-
ticipant firing a τ action, or nothing; (iv) To define a scheduling policy for labels
of communicating participants.

We discuss (i) and (iii), and provide the signature of the deterministic LTS.
Feature (i) relies on following definition; see [27] forall details.

Let parties(p?l(S).T)
def
= parties(T)∪{p} = parties(p!l(S).T), parties(µX.T)

def
=

parties(T), parties(T1 + T2)
def
= parties(T1) ∪ parties(T2), and parties(T)

def
= ∅

otherwise. Let parties(∅) def
= ∅, parties(∆, p : T)

def
= {p} ∪ parties(T) ∪ parties(∆).

Let ∆\End project all non-ended participants of ∆.

Definition 4 (Minimal partition and environments). A set {∆1, . . . ,∆n} ≠
∅ is a partition of ∆1∪· · ·∪∆n whenever ∆i ̸= ∅ and parties(∆i)∩parties(∆j) = ∅
for all {i, j} ⊆ {1, . . . , n}, i ̸= j. Let PR(∆) be the set of all partitions of ∆.
We say that ∆ is minimal if there not exists PR(∆\End) ∋ S ̸= {∆\End} s.t.
∆\End =

⋃
∆′∈S ∆′. A partition {∆1, . . . ,∆n} of ∆ is minimal, denoted as

minPartition∆(∆1, . . . ,∆n), whenever ∆i is minimal, for all i ∈ {1, . . . , n}.

The aim of invoking the LTS on minimal environments is to avoid the non-
determinism coming from sub-systems executing unrelated behaviours. The fixed
point mechanism based on decreasing sets assumes that once we re-encounter the
same environment twice, we can stop since we already explored all possible com-
putations. This is no longer sound if the system contain unrelated sub-systems.
For instance, if an environment contains two participants p and q communicating
with each other and reaching a fixed point after few steps, and also two partic-
ipants r and s communicating with each other, then, depending on the oracle
(see (iii)), it might be the case that the computation finishes without analysing r
and s (cf. [28]). On contrast, if we consider a minimal environment, all parties
are properly parsed, because the oracle is forced to analyse all sub-processes of
the interacting participants. As we shall see in § 4, the minimality assumption

Iso-Recursive Multiparty Sessions and their Automated Verification 13

does not pose any limitation because we perform the compliance analysis on all
environments of a minimal partition.

Feature (iii) is implemented by adding a fair oracle returning participants
willing to reduce or communicate when this option is available. The top level
participant of a well-formed type T , denoted top(T), is a partial function indi-
cating the unguarded participant of a branching or of a selection:

top(p?(S).T)
def
= p top(p!(S).T)

def
= p top(T1 + T2)

def
= top(T1)

Definition 5 (Oracle fairness). A oracle Ω is fair whenever:

1. Ω(∆) = (p, q) implies top(∆(p)) = q and top(∆(q)) = p

2. Ω(∆) = p implies ∆(p) = µX.T
3. Ω(∆) undefined implies

(a) forall p ∈ dom(∆) we have ∆(p) ̸= µX.T
(b) there not exists {p, q} ⊆ dom(∆) s.t. top(∆(p)) = q and top(∆(q)) = p

Deterministic transitions of session environments have the following form:

Ω ▷ D ⋄∆
α

−→d D ⋄∆ ▶ ∆

where ∆ is minimal (i), Ω is a fair oracle (iii), we assume a label scheduling
policy (iv), α is a synchronisation label l@p▷◁q or a τ action decorated with
the originating participant, denoted τp, and ∆ after the symbol ▶ is called the
sum continuation and is a type environment or an environment placeholder,
denoted ∇◦ (ii). We note that, w.r.t. to Definition 3, we have that Ã = Ω,
the set of states S1 contains D ⋄∆, and the set of states S2 contains D ⋄∆ ▶

∆. Moreover, −→d is a partial function: Ω ▷ D ⋄ ∆
α′

−→d D′ ⋄ ∆′
1 ▶ ∆′

2 and

Ω ▷D ⋄∆
α′′

−→d D′′ ⋄∆′′
1 ▶ ∆′′

2 imply α′ = α′′, and D′ = D′′, ∆′
i = ∆′′

i , i = 1, 2.

Example 3. Consider D ⋄∆ defined in Example 2. We note that ∆ is minimal.
Take a fair oracle Ω, and assume that the scheduling of labels follows the lexico-
graphic order. First, we note that Ω(∆) undefined gives rise to a contradiction,
because e.g. ∆(s) = µX.T . Depending on the oracle Ω, we may have Ω(∆) = s

or Ω(∆) = c, because any other combination would contradict Definition 5.
Assume Ω(∆) = s. A first step let us infer the reduction of the service, where

∆1
def
= ∆, s : T ∗

s , c : Tc, a : T
∗
a , and minimal(∆1).

Ω ▷ D ⋄∆
τs

−→d D\∆ ⋄∆1 ▶ ∇◦

Next, we assume that Ω(∆1) = c, where ∆2
def
= ∆, s : T ∗

s , c : T
∗
c , a : T

∗
a .

Ω ▷ D\∆ ⋄∆1

τc
−→d D\∆,∆1

⋄∆2 ▶ ∇◦

In the next round we have minimal(∆2) and Ω(∆2) = (c, s), and the algorithm
picks the first label in the intersection of the labels of c and s, that is cancel:

Ω ▷ D2 ⋄∆2

cancel@c▷◁s
−−−−−−−−→d D3 ⋄∆′′ ▶ ∆′

where D2, D3 are defined in Example 2 and

14 M. Giunti, N. Yoshida

∆′′ def
= s : end, c : a!quit(unit).end, a : T ∗

a

∆′ def
= s : c!login(unit).a?auth(bool).Ts, c : s?login(unit).T

′
c, a : T

∗
a

T ′
c

def
= a!pwd(str).Tc + a!ssh(unit).Tc

After this sequence of transitions, we have two minimal environments ∆′′ and ∆′

corresponding to the redex of the interaction of the service s and the client c

over the label cancel, and to the environment prompt to let s and c interact over
the label login, respectively. The idea is to deterministically visit all the binary
trees spawned by further transitions starting from D3 ⋄ ∆′′ and from D3 ⋄ ∆′,
respectively, as we discuss in the next section. ⊓⊔

3.3 Closure

The aim of the deterministic LTS presented in § 3.2 is to be used by the function
that computes the compliance of session environments in the typing system
(cf. § 4). Compliance analyses all final environments computed by the closure of
the deterministic transitions originating from a type environment.

More specifically, we consider the semireflexive-transitive closure of the de-
terministic lts −→d , denoted =⇒ . Semireflexivity means that a configuration
is related with itself only if is stuck, that is it cannot fire any transition.

We are interested in applying closure to environments preserving minimality.

Definition 6 (Stuck environment). A minimal environment ∆ is stuck w.r.t.
an oracle Ω and a decreasing set D, denoted stuckΩ,D(∆), if there not exists

α,∆1, ∆2 such that Ω ▷ D ⋄∆
α

−→d D′ ⋄∆1 ▶ ∆2.

Definition 7 (Closure). Define:

C-Rfl
stuckΩ,D(∆)

Ω ▷ D ⋄∆ =⇒ D ⋄∆ C-Err
¬minimal(∆)

Ω ▷ D ⋄∆ =⇒ err

C-Tra
Ω ▷ D ⋄∆

α
−→d D′ ⋄∆1 ▶ ∆2 Ω ▷ D′ ⋄∆1 =⇒ Ẽ1 Ω ▷ D′ ⋄∆2 =⇒ Ẽ2

Ω ▷ D ⋄∆ =⇒ Ẽ1, Ẽ2

The closure of a minimal environment ∆ w.r.t. a decreasing set D s.t. ∆ ∈ D
and a fair oracle Ω is defined by the following rule:

C-Top
Ω ▷ D ⋄∆ =⇒ D1 ⋄∆1, · · · , Dn ⋄∆n

closureΩ,D(∆) = ∆1, . . . ,∆n

Given a a fair oracle Ω, the relation =⇒ associates a configuration C to a
non-empty tuple of e-configurations E1, . . . , En, denoted as Ẽ, where each Ei is a
configuration C or the failure err. Given a configuration C = D ⋄∆, three cases
may arise. If C is stuck, that is C cannot fire any transition, then we apply rule
[C-Rfl] and relate C with itself, else if C is not minimal, then we we apply rule
[C-Err] and relate C with err. Otherwise we have that C fires an action and
reaches the redex ∆′ ⋄∆1 ▶ ∆2: we apply rule [C-Tra] and whenever ∆′ ⋄∆1

is related by =⇒ to the e-configurations Ẽ1, and ∆′ ⋄∆2 is related by =⇒ to
Ẽ2, we let C be related by =⇒ to Ẽ1, Ẽ2.

Iso-Recursive Multiparty Sessions and their Automated Verification 15

The closure of a session environment ∆ is defined iff =⇒ does not relate ∆
with failures. If this is the case, then =⇒ relates ∆ with configurations C̃: the
function strips off all decreasing sets and associates ∆ to a set of minimal stuck
environments. It is worth noting that closure is a terminating function, because
it is deterministic and it has |D| as decreasing measure.

Example 4. We continue the analysis started in Example 3 and find a subset of
closureΩ,D(∆), which is defined because ∆ and its redexes are minimal. Re-

member T ∗
a defined in § 1.1: T ∗

a
def
= c?pwd(str).s!auth(bool).Ta+c?ssh(unit).s!auth

(bool).Ta + c?quit(unit).end. Consider D3 ⋄∆′′ ▶ ∆′ defined in Example 3:

Ω ▷ D ⋄∆
τs

−→d

τc
−→d

cancel@c▷◁s
−−−−−−−−→d D3 ⋄∆′′ ▶ ∆′

To calculate the closure of ∆ w.r.t. D, we need to analyse the closures of ∆′′

and ∆′ w.r.t. D3, respectively. We have that ∆′′ and ∆′ are minimal: we analyse
the former closure, and note that D3 ⋄∆′′ is not stuck, i.e. the client c and the
server a can communicate on quit. Assume Ω(∆′′) = (a, c). We have:

C-Tra
Ω ▷ D3 ⋄∆′′

quit@a▷◁c
−−−−−−→d D3\∆′′ ⋄ s : end, c : end, a : end ▶ ∇◦ (A)

Ω ▷ D3 ⋄∆′′ =⇒ D3\∆′′ ⋄ s : end, c : end, a : end

(A) C-Rfl
Ω ▷ D3\∆′′ ⋄ s : end, c : end, a : end =⇒ D3\∆′′ ⋄ s : end, c : end, a : end

We can thus infer (s : end, c : end, a : end) ∈ closureΩ,D(∆). ⊓⊔

4 Iso-Recursive Multiparty Type System

The typing rules for processes and sessions are defined in Figure 3; we refer to
the technical report [27] for the rules for expressions.

Typing judgements for processes have the form Γ ⊢ P : T , where Γ maps
variables to sorts and process variables to types:

Γ := ∅ | Γ, x : S | Γ, χ : T

Typing judgements for sessions have the form Γ ⊩ M : ∆, where ∆ is the
session environment introduced in § 3, that is a map from participants to types,
and invoke the type system ⊢. The type system for sessions ⊩ only invokes the
type system for processes ⊢ with well-formed types (cf. § 2): for this reason,
the typing rules for processes involving type sums can be simplified (cf. rules
T-Sum,T-Sum-L,T-Sum-R).

The rule depicting the essence of iso-recursive multiparty session types is
T-Rec. In order to allow Γ to type a recursion process µχ.P with a type µX.T ,
it must be the case that Γ, χ : µX.T types the continuation P with the unfolded
type T{µX.T/X}. That is, in our iso-recursive setting the continuation must
be typed by explicitly unfolding the recursive type. This is different from the
equi-recursive approach, e.g. [23], where the type of µχ.P and the type of the

16 M. Giunti, N. Yoshida

Sorting rules: Γ ⊢ e : S

Typing rules for processes: Γ ⊢ P : T

T-End
Γ ⊢ 0: end

T-Rec
Γ, χ : µX.T ⊢ P : T{µX.T/X}

Γ ⊢ µχ.P : µX.T

T-Var
Γ (χ) = µX.T

Γ ⊢ χ : µX.T
T-Inp

Γ, x : S ⊢ P : T

Γ ⊢ r?l(x).P : r?l(S).T

T-Out Γ ⊢ e : S Γ ⊢ P : T
Γ ⊢ r!l⟨e⟩.P : r!l(S).T

T-Sum
Γ ⊢ P : T1 Γ ⊢ Q : T2

Γ ⊢ P +Q : T1 + T2

T-Sum-L
Γ ⊢ P : T1

Γ ⊢ P : T1 + T2
T-Sum-R

Γ ⊢ P : T2

Γ ⊢ P : T1 + T2

T-If
Γ ⊢ e : bool Γ ⊢ P : T Γ ⊢ Q : T

Γ ⊢ if e then P else Q : T

Typing rules for sessions: Γ ⊩ M : ∆

T-Thr
Γ ⊢ P : T WF(T)

Γ ⊩ p◁ P : p : T

T-Ses

Γ ⊩ p1 ◁ P1 : p1 : T1 · · · Γ ⊩ pn ◁ Pn : pn : Tn ∆ = p1 : T1, . . . , pn : Tn

minPartition∆(∆1, . . . ,∆k) ∀j ∈ {1, . . . , k} . comp(∆j)

Γ ⊩∥ i∈{1,..,n} pi ◁ Pi : ∆

Fig. 3. Type system

continuation P can be equal, because types µX.T and T{µX.T/X} are equal.
For the same reason, in rule T-Var an environment Γ, χ : µX.T assigns the
type µX.T to the process variable χ: note that it is not possible to assign a
non-recursive type to process variables.

Rule T-Inp allows Γ to type a input process r?l(x).P with type r?l(S).T
whenever Γ, x : S assigns the type T to the continuation P . Dually, rule T-Out
allows Γ to type an output process r!l⟨e⟩.P with type r?l(S).T whenever the
expression has sort S and Γ assigns the type T to the continuation P .

Rule T-Sum is used for branching and selection, that are sums containing
only input types from the same participant and without duplicated labels, or out-
put types from the same participant and without duplicated labels, respectively
(cf. Well-Formed Types in § 2, and Definition 2). Note indeed that well-formed
types do not contain types of the form e.g. T1+µX.T2, or end+T . The rule says
that if Γ can be used to type a process P1 with type T1, and a process P2 with
type T2, then Γ types P1 + P2 with type T1 + T2.

While rule T-Sum types exactly each input and output with their corre-
sponding input and output type singletons, rule T-Sum-L allows for typing a
process P having type T1 with the type T1+T2. For instance, if P is the branch-

Iso-Recursive Multiparty Sessions and their Automated Verification 17

Pa
def
= µχ.(P1 + P2) P1

def
= c?pwd(x).Checka

P2
def
= c?ssh(x).s!auth⟨true⟩.χ+ c?quit(x).0

Checka
def
= ifx = “miau” then s!auth⟨true⟩.χ else s!fail⟨⟩.0

T ′ def
= c?pwd(str).(s!auth(bool).X + s!fail(unit).end)

T ′′ def
= c?ssh(unit).s!auth(bool).X + c?quit(unit).end T

def
= T ′ + T ′′

Fig. 4. Variant of authorisation server in § 1.1

ing process r?l1(x).P1 + · · ·+ r?ln(x).Pn then we can use T-Sum-L to assign to
P the type &i∈{1,...,n+1}r?li(Si).Ti. Rule T-Sum-R does the same thing, on the
right: if P has type T2 then we can use the rule to assign to P the type T1 + T2.

The increased flexibility offered by rules T-Sum-L, T-Sum-R is used in the
rule for if-then-else, that is T-If. In order to type process if e then P else Q with
type T we require that e has a boolean sort, and that both P and Q have type T .
To allow P and Q to use different labels to communicate in input/output with a
participant, we use rules T-Sum-L and T-Sum-R in the premises of T-If, thus
mimicking a simple form of subtyping. The next example illustrates this idea.

Example 5. Consider the variant of Figure 4 of the authorisation server a in § 1.1
such that a verifies the password sent by the client c while allowing only one
attempt: if the password is wrong, a sends fail to the service s and stops. We
informally discuss the typing of the authorisation server Pa, and omit the types
of the other participants. A formal derivation is included in [27].

Let Γ
def
= χ : µX.T, x : str, consider the two branches of Checka, and let Tif

def
=

s!auth(bool).µX.T+s!fail(unit).end. The left branch s!auth⟨true⟩.χ can be assigned
to Tif under Γ by usingT-Sum-L,T-Out,T-Var. The right branch s!fail⟨⟩.0 can
be assigned to Tif under Γ by using T-Sum-R, T-Out, T-End. By applying T-

If we thus assign Tif to Checka under Γ ; in turn, process P1 is assigned to T1
def
=

c?pwd(str).Tif under χ : µX.T by using T-Inp. We note that T1 = T ′{µX.T/X}.
Process P2 is assigned to T2

def
= c?ssh(unit).s!auth(bool).µX.T +c?quit(unit).end

under χ : µX.T : we omit all details. We note that T2 = T ′′{µX.T/X}.
We use T-Sum to assign T ′{µX.T/X} + T ′′{µX.T/X} = T{µX.T/X} to

P1 + P2 under χ : µX.T . We conclude by using T-Rec to assign µX.T to Pa

under the empty environment, thus typing the authorisation server. ⊓⊔

Type checking sessions. The typing rules for sessions of Figure 3 have the
form Γ ⊩ M : ∆ and use the rules for processes Γ ⊢ P : T . The system relies on
the notion of minimal partition (cf. Definition 4).

Rule T-Thr is used for single threads and says that if the type system for
processes ⊢ can be used to type a process P with a well-formed type T (cf. § 2),
then the type system ⊩ assigns the typing p : T to the thread p◁ P .

Rule T-Ses is the top-level rule used to type-check the multiparty session.
In order to type-check a session composing the threads p1◁P1, . . . , pn◁Pn with
the session environment ∆ = p1 : T1, . . . , pn : Tn, we require two things:

18 M. Giunti, N. Yoshida

1. Each thread pi ◁ Pi is typed with the environment pi : Ti, for i = 1, . . . n;
2. Each environment ∆j of the minimal partition {∆1, . . . ,∆k} of ∆ satisfies

compliance, denoted comp(∆j).

Compliance resembles the approach based on safe contexts (e.g. [49, Defini-
tion 4.1]), although is fully computational.

4.1 Compliance

Intuitively, a session typed by a compliant environment never reaches an error,
that is a deadlocked system, or a redex containing two participants p and q that
are willing to communicate, e.g. p is sending an output to q, and q is receiving an
input from p, or vice-versa, but they mismatch the communication label and/or
the type payload, or both p and q are sending (receiving) a value to each other:
that is, there is a mismatch that makes the two participants stuck.

The formal definition of compliance relies on the closure of −→d introduced
in § 3, and of the formal definition of error below. Let the tagged labels of a

type T , denoted L(T), be defined inductively as follows: L(r!l(S).T) def
= {l@S},

L(r?l(S).T) def
= {l@S}, L(T1 + T2)

def
= L(T1) ∪ L(T2), L(T)

def
= ∅ otherwise.

Definition 8 (Well-formed environment). A session environment ∆ is well-
formed, denoted WF(∆), whenever p ∈ dom(∆) implies WF(∆(p)).

Definition 9 (Communication mismatch). A well-formed session environ-
ment ∆ is a communication mismatch whenever there exists {p, q} ⊆ dom(∆)
such that one of the following cases arise:

∆(p) = ⊕i∈Iq!li(Si).Ti ∆(q) = ⊕j∈Jp!lj(Sj).Tj

∆(p) = &i∈Iq?li(Si).Ti ∆(q) = &j∈Jp?lj(Sj).Tj

∆(p) = ⊕i∈Iq!li(Si).Ti ∆(q) = &j∈Jp?lj(Sj).Tj L(∆(p)) ∩ L(∆(q)) = ∅
∆(p) = &i∈Iq?li(Si).Ti ∆(q) = ⊕j∈Jp!lj(Sj).Tj L(∆(p)) ∩ L(∆(q)) = ∅

The notion of deadlock is insensitive to decreasing sets and determinism, and is

based on the non-deterministic transition system ∆
α
−→ ∆ of Figure 2.

Definition 10 (Deadlock). Let consumed(∆)
def
= ∀p ∈ dom(∆) . ∆(p) = end.

A session environment ∆ is a deadlock when both (1) there not exists α,∆′ such

that ∆
α
−→ ∆′, and (2) ¬consumed(∆).

Definition 11 (Error). A well-formed environment ∆ is an error whenever ∆
is a communication mismatch, or ∆ is a deadlock.

Definition 12 (Compliance). Let ∆ be a minimal well-formed environment.
Define comp(∆) whenever for all fair oracles Ω and fixed points D including ∆,
if closureΩ,D(∆) = ∆1, . . . ,∆n then ∆i is not an error, for all i ∈ {1, . . . , n}.

Iso-Recursive Multiparty Sessions and their Automated Verification 19

Example 6. Consider the minimal well-formed environment∆′′ introduced at the
end of § 1.1, and the claim ¬comp(∆′′), which follows from ∆′′ reaching the dead-
locked environment ∆lock = s : a?auth(bool).Ts, c : a!pwd(str).Tc + a!ssh(unit).Tc,
a : end. We prove the claim by using a Lemma mapping non-deterministic transi-
tions to deterministic transitions. We start by a sequence of (non-deterministic)
transitions from ∆′′ that lead to ∆lock, and use the result to find a fair oracle
Ω mimicking the sequence:

D ⋄∆′′ τs
−→

τc
−→

login@c▷◁s
−−−−−−−−→

ssh@a▷◁c
−−−−−−→

auth@s▷◁a
−−−−−−−→ (1)

D1 ⋄ s : Ts, c : Tc, a : T ′
a

τs
−→

τc
−→

login@c▷◁s
−−−−−−−−→

τa
−→

ssh@a▷◁c
−−−−−−→

auth@s▷◁a
−−−−−−−→ (2)

D2 ⋄ s : Ts, c : Tc, a : end
τs
−→

τc
−→

login@c▷◁s
−−−−−−−−→ D3 ⋄∆lock (3)

The transitions in (1) correspond to a first round of the protocol, which leads
the service s and the client c to re-initialise, while the authorisation server a

reaches the type T ′
a = µX.(c?pwd(str).s!auth(bool).X+c?ssh(unit).s!auth(bool).end

+c?quit(unit).end). The transitions in (2) correspond to a second round of the
protocol, which leads the service s and the client c to re-initialise, while the
authorisation server a reaches the type end. The transitions in (3) correspond
to the starting of the protocol where the service s sends a login request to the
client c. After that, both the service and the client waits to interact with the
server a, which has ended. Note that stuckΩ,D3

(∆lock).

We apply a multi-step Lemma (see [27]) and infer Ω ▷ D ⋄ ∆′′ =⇒ C̃1, D3 ⋄
∆lock, C̃2. By Definition 7, we have∆lock ∈ closureΩ,D(∆′′). To prove ¬comp(∆′′),
we show that ∆lock is an error. In fact, ∆lock is a deadlock (cf. Definition 10),
because it cannot fire any action, and because there is a participant that has not
finished, e.g. ∆lock(s) ̸= end. By Definition 11, ∆lock is an error. ⊓⊔
Example 7. Consider the minimal well-formed environment ∆ of the authorisa-
tion protocol in § 1.1. We claim that for any fair oracle Ω and fixed point D ∋ ∆,

the closure of ∆ returns two environments, where ∆end def
= s : end, c : end, a : end:

closureΩ,D(∆) = {∆,∆end}. Following this claim, we have comp(∆). In fact, both
∆ and ∆end are not errors. By definition, neither ∆ nor ∆end is a mismatch: the
latter case is clear; in the former case, the unique unguarded sum of prefixes is
the branching of the authorisation service a below, while the type of c is guarded:

c?password(str).s!auth(bool).Ta + c?ssh(unit).s!auth(bool).Ta + c?quit(unit).end

Moreover, neither ∆ nor ∆end is a deadlock. ∆ can indeed take a step: the
environment is in the closure because it is first contained in the initial decreasing
set D and then re-encountered after a sequence of interactions. The claim can
be verified by using the certified implementation in § 5. ⊓⊔
Remark 1. In [49] an environment is deadlock-free if for all redexes Γ reachable
in multiple steps we have that if Γ does not move then its range contains only
the type end. Conversely, Definition 10 expresses a negative property, and in turn
we transform the implication stuck(Γ) → consumed(Γ) of [49] into its negation:
stuck(Γ) ∧ ¬consumed(Γ). ⊓⊔

20 M. Giunti, N. Yoshida

4.2 Subject Reduction and Progress

We conclude this section by showing that the typing system satisfies subject
reduction and progress. We outline the sketch of the proof of subject reduction,
and refer to [27] for all details, including the proof of progress.

The purpose of the subject reduction theorem is to establish that if a session
M is well-typed and does a step α and reaches the session M′, then M′ is well-
typed. Assume that Γ ⊩ M : ∆. To assess subject reduction, we provide an envi-

ronment ∆′ s.t. Γ ⊩ M′ : ∆′. Since the step M
α
−→ M′ is non-deterministic, we

match this step with a non-deterministic environment transition (cf. Figure 2).
A key result to establish subject reduction is that compliance (cf. Defini-

tion 12) is preserved by non-deterministic transitions of session environments.

Lemma 1. Let ∆ be minimal. If D⋄∆
α
−→ D′⋄∆′ then there exists a fair oracle

Ω and environment ∆′′ s.t. Ω ▷ D ⋄∆
α

−→d D′ ⋄∆′ ▶ ∆′′.

Lemma 2. If comp(∆) and Ω ▷ D ⋄∆
α

−→d D′ ⋄∆′ ▶ ∆′′ then comp(∆′).

Corollary 1 (Compliance preservation). If comp(∆) and D ⋄∆
α
−→ D′ ⋄∆′

then comp(∆′).

Lemma 3. If Γ ⊩ M1 : ∆ and M1
== M2 then Γ ⊩ M2 : ∆.

Proof. If follows from the inversion of Γ ⊩ M1 : ∆ and the definition of ==. The
result is mechanised in Coq. ⊓⊔

Theorem 1 (Subject Reduction). Let M be a closed session, and let D be

a fixed point including ∆. Assume (1) Γ ⊩ M : ∆ and (2) M
α
−→ M′.

We have Γ ⊩ M′ : ∆ or D ⋄∆
α
−→ D′ ⋄∆′ and Γ ⊩ M′ : ∆′.

Proof. By induction on (2), using value and process substitution (mechanised in
Coq), Lemma 3, and Corollary 1. ⊓⊔

Let Ended(∥i∈I pi ◁ Pi) when for all i ∈ I we have Pi = 0.

Theorem 2 (Progress). Let M be a closed session. If Γ ⊩ M : ∆ and does

not exist M′ s.t. M
τ

−→ M′ or M
l@p▷◁q

−−−−−→ M′, for all l, p, q, then Ended(M).

5 Automated Deductive Verification of Compliance

The typing system presented in § 4 relies on the notion of compliance, which
is defined theoretically by relying on the novel definitions of deterministic ses-
sion environment transitions and closure introduced in § 3. In this section, we
showcase how these theoretical notions can de deployed soundly in mainstream
programming languages and compilers by presenting a reference implementation

Iso-Recursive Multiparty Sessions and their Automated Verification 21

of compliance and by mechanising the properties of the implementation, which
are that compliant environment are mismatch-free and deadlock-free.

Our goal is to define compliance as a computable function that decides when
a session environment has a “good behaviour”, and in turn can be assigned by
the typing system to a session. We note that computability is an essential pre-
requisite for decidable type checking while assigning non-compliant environments
to sessions is unsound because it invalidates progress, and must be avoided.

Towards this aim, we need to (1) deploy the function; (2) provide a mech-
anised proof that the function terminates; (3) provide a mechanised proof that
the function decides freedom from mismatches and deadlocks. This result is es-
tablished once (by the type system designer): after that, the function can be
used each time we invoke the type checker on a session process.

The proofs and their mechanisation in (2) and (3) are necessary because the
designer can deploy a wrong implementation, e.g. it could have forgotten a case
leading to an environment deadlock, thus allowing to type check sessions that
deadlock at runtime. By providing a computer-assisted proof that the implemen-
tation rules out errors and deadlocks in environments, we can rely on Theorem 2
to obtain that sessions typed by accepted environments do not deadlock.

In the remainder of the section, we tackle the requirements (1), (2) and (3)
by defining function compliance and its behavioural specification, that is the con-
tract of the function [40]. We choose OCaml as target language and use tools of
the OCaml ecosystem relying on Why3 [19] to enable automated deductive ver-
ification of behavioural specifications by using constraint solvers, e.g. [16,42,4],
while supporting imperative features, ghost code [18], and interactive proofs.

The verification has been done by using Cameleer [45,44], which in turn relies
on [9,19]. Proofs of lemmas requiring induction are done interactively in Why3.

5.1 Structure of the Implementation

To implement closure (cf. Definition 7) in OCaml, we use function cstep receiv-
ing a fair oracle Ω, a decreasing set D, a (ghost) fixed point W, a session envi-
ronment ∆, and a (ghost) list of environments H representing the history of the
visited environments; the function returns an environment. Function compliance

invokes cstep in order to accept or reject the environment ∆:

let [@ghost] rec cstep (o : oracle) (d : typEnv list)
((w : typEnvRedexes)[@ghost]) (delta : typEnv)
((history : typEnv list)[@ghost]): typEnv = · · ·

let [@ghost] compliance (o : oracle) (d : typEnv list)
((w : typEnvRedexes)[@ghost]) (delta : typEnv) : bool =
try let m = cstep o d w delta [] in consumed m
with | Fixpoint h → (* h = h0, e *) let e = last h in let h0 = pre h
in mem_typEnv e h0 && sound e next | _ → raise NotCompliant

The behavioural specification of the functions is described in § 5.2. Ghost pa-
rameters are used both to provide a semantics to the fixed point mechanism and
to prove the soundness of the accepted environments, and do not have compu-
tational interest: all ghost code referring to such parameters should be erased
from the regular code after providing the proof effort [18,45].

22 M. Giunti, N. Yoshida

In function cstep we use exceptions to tackle different behaviours of envi-
ronments. In all cases but for exception Fixpoint, termination by raising an
exception determines failure of establishing compliance.

Definition 13 (Positive exits). Positive exits of function cstep are listed
below. A positive exit implies that the parameter ∆ of cstep satisfies compliance.

name param exit exception positive

cstep Ω,D,W, ∆,H ✓ ✓
Fixpoint ✓

W.r.t. the signatures of cstep and of closure in Definition 7, the non-ghost pa-
rameters are the same while the return type is different, because closure returns a
set of environments. Remember that the aim of the returned set of environments
is to establish compliance by verifying that all the final environments are not
a communication mismatch, or a deadlock (cf. Definition 12). Function cstep

achieves the same result by using exception handling and ghost parameters.
The body of cstep is recursive, and contains sub-calls of the form

cstep(Ω,D\∆,W, ∆′, (H, ∆)): the first parameter Ω is the oracle and is the
same in all calls; the second parameter D\∆ corresponds to the removal of ∆
from the decreasing set D; the third parameter W is the fixed point and is the
same in all calls; the fourth parameter ∆′ is obtained by updating the type of
one or of two participants returned by the oracle Ω (cf. Definition 5); the last
parameter appends ∆ to the history H: in the remainder of the section, the
notation H, ∆ indicates that ∆ is the last environment visited in H ∪ {∆}.

5.2 Verification

The verification of function compliance relies on the behavioural specification
and verification of function cstep, which in turn relies on auxiliary lemmas.

Figure 5 presents the behavioural specification of the implementation. The
column param lists the input arguments of each function. The column result
lists the result returned by each function. The column variant indicates the de-
creasing argument of cstep; note that compliance is not recursive. The column
requires indicates the pre-conditions stated in terms of the parameters. The
column raises indicates the formula holding for the argument carried by the
exception; in the specification of cstep we omit exceptions asserting true. The
column ensures indicates the post-condition stated in terms of the result.

There are two positive exits of function cstep establishing the compliance of
the environment ∆ received in input (cf. Definition 13): termination, and raising
Fixpoint. The conditions holding when cstep raises an exception (cf. keyword
raises) are discussed below while illustrating the verification process. Note that
exceptions Fixpoint, Deadlock, Wrongbranch, DecrNotFix and NotMinimal

carry the history H′, ∆′, where ∆′ is the last visited environment.
The predicate soundΩ(∆

′) relies on the result of the oracle and on Definition 9:
if the oracle receives ∆′ and returns one (cf. rule Sd-Rec) or two (cf. rule Sd-
Com) participants, and ∆′ is not a mismatch, then ∆′ is sound. The predicate
cons(∆′) says that all participants in the environment ∆′ have type end.

Iso-Recursive Multiparty Sessions and their Automated Verification 23

name param result variant requires raises ensures
cstep Ω ∆o |D| fair(Ω) OracleNotFair⇒ false cons(∆o)

D isFix(W,∆, |D| ∗ 2) Fixpoint(H′,∆′) ⇒
∆′ ∈ H′ ∧ soundΩ(∆′)

W D ∩H = ∅ Deadlock(H′,∆′) ⇒
∆′ ∈ H′ ∧mismatch(∆′)∨
Ω(∆′) = Ret0 ∧ ¬cons(∆′)

∆ D ∪H = comb(W) WrongBranch(H′,∆′) ⇒
∃p, q . Ω(∆′) = Ret2(p, q)∧
mismatch2(∆

′(p),∆′(q))

H ∆ ∈ comb(W) DecrNotFix(H′,∆′) ⇒
∆′ ̸∈ H′

NotMinimal(H′,∆′) ⇒
¬minimal(∆′)

Sd-Rec

Ω(∆) = Ret1(p)
¬mismatch(∆)

soundΩ(∆)
Sd-Com

Ω(∆) = Ret2(p, q)
¬mismatch(∆)

soundΩ(∆)

name param result requires raises ensures
compliance Ω b fair(Ω) NotCompliant⇒ true b = true

D isFix(W,∆, |D| ∗ 2)
W D = comb(W)

∆ ∆ ∈ D

Fig. 5. Behavioural specification of the implementation

The post-condition (cf. keyword ensures) of cstep says that the returned
environment is consumed: all participants have type end. For what concerns the
pre-conditions of cstep (cf. keyword requires), the predicate fair(Ω) implements
Definition 5 by relying on constructors Ret2,Ret1 and Ret0:

fair(Ω)
def
= ∀∆ . (∀p q . Ω(∆) = Ret2(p, q) ⇒ top(∆(p)) = q ∧ top(∆(q)) = p) ∧

(∀p . Ω(∆) = Ret1(p) ⇒ ∃X T .∆(p) = µX.T) ∧
(∀X T r p q . Ω(∆) = Ret0 ⇒ ∆(r) ̸= µX.T ∧
¬(top(∆(p)) = q ∧ top(∆(q) = p)))

The predicate isFix(W, ∆, n) says that W is a fixed point of ∆ (up-to depth n).
The core mechanism to analyse iso-recursive types and environments is to rely
on fixed points W of type typEnvRedexes, that is a map from participants to all
type redexes up-to depth n, and on the projection of all combinations of these
mappings into a set of environments, denoted comb(W). The depth n indicates

how many type transitions T
α1

−−→ · · ·
αn

−−→ T ′ are considered (cf. Figure 2);
these include the unfolding of iso-recursive types µX.T into T{µX.T/X}. Given
a fixed point W, we require that the decreasing set D and the history H partition
the set comb(W) (cf. Figure 5, function cstep, keyword requires, lines 3-4).

The pre-conditions of compliance mirror those of cstep, modulo the fact
that there is no history. The post-condition of compliance ensures that the func-

24 M. Giunti, N. Yoshida

tion returns true by exploiting (1) the post-condition of cstep and (2) the for-
mula holding when cstep raises Fixpoint. The exceptional exit of compliance
occurs when raising NonCompliant, thus rejecting the input environment ∆.

Termination. The first result establishes that function cstep terminates. We
instruct [45] to use |D| as decreasing measure, cf. the keyword variant in the
function specification of Figure 5, and obtain the desired result automatically.

Absence of communication mismatches. In order to show that environ-
ments accepted by compliance are mismatch-free, we ensure that positive exits
of function cstep (cf. Definition 13) carry environments that are not communi-
cation mismatches (cf. Definition 9) by inspecting cstep’s contract in Figure 5.

The first positive exit is termination: cstep returns ∆o. The contract’s clause
with keyword ensures establishes that ∆o is consumed: by definition, ∆o is not a
mismatch. The second positive exit corresponds to the exception Fixpoint: the
exceptions carries the history H′, ∆′, where ∆′ is the last visited environment.
The clause raises establishes that ∆′ ∈ H′ and that ∆′ is sound. By inversion of
rules Sd-Rec, Sd-Com, we obtain that ∆′ is not a mismatch. ⊓⊔

The automated verification is performed in [45] and relies on the predicate
mismatch2(T1, T2) (cf. Figure 5) to deal with wrong choices of sums: intuitively,
the predicate follow Definition 9 by using types rather than participants.

Absence of deadlocks. Similarly, we show that positive exits of cstep of
Definition 13 correspond to absence of deadlocks of Definition 10.

The first positive exit occurs when function cstep returns ∆o. The clause
with keyword ensures establishes that ∆o is consumed: by definition, ∆o is not a
deadlock. The second positive exit is raising exception Fixpoint; the exception
carries the history H′, ∆′, where ∆′ is the last visited environment. From the
contract’s clause with keyword raises, we infer that ∆′ ∈ H′ and that ∆′ is sound.

By inversion of rules Sd-Rec, Sd-Com, we obtain that two cases arise: (1)
there is a participant p s.t. Ω(∆′) = Ret1(p) and ∆′ is not a mismatch; (2) there
are participants p, q such that Ω(∆′) = Ret2(p, q) and ∆′ is not a mismatch. We
show that in both cases (1) and (2) we have that ∆′ can do a transition.

1. By the fairness pre-condition of cstep, we obtain

Ω(∆′) = Ret1(p) ⇒ ∃X T .∆′(p) = µX.T

We apply E-Rec, Se-Rec of Figure 2 and find ∆′′ s.t. ∆′ τ
−→ ∆′′.

2. By the fairness pre-condition of cstep, we obtain

Ω(∆′) = Ret2(p, q) ⇒ top(Tp) = q ∧ top(Tq) = p

where ∆′(p)
def
= Tp and ∆′(q)

def
= Tq.

By inversion of top(Tp) and top(Tq) (cf. Definition 5), we obtain that
Tp = &i∈Iq?li(Si).Ti or Tp = ⊕i∈Iq!li(Si).Ti, and Tq = &j∈Jp?lj(Sj).Tj or
Tq = ⊕j∈Jp!lj(Sj).Tj .
By hypothesis, ∆′ is not a mismatch: Definition 9 ensures that two sub-cases
arise: Tp = &i∈Iq?li(Si).Ti and Tq = ⊕j∈Jp!lj(Sj).Tj and L(Tp)∩L(Tq) ̸= ∅,
or Tp = ⊕i∈Iq!li(Si).Ti, and Tq = &j∈Jp?lj(Sj).Tj and L(Tp)∩L(Tq) ̸= ∅. In
both cases we apply Se-Com of Figure 2 and find α,∆′′ s.t. ∆′ α

−→ ∆′′. ⊓⊔

Iso-Recursive Multiparty Sessions and their Automated Verification 25

6 Related Work

To the best of our knowledge, only few works follow an iso-recursive approach to
session types. [31] proposes a decentralized analysis of multiparty protocols that
is based on a typed asynchronous π-calculus relying on the notion of router pro-
cesses; deadlock-freedom is established by following the priority-based approach
of session types [13]. The rule to type check recursion types the continuation by
unfolding iso-recursive types and lifting priorities to a common greater highest
priority. Finally, type preservation holds up to unfolding (cf. [31, Theorem 2]).

[36] studies iso-recursive and equi-recursive subtyping for binary sessions.
Session types are interpreted as propositions of multiplicative/additive linear
logic extended with least and greatest fixed points (cf. [8,54]). The typing rules
correspond to the proof rules in [3], and include the unfolding of least and great-
est fixed points. The authors compare the two subtyping relations, and note that
the relations preserve not only the usual safety properties, but also termination.

Many recent papers [56,57,58,59,48,43,39] rely on iso-recursive types for vari-
ants of the λ-calculus, following the seminal work on Amber rules [1]. While
the setting is different from ours, these papers provide several insights on the
advantage of iso-recursive types and on their algorithmic implementation and
mechanised verification. Previous papers [6,2] studied iso-recursive types for a
concurrent λ-calculus that can be seen as the foundational theory of core F ♯.

As mentioned above, iso-recursive types have been first studied formally in
the setting of Amber rules [1]. Pierce’s book [47] further discusses the differences
between iso-recursive and equi-recursive types.

Future Work. Our plans go along two directions: completing the study in the
paper and extending the language model and the type analysis.

Towards completion, we plan to conclude the mechanisation of subject reduc-
tion in Coq, and to compare the performance of compliance checking in OCaml
with the verification of deadlock freedom in bottom-up approaches (cf. [52])
relying on model-checking [49], eventually considering a realistic testing suite
involving multiple participants and interactions (cf. [49, Table 2]).

For what concerns extensions, there are two main features we are interested
in: session delegation and asynchronous subtyping for multiparty session types.

Handling session delegation in session types is challenging and might require
type constructors [25] or session channel decorations [22,15,53] to preserve type
soundness. Our plan is to enforce soundness at the type level, without affecting
the programmer’s syntax.

Asynchronous subtyping (e.g. [24]) is known to be undecidable for more than
two participants. We envision to overcome this obstacle to an algorithmic solu-
tion by considering a maximal depth of the search of the asynchronous outputs
that can be anticipated, similarly to the bound on recursion in [12].

Acknowledgements. We thank the reviewers for detailed and helpful comments. This

work is partially supported by EPSRC EP/T006544/2, EP/N027833/2, EP/T014709/2,

EP/Y005244/1, EP/V000462/1, Horizon EU TaRDIS 101093006, Advanced Research

and Invention Agency (ARIA), and a grant from the Simons Foundation.

26 M. Giunti, N. Yoshida

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science,
Springer (1996). https://doi.org/10.1007/978-1-4419-8598-9

2. Backes, M., Hritcu, C., Maffei, M.: Union, intersection and refinement types and
reasoning about type disjointness for secure protocol implementations. J. Comput.
Secur. 22(2), 301–353 (2014). https://doi.org/10.3233/JCS-130493

3. Baelde, D., Doumane, A., Kuperberg, D., Saurin, A.: Bouncing threads for circular
and non-wellfounded proofs: Towards compositionality with circular proofs. In:
Baier, C., Fisman, D. (eds.) LICS ’22: 37th Annual ACM/IEEE Symposium on
Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022. pp. 63:1–63:13. ACM
(2022). https://doi.org/10.1145/3531130.3533375

4. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_14

5. Barwell, A.D., Scalas, A., Yoshida, N., Zhou, F.: Generalised multiparty session
types with crash-stop failures. In: Klin, B., Lasota, S., Muscholl, A. (eds.) 33rd In-
ternational Conference on Concurrency Theory, CONCUR 2022, September 12-16,
2022, Warsaw, Poland. LIPIcs, vol. 243, pp. 35:1–35:25. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.CONCUR.2022.
35

6. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. 33(2), 8:1–
8:45 (2011). https://doi.org/10.1145/1890028.1890031

7. Brun, M.A.L., Dardha, O.: Magπ: Types for failure-prone communication. In: Wies,
T. (ed.) Programming Languages and Systems - 32nd European Symposium on
Programming, ESOP 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023,
Proceedings. Lecture Notes in Computer Science, vol. 13990, pp. 363–391. Springer
(2023). https://doi.org/10.1007/978-3-031-30044-8_14

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Concurrency Theory, 21th Inter-
national Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6269, pp. 222–236. Springer
(2010). https://doi.org/10.1007/978-3-642-15375-4_16

9. Charguéraud, A., Filliâtre, J., Lourenço, C., Pereira, M.: GOSPEL - provid-
ing OCaml with a formal specification language. In: ter Beek, M.H., McIver,
A., Oliveira, J.N. (eds.) Formal Methods - The Next 30 Years - Third World
Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings. Lecture
Notes in Computer Science, vol. 11800, pp. 484–501. Springer (2019). https:

//doi.org/10.1007/978-3-030-30942-8_29

10. ContainerSSH: DevLog: SSH authentication via OAuth2, https://containerssh.
io/v0.5/blog/2021/04/13/devlog-oauth2/

11. Coq development team: Reference manual, https://coq.inria.fr/doc/V8.20.0/
refman/

12. Cutner, Z., Yoshida, N., Vassor, M.: Deadlock-free asynchronous message reorder-
ing in rust with multiparty session types. In: Lee, J., Agrawal, K., Spear, M.F.
(eds.) PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice of

https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.3233/JCS-130493
https://doi.org/10.3233/JCS-130493
https://doi.org/10.1145/3531130.3533375
https://doi.org/10.1145/3531130.3533375
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.4230/LIPICS.CONCUR.2022.35
https://doi.org/10.4230/LIPICS.CONCUR.2022.35
https://doi.org/10.4230/LIPICS.CONCUR.2022.35
https://doi.org/10.4230/LIPICS.CONCUR.2022.35
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-030-30942-8_29
https://containerssh.io/v0.5/blog/2021/04/13/devlog-oauth2/
https://containerssh.io/v0.5/blog/2021/04/13/devlog-oauth2/
https://coq.inria.fr/doc/V8.20.0/refman/
https://coq.inria.fr/doc/V8.20.0/refman/

Iso-Recursive Multiparty Sessions and their Automated Verification 27

Parallel Programming, Seoul, Republic of Korea, April 2 - 6, 2022. pp. 246–261.
ACM (2022). https://doi.org/10.1145/3503221.3508404

13. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed pro-
cesses. In: Baier, C., Lago, U.D. (eds.) Foundations of Software Science and
Computation Structures - 21st International Conference, FOSSACS 2018, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. Lec-
ture Notes in Computer Science, vol. 10803, pp. 91–109. Springer (2018). https:
//doi.org/10.1007/978-3-319-89366-2_5

14. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear
types. In: Katoen, J., König, B. (eds.) CONCUR 2011 - Concurrency Theory -
22nd International Conference, CONCUR 2011, Aachen, Germany, September 6-
9, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6901, pp. 280–296.
Springer (2011). https://doi.org/10.1007/978-3-642-23217-6_19

15. Dezani-Ciancaglini, M., Drossopoulou, S., Mostrous, D., Yoshida, N.: Objects and
session types. Inf. Comput. 207(5), 595–641 (2009). https://doi.org/10.1016/
J.IC.2008.03.028

16. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding decision procedures to
SMT solvers using axioms with triggers. J. Autom. Reason. 56(4), 387–457 (2016).
https://doi.org/10.1007/S10817-015-9352-2

17. Ekici, B., Yoshida, N.: Completeness of asynchronous session tree subtyping in
coq. In: Bertot, Y., Kutsia, T., Norrish, M. (eds.) 15th International Conference
on Interactive Theorem Proving, ITP 2024, September 9-14, 2024, Tbilisi, Georgia.
LIPIcs, vol. 309, pp. 13:1–13:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2024). https://doi.org/10.4230/LIPICS.ITP.2024.13

18. Filliâtre, J., Gondelman, L., Paskevich, A.: The spirit of ghost code. For-
mal Methods Syst. Des. 48(3), 152–174 (2016). https://doi.org/10.1007/

S10703-016-0243-X

19. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 125–
128. Springer (2013). https://doi.org/10.1007/978-3-642-37036-6_8

20. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3), 17 (2007). https://doi.org/
10.1145/1232420.1232424

21. Gay, S., Ravara, A. (eds.): Behavioural Types: from Theory to Tools. River Pub-
lishers (2017), https://doi.org/10.13052/rp-9788793519817

22. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2-3), 191–225 (2005). https://doi.org/10.1007/S00236-005-0177-Z

23. Ghilezan, S., Jaksic, S., Pantovic, J., Scalas, A., Yoshida, N.: Precise subtyping
for synchronous multiparty sessions. J. Log. Algebraic Methods Program. 104,
127–173 (2019). https://doi.org/10.1016/J.JLAMP.2018.12.002

24. Ghilezan, S., Pantović, J., Prokić, I., Scalas, A., Yoshida, N.: Precise subtyping for
asynchronous multiparty sessions. ACM Trans. Comput. Logic 24(2) (nov 2023).
https://doi.org/10.1145/3568422

25. Giunti, M., Vasconcelos, V.T.: A linear account of session types in the pi calculus.
In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Concurrency Theory, 21th

https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1016/J.IC.2008.03.028
https://doi.org/10.1016/J.IC.2008.03.028
https://doi.org/10.1016/J.IC.2008.03.028
https://doi.org/10.1016/J.IC.2008.03.028
https://doi.org/10.1007/S10817-015-9352-2
https://doi.org/10.1007/S10817-015-9352-2
https://doi.org/10.4230/LIPICS.ITP.2024.13
https://doi.org/10.4230/LIPICS.ITP.2024.13
https://doi.org/10.1007/S10703-016-0243-X
https://doi.org/10.1007/S10703-016-0243-X
https://doi.org/10.1007/S10703-016-0243-X
https://doi.org/10.1007/S10703-016-0243-X
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1007/S00236-005-0177-Z
https://doi.org/10.1007/S00236-005-0177-Z
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1145/3568422
https://doi.org/10.1145/3568422

28 M. Giunti, N. Yoshida

International Conference, CONCUR 2010, Paris, France, August 31-September 3,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6269, pp. 432–446.
Springer (2010). https://doi.org/10.1007/978-3-642-15375-4_30

26. Giunti, M., Vasconcelos, V.T.: Linearity, session types and the pi calculus.
Math. Struct. Comput. Sci. 26(2), 206–237 (2016). https://doi.org/10.1017/
S0960129514000176

27. Giunti, M., Yoshida, N.: Iso-Recursive Multiparty Sessions and their Automated
Verification – Technical Report (2025). https://doi.org/10.48550/ARXIV.2501.
17778

28. van Glabbeek, R., Höfner, P., Horne, R.: Assuming just enough fairness to make
session types complete for lock-freedom. In: 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. pp.
1–13. IEEE (2021). https://doi.org/10.1109/LICS52264.2021.9470531

29. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicat-
ing Systems. MIT Press (2014), https://mitpress.mit.edu/books/

modeling-and-analysis-communicating-systems

30. Harvey, P., Fowler, S., Dardha, O., Gay, S.J.: Multiparty session types for safe
runtime adaptation in an actor language. In: Møller, A., Sridharan, M. (eds.) 35th
European Conference on Object-Oriented Programming, ECOOP 2021, July 11-
17, 2021, Aarhus, Denmark (Virtual Conference). LIPIcs, vol. 194, pp. 10:1–10:30.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.
4230/LIPIcs.ECOOP.2021.10

31. van den Heuvel, B., Pérez, J.A.: A decentralized analysis of multiparty protocols.
Sci. Comput. Program. 222, 102840 (2022). https://doi.org/10.1016/J.SCICO.
2022.102840

32. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR ’93, 4th
International Conference on Concurrency Theory, Hildesheim, Germany, August
23-26, 1993, Proceedings. Lecture Notes in Computer Science, vol. 715, pp. 509–
523. Springer (1993). https://doi.org/10.1007/3-540-57208-2_35

33. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) Program-
ming Languages and Systems - ESOP’98, 7th European Symposium on Program-
ming, Held as Part of the European Joint Conferences on the Theory and Prac-
tice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceed-
ings. Lecture Notes in Computer Science, vol. 1381, pp. 122–138. Springer (1998).
https://doi.org/10.1007/BFB0053567

34. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008. pp. 273–284. ACM (2008). https://doi.
org/10.1145/1328438.1328472

35. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

36. Horne, R., Padovani, L.: A logical account of subtyping for session types. J. Log.
Algebraic Methods Program. 141, 100986 (2024). https://doi.org/10.1016/J.
JLAMP.2024.100986

37. Imai, K., Neykova, R., Yoshida, N., Yuen, S.: Multiparty session programming
with global protocol combinators. In: Hirschfeld, R., Pape, T. (eds.) 34th Eu-
ropean Conference on Object-Oriented Programming, ECOOP 2020, November
15-17, 2020, Berlin, Germany (Virtual Conference). LIPIcs, vol. 166, pp. 9:1–9:30.

https://doi.org/10.1007/978-3-642-15375-4_30
https://doi.org/10.1007/978-3-642-15375-4_30
https://doi.org/10.1017/S0960129514000176
https://doi.org/10.1017/S0960129514000176
https://doi.org/10.1017/S0960129514000176
https://doi.org/10.1017/S0960129514000176
https://doi.org/10.48550/ARXIV.2501.17778
https://doi.org/10.48550/ARXIV.2501.17778
https://doi.org/10.48550/ARXIV.2501.17778
https://doi.org/10.48550/ARXIV.2501.17778
https://doi.org/10.1109/LICS52264.2021.9470531
https://doi.org/10.1109/LICS52264.2021.9470531
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1016/J.SCICO.2022.102840
https://doi.org/10.1016/J.SCICO.2022.102840
https://doi.org/10.1016/J.SCICO.2022.102840
https://doi.org/10.1016/J.SCICO.2022.102840
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.1016/J.JLAMP.2024.100986
https://doi.org/10.1016/J.JLAMP.2024.100986
https://doi.org/10.1016/J.JLAMP.2024.100986
https://doi.org/10.1016/J.JLAMP.2024.100986

Iso-Recursive Multiparty Sessions and their Automated Verification 29

Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPICS.ECOOP.2020.9

38. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: Chaudron, M., Crnkovic, I.,
Chechik, M., Harman, M. (eds.) Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018.
pp. 1137–1148. ACM (2018). https://doi.org/10.1145/3180155.3180157

39. Ligatti, J., Blackburn, J., Nachtigal, M.: On subtyping-relation completeness, with
an application to iso-recursive types. ACM Trans. Program. Lang. Syst. 39(1), 4:1–
4:36 (2017). https://doi.org/10.1145/2994596

40. Meyer, B.: Applying ”design by contract”. Computer 25(10), 40–51 (1992). https:
//doi.org/10.1109/2.161279

41. Milner, R.: Communication and concurrency. PHI Series in computer science, Pren-
tice Hall (1989)

42. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3_24

43. Patrignani, M., Martin, E.M., Devriese, D.: On the semantic expressiveness of
recursive types. Proc. ACM Program. Lang. 5(POPL), 1–29 (2021). https://doi.
org/10.1145/3434302

44. Pereira, M.: Practical Deductive Verification of OCaml Programs. In: Platzer, A.,
Rozier, K.Y., Pradella, M., Rossi, M. (eds.) Formal Methods - 26th International
Symposium, FM 2024, Milan, Italy, September 9-13, 2024, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 14934, pp. 518–542. Springer (2024).
https://doi.org/10.1007/978-3-031-71177-0_29

45. Pereira, M., Ravara, A.: Cameleer: A deductive verification tool for OCaml. In:
Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12760, pp. 677–689. Springer (2021).
https://doi.org/10.1007/978-3-030-81688-9_31

46. Peters, K., Yoshida, N.: Separation and encodability in mixed choice multiparty
sessions. In: Sobocinski, P., Lago, U.D., Esparza, J. (eds.) Proceedings of the 39th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn,
Estonia, July 8-11, 2024. pp. 62:1–62:15. ACM (2024). https://doi.org/10.1145/
3661814.3662085

47. Pierce, B.C.: Types and programming languages. MIT Press (2002)

48. Rossberg, A.: Mutually iso-recursive subtyping. Proc. ACM Program. Lang.
7(OOPSLA2), 347–373 (2023). https://doi.org/10.1145/3622809

49. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), 30:1–30:29 (2019). https://doi.org/10.1145/3290343

50. Scalas, A., Yoshida, N., Benussi, E.: Verifying message-passing programs with de-
pendent behavioural types. In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 502–516. ACM
(2019). https://doi.org/10.1145/3314221.3322484

https://doi.org/10.4230/LIPICS.ECOOP.2020.9
https://doi.org/10.4230/LIPICS.ECOOP.2020.9
https://doi.org/10.4230/LIPICS.ECOOP.2020.9
https://doi.org/10.4230/LIPICS.ECOOP.2020.9
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/2994596
https://doi.org/10.1145/2994596
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3434302
https://doi.org/10.1145/3434302
https://doi.org/10.1145/3434302
https://doi.org/10.1145/3434302
https://doi.org/10.1007/978-3-031-71177-0_29
https://doi.org/10.1007/978-3-031-71177-0_29
https://doi.org/10.1007/978-3-030-81688-9_31
https://doi.org/10.1007/978-3-030-81688-9_31
https://doi.org/10.1145/3661814.3662085
https://doi.org/10.1145/3661814.3662085
https://doi.org/10.1145/3661814.3662085
https://doi.org/10.1145/3661814.3662085
https://doi.org/10.1145/3622809
https://doi.org/10.1145/3622809
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484

30 M. Giunti, N. Yoshida

51. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D.G., Philokyprou, G., Theodoridis, S.
(eds.) PARLE ’94: Parallel Architectures and Languages Europe, 6th Interna-
tional PARLE Conference, Athens, Greece, July 4-8, 1994, Proceedings. Lec-
ture Notes in Computer Science, vol. 817, pp. 398–413. Springer (1994). https:
//doi.org/10.1007/3-540-58184-7_118

52. Udomsrirungruang, T., Yoshida, N.: Top-down or bottom-up? Complexity analyses
of synchronous multiparty session types. Proc. ACM Program. Lang. 9(POPL)
(Jan 2025). https://doi.org/10.1145/3704872

53. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012).
https://doi.org/10.1016/J.IC.2012.05.002

54. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2-3), 384–418 (2014).
https://doi.org/10.1017/S095679681400001X

55. Yoshida, N.: Programming language implementations with multiparty session
types. In: de Boer, F.S., Damiani, F., Hähnle, R., Johnsen, E.B., Kamburjan,
E. (eds.) Active Object Languages: Current Research Trends, Lecture Notes in
Computer Science, vol. 14360, pp. 147–165. Springer (2024). https://doi.org/
10.1007/978-3-031-51060-1_6

56. Zhou, L., Oliveira, B.C.d.S.: Quicksub: Efficient iso-recursive subtyping. Proc.
ACM Program. Lang. 9(POPL) (Jan 2025). https://doi.org/10.1145/3704869

57. Zhou, L., Wan, Q., d. S. Oliveira, B.C.: Full iso-recursive types. Proc. ACM Pro-
gram. Lang. 8(OOPSLA2), 192–221 (2024). https://doi.org/10.1145/3689718

58. Zhou, L., Zhou, Y., d. S. Oliveira, B.C.: Recursive subtyping for all. Proc. ACM
Program. Lang. 7(POPL), 1396–1425 (2023). https://doi.org/10.1145/3571241

59. Zhou, Y., Zhao, J., d. S. Oliveira, B.C.: Revisiting iso-recursive subtyping. ACM
Trans. Program. Lang. Syst. 44(4), 24:1–24:54 (2022). https://doi.org/10.1145/
3549537

https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1145/3704872
https://doi.org/10.1145/3704872
https://doi.org/10.1016/J.IC.2012.05.002
https://doi.org/10.1016/J.IC.2012.05.002
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1145/3704869
https://doi.org/10.1145/3704869
https://doi.org/10.1145/3689718
https://doi.org/10.1145/3689718
https://doi.org/10.1145/3571241
https://doi.org/10.1145/3571241
https://doi.org/10.1145/3549537
https://doi.org/10.1145/3549537
https://doi.org/10.1145/3549537
https://doi.org/10.1145/3549537

	Iso-Recursive Multiparty Sessions and their Automated Verification
	Introduction
	Equi-recursive vs Iso-recursive Types: SSH/OAuth2 Example

	Multiparty Sessions
	Session Environment Reduction, Algorithmically
	Non-deterministic Transition System
	Deterministic Session Environment Transitions
	Closure

	Iso-Recursive Multiparty Type System
	Compliance
	Subject Reduction and Progress

	Automated Deductive Verification of Compliance
	Structure of the Implementation
	Verification

	Related Work
	Bibliography

