
Lightweight Session Programming in Scala∗

Alceste Scalas and Nobuko Yoshida
Imperial College London, UK — {a.scalas , n.yoshida} @ imperial.ac.uk

Abstract
Designing, developing and maintaining concurrent applications is an error-prone and time-con-
suming task; most difficulties arise because compilers are usually unable to check whether the
inputs/outputs performed by a program at runtime will adhere to a given protocol specification.

To address this problem, we propose lightweight session programming in Scala: we leverage the
native features of the Scala type system and standard library, to introduce (1) a representation
of session types as Scala types, and (2) a library, called lchannels, with a convenient API for
session-based programming, supporting local and distributed communication. We generalise the
idea of Continuation-Passing Style Protocols (CPSPs), studying their formal relationship with
session types. We illustrate how session programming can be carried over in Scala: how to
formalise a communication protocol, and represent it using Scala classes and lchannels, letting
the compiler help spotting protocol violations. We attest the practicality of our approach with a
complex use case, and evaluate the performance of lchannels with a series of benchmarks.

Last updated May 3, 2016

Keywords and phrases session types, Scala, concurrency

1 Introduction and motivation

Client Frontend Auth App server

GetSession(Id)
GetSession(Id)

Success(S)
Active(S)

AltAlt Session Id is valid

Failure()

GetAuthentication()

Authentication(A)
New(A)
Authenticate(Credentials)

Failure()✗
AltAlt Invalid credentials

CreateSession(User)
NewSession(S)

Success(S)✓

AltAlt Valid credentials

AltAlt Session Id does not exist, or is expired

Commandi (Ti)

Responsei (T ′
i)

.

Loop/Alt i ∈{1, . . . , n}Loop/Alt i ∈{1, . . . , n} Client-server session

Figure 1 Server with frontend.

Concurrent and distributed applications are notori-
ously difficult to design, develop and maintain. One
of the main challenges lies in ensuring that software
components interact according to some predetermined
communication protocols describing all the valid mes-
sage exchanges. Such a challenge is typically tack-
led at runtime, e.g. via testing and message moni-
toring. Unfortunately, depending on the number of
software components and the complexity of their pro-
tocols, tests and monitoring routines can be costly to
develop and to maintain, as software and protocols
evolve.

Consider the message sequence chart on the right:
it is based on an example of “actor protocol” from [27]
(slide 42), and schematises the authentication proce-
dure of an application server. A client connects to
a frontend, trying to retrieve an active session by its
Id; the frontend queries the application server: if Id
is valid, the client gets an Active(S) message with
a session handle S, which can be used to perform the
command/response loop at the bottom; otherwise, the

∗ Work partly supported by: EPSRC EP/K011715/1, EP/K034413/1 and EP/L00058X/1, and EU
project FP7-612985 UpScale.

© Alceste Scalas, Nobuko Yoshida
licensed under Creative Commons License CC-BY

http://creativecommons.org/licenses/by/3.0/

2 Lightweight Session Programming in Scala

client must authenticate: the frontend obtains an handle A from an authentication server,
and forwards it to the client with a New(A) message. The client must now use A to send its
credentials (through an Authenticate message); if they are not valid, the authentication
server replies Failure(); otherwise, it retrieves a session handle S and sends Success(S)
to the client, who uses S for the session loop (as above). In this example, four components
interact with intertwined protocols. Ensuring that messages are sent with the right type
and order, and that each component correctly handles all possible responses, can be an
elusive and time-consuming task. Runtime monitoring/testing can detect the presence of
communication errors, but cannot guarantee their absence; moreover, protocols and code
may change during the life cycle of an application — and monitoring/testing procedures will
need to be updated. Compile-time checks would allow to reduce this burden, thus reducing
software maintenance costs.

1 case class GetSession(id: Int,
2 replyTo: ActorRef[GetSessionResult])
3
4 sealed abstract class GetSessionResult
5 case class New(authc: ActorRef[Authenticate])
6 extends GetSessionResult
7 case class Active(service: ActorRef[Command])
8 extends GetSessionResult
9

10 case class Authenticate(username: String, password: String,
11 replyTo: ActorRef[AuthenticateResult])
12
13 sealed abstract class AuthenticateResult
14 case class Success(service: ActorRef[Command])
15 extends AuthenticateResult
16 case class Failure() extends AuthenticateResult
17
18 sealed abstract class Command
19 // ... case classes for the client-server session loop ...

Figure 2 Akka Typed: protocol of client in Fig. 1.

CPS protocols in Scala The de-
velopers of the Scala-based Akka
framework [30] have been address-
ing these challenges, in the setting
of actor-based applications. Stan-
dard actors communicate in an un-
typed way: they can send each
other any message, anytime, and
must check at runtime whether a
given protocol is respected. Akka
developers are thus trying to lever-
age the Scala type system to ob-
tain static protocol definitions and
compile-time guarantees on the absence of communication errors. Their tentative solution
has two parts. The first is Akka Typed [31]: an experimental library with actors that can
only receive messages via references of type ActorRef[A], which in turn only allow to send A-
typed messages. The second is what we dub Continuation-Passing Style Protocols (CPSPs):
sets of message classes that represent sequencing with a replyTo field, of type ActorRef[B].
By convention, replyTo tells where the message recipient should send its B-typed answer:
Fig. 2 (based on [27], slide 41) shows the CPSPs of the client in Fig. 1.

1 def client(frontend: ActorRef[GetSession]) = {
2 val cont = spawn[GetSessionResult] {
3 case New(a) => doAuthentication(a)
4 case Active(s) => doSessionLoop(s)
5 }
6 frontend ! GetSession(42, cont)
7 }

Figure 3 Actor spawning (pseudo code).

In practice, a replyTo field can be instanti-
ated by producing a “continuation actor” that
handles the next step of the protocol. Fig. 3
shows a client that, before sending GetSession to
the frontend (line 6), spawns a new actor accept-
ing GetSessionResult messages. Then, cont

(line 2) has type ActorRef[GetSessionResult], and is sent as replyTo: the frontend
should send its New/Active answer there. This creates a conversation between the client
and frontend: the message sender produces a “continuation”, and the receiver should use it.

Opportunities and limitations CPSPs have the appealing feature of being standard Scala
types, checked by its compiler, and giving rise to a form of structured interaction in Akka.
However, their incarnation seen above has some shortcomings. First and foremost, they are a
rather low-level representation, not connected with any established, high-level formalisation
of protocols and structured interaction. Hence, non-trivial protocols with branching and

Alceste Scalas, Nobuko Yoshida 3

recursion (e.g. the one in Fig. 1) can be hard to write and understand in CPS; even message
ownership and sequencing may be non-obvious: e.g., determining who sends Failure in
Fig. 2, and whether it comes before or after another message, can take some time. Moreover,
the CPSPs in Fig. 2 seems to imply that some continuations should be used exactly once —
but this intuition is not made explicit in the types. E.g., in Fig. 3, frontend and cont are
both ActorRefs — but the actor referred by frontend might accept multiple GetSession
requests, whereas the one referred by cont (spawned on lines 2–5) might just wait for one
New/Active message, spawn another continuation actor, and terminate. Arguably, the type
of cont should convey whether sending more than one message is an error.

Our contribution: lightweight session programming in Scala We address the challenges
and limitations above by proposing lightweight session programming in Scala — where
“lightweight” means that our proposal does not depend on language extensions, nor ex-
ternal tools, nor specific message transport frameworks. We generalise the idea of CPSP,
relating it to a well established formalism for the static verification of concurrent programs:
session types [19, 20, 41]. We present a library, called lchannels, offering a simplified
API for session programming with CPSPs, supporting network-transparent communication.
Albeit the Scala type checker does not cater for all the static guarantees provided by session-
typed languages (mostly due to the lack of static linearity checks), we show that lchannels
and CPSPs allow to represent protocol specifications as Scala types, and write session-based
programs in a rather natural way, guaranteeing protocol safety: i.e., once a session starts,
no out-of-protocol messages can be sent, and all valid incoming messages are handled. We
show that typical protocol errors are detected at compile-time — except for linearity errors:
lchannels checks them at runtime, reminding the typical usage of Scala Promises/Futures.

This work focuses on Scala since we leverage several convenient features of the language
and its standard library: object orientation, parametric polymorphism with declaration-site
variance, first-class functions, labelled union types (case classes), Promises/Futures; yet,
our approach could be adapted (at least in part) to any language with similar features.

Outline of the paper In §2, we summarise session types, explaining the difficulties in their
integration in a language like Scala, and how we overcome them by exploiting an encoding
into linear types for I/O. In §3 we introduce lchannels, a library for type-safe communica-
tion over asynchronous linear channels. In §4 we explain, via several examples, how session
programming can be carried over in Scala, by using lchannels and representing session types
as CPSPs, according to a session-based software development approach (§ 4.2). § 5 presents
optimisations and extensions of lchannels, achieving message transport abstraction and
network-transparent communication. In § 6 we show the practicality of our approach by
implementing the case study in Fig. 1, and evaluating the performance of lchannels —
particularly, its message delivery speed w.r.t. other inter-process communication methods.
In § 7 we give a formal foundation to § 4, proving crucial results about duality/subtyping
of session types represented in Scala, and overcoming technical difficulties in the transition
from a structural to nominal types (e.g., different handling of recursion). We discuss related
works in § 8, and conclude in § 9 — showing how our approach can be adapted to other
communication frameworks.

Online resources For the latest version of lchannels, visit:

http://alcestes.github.io/lchannels/

http://alcestes.github.io/lchannels/

4 Lightweight Session Programming in Scala

2 Programming with session types: background and challenges

We now summarise the features of languages based on binary session types (§ 2.1) and their
notions of duality and subtyping (§ 2.2). We then explain their relationship with linear I/O
types (§ 2.3), and give an overview of our strategy for representing them in Scala (§ 2.4).

2.1 Background: binary session types in a nutshell
Session types regulate the interaction of processes communicating through channels; each
channel has two endpoints, and the intuitive semantics is that all values sent on one endpoint
can be received on the other in the same order — a bidirectional FIFO model akin e.g. to
TCP/IP sockets. A session type says how a process is expected to use a channel endpoint.
Let B = {Int,Bool,Unit, . . .} be a set of basic types. A session type S has the following syntax:

S ∶∶=
˘
i∈I?li(Ti).Si ∣ ⊕i∈I !li(Ti).Si ∣ µX .S ∣ X ∣ end T ∶∶= B ∣ S (closed)

where I ≠ ∅, recursion is guarded, and all li range over pairwise distinct labels. T denotes
a payload type. The branching type (or external choice)

˘
i∈I?li(Ti).Si requires the process

to receive one input of the form li(Ti), for any i ∈ I chosen at the other endpoint; then,
the channel must be used according to the continuation type Si. The selection type (or
internal choice) ⊕i∈I !li(Ti).Si, instead, requires the program to choose and perform one
output li(Ti), for some i ∈ I, and continue using the channel according to Si. µX .S is a
recursive session type, where µ binds X, and X is a recursion variable. We say that S is
closed iff all its recursion variables are bound. end is a terminated session with no further
inputs/outputs. Note that a payload type T can be either a basic or a session type: hence,
channel endpoints allow to send/receive e.g. integers, strings, or other channel endpoints.
▸ Remark 2.1. We use ⊕/& as infix operators, omitting them in singleton choices. We often
omit end and Unit: ?A.(!B(Int)⊕ !C) stands for

˘
{ ?A(Unit).⊕{!B(Int).end , !C(Unit).end}}.

For example, the type Sh below describes the client endpoint of a “greeting protocol”:

Sh = µX .(!Greet(String).(?Hello(String).X & ?Bye(String).end) ⊕ !Quit.end)

The client can send either Quit and end the session, or Greet(String); in the second case,
it might receive from the server either Bye(String) (ending the session), or Hello(String):
in the second case, the session continues recursively.

Programming languages that support session types are usually based on session-π — i.e.,
a version of π-calculus [33] extended with session operators. A client respecting Sh would be
implemented as hello(c) in Fig. 4 (left): c is a Sh-typed channel endpoint, ! is a language
primitive for selecting and sending messages, and ? for branching (i.e., receiving and pattern
matching messages). The type system ensures that c is used according to Sh, guaranteeing:

S1. safety: no out-of-protocol I/O actions are allowed. E.g., c can initially be used only to
send Greet/Quit (lines 3/8), no outputs are allowed when Sh expects c to receive (line
4), no inputs when Sh expects c to send (lines 3,8), no I/O when Sh has ended (line 6);

S2. exhaustiveness: when receiving a message, all outcomes allowed by the type must be
covered. E.g., the client must handle both Hello and Bye answers (lines 4–6);

S3. output linearity: if Sh prescribes an output, it must occur exactly once. E.g., after
receiving Hello, the client must send Greet or Quit (as in the recursive call of line 5);

S4. input linearity: similarly, if Sh prescribes an input, it must occur exactly once. E.g.,
after sending Greet, the client must receive the response (as in line 4).

Alceste Scalas, Nobuko Yoshida 5

1 def hello(c: S_h): Unit = {
2 if (...) {
3 c ! Greet("Alice")
4 c ? {
5 case Hello(name) => hello(c)
6 case Bye(name) => ()
7 }
8 } else { c ! Quit() }
9 }

1 def lHello(c: LinOutChannel[?]): Unit = {
2 if (...) {
3 val (c2in, c2out) = createLinChannels[?]()
4 c.send(Greet("Alice", c2out))
5 c2in.receive match {
6 case Hello(name, c3out) => lHello(c3out)
7 case Bye(name) => ()
8 }
9 } else { c.send(Quit()) }

10 }

Figure 4 Greeting protocol client (pseudo code): session types (left) vs. linear I/O types (right).

2.2 Background: safe, deadlock-free interaction via duality/subtyping
A session-typed language ensures correct run-time interaction by statically checking that
the two endpoints of a channel are used dually. The dual of S, written S, is defined as:

˘
i∈I?li(Ti).Si = ⊕i∈I !li(Ti).Si ⊕i∈I !li(Ti).Si =

˘
i∈I?li(Ti).Si

µX .S = µX .S X = X end = end

Intuitively, the internal/external choices of S are swapped in S; hence, each client-side
output is matched by a server-side input, and vice versa. In our example, c is a client-side
endpoint that must be used according to Sh; the server-side dual channel endpoint has type:
Sh = µX .(?Greet(String).(!Hello(String).X ⊕ !Bye(String).end) & ?Quit.end)

Duality guarantees the safe and deadlock-free interaction of a client and server observing Sh
and Sh: no unexpected messages are sent/received, and the session progresses until its end.

Such a guarantee is made more flexible via session subtyping [13]. Consider the type
1 def hello2(c2: S_h2): Unit = {
2 c2 ! Quit()
3 }

Sh2 = !Quit, and its implementation on the right: since
hello2 only outputs Quit on c2, it would also behave
safely on a Sh-typed channel endpoint c. In fact, in a
session-typed language we have Sh ⩽ Sh2

1– i.e., an Sh-typed channel endpoint can always
be used in place of an Sh2-typed one; hence, invoking hello2(c) is allowed — and such a
client program would interact safely and without deadlocks with a server observing Sh.

2.3 From session-typed to linearly-typed programs
Unfortunately, integrating session types into a “mainstream” programming language is not
trivial: they require sophisticated type system features. Safety/exhaustiveness can be
achieved by letting c’s type evolve according to Sh after each I/O action — but most type
systems assign a fixed type to each variable; I/O linearity checks require linearity analysis;
internal/external choices, session subtyping and duality need dedicated type-level machinery.

In this paper, we show how session programming can be carried over in Scala, recover-
ing part of the static guarantees provided by session types. We take inspiration from the
encoding of session-π into standard π-calculus with variants and linear I/O types [8]: the
key idea is that session-π and session types can be encoded in a more basic language and
type system that do not natively support session primitives (e.g., internal/external choices
and duality), by adopting a “continuation-passing style” interaction over linear input/out-
put channel endpoints that are used exactly once. In particular, [8] (Theorems 1, 2) proves

1 This is formalised in § 7.1, and proved in Example C.1.

6 Lightweight Session Programming in Scala

that a process using variants, linear I/O types and CPS interaction can precisely mirror the
typing and the runtime communications of a session typed process.

An intuition of our approach is given in Fig. 4 (right), where lHello is the “linearly
encoded” version of hello. Its argument c is a linear output channel endpoint that carries
a single value (whose type is left unspecified, for now). On line 3, it creates a new pair of
linear channels endpoints, which can carry another single value of some (again unspecified)
type: intuitively, what is sent on c2out becomes available in c2in. On line 4, c is used
to send a Greet message — which also carries c2out. Then, the recipient of Greet and
c2out is expected to use the latter to continue the session — i.e., send either Hello or Bye.
On line 5, c2in is used to receive such an answer, and the result is matched against Hello
and Bye; the latter carries no continuation channel, i.e. the session has ended (line 7); the
former, instead, carries a linear (output) channel endpoint c3out, that is used to continue
the session with a recursive call (line 6). Note that all channel endpoints received/created in
lHello are either used exactly once (c, c2in, c3out), or sent to some other process (c2out).

A crucial difference between hello and lHello is that in the latter, each variable has a
constant type. This suggests that, although the Scala type checker cannot check linearity, it
might be leveraged to obtain a form of session typing, offering safety and exhaustiveness for
programs written in “linear CPS”, like lHello. Then, as seen in § 2.2, we could also obtain
safe and deadlock-free interaction — provided that a program creates, uses or sends its linear
channel endpoints according to [8], and the other program involved in a session interacts in
a “dual” way. However, the pseudo-code of Fig. 4 (right) highlights four Problems:

P1. we need to represent and implement linear input and output channels;
P2. we need to suitably instantiate each ?-type, so to describe the same interactions of Sh;
P3. we must automate the creation, sending and use of linear channels, offering an API that

guides the CPS interactions prescribed in [8], and allows to write code similar to hello;
P4. we need to handle session subtyping and duality in the Scala type system.

2.4 From session types to session programming in Scala: an outline

Linear I/O types
(with variants and records)

S

?(U) or !(U)

In[A] or Out[A]

S

!(U) or ?(U)

Out[A] or In[A]

ServerClient

U

CPS protocol classes
A1,A2, . . . ,An

Session types

Scala types

Figure 5 From session types to Scala types.

In the rest of the paper, we demon-
strate how to tackle Problems P1–P4,
staying close to the session/linear types
theory, and yet achieving practical ses-
sion programming in Scala. Our ap-
proach is summarised in Fig. 5. On
top, we have a client and a server
that should interact through a channel,
whose protocol is described with dual
session types S and S. On the bot-
tom, the same protocol is represented
in Scala, as a set of CPSP classes, shared between the client and server, and similar to
those discussed in §1: they are used as parameters for In[A] and Out[A], which implement
respectively an input/output channel endpoint carrying a single value of type A. We ex-
tract such CPSP classes from S or S, through an encoding represented by the arrows; such
an encoding exploits an intermediate generation of linear I/O types (middle of Fig. 5), as
detailed in § 7. We address P1 in § 3, P2 in § 4, P3 in § 4.3, and P4 in § 7.3.

Alceste Scalas, Nobuko Yoshida 7

1 abstract class In[+A] {
2 def future: Future[A]
3 def receive(implicit d: Duration): A = {
4 Await.result[A](future, d)
5 }
6 def ?[B](f: A => B)(implicit d: Duration): B = {
7 f(receive)
8 }
9 }

10

11 abstract class Out[-A] {
12 def promise[B <: A]: Promise[B]
13 def send(msg: A): Unit = promise.success(msg)
14 def !(msg: A) = send(msg)
15 def create[B](): (In[B], Out[B])
16 }

1 class LocalIn[+A](val future: Future[A]) extends In[A]
2

3 class LocalOut[-A](p: Promise[A]) extends Out[A] {
4 override def promise[B <: A] = {
5 p.asInstanceOf[Promise[B]] // Type-safe cast
6 }
7 override def create[B]() = LocalChannel.factory[B]()
8 }
9

10 object LocalChannel {
11 def factory[A](): (LocalIn[A], LocalOut[A]) = {
12 val promise = Promise[A]()
13 val future = promise.future
14 (new LocalIn[A](future), new LocalOut[A](promise))
15 }
16 }

Figure 6 Linear channels in Scala: abstract classes (left) and local implementation (right).

3 lchannels, a (small) library for type-safe interaction

We now introduce lchannels, a Scala library providing typed linear channels. We designed
the programmer interface to be close to the formal definition of linear channels (§ 7.2) —
notably, by reflecting their co/contra-variance. For simplicity, we shape the API and its basic
implementation around Promises/Futures from the Scala standard library [16], since they
are familiar to Scala developers, and remarkably close to the expected usage of linear channel
endpoints (§2.3): (i) a Promise[A] must be completed exactly once with an A-typed value v,
and (ii) after completion, v becomes available on the corresponding Future[A]. Moreover,
Promises/Futures provide asynchronous message passing.

We present the lchannels API in § 3.1, and a simple implementation in § 3.2. We give
further details, examples and extensions after showing the representation of session types as
CPSP classes (§ 4) — which constitute the principal use case for lchannels.

3.1 The programmer interface
The cornerstones of lchannels are the abstract classes Out[-A] and In[+A], representing
channel endpoints allowing respectively to send and receive one A-typed value. Their slightly
simplified declarations are shown in Fig. 6 (left).

The class Out[-A] is contravariant w.r.t. A2. Its promise (line 12) is expected to be
eventually completed with the value to be sent; a crucial requirement is that promise must
be implemented as a constant3, to ensure that it will be completed only once. Note that
due to the contravariance of A, the type of promise cannot be simply Promise[A]: the
reason is that the latter is invariant w.r.t. A; the bounded type parameter B <∶ A allows
to overcome this limitation. send(msg) and its alias ! offer a simplified interface above
promise, representing the selection/output operator of session-π (see Example 3.1). Finally,
Out’s abstract method create[B]() returns a new pair of input/output channels carrying
B: this method is used to create continuation endpoints, as seen in Fig. 4 (right, line 3).

The class In[+A] is covariant w.r.t. its type parameter A4. Its future will contain the
value sent from the corresponding Out endpoint. The receive method offers a simplified
interface over future: the implicit parameter d specifies how long to wait for an incoming

2 This matches the output subtyping rule [⩽`-Out] in Def. 7.4.
3 Such a requirement could be enforced by defining the field as val, instead of def; the drawback is that

val does not allow type parameters, and this would result in an invariant Out with limited subtyping.
4 This matches the input subtyping rule [⩽`-In] in Def. 7.4.

8 Lightweight Session Programming in Scala

message before raising a timeout error. The ? method implements the typical branching
operator of session-π: it takes a function f: A => B, and once a value v is received, it
returns f(v). The rationale behind the method signature is clarified in Example 3.1.

▸ Example 3.1 (!, ? and selection/branching). Consider the following classes:
1 sealed abstract class AorB
2 case class A() extends AorB; case class B() extends AorB

Let c be an instance of Out[AorB]. The c.! method can be used as follows:
1 c ! A() or 1 c ! B()

Note that ! resembles the output/selection operator seen in Fig. 4 (left). Moreover, the
Scala compiler ensures that the argument of ! belongs to a subtype of AorB, — e.g., A or
B5: this corresponds, in session-π, to the type checking of an internal choice.

Let now c be an instance of In[AorB]. The c.? method can be used as shown below,
1 c ? { case A() => println("Got A")
2 case B() => println("Got B") }

where the {...} block, as per usual Scala syntax,
is a function from AorB to Unit. This reminds the

branching operator seen in Fig. 4 (left). Moreover, since AorB is a sealed abstract class,
the Scala compiler can check exhaustiveness, warning if the cases do not cover both A and
B6: this corresponds, in session-π, to the type checking of an external choice.

Using lchannels endpoints: static vs. dynamic checks As seen in Example 3.1, the
Scala compiler can check that an instance of lchannels Out (resp. In) carrying a sealed
abstract class is only used under the safety and exhaustiveness guarantees of a session-
typed channel endpoint with a top-level ⊕ (resp. &)7, i.e., S1 and S2 in § 2.1. Also, an
instance of e.g. Unit provides the guarantees of an end-typed channel endpoint: it cannot
be used for I/O. Unfortunately, the Scala type checker cannot enforce input/output linearity
(S3 and S4 in §2.1); hence, lchannels implements the following runtime linear usage rules:

L1. each Out instance should be used to perform exactly one output. Any further output
will generate a runtime exception, forbidding duplicated message transmissions;

L2. each In instance should be used at least once. Each use will retrieve the same value.

L1 and L2 reflect the typical usage of Scala’s Promises and Futures. The lack of static
linearity checks impacts deadlock-freedom guarantees: we will discuss this topic in § 6.1.3.
Note that L1 matches S3, while L2 is more relaxed than S4. The latter is not a technical
necessity, since In could be easily designed to raise an exception if used twice for input; we
adhere to the familiar behaviour of Futures for simplicity of presentation, and to readily
apply some common programming patterns, e.g. registering one or more input callbacks.

3.2 A local implementation
Fig. 6 (right) shows a simple local implementation of In[A]/Out[A], as a thin layer over a
Promise[A]/Future[A] pair (created in lines 12–14): a value written in the former becomes
available on the latter. The A-cast in line 5 (due to the invariance of Promise[A]) is safe:
the type bound on B ensures that Promise[B] can only be written with a subtype of A.

5 Due to Java legacy, in Scala also Null is a subtype of AorB. This will be explicit in Theorem 7.14.
6 By design, Scala does not enforce matching on null values, albeit they might be received (see note 5).
7 This arises from the encoding of session types into linear I/O types with variants [8]: we render the
latter in Scala as sealed case classes (as detailed in § 7.3).

Alceste Scalas, Nobuko Yoshida 9

▸ Example 3.2 (Spawning interacting threads). Two threads that communicate through a
local (linear) channel can be created with a method similar to the following:

1 def parallel[A, B1, B2](p1: In[A] => B1, p2: Out[A] => B2): (Future[B1], Future[B2]) = {
2 val (in, out) = LocalChannel.factory[A](); (Future { p1(in) }, Future { p2(out) })
3 }

Here, p1 and p2 are functions taking respectively an input and output channel endpoint car-
rying A, and returning resp. B1 and B2. The parallel method creates a pair of A-carrying
local channel endpoints (line 2), applies p1 and p2 on them by spawning separate threads,
and returns a pair of Futures that will be completed with their return value (line 3).

Actually, parallel is a method of the LocalChannel object in Fig. 6. Most of the
examples in the rest of the paper feature two endpoint functions with the signature of p1 and
p2, and they can be executed concurrently (and type-safely) via LocalChannel.parallel.

Our local implementation of lchannels is suitable for type-safe inter-thread communica-
tion, as suggested in Example 3.2. However, Promise/Future instances cannot be serialised,
and thus cannot be sent/received over a network: this makes LocalIn and LocalOut un-
suitable for distributed applications. We address this issue later on, in § 5.

4 Session programming with lchannels and CPS protocols

We now address Problem P2 in § 2.3: given a session type S, how to instantiate the type
parameters of In[⋅]/Out[⋅], to represent the (possibly recursive) sequencing of internal/ex-
ternal choices of S. The answer lies in representing the states of S as CPS protocol classes,
as outlined in § 2.4. We give an example-driven intuition of such a representation, and the
resulting session-based software development approach (§ 4.2). The formalisation is in § 7.

4.1 Representing sequential inputs/outputs
Let us consider the session type SQR = ?Q(Bool).!R(Int), dictating that a channel endpoint
must be used first to receive Q(Bool), and then to output R(Int). In Scala, we could

1 case class Q(p: Boolean)
2 case class R(p: Int)

define the two case classes on the right (where the field p
stands for “payload”), and we can instantiate a linear input
endpoint of type In[Q], which allows to perform the first
input of SQR; but, how do we require to send a value of type R along the same interaction?

1 case class Q(p: Boolean, cont: Out[R])
2 case class R(p: Int)
3

4 def f(c: In[Q]) = {
5 c ? { q => q.cont ! R(42) }
6 }
7

8 def g(c: Out[Q]) = {
9 val (ri,ro) = c.create[R]()

10 c ! Q(true, ro)
11 ri ? { r =>
12 println(f"Got ${r.p}")
13 } }

Figure 7 SQR and SQR in Scala.

Inspired by the encoding of session types into lin-
ear types [8], we can instead define the case classes
in Fig. 7 (lines 1–2), where cont stands for “con-
tinuation” (and recalls replyTo in § 1). Now, the
value received from In[Q] also carries an Out[R]
endpoint for continuing the interaction; the value
received from In[R], instead, does not have a cont
field, since the protocol ends there. In lines 4–6, f
uses c to receive a Q-typed value q (line 5); then,
uses q.cont to send a value of type R.

Now, consider the dual SQR = !Q(Bool) .?R(Int): we can represent it in Scala simply by
reusing Q and R in Fig. 7, and instantiating a linear output endpoint Out[Q]. Its usage
is shown in lines 8–13. To produce a value of type Q, g must also produce a channel
endpoint Out[R]: for this reason, the two continuation endpoints ri,ro are created (line 9),
respectively with types In[R],Out[R]. On line 10, c is used to send a Q-typed value, carrying

10 Lightweight Session Programming in Scala

ro: the recipient is expected to use it for continuing the interaction; on line 11, ri is used
to receive the value r (of type R) sent on ro.

4.2 A development approach for session-based applications
In our last example, Q and R are the CPSP classes of both SQR and SQR, In[Q] is the
Scala representation of SQR, while Out[Q] is the representation of SQR. We can outline a
development approach for session-based applications. For each communication channel:

D1. formalise the two endpoint session types S and S (assuming they are not trivially end);
D2. extract the CPSP classes of S (or, equivalently, of S). Roughly, it means:

a. convert each internal/external choice into a set of case classes (one per label);
b. when a choice has multiple labels, let each case class above extend a common sealed

abstract class, representing the multiple choice itself;
c. recover the sequencing in S (and S) by “connecting” each case class to its “succes-

sor” (if any), through the cont field;
D3. let C be the class representing the outermost internal/external choice of S:

if S starts with an internal choice, its Scala endpoint type is Out[C]. Dually, since S
starts with an external choice, the Scala type at the other endpoint is In[C];
otherwise, if S starts with an external choice, its Scala endpoint type is In[C]. Dually,
since S starts with an internal choice, the Scala type at the other endpoint is Out[C].

The extraction of protocol classes must deal with some subtleties, in particular for deter-
mining whether cont should be an In[⋅] or Out[⋅] endpoint, and for representing recursion.
We will formally address these issues in § 7.3; now, we proceed with more examples.

4.3 Interlude: automating channel creation
1 abstract class Out[-A] { ...
2 def !![B](h: Out[B] => A): In[B] = {
3 val (cin, cout) = this.create[A]()
4 this ! h(cout)
5 cin
6 }
7 def !![B](h: In[A] => B): Out[B] = {
8 val (cin, cout) = this.create[A]()
9 this ! h(cin)

10 cout
11 } }

Before proceeding, we take a quick detour to address
Problem P3 of § 2.3. In Fig. 7 (line 9), we can notice a
case of manual creation of channel endpoints, as in Fig. 4
(right, line 3). This is a key pattern for “CPS interac-
tions”: when sending a message that does not conclude a session, it is necessary to create
a pair of channels, send one of them, and use the other to continue interacting8. This
“create-send-continue” pattern ensures session progress, but is an error-prone burden for the
programmer; so, we automate it by extending Out (Fig. 6, left) with the method !! above.

Take c of type Out[Q] from Fig. 7 (lines 8–13), and let h be a function from Out[R] to Q:
c !! h creates a pair of channel endpoints (cin,cout) of type In[R],Out[R] (line 3 above),
applies h to cout, sends the result via c (line 4), and returns cin for continuing the session
(the other case of !! is “dual”, when h’s domain is In[R]). By letting h be an instance of Q
with a hole in place of cont, we can remove line 9 of Fig. 7, and rewrite line 10 as:

1 val ri = c !! Q(true, _:Out[R]) , where the type annotation is necessary due to the lim-

ited type inference capabilities of Scala9.

8 The pattern actually reflects how session-π processes are encoded in standard π-calculus (§ 2.3).
9 This limitation is present in Scala 2.11.8, but might be overcome in future versions.

Alceste Scalas, Nobuko Yoshida 11

1 case class Q(p: Boolean)
2 (val cont: Out[R]) // Curried
3 case class R(p: Int)
4

5 def g(c: Out[Q]) = {
6 val ri = c !! Q(true)_ // No type annot.
7 ri ? { r => println(f"Got ${r.p}") }
8 }

We can address this last inconvenience
by defining Q as a curried case class, and
placing the hole in the curried cont field:
the Scala compiler can now infer its type.
The resulting code is shown on the right
(with f unchanged w.r.t. Fig. 7). We will
adopt this style for the rest of the paper.

4.4 Examples
We now discuss some examples of the session-based approach outlined in § 4.2. We proceed
by increasing complexity, showing how to instantiate CPSP classes to represent recursion
(Example 4.1), non-singleton external/internal choices (Example 4.2), and multiple channels
with higher-order types for session delegation (Example 4.3).

▸ Example 4.1 (FIFO). An unidirectional FIFO channel, with endpoints for sending/receiv-
ing values of type T , can be represented with the following recursive session types:
Sfifo = µX .!Datum(T).X (sending endpoint) Sfifo = µX .?Datum(T).X (receiving endpoint)

The corresponding CPSP classes consist in just one (parametric) declaration:
1 case class Datum[T](p: T)(val cont: In[Datum[T]])

i.e., we represent the recursion on X by (i) taking the name of the class corresponding to
the outermost internal/external choice under µX (i.e., Datum), and (ii) continuing with
such a name when X occurs (for another case of recursion, see Example 4.2). Note that
cont is an input endpoint, used by the recipient to receive a further value, while the sender
keeps the output endpoint to produce a value. The endpoint processes can be written as:
1 def sender(fifo: Out[Datum[Int]]): Unit = {
2 val cont = fifo !! Datum(1)_ !! Datum(2)_
3 sender(cont)
4 }

1 def receiver(fifo: In[Datum[Int]]): Unit = {
2 val v = fifo.receive
3 println(f"Got ${v.p}"); receiver(v.cont)
4 }

Here, sender performs two outputs in a row (line 2): this is allowed since each application
of !! returns a channel of type Out[Datum[T]] (cf. declaration of Datum[T] above).

▸ Example 4.2 (Greeting protocol). Consider the “greeting” types Sh and Sh from §2. Unlike
Example 4.1, we now have non-singleton internal/external choices. To extract their CPSP
classes, we apply item D2b of § 4.2: add a sealed abstract class for each internal/ex-
ternal choice, extending it with one case class per label. In this case, we add:

Start for the internal choice of Sh (i.e., the external choice of Sh) between Greet,Quit;
Greeting for the external choice of Sh (i.e., the internal choice of Sh) between Hello,Bye.

We obtain the CPSP
classes on the right, with
Out[Start]/In[Start] repre-
senting Sh/Sh (by D3). We can
write two endpoint processes as:

1 sealed abstract class Start
2 case class Greet(p: String)(cont: Out[Greeting]) extends Start
3 case class Quit(p: Unit) extends Start
4

5 sealed abstract class Greeting
6 case class Hello(p: String)(cont: Out[Start]) extends Greeting
7 case class Bye(p: String) extends Greeting

1 def client(c: Out[Start]): Unit = {
2 if (Random.nextBoolean()) {
3 val c2 = c !! Greet("Alice")_
4 c2 ? {
5 case m @ Hello(name) => client(m.cont)
6 case Bye(name) => ()
7 }
8 } else { c ! Quit() } }

1 def server(c: In[Start]): Unit = {
2 c ? {
3 case m @ Greet(whom) => {
4 val c2in = m.cont !! Hello(whom)_
5 server(c2in)
6 }
7 case Quit() => ()
8 } }

Note that client
is similar to the
pseudo code of
hello in Fig. 4
(left).

12 Lightweight Session Programming in Scala

▸ Example 4.3 (Sleeping barber with session delegation). We address a classical problem in
concurrency theory [10]: a barber waits for customers in his shop, sleeping when there is
nobody to serve. When a customer enters in the shop, he goes through a waiting room
with n chairs: if all chairs are taken, he leaves; otherwise, he sits. If the barber is sleeping,
he wakes up, serves all sitting customers (one a time), and sleeps again when nobody is
waiting. We model this scenario with three components: the customer, the shop and the
barber, using session types to formalise their expected interactions, schematised below.

Customer Shop Barber

Full()✗
AltAlt No seats

Seat()✓
Available()

Ready()

Customer(Scut)

Descr(String)
Haircut()

Pay(Int)

AltAlt Seat available

In this example, we show how multiple concurrent sessions (one
per customer) can be handled by single-threaded programs (shop
and barber). We also show how to exploit session delegation by
leveraging higher-order session types (i.e., channel endpoints that
send/receive other channel endpoints). When a customer enters
in the shop, he gets a Scstm-typed channel endpoint:
Scstm = ?Full & ?Seat.?Ready.Scut Scut = !Descr(String).?Haircut.!Pay(Int)
He might receive either a Full message (when no seats are avail-
able), or a Seat: in the first case, the session ends; in the second
case, he waits for the barber to be Ready. Then, he continues with
Scut: Describes the new hairdo, waits for the Haircut, Pays and
leaves. The shop uses the other, dually-typed channel endpoint:

Scstm = !Full ⊕ !Seat.!Ready.Scut Scut = ?Descr(String).!Haircut.?Pay(Int)

and keeps track of the n seats to choose whether to send Full or Seat. When the customer
gets a Seat, the shop interacts with the barber, through a channel with endpoint types:
Sbarber = µX .!Available.?Serve(Scut).X (barber endp.) Sbarber = µX .?Available.!Serve(Scut).X (shop endp.)

i.e., the shop recursively waits for the barber to be Available; when it happens, it picks
a sitting customer (i.e., one that has received a Seat), sends a Ready message to him, and
forwards the channel endpoint (now Scut-typed) to the barber, as the payload of Serve.

Meanwhile, the barber uses its Sbarber-typed channel endpoint to notify that he is
Available, and wait for a Serve message — sleeping until he gets one; when it happens,
the barber gets a Scut-typed channel endpoint in the message payload: he is expected to
use it for interacting with the customer, i.e., listen for the hairdo Description, perform the
Haircut, and take the Payment. When the customer session terminates, the barber must
resume his recursive session with the shop: he notifies that he is Available again, etc.
The CPSP classes extracted from
the session types above are shown
on the right. As per item D2b of
§ 4.2, we introduce WaitingRoom as
the sealed abstract class corre-
sponding to the external (resp. inter-
nal) choice between Full and Seat
in Scstm (resp. Scstm).

1 // Customer <--> shop protocol
2 sealed abstract class WaitingRoom
3 case class Full() extends WaitingRoom
4 case class Seat()(val cont: In[Ready]) extends WaitingRoom
5
6 case class Ready()(val cont: Out[Description])
7 case class Description(p: String)(val cont: Out[Cut])
8 case class Cut()(val cont: Out[Pay])
9 case class Pay(p: Int)

10
11 // Barber <--> shop protocol
12 case class Available()(val cont: Out[Serve])
13 case class Serve(p: In[Description])(val cont: Out[Available])

Implementation The code of the shop, barber and customer is shown in Fig. 8. They are
supposed to run as concurrent threads, and thus implement the Runnable interface.

Shop is parametric in the number of seats. It collects the channel endpoints of the
waiting customers in its private seats field, which may be any FIFO-like container with
a blocking read method: we could use e.g. scala.concurrent.Channel[Out[Ready]], or

Alceste Scalas, Nobuko Yoshida 13

1 class Shop(nSeats: Int) extends Runnable {
2 private val seats: Fifo[Out[Ready]] = Fifo() // Customers queue
3 private val waiting = new AtomicInteger(0) // Customers in shop
4

5 def enter(): In[WaitingRoom] = {
6 val (in, out) = LocalChannel.factory[WaitingRoom]()
7 val nPeople = waiting.getAndIncrement() // New person in shop
8 if (nPeople >= nSeats) { // More people than seats
9 waiting.getAndDecrement() // Customer must leave

10 out ! Full() // Tell customer that the witing room is full
11 } else {
12 val r = out !! Seat()_ // Tell customer that he got a seat
13 seats.write(r) // Add customer to waiting queue
14 }
15 in // Return input endpoint of customer channel
16 }
17

18 override def run(): Unit = {
19 val (bIn, bOut) = LocalChannel.factory[Available]()
20 new Barber(bOut).start() // Spawn barber with output endpoint
21 loop(bIn) // Loop on the input endpoint
22 }
23

24 private def loop(bIn: In[Available]): Unit = {
25 bIn ? { avl => // The barber is available
26 val cust = seats.read // Take 1st customer, sleep if none
27 waiting.getAndDecrement() // Customer is leaving the seat
28 val cust2 = cust !! Ready()_ // Notify that barber is ready
29 // Forward the customer to the barber
30 val bIn2 = avl.cont !! Serve(cust2)_ // bIn2: In[Available]
31 loop(bIn2) // Keep interacting with the barber
32 }
33 }
34 }

1 class Barber(c: Out[Available]) extends Runnable {
2 override def run(): Unit = {
3 loop(c)
4 }
5

6 private def loop(c: Out[Available]): Unit = {
7 (c !! Available()_) ? { srv => // Got customer
8 val d = srv.p.receive // Got haircut descr
9 val payC = d.cont !! Haircut()_ // Cut hair

10 val pay = payC.receive // Wait payment
11 // Got pay, no continuation: customer done
12 loop(srv.cont) // Continue shop interaction
13 }
14 }
15 }

1 class Customer(shop: Shop) extends Runnable {
2 override def run(): Unit = {
3 val s = shop.enter() // Type: In[WaitingRoom]
4 s ? {
5 case Full() => { // No seats
6 Thread.sleep(...) // Random wait
7 run() // Try taking a seat again
8 }
9 case m @ Seat() => { // Got a seat

10 val r = m.cont.receive // Barber ready
11 val cutC = r.cont !! Descr("Fancy cut")_
12 val cut = cutC.receive // Wait for cut
13 cut.cont ! Pay(42) // Cut done, paying
14 }
15 }
16 }
17 }

Figure 8 Sleeping barber (Example 4.3): shop, barber and customer implementations.

a FIFO based on Example 4.1. Once started, Shop creates a Sbarber-typed channel (line
19) and gives the output endpoint to a new Barber (line 20). The enter method returns
an input endpoint for interacting according to Scstm: after creating two channel endpoints
of the suitable type (line 6), enter checks how many people are trying to get a seat, and
outputs Full (line 10) or Seat (line 12) before returning the input endpoint (line 15). In
the main loop (lines 24–33), the shop waits for an Available message from the barber (line
25), sleeps while retrieving a customer channel from seats (line 26), notifies the customer
that the barber is Ready, forwards the channel to the barber, and continues its loop.

Barber, in line 7, notifies the shop that he is Available, and uses the channel endpoint
returned by !! (whose type is In[Serve]) to wait for a Serve message. Then, he interacts
with the customer using the In[Descr]-typed endpoint received as payload (lines 8–11);
after being paid, he continues the session with the shop (line 11).

The code for Customer is simple: he invokes the enter method of the Shop given as
parameter (line 3), and uses the returned channel to interact according to Scstm. If the
waiting room is Full, he retries later (lines 5–7). To model multiple customers competing
for the seats, it is sufficient to start multiple Customers referring to the same Shop.

As anticipated, our solution for the sleeping barber problem exploits session delegation:
the customer starts interacting with the shop, but his session is eventually forwarded to the
barber, with a higher-order Serve(Scut) message. Delegation is transparent: no dedicated
code is required in Customer’s implementation. Moreover, delegation is safe: e.g., the
Scala type checker ensures that only Out[Ready]-typed channel endpoints are stored in
Shop.seats, and that the barber picks up the session only after the shops sends Ready.

14 Lightweight Session Programming in Scala

5 Optimisations, transport abstraction and error handling

In this section, we demonstrate how lchannels allows to abstract from the underlying
message transport medium, and to handle communication errors.10 In §3, we introduced the
abstract classes In/Out, and LocalIn/LocalOut as simple local implementations for inter-
thread communication. The In[⋅]/Out[⋅] interface can abstract other message transports,
allowing lchannels-based programs to achieve faster message delivery, or transparently
interact across a network. We discuss 3 examples: queue-, actor- and stream-based channels.

Optimised queue-based channels The simple LocalIn/LocalOut classes in Fig. 6 (right)
perform all communications through the underlying Future/Promise. However, many appli-
cations could mostly use the In.receive/Out.send methods, and could benefit from an op-
timised implementation of In/Out that (when possible) bypasses In.future/Out.promise.
We developed this idea with the QueueIn/QueueOut classes: internally, they deliver mes-
sages through Java LinkedTransferQueues (under the runtime linearity constraints L1/L2
of §3.1) — and only allocate and use a Future/Promise when the .future/.promise meth-
ods are explicitly invoked. Moreover, we optimised the QueueOut.!! method to reuse queues
when continuing a session. The resulting performance improvements are shown in § 6.2.

Network-transparent actor-based channels We implemented proof-of-concept network-
transparent subclasses of In/Out, called ActorIn/ActorOut: they deliver messages by auto-
matically spawning Akka Typed actors [31], which in turn can communicate over a network.

Using such actor-based channels, a local process can interact with a remote one through
a local actor-based endpoint that proxies a remote endpoint. E.g., to obtain a remote
interaction between greeting server and client (Example 4.2) we can run the former as:

1 val (in, out) = ActorChannel.factory[Start]("start"); server(in)

Now, out.path contains the Akka Actor Path [29] of an automatically-generated actor.
Such a path can be used, even on a different JVM, to instantiate a proxy for out, as follows:

1 val c = ActorOut[Start]("akka.tcp://sys@host.com:5678/user/start"); client(c)

where ActorOut’s argument matches out.path above. Then, the client and server will
interact over a network, without changing their code.

All the examples in this paper can also run on ActorChannels, simply by replacing the
calls to LocalChannel.factory[A]() with ActorChannel.factory[A]() (e.g. in Fig. 8,
Shop, line 6). To achieve complete transport-independence, factory can be parameterised.

We choose Akka as a message transport medium due to its widespread availability, using
Akka Typed to obtain stronger static typing guarantees throughout the implementation.
The main challenges were related to making ActorIn/ActorOut instances serializable: this
is a crucial requirement, as channel endpoints might appear (as payloads or continuations)
in messages sent/received over a network. In particular, sending an ActorOut[A] roughly
corresponds to sending an ActorRef[A] instance (which is serializable out-of-the-box) —
but sending an ActorIn[A] has no Akka equivalent, and requires some internal machinery.

Network-transparent stream-based channels Often, programs interacting over a network
are implemented with different languages, and use bare TCP/IP sockets without a common

10More features are presented in Appendix A.

Alceste Scalas, Nobuko Yoshida 15

higher-level networking framework. Still, such programs might need to observe complicated
protocols (e.g. RFC-based ones like POP3, SMTP, etc.) that can be abstractly represented
as session types [12, 21]. To address this scenario, we extended lchannels with channel end-
points that send/receive messages through Java InputStream/OutputStreams, obtained e.g.
from a network socket. The main classes are StreamIn/StreamOut (extending resp. In/Out),
and can only be instantiated by providing a protocol-specific StreamManager which can se-
rialize/deserialize messages to/from a stream of bytes (tracking the session status if needed).

Message Text format
Greet("Alice") GREET Alice
Hello("Alice") HELLO Alice

Bye("Alice") BYE Alice
Quit() QUIT

For example, suppose that the “greeting protocol” from Ex-
ample 4.2 abstracts a textual protocol as shown on the left,
and we want our client to interact with a third-party server
using that textual format over TCP/IP sockets. We first
need to derive the StreamManager class, implementing a

HelloStreamManager that suitably serializes/deserializes the textual messages11. Then,
we can let our client talk with a remote server, via TCP/IP, using the textual format:

1 val conn = new Socket("host.com", 1337) // Hostname and port where greeting server runs
2 val strm = new HelloStreamManager(conn.getInputStream, conn.getOutputStream)
3 val c = StreamOut[Start](strm) // Output channel endpoint, towards host.com:1337
4 client(c)

Note that we did not change the code of client seen in Example 4.2: we leverage lchannels
and protocol classes to represent and type-check the high-level protocol structure (sequenc-
ing, choices, recursion), while separating the low-level details from the logic of the program.

Error handling The methods of In[A] seen in Fig. 6 do not handle errors; e.g., receive
throws an exception if no message arrives within the (implicit) Duration d. However, input
errors are quite common in real-world applications: e.g., the process at the other endpoint
might not timely send a message, or may send a wrong message that a StreamManager
cannot deserialize, or a network problem may occur. As typical for Scala APIs, we extended
In[A] to capture failures as Try[A] values, via 2 additional methods: tryReceive and ??.

1 c ?? { case Success(m) => m match {
2 case A() => println("Got A")
3 case B() => println("Got B") }
4 case Failure(e) => /* Inspect e */ }

E.g., the branching on AorB in Example 3.1 can be
made error-resilient by using c.??, as shown on the
left: the top-level matching is now on Try[AorB].

6 Evaluation

We now assess the practicality of the approach in § 4.2 with a case study based the “client
with frontend” in Fig. 1 (§ 6.1), and a performance evaluation of lchannels (§ 6.2).

6.1 A case study: application server with frontend
This section shows how our approach can address the “server with frontend” scenario in
§ 1. We consider an application server that is a chat server allowing users to join/leave
chat rooms, and send/receive messages to/from them. We formalise the protocols of the
application (§6.1.1), and illustrate some characteristics of the implementation (§6.1.2), and
discuss how development was aided by CPS protocols and lchannels (§ 6.1.3).

11The implementation of HelloStreamManager is available in Appendix A.1.

16 Lightweight Session Programming in Scala

6.1.1 The protocols
We formalise the protocols in Fig. 1 as session types, dividing them in two groups: public
(used by clients), and internal (used for frontend/auth/chat server interaction). 12

Public protocols The session type Sfront formalises the usage of the channel endpoint that
the frontend handles while interacting with a client. It is defined as follows:

Sfront = ?GetSession(Id).(!New(Sauth)⊕ !Active(Sact)) Sauth = !Authenticate(Cred).(?Success(Sact) & ?Failure)

Sact = µX .(!Quit ⊕ !GetId.?Id(Id).X ⊕ !Ping.?Pong.X ⊕ !Join(String).?ChatRoom((Sr, Srctl)).X)

The service implementing Sfront waits for a GetSession(Id) request from a client; then,
with an internal choice ⊕, it might answer by sending either New(Sauth) or Active(Sact):

New carries a Sauth-typed channel endpoint, talking with the auth server: it allows the
client to send an Authenticate(Cred) message (with Cred being the credentials), and
wait for either Success(Sact) or Failure (the Sact-typed channel is explained below);
Active carries an Sact-typed channel endpoint representing the active “session loop”
(Fig. 1). When the client receives it, Sact (which is recursive) allows to choose among:

Quit. In this case, the chat session ends;
GetId. Then, the client receives an Id(Id) answer whose payload is the current ses-
sion identifier, and continues the session recursively;
Ping(String). Then, the client receives a Pong(String), and continues recursively;
Join(String), with the payload being a chat room name. Then, the client joins a
chat room, gets a ChatRoom ((Sr, Srctl)) answer, and the session continues recursively.
The two channels endpoints in the payload allow to interact with the chat room:
∗ Sr = µY .?NewMessage((String,String)).Y & ?Quit. This recursive endpoint al-

lows the client to receive either a NewMessage from the chat room (with the payload
being the sender username and the message text), or Quit (ending the interaction);

∗ Srctl = µZ .!SendMessage(String).Z ⊕ !Quit. This endpoint allows the client to
send either a message on the chat room (with the payload being the text), or Quit.

The CPS protocol classes of the session types above are extracted as in the examples of §4.4,
and are almost identical to Fig. 213. In particular, we use Command as the sealed abstract
class for the top-level choice in Sact (this detail will be mentioned again in § 6.1.2).

Internal protocols Fig. 1 also outlines the internal communications among the frontend,
authentication and chat server: they can be formalised as session types, too — as for barber-
shop interaction in Example 4.3. Here, we only detail the frontend-server interaction type:14

SFS = µX .!GetSession(Id).(?Success(Sact).X & ?Failure.X)

The frontend recursively queries for active sessions (passing the Identifier received from a
client), getting either Success or Failure. In the first case, the message payload is a
Sact-typed channel endpoint, that will be forwarded to the client with an Active message.

The other declarations are available in Appendix B.1, Fig. 11 (bottom).

12As a minor extension, here we allow a session type payload to be a pair (T1, T2). Such an extension
could be encoded as a sequence of 2 messages, with T1 and then T2 as payloads).

13Their declarations are available in Appendix B.1, Fig. 11 (top).
14The rest of the internal protocols is described in Appendix B.1.

Alceste Scalas, Nobuko Yoshida 17

6.1.2 The implementation
This case study uses higher-order session types to naturally model the “handles” mentioned
in § 1. A difference w.r.t. Example 4.3 is that the delegation appears explicitly in client’s
session types, e.g. in Active messages with a channel as payload. In CPS protocols, this
difference is almost negligible: the Active message class15 has no continuation, but the
client should keep interacting via the Out endpoint in the payload — as per rule L1 in §3.1.

The server-side implementation reuses several solutions from Example 4.3 — e.g., internal
FIFOs for storing and later processing requests: this happens e.g. when the single-threaded
chat server manages multiple client sessions. The main difference w.r.t. Example 4.3 is that
requests are queued asynchronously (via In.future) and enriched with internal data.

1 class ChatServer(...) extends Runnable {
2 ...
3 private def createSession(username: String): Out[Command]) = {
4 val id = allocUniqueSessionId()
5 val (in, out) = LocalChannel.factory[Command]()
6 in.future.onComplete { // Using scala.util.{Success, Failure}
7 case Success(cmd) => queueRequest(Success((id, cmd)))
8 case Failure(e) => queueRequest(Failure(e))
9 }

10 // Add the new session to the list of known sessions
11 sessions(id) = ... /* session info, including username */
12 out
13 } }

E.g., the chat server calls the
method on the left when the auth
server asks to create a new session
for username: it reserves a session
id (line 4), creates the channel end-
points in,out carrying a Command
(line 5), keeps in, and returns out
(line 12), that will be the payload of

a NewSession message. The client Command is received asynchronously via in.future: in
lines 6–9, cmd is paired with the session id, and queued (line 7). When the pair is later
dequeued and processed, id tells on which session cmd is acting. A similar queuing is per-
formed as the session progresses; e.g., when a cmd of type Ping is dequeued, the server runs:

1 val in2 = cmd.cont !! Pong(cmd.msg)_ // cmd’s type: Ping; in2’s type: In[Command]

and in2.future is used for queuing the next client command, like in.future in lines 6–9.

6.1.3 Lessons learned
As expected, CPS protocols and lchannels allow the Scala type checker to detect protocol
errors that usually arise on untyped channels, e.g., trying to send the wrong type of message,
or forgetting to consider some cases when branching with In.?. This greatly simplified the
present case study, where multiple channels with various protocols are handled concurrently.
Since we leverage the existing Scala type system, modern Scala IDEs (such as [32]) provide
channel usage errors and hints, e.g. via typing information and auto-completion suggestions.

However, as seen in § 3.1, Scala and lchannels cannot perform static linearity checks:
hence, they cannot spot two kinds of errors, illustrated below, that impact session progress.

Double usages of output endpoints They occur when an Out[A] instance is used twice to
send A-typed values: then, by L1 in §3.1, an exception is thrown, and the extra message is
not sent. This kind of error never occurred in our experience: the CPS interaction guided
by lchannels seems to naturally shape programs where output endpoints are discarded
after used. Moreover, as for Scala Promises, double outputs causes an immediate runtime
error, that (we believe) should usually arise in proximity of the code requiring a fix.

Unused channel endpoints Not performing an output can leave a process at the other end-
point stuck, waiting for input — and this could escalate to other processes waiting on
other channels; this problem can also arise if a program does not input a message whose
continuation/payload is an output channel. Spotting this kind of errors can be tricky,

15 See Appendix B.1, Fig. 11 (top), line 7.

18 Lightweight Session Programming in Scala

especially if channels are dynamically generated, sent, received, stored in collections (as
in our case study). lchannels mitigates this issue via timeouts on the receiving side
(§ 5): they allow to see which channel is stuck in which state — and thus, which process
is not producing an output. In our case study, a few issues of this kind were easily fixed.

6.2 Benchmarks
We implemented several micro-benchmarks to evaluate how lchannels impacts commu-
nication speed w.r.t. other inter-thread communication methods: Fig. 9 shows the re-
sults. The benchmarks are mainly inspired by [25]; “Streaming” is a parallel blend of
“Ring”+“Counting actor” : 16 threads are connected in a ring and a sequence (“stream”) of
messages is sent at once, measuring the time required for all to complete one loop.

We wrote an implementation of each benchmark using Out.send/In.receive for inter-
thread communication, instantiating them with LocalChannels, QueueChannels and Actor-
Channels (columns 1, 5, 7). As a comparison, we adapted such implementations to interact
via Promises/Futures (column 2), and also to interact “non-CPS” via scala.concurrent.
Channels, and Java ArrayBlockingQueues / LinkedTransferQueues (columns 3, 4, 6).

The overhead of lchannels w.r.t. “non-CPS” queue-based interaction has two origins:

1. runtime linearity checks, i.e. inspecting/setting a flag when a channel endpoint is used;
2. repeated creation of In/Out continuation pairs (§ 4.3): in comparison, our “non-CPS”

benchmarks create Scala channels / Java queues just once at the beginning of each session.

Hardware/JVM settings highly influence the measurements: queues or Promises/Futures
can become relatively faster/slower, or show more/less variance, depending on the bench-
mark. Still, the results tend to be consistent with Fig. 9. It can be seen that LocalChannels
add a small slowdown to the underlying Promises/Futures. QueueChannels are consid-
erably faster, except when many short-lived sessions are rapidly created (this scenario is
stressed by “Chameneos”, against the optimisations seen in §5); still, QueueChannels add a
perceivable overhead on the underlying LinkedTransferQueues. ActorChannels are slower,
especially with many threads and low parallelism (as in “Ring”): it is due to the (currently
unoptimised) internal machinery that makes ActorChannels network-transparent, and more
suitable for distributed settings where network latency can make the slowdown less relevant.

Notably, the usual “non-CPS” communication we implemented (and measured) over
Scala channels / Java queues requires connecting pairs of threads P1,P2 with pairs of queues
(one carrying messages from P1 to P2, the other from P2 to P1). Such queues have type
Queue[A], where A must cover all the message types that could be sent/received: for pro-
tocols with sequencing and branching, this leads to loose static type checks, that combined
with the lack of runtime monitoring, increase the risk of protocol violations errors.

7 A formal foundation

We now explain the formal foundations of our approach (as outlined in § 4.2), by detailing
how to extract CPSP classes from session types, and studying how Scala’s type system
handles session subtyping/duality. We summarise session subtyping (§7.1), and we introduce
our encoding from session to linear types (§ 7.2), and then into Scala types (§ 7.3).

7.1 Session types and subtyping
We defined session types and duality in § 2; to ease the treatment, we adopt 2 restrictions.

Alceste Scalas, Nobuko Yoshida 19

35000
36000
37000
38000
39000
40000

Ping-pong (2000000 message exchanges)

15000
16500
18000
19500
21000

lchannels
(Promise/

Future)

Promise/
Future

Scala
channels

Array
Blocking
Queues

lchannels
(queues)

Linked
Transfer
Queues

lchannels
(actors)

800
1000
1200
1400

m
se

cs

150000
165000
180000
195000
210000

Ring (1000 threads, 2000 loops)

lchannels
(Promise/

Future)

Promise/
Future

Scala
channels

Array
Blocking
Queues

lchannels
(queues)

Linked
Transfer
Queues

lchannels
(actors)

12500

15000

17500

20000

m
se

cs

56000
58000
60000
62000

Chameneos (256 chameneos, 2000000 meetings)

lchannels
(Promise/

Future)

Promise/
Future

Scala
channels

Array
Blocking
Queues

lchannels
(queues)

Linked
Transfer
Queues

lchannels
(actors)

7000

7500

8000

8500

m
se

cs

60000
63000
66000
69000

Streaming (16 threads, 3000000 msgs sent/recvd)

17000
18000
19000
20000
21000

lchannels
(Promise/

Future)

Promise/
Future

Scala
channels

Array
Blocking
Queues

lchannels
(queues)

Linked
Transfer
Queues

lchannels
(actors)

60
90

120
150
180

m
se

cs

Figure 9 Benchmark results (box&whisker plot): 30 runs× 10 JVM invocations, Intel Core i7-4790
(4 cores, 3.6 GHz), 16 GB RAM, Ubuntu 14.04, Oracle JDK 64-bit 8u72, Scala 2.11.7, Akka 2.4.2.

▸ Remark 7.1 (Syntactic restrictions). For all S, (i) each label is unique, and also a valid
Scala class name, and (ii) each µ binds a distinct variable that actually occurs in its scope.
Restriction (i) allows to directly generate a Scala case class from each internal/external
choice label. Restriction (ii) is a form of Ottmann/Barendregt’s variable convention [4].

The session subtyping relation ⩽ allows to safely replace a S′-typed channel endpoint
with a S-typed one, provided that S ⩽ S′ holds. The relation is defined as follows.

▸ Definition 7.2 (Session subtyping [13]). The subtyping relation between session types is
coinductively defined by the following rules (where ⩽B is a subtyping between basic types):

∀i ∈ I ∶ Ti ⩽ T
′
i Si ⩽ S

′
i˘

i∈I?li(Ti).Si ⩽
˘
i∈I∪J ?li(T ′i).S′i

[⩽-Ext]
∀i ∈ I ∶ T ′i ⩽ Ti Si ⩽ S

′
i

⊕i∈I∪J !li(Ti).Si ⩽ ⊕i∈I !li(T ′i).S′i
[⩽-Int]

end ⩽ end [⩽-End]
S{µX .S/X} ⩽ S′

µX .S ⩽ S′
[⩽-µL]

S ⩽ S′{µX .S
′

/X}

S ⩽ µX .S
′ [⩽-µR]

T ⩽B T
′

T ⩽ T ′
[⩽-B]

Rule [⩽-Ext] says that an external choice S is smaller than another external choice S′ iff S
offers a subset of the labels, and for all common labels, the payload and continuation types
are in the relation. The rationale is that a program which correctly uses an S′-typed channel
endpoint supports all its inputs — hence, the program also supports the more restricted
inputs of an S-typed endpoint. Dually, [⩽-Int] says that an internal choice S is smaller than
another internal choice S′ iff S offers a superset of the labels, and for all common labels, the
payload and continuation types are in the relation. The rationale is that a program which
correctly uses an S′-typed channel endpoint might only perform one of the allowed outputs,
that is also allowed by the more liberal S-typed endpoint. [⩽-End] says that a terminated
session has no subtypes. [⩽-µL] and [⩽-µR] are standard: a recursive type S is related with S′
iff its unfolding is related. [⩽-B] extends ⩽ to basic types.

7.2 Linear I/O types (with records and variants)
In order to encode session types into Scala types, we exploit an intermediate encoding into
linear types for input and output [38]. We focus on a subset of such types, defined below.

▸ Definition 7.3. Let B be a set of basic types (§ 2). A linear type L is defined as:

L ∶∶= ?(U) ∣ !(U) ∣ ● U ∶∶= [li_{p ∶ Vi,c ∶ Li}]i∈I ∣ µX .U ∣ X V ∶∶= B ∣ L (closed)

20 Lightweight Session Programming in Scala

where (i) recursion is guarded, and (ii) all li range over pairwise distinct labels. We also
define the carried type of L as carr(?(U)) = carr(!(U)) = U .

?(U) (resp. !(U)) is the type of a linear channel endpoint that must be used to input
(resp. output) one value of type U ; ● denotes an endpoint that cannot be used for I/O. U is
a (possibly recursive) variant type where each li-labelled element is a record with 2 fields: p
(mapped to a basic value or a linear channel endpoint) and c (mapped to a linear endpoint).

▸ Definition 7.4 ([38]). The subtyping relation ⩽` between linear types is coinductively de-
fined by the following rules (where ⩽B is a subtyping between basic types):

U ⩽` U
′

?(U) ⩽` ?(U ′)
[⩽`-In]

U ′ ⩽` U

!(U) ⩽` !(U ′)
[⩽`-Out] ● ⩽` ● [⩽`-End]

V ⩽B V
′

V ⩽` V
′ [⩽`-B]

∀i ∈ I ∶ Vi ⩽` V
′
i Li ⩽` L

′
i

[li_{p ∶ Vi,c ∶ Li}]i∈I ⩽` [li_{p ∶ V ′
i ,c ∶ L′i}]i∈I∪J

[⩽`-VR]
U{µX .U/X} ⩽` U

′

µX .U ⩽` U
′ [⩽`-µL]

U ⩽` U
′{µX .U

′

/X}

U ⩽` µX .U
′ [⩽`-µR]

The rules in Def. 7.4 are standard: they include the subtyping for variants and records
(rule [⩽`-VR]) and left/right recursion ([⩽`-µL]/[⩽`-µR]). [⩽`-In] and [⩽`-Out] provide respectively
the subtyping for linear inputs (covariant w.r.t. the subtyping of carried types) and outputs
(which is instead contravariant): note that they are matched by the variances of In[⋅]/Out[⋅]
(Fig. 6, left). By [⩽`-End], ● is the only subtype of itself. [⩽`-B] extends ⩽` to basic types.

In the linear types world, the duality between two channel endpoints is very simple: it
holds when they are both ●, or they are an input and an output carrying the same type.

▸ Definition 7.5 ([8]). The dual of L (written L) is: ?(U) = !(U); !(U) = ?(U); ● = ●.

We now introduce our encoding of session types into linear types. Albeit inspired by
[8, 6], it features a different treatment of recursion, allowing us to bridge into Scala types.

▸ Definition 7.6 (Encoding of session into linear types). Let the action of a session type be:
act(

˘
i∈I?li(Ti).Si) = ? act(⊕i∈I !li(Ti).Si) = ! act(µX .S) = act(S)

Moreover, let Γ be a partial function from session type variables to linear types. The encoding
of S into a linear type w.r.t. Γ, written JSKΓ, is defined as:

J
˘
i∈I?li(Ti).SiKΓ = ?([li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I) J⊕i∈I !li(Ti).SiKΓ = !([li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I)

J
˘
i∈I?li(Ti).SiK

µ
Γ = [li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I J⊕i∈I !li(Ti).SiKµΓ = [li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I

JµX .SKΓ = act(S)(µX .JSKµΓ{act(S)(X)/X}) JendKΓ = ●

JµX .SKµΓ = µX .JSKµΓ{act(S)(X)/X} JXKΓ = Γ(X) JT KΓ = T (if T ∈ B)

The encoding of S into a linear type is JSK∅, also abbreviated JSK.

Def. 7.6 is inductively defined on the structure of S. Intuitively, it turns end into ●,
and external (resp. internal) choices into linear input (resp. output) types. In the latter
case, each choice label becomes a label of the carried variant, its payload is encoded into
the p field of the corresponding record, and its continuation into the c field. Crucially, when
encoding an internal choice, c carries the dual of the encoding of the original continuation:
this is because, as seen in §4.3, sending a value requires to allocate a new pair of I/O channel
endpoints, keep one of them, and send the other (i.e., the dual, by Def. 7.5) for continuing
the session. Recursion is encoded by turning a recursive external (resp. internal) choice into
a linear input (resp. output) carrying a recursive variant: this “structural shift” is achieved
by collecting open recursion variables in Γ, and using the auxiliary encoding J⋅KµΓ. E.g., let
S = µX .?A.X: JSKΓ gives the type ?(µX .U), with U obtained by letting Γ′ = Γ{?(X)/X}, and
U = J?A.XKµΓ′ = [A_{p ∶ Unit, c ∶ JXKΓ′}] = [A_{p ∶ Unit, c ∶ ?(X)}] (see Example 7.12).

Alceste Scalas, Nobuko Yoshida 21

Our handling of recursion greatly affects our proofs, and is a main difference between
Def. 7.6 and the encoding in [6]. Despite this, the crucial Theorem 7.7 still holds.

▸ Theorem 7.7 (Encoding preserves duality, subtyping).
q
S

y
= JSK, and S ⩽ S′ iff JSK⩽` JS′K.

7.3 From session types to Scala types
We now present our encoding of session types into Scala types. Since Scala has a nominal
type system but session types are structural, our encoding requires a nominal environment
(Def. 7.8), giving a distinct class name to each subterm of S.

▸ Definition 7.8. A nominal environment for session types N is a partial function from (pos-
sibly open) session types to Scala class names. N is suitable for S iff (i) dom(N) contains
all subterms of S (except end), (ii) is injective w.r.t. the internal/external choices in its do-
main, (iii) maps each singleton internal/external choice to its label, (iv) is dually closed, i.e.
∀S′ ∈ dom(N) ∶N(S′) = N(S′), and (v) ifN(µX .S

′) is defined, thenN(µX .S
′) = N(X) = N(S′).

Our encoding of a session type S into a Scala type is given in Def. 7.11. It relies on an
intermediate encoding of S into a linear type L, which is further encoded into Scala classes.
Such an intermediate step will allow us to exploit the fact that L is either ●, or a linear
input/output ?(U)/!(U), for some (possibly recursive) U . We will see that:

if L is an input (resp. output), it will result in a lchannels In[⋅] (resp. Out[⋅]) type;
U also appears in the dual L (by Def. 7.5), corresponding to S (by Theorem 7.7): it will
produce both the type parameter of In/Out above, and the CPSP classes of S/S.

We first formalise the encoding from linear types to Scala types, in Def. 7.9 below.

▸ Definition 7.9. A nominal environment for linear types M is a partial function from
(possibly open) variant types to Scala class names. M is suitable for L iff dom(M) contains
all subterms of L (except ●), is injective w.r.t. the variants in its domain, maps each singleton
variant to its label, and ifM(µX .U) is defined, thenM(µX .U) =M(X) =M(U). GivenM
suitable for L, we define the encoding of L into Scala types w.r.t.M, written jLoM, as:

j?(U)oM = In[M(U)] j!(U)oM = Out[M(U)] j●oM = Unit jV oM = V (if V ∈ B)

jUoM =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

case class l (p: jV o
M

)(val cont: jLo
M

)

jU ′o
M

if U ′ = carr(V)

jU ′′o
M

if U ′′ = carr(L)
if U = [l_{p ∶ V , c ∶ L}]

jUoM =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sealed abstract class M(U)
case class li (p: jVioM)(val cont: jLioM) extends M(U)
jU ′o

M
if U ′ = carr(Vi)

jU ′′o
M

if U ′′ = carr(Li)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭i∈I

if U = [li_{p ∶ Vi,c ∶ Li}]i∈I

and ∣I ∣ > 1

jµX .UoM = jUoM jXoM =M(X)

The encoding in Def. 7.9 is inductively defined on the structure of L. The first 3 cases
turn a top-level ?(⋅)/!(⋅)/● into a corresponding In[⋅]/Out[⋅]/Unit type in Scala, and the
4th case keeps basic types unaltered; note that when encoding ?(U) (resp. !(U)), the type
parameter of the resulting In[⋅] (resp. Out[⋅]) is the Scala class name that M maps to
U . The remaining cases of Def. 7.9 show how U originates the session protocol classes.
Singleton variants are turned into case classes, while non-singleton variants are turned
into sealed abstract classes (with a name given by M), extended by one case class
per label. Note that if the p field of a variant consists in some linear type ?(U ′)/!(U ′), the

22 Lightweight Session Programming in Scala

CPSP classes of U ′ are generated as well — and similarly for the c field. A recursive term
µX .U is handled by noticing that, by Def. 7.8, M(µX .U) =M(X) =M(U): hence, X is
encoded asM(X) =M(µX .U).

The last ingredient for our encoding is a way to turn a nominal environment for a session
type (Def. 7.8) into one for a linear type (Def. 7.9): this is formalised below.

▸ Definition 7.10. We say that S maps S′ to U ′ (in symbols, S ⊢ S′ ↦ U ′) iff, for some Γ,
the computation of JSK involves either (a) an instance of JS′KΓ returning ?(U ′) or !(U ′), or
(b) an instance of JS′KµΓ returning U ′. If N is suitable for S, the linear encoding of N (w.r.t.
S) is a nominal environment for linear types denoted with JN KS , such that:

JN KS(U) = A iff ∃S′∶ S ⊢ S′ ↦ U and N(S′) = A

Intuitively, Def. 7.10 says that if N maps an internal/external choice S′ to some class
name A, then JN KS maps the variant obtained from the encoding of S′ to the same A.

We are now ready to define our encoding of session types into Scala types.

▸ Definition 7.11. Given N suitable for S, we define the encoding of S into a Scala type as
⟪S⟫N = jJSKoJN KS

, and the protocol classes of S as: prot⟪S⟫N = jcarr(JSK)oJN KS
.

Def. 7.11 gives us two pieces of information: ⟪S⟫N is the type In[⋅]/Out[⋅]/Unit on
which a Scala program can communicate according to S, and prot⟪S⟫N gives the definitions
of all necessary CPSP classes. Technically, S andN are first linearly encoded (via Definitions
7.6 and 7.10); then, the result is further encoded into Scala types (via Def. 7.9).

▸ Example 7.12. The linear encoding of the greeting session type Sh in § 2 is:

JShK = !(Uh) where Uh = µX .

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Greet_{p ∶ String,c ∶ !([Hello_{p ∶ String,c ∶ !(X)},

GoodNight_{p ∶ String,c ∶ ●}
])},

Quit_{p ∶ Unit,c ∶ ●}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let us now define N , as described in Example 4.2, making it suitable for Sh (as per Def. 7.8):

N
⎛
⎜
⎝

!Greet(String).(?Hello(String).X
& ?Bye(String).end)

⊕ !Quit(Unit)

⎞
⎟
⎠
= Start N(Sh) = Start

N(X) = Start
N(

?Hello(String).X
& ?Bye(String).end) = Greeting

Now, we can verify that the following mappings hold:

Sh ⊢
⎛
⎜
⎝

!Greet(String).(?Hello(String).X
& ?Bye(String).end)

⊕ !Quit(Unit)

⎞
⎟
⎠
↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Greet_{p ∶ String,c ∶ !([Hello_{p ∶ String,c ∶ !(X)},

Bye_{p ∶ String,c ∶ ●}
])},

Quit_{p ∶ Unit,c ∶ ●}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Sh ⊢ Sh ↦ Uh Sh ⊢X ↦X Sh ⊢ (
?Hello(String).X
& ?Bye(String).end) ↦ [

Hello_{p ∶ String,c ∶ !(X)},

Bye_{p ∶ String,c ∶ ●}
]

Hence, by Def. 7.10, JN KSh maps the first, second and third (recursive) variant types above to
Start, and the last one to Greeting. The encoding ⟪Sh⟫N = jJShKoJN KSh

is Out[Start],
while prot⟪Sh⟫N = jcarr(JShK)oJN KSh

gives the Scala protocol classes seen in Example 4.2.

We conclude with two results at the roots of our session-based development approach
(§4.2). Similarly to Def. 7.5, let the dual of a Scala type be In[A] = Out[A], Out[A] = In[A],
and Unit = Unit.

▸ Theorem 7.13. For all S, ⟪S⟫N = ⟪S⟫N and prot⟪S⟫N = prot⟪S⟫N .

Theorem 7.13 says that a session type and its dual are encoded as dual Scala types, and dual
session types have the same protocol classes: this justifies steps D1–D3 in § 4.2.

Finally, let <∶ be the Scala subtyping (the full definition is available in Appendix F.).
Suppose that we encode a session type S, getting B, and write a program using A such that
A <∶ B or B <∶ A: by Theorem 7.14, this is sound.

Alceste Scalas, Nobuko Yoshida 23

▸ Theorem 7.14. For all A, S,N , A <∶ ⟪S⟫N implies one of the following:
(a1) S = end, and: A <∶ Unit and ∀B∶A /∈ {In[B],Out[B]};
(a2) act(S) = ?, and: A <∶ Null or ∃B∶A = In[B] and (Null ≨∶ B implies ∃S′,N ′ ∶ A = ⟪S′⟫N ′ and S′ ⩽ S);
(a3) act(S) = !, and: A <∶ Null or ∃B∶A = Out[B] and (B ≨∶ AnyRef implies A = ⟪S⟫N).
Moreover, for all A, S,N , ⟪S⟫N <∶ A implies one of the following:

(b1) S = end, and: Unit <∶ A and ∀B∶A /∈ {In[B],Out[B]};
(b2) act(S) = ?, and: AnyRef <∶ A or ∃B∶A = In[B] and (B ≨∶ AnyRef implies A = ⟪S⟫N);
(b3) act(S) = !, and: AnyRef <∶ A or ∃B∶A = Out[B] and (Null ≨∶ B implies ∃S′,N ′ ∶ A = ⟪S′⟫N ′ and S ⩽ S′).

Roughly, Theorem 7.14 says that Scala subtyping reflects session subtyping, thus preserving
its safety/exhaustiveness guarantees (S1 and S2 in §2.1). When end is encoded, items a1/b1
say that its Scala sub/super-types cannot be In/Out, i.e. their instances do not allow I/O. For
item a2, consider Example 4.3: we have In[Full] <∶ In[WaitingRoom], reflecting the fact
that ?Full ⩽ Scstm (by [⩽-Ext]). For item b3, consider Example 4.2: we have Out[Start] <∶

Out[Quit], reflecting the fact that Sh ⩽ !Quit (by [⩽-µL] and [⩽-Int]). Theorem 7.14 also says
that <∶ is stricter than ⩽ — e.g., by item a3, the Scala encoding of an internal choice has
no subtypes, and by item b2, an external choice has no supertypes. However, Scala allows
for sub/super-types that do not correspond to any session type: besides the unavoidable
Null cases (items a2, a3, b3), it is possible e.g. to write a method f with a parameter of
type In[Any] (b2), or In[Nothing] (a2), or Out[Any] (a3), or Out[Nothing] (b3). This
does not compromise safety/exhaustiveness, either: In[Any] makes f accept any message,
Out[Nothing] forbids f to send, while In[Nothing]/Out[Any] are subtypes of all In/Out
types — thus making f non-applicable to any channel endpoint obtained by encoding a
session type. Notably, this holds by co/contra-variance of In[+A]/Out[-A] (Fig. 6, left).

8 Related work

Session types and their implementation Session types were introduced by Honda et al.
in [18, 41, 19], as a typing discipline for a variant of the π-calculus (called session-π in
§ 2). They have been studied and developed in multiple directions during the following
decades, notably addressing multiparty interactions [20] and logical interpretations [5, 45].
The encoding of session types in linear π-calculus types has been studied in [9, 8, 6, 7]; our
work is mainly based on [8], but our treatment of recursion is novel (see § 7.2).

Session types have been mostly implemented on dedicated programming languages with
the advanced type-level features outlined in § 2 [14, 45, 11, 42, 3]. [34, 36] aim at an
integration with Haskell, using monads to enforce linearity (at the price of a restrictive and
rather complicated API). [26] adapts [36] to Rust, exploiting its affine types, but showing
limitations to binary internal/external choices. [23, 39, 40] are based on a Java language
extension and runtime with session-type-inspired primitives for I/O and branching. [22]
integrates session types in Java via automatic generation of classes representing session-typed
channel endpoints, with run-time linearity checks. The main differences w.r.t. our work are
that [22] is closer to session-π, is based on the Scribble tool [46], supports multiparty sessions,
and generates classes which represent both a channel endpoint and its protocol; hence, in the
binary setting, each endpoint has its own hierarchy of generated classes that is different (but
“dual”) w.r.t. the other endpoint. Instead, our I/O endpoints are closer to linear types for
the π-calculus [38]: they take the protocol as a type parameter, from a set of CPSP classes
which is common between the two endpoints. Other differences are mostly due to the Java
type system, which e.g. does not support case classes (complicating exhaustiveness checks)
nor declaration-site variance (complicating the handling of I/O co/contra-variance).

24 Lightweight Session Programming in Scala

The work closer to ours is [35]: it presents an encoding of session types in a ML-like
language, and an OCaml library reminiscent of lchannels. We share several ideas and
features, including the theoretical basis of [8]. The differences are at technical and API design
levels, due to different languages and goals (type inference vs. CPSP extraction);16 given
the wide adoption of Scala, we focus on practical validation with use cases and benchmarks.

Type-safe interaction in Scala Strong typing guarantees for concurrent applications have
been a longstanding goal for the Scala and Akka communities. In the actor realm, Akka
Typed (§ 1) is remarkably close to [17]: both propose ActorRef[A]-typed actor references.
We drew inspiration from them and CPSPs, merging the theoretical basis of [8]. Some (non-
linear) channel APIs have been tentatively introduced in Akka, e.g. channels (Akka 1.2)
and macro-based typed channels (Akka 2.1); however, they were later deprecated, mainly
due to design and maintainability issues [27]. lchannels is based on a clear and well-
established theory, adapted to the Scala setting: thus, the implementation is fairly simple
and maintainable, not requiring macros.

9 Conclusions

We showed how session programming can be carried over in Scala, by representing protocols
as types that the compiler can check. We based our approach on a lightweight integration
of session types, based on CPSP classes and the lchannels library. We showed that our
approach supports local and distributed interaction, has a formal basis (the encoding of
session types into linear I/O types), and attested its viability with use cases and benchmarks.

Future work We plan to extend our approach to multiparty session types (MPSTs), by
extracting CPSP classes from a global type [20], rather than addressing multiple binary
session separately (as in Example 4.3 and § 6.1). Just as binary session typing guarantees
safe and deadlock free interaction for two parties involved in one session (§ 2.2), MPSTs
extend such a guarantee to two or more parties; the main challenge is that encoding MPSTs
into Scala types might be complex, and require a tool akin to [22].

The Scala landscape is fast-moving, and recent developments may influence the evolution
of our work. [43] introduces customisable effect for Scala: by extending the lchannels I/O
operations with an effect, we could obtain stronger linearity guarantees — e.g., ensuring that
a program does not “forget” a session (§6.1.3). [15] studies capabilities for borrowing object
references: they could ensure that a channel endpoint is never used if sent (§ 3.1). Similar
guarantees could be achieved by examining the program call graph [1]. Recent results on
Scala’s type system (e.g. on path-dependant and structural types [2, 37]) might improve our
encoding, removing the limitation on the uniqueness of choice labels (Remark 7.1).

We will further extend and optimise lchannels and its API: many improvements are
possible, and the transport abstraction allows to easily compare different implementations,
under different settings and uses. We also plan to extend our approach to other languages:
one candidate is C#, due to its support for first-class functions and declaration-site variance.

Towards session types for Akka Typed (and other frameworks) This work focuses on
lchannels, but our approach can be generalised to other communication frameworks. One

16Further details on the comparison between this paper and [35] are available in Appendix G.

Alceste Scalas, Nobuko Yoshida 25

possible way is abstracting under the In[⋅]/Out[⋅] API, as in § 5; another way is directly
using the I/O endpoints offered by other frameworks. Consider e.g. Akka Typed: we can
adapt CPSP extraction (Def. 7.9) to yield ActorRef[A] types instead of Out[A], obtaining
CPSP classes similar to those in Fig. 2. Remarkably, Out[A] and ActorRef[A] are both
contravariant w.r.t. A, and enjoy similar subtyping properties (Theorem 7.14). However:

(i) Akka Typed does not offer an input endpoint similar to In[⋅]. Hence, session types whose
CPSPs carry input endpoints (e.g., Example 4.1, or Srctl in §6.1.1) must be adapted (i.e.,
sequences of two outputs or two inputs must be replaced with input-output alternations);

(ii) instances of ActorRef[A] raise no errors when used multiple times for sending messages;
(iii) to produce and send a continuation ActorRef[A], it is customary to cede the control

to another actor (possibly a new one, as in Fig. 3); lchannels, instead, encourages the
creation and use of I/O endpoints along a single thread, in a simple sequential style.

Item (i) is a minor issue; (ii) could be addressed, taking inspiration from the session/linear
types theory, by distinguishing unrestricted [44] ActorRefs (allowing 0 or more outputs of the
same type) from linear ActorRefs — with the former usable as the latter, but not vice versa.
Item (iii) marks a crucial difference between reactive, actor-based concurrent programming
(where the protocol flow is decomposed into multiple input-driven handlers), and thread-
based programming. We plan to study the formal foundations for applying “session types
as CPSPs” in the reactive setting, and their feasibility w.r.t. software industry practices.

Thanks to Roland Kuhn, Julien Lange and the anonymous reviewers for their helpful remarks on
earlier versions of this paper. Thanks to Julien Lange and Nicholas Ng for their feedback during
artifact testing, and to the anonymous artifact reviewers for their detailed remarks and suggestions.

References
1 K. Ali, M. Rapoport, O. Lhoták, J. Dolby, and F. Tip. Constructing call graphs of Scala

programs. In ECOOP, 2014.
2 N. Amin, T. Rompf, and M. Odersky. Foundations of path-dependent types. In OOPSLA,

2014.
3 S. Balzer and F. Pfenning. Objects as session-typed processes. In AGERE!, 2015.
4 H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North Holland, 1985.
5 L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CONCUR,

2010.
6 O. Dardha. Recursive session types revisited. In BEAT, 2014.
7 O. Dardha. Type Systems for Distributed Programs: Components and Sessions. Phd thesis,

Università degli studi di Bologna, May 2014.
8 O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP, 2012.
9 R. Demangeon and K. Honda. Full abstraction in a subtyped pi-calculus with linear types.

In CONCUR, 2011.
10 E. W. Dijkstra. Cooperating sequential processes. Springer, 1965.
11 J. Franco and V. T. Vasconcelos. A concurrent programming language with refined session

types. In SEFM, 2013.
12 S. Gay and M. Hole. Types and subtypes for client-server interactions. In ESOP. 1999.
13 S. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Informatica, 2005.
14 S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. J.

Funct. Program., 20(1), Jan. 2010.
15 P. Haller and M. Odersky. Capabilities for uniqueness and borrowing. In ECOOP, 2010.

26 Lightweight Session Programming in Scala

16 P. Haller, A. Prokopec, H. Miller, V. Klang, R. Kuhn, and V. Jovanovic. Futures and
Promises. http://docs.scala-lang.org/overviews/core/futures.html.

17 J. He, P. Wadler, and P. Trinder. Typecasting actors: From Akka to TAkka. In SCALA’14.
18 K. Honda. Types for dyadic interaction. In CONCUR, 1993.
19 K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for

structured communication-based programming. In ESOP, 1998.
20 K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In POPL,

2008.
21 R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful sessions in

Java. In ECOOP, 2010.
22 R. Hu and N. Yoshida. Hybrid session verification through endpoint API generation. In

FASE, 2016.
23 R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in Java. In

ECOOP, 2008.
24 A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for

Java and GJ. TOPLAS, 23(3), May 2001.
25 S. M. Imam and V. Sarkar. Savina — an actor benchmark suite: Enabling empirical

evaluation of actor libraries. AGERE!, 2014.
26 T. B. L. Jespersen, P. Munksgaard, and K. F. Larsen. Session types for rust. WGP, 2015.
27 R. Kuhn. Project Gålbma, actors vs types, 2015. Slides (available on slideshare.net).
28 Lightbend, Inc. Scala types. http://docs.scala-lang.org/tutorials/tour/

unified-types.html.
29 Lightbend, Inc. Actor paths, 2016. http://doc.akka.io/.../addressing.html.
30 Lightbend, Inc. The Akka toolkit and runtime, 2016. http://akka.io/.
31 Lightbend, Inc. Akka Typed, 2016. http://doc.akka.io/.../typed.html.
32 Lightbend, Inc. The Scala IDE, 2016. http://scala-ide.org/.
33 R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Inf. &Comput., 1992.
34 M. Neubauer and P. Thiemann. An implementation of session types. In PADL, 2004.
35 L. Padovani. A Simple Library Implementation of Binary Sessions. hal:01216310, 2015.
36 R. Pucella and J. A. Tov. Haskell session types with (almost) no class. In Haskell, 2008.
37 T. Rompf and N. Amin. From F to DOT: Type soundness proofs with definitional inter-

preters. Technical report, Purdue University and EPFL, 2015. arXiv:1510.05216.
38 D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of Mobile Processes. Cambridge

University Press, 2003.
39 K. C. Sivaramakrishnan, K. Nagaraj, L. Ziarek, and P. Eugster. Efficient session type

guided distributed interaction. In COORDINATION, 2010.
40 K. C. Sivaramakrishnan, M. Qudeisat, L. Ziarek, K. Nagaraj, and P. Eugster. Efficient

sessions. Sci. Comput. Program., 78(2), 2013.
41 K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.

In PARLE, 1994.
42 B. Toninho, L. Caires, and F. Pfenning. Higher-order processes, functions, and sessions: a

monadic integration. In ESOP, 2013.
43 M. Toro and E. Tanter. Customizable gradual polymorphic effects for Scala. In OOPSLA,

2015.
44 V. T. Vasconcelos. Fundamentals of session types. Inf. & Comput., 217, 2012.
45 P. Wadler. Propositions as sessions. In ICFP, 2012.
46 N. Yoshida, R. Hu, R. Neykova, and N. Ng. The scribble protocol language. In TGC, 2013.

http://docs.scala-lang.org/overviews/core/futures.html
http://slideshare.net/rolandkuhn/project-galbma-actors-vs-types
http://docs.scala-lang.org/tutorials/tour/unified-types.html
http://docs.scala-lang.org/tutorials/tour/unified-types.html
http://doc.akka.io/docs/akka/2.4.4/general/addressing.html
http://akka.io/
http://doc.akka.io/docs/akka/2.4.4/scala/typed.html
http://scala-ide.org/
https://hal.archives-ouvertes.fr/hal-01216310
http://arxiv.org/abs/1510.05216

Alceste Scalas, Nobuko Yoshida 27

Appendices

28 Lightweight Session Programming in Scala

1 class HelloStreamManager(in: InputStream, out: OutputStream)
2 extends StreamManager(in, out) {
3 private val outb = new BufferedWriter(new OutputStreamWriter(out))
4
5 override def streamer(x: scala.util.Try[Any]) = x match {
6 case Failure(e) => close() // StreamManager.close() closes in & out
7 case Success(v) => v match {
8 case Greet(name) => outb.write(f"GREET ${name}\n"); outb.flush()
9 case Quit() => outb.write("QUIT\n"); outb.flush(); close() // End

10 }
11 }
12
13 private val inb = new BufferedReader(new InputStreamReader(in))
14 private val helloR = """HELLO (.+)""".r // Matches Hello(name)
15 private val byeR = """BYE (.+)""".r // Matches Bye(name)
16
17 override def destreamer() = inb.readLine() match {
18 case helloR(name) => Hello(name)(StreamOut[Start](this))
19 case byeR(name) => close(); Bye(name) // Session end: close streams
20 case e => { close(); throw new Exception(f"Bad message: ’${e}’") }
21 }
22 }

Figure 10 Implementation of HelloStreamManager.

A lchannels: further comments and advanced features

A.1 Stream-based channels
Fig. 10 shows a sample implementation of HelloStreamManager, for the “stream-based

channels” introduced in § 5.

The streamer method (lines 5–11) is called whenever a StreamOut.promise is written,
i.e. an output is performed. It converts a Greet/Quit instance into a string, and sends
it through the OutputStream;
the destreamer method (lines 17–21) is used to complete a StreamIn.future. It reads
a line from the InputStream, and uses the regular expressions in lines 14–15 to recognise
the content and return either Hello or Bye (note that in line 18 we also produce a
continuation channel, as required by Hello, based on the same stream manager).

A.2 Medium-parametric channel endpoints
The different concrete In/Out derivatives seen in § 5 allow to abstract lchannels-based
code from the underlying message transport. However, if a programmer wants/needs to
manually create and handle I/O channel endpoints, he/she might introduce a subtle bug in
his/her code: mixing different channel transports, e.g., using an ActorOut endpoint to send
a (non-serialisable) LocalIn instance over the network, as message payload/continuation.

This risk can be avoided by automating the creation of continuation channels, using
Out.!! (§ 4.3) whenever possible. Otherwise, to avoid channel mixing errors and preserve
transport abstraction, lchannels also provides medium-parametric abstract endpoints, with
types medium.In[M,+A] and medium.Out[M,-A], where M stands for “medium”. All con-
crete lchannels classes also instantiate M: e.g., LocalIn extends medium.In[Local,A]17

and ActorIn extends medium.In[Actor,A]. This allows to define medium-parametric CPS
protocols, by threading M along the message classes. E.g., from Example 4.1, a medium-
parametric FIFO type is:

17For simplicity, this inheritance has been omitted in Fig. 6 (right).

Alceste Scalas, Nobuko Yoshida 29

1 case class Datum[M,T](p: T)(val cont: In[M, Datum[M,T]]) // Note "M"

When creating a Datum[M,T] instance to be sent on a medium.Out[M,. . .] endpoint, cont is
constrained to be an instance of medium.In[M,. . .] — e.g., if M is Actor, the continuation is
allowed to be an ActorIn instance; if a LocalIn instance is provided instead, a compilation
error ensues. The price for this additional static check is the new M parameter, which may
spread in the code. To avoid the resulting verbosity, the examples in this work avoid manual
channel handling, and use medium-generic lchannels.{In[A],Out[A]}, defined as in Fig. 6
(left).
▸ Remark A.1 (On tail recursion). For the sake of clarity, throughout this paper we use In.?
very liberally. Unfortunately, when such a method is used under recursion, the Scala compiler
is unable to optimise the resulting tail-call, thus increasing the stack size at each recursive
invocation. This risk can be quickly determined and solved, by (i) annotating recursive
methods with @tailrec (as customary when programming in Scala), and (ii) in case of
compilation errors, replacing the problematic occurrences of c ? { ... } with c.receive
match { ... }. These limitations, that hinder most functional programs in Scala, could be
solved either by future improvements of the Scala compiler, or by the addition of tail-call
optimizations on future JVM releases.

B Evaluation

B.1 Case study
The frontend also talks with the authentication server, via a SFS-typed channel endpoint:

SFA = µX .!GetAuthentication(Id).?Authentication(Sauth).X

i.e., the frontend recursively queries for Sauth-typed channel endpoints, that will be for-
warded to the client with a New message.

Finally, the auth. server talks with the application server, via a SAS-typed endpoint:

SAS = µX .!CreateSession(String).?NewSession(Sact).X

i.e., the authentication server recursively asks to create a new chat session for an authen-
ticated user (the String payload is the username), and gets a Sact-typed channel endpoint
that will be forwarded to the client with a NewSession message.

The definitions of all protocol classes used in the case study are shown in Fig. 11.

B.2 Benchmarks
In this section, we provide more details on the benchmarks described in § 6.2.

Ping-pong This benchmark measures the time required by ping-pong message exchanges
between two threads P and Q, communicating through a channel with endpoint types:
SPP = µX .?Ping(String).(!Pong(String).X ⊕ !Stop) SPP = µX .!Ping(String).(?Pong(String).X & ?Stop)

30 Lightweight Session Programming in Scala

1 package chat.protocol
2
3 // Session type S_front
4 case class GetSession(id: Int)(val cont: Out[GetSessionResult])
5
6 sealed abstract class GetSessionResult
7 case class Active(service: Out[session.Command]) extends GetSessionResult
8 case class New(authc: Out[auth.Authenticate]) extends GetSessionResult
9

10 package session { // Session type S_act
11 sealed abstract class Command
12 case class GetId()(val cont: Out[Id]) extends session.Command
13 case class Ping(msg: String)(val cont: Out[Pong]) extends session.Command
14 case class Join(chatroom: String)(val cont: Out[ChatRoom]) extends session.Command
15 case class Quit() extends session.Command
16
17 case class Id(id: Int)(val cont: Out[Command])
18 case class Pong(msg: String)(val cont: Out[Command])
19 case class ChatRoom(msgs: In[room.Messages],
20 ctl: Out[roomctl.Control])(val cont: Out[Command])
21 }
22
23 package room { // Session type S_r
24 sealed abstract class Messages
25 case class NewMessage(username: String, text: String)
26 (val cont: In[Messages]) extends Messages
27 case class Quit() extends Messages
28 }
29
30 package roomctl { // Session type S_rctl
31 sealed abstract class Control
32 case class SendMessage(text: String)(val cont: In[Control]) extends Control
33 case class Quit() extends Control
34 }
35
36 package auth { // Session type S_auth
37 case class Authenticate(username: String, password: String)
38 (val cont: Out[AuthenticateResult])
39
40 sealed abstract class AuthenticateResult
41 case class Success(service: Out[session.Command]) extends AuthenticateResult
42 case class Failure() extends AuthenticateResult
43 }

1 package chat.protocol.internal
2
3 package session {
4 // Session type S_FS
5 case class GetSession(id: Int)(val cont: Out[GetSessionResult])
6
7 sealed abstract class GetSessionResult
8 case class Success(channel: Out[chat.protocol.session.Command])
9 (val cont: Out[GetSession]) extends GetSessionResult

10 case class Failure()(val cont: Out[GetSession]) extends GetSessionResult
11
12 // Session type S_AS
13 case class CreateSession(username: String)(val cont: Out[NewSession])
14 case class NewSession(channel: Out[chat.protocol.session.Command])(val cont: Out[CreateSession])
15 }
16
17 package auth {
18 // Session type S_FA
19 case class GetAuthentication()(val cont: Out[Authentication])
20 case class Authentication(channel: Out[chat.protocol.auth.Authenticate])
21 (val cont: Out[GetAuthentication])
22 }

Figure 11 Chat server: public protocol classes used by clients (top), and internal protocol classes
(bottom). We organise them in packages for readability, and to avoid name clashes. We also relax
the convention of always using “p” as the name of the field containing the message payload.

Alceste Scalas, Nobuko Yoshida 31

Ring This benchmark spawns a ring of n threads P0, . . . , Pn−1, where for each i ∈ {1, . . . , n − 1},
Pi is connected to P((i+1) mod n) through a channel with the following endpoint types:

Sring = µX .!Fwd(String).X ⊕ !Stop Sring = µX .?Fwd(String).X & ?Stop

Each Pi receives a message from its Sring-typed endpoint, and immediately forwards it to
P((i+1) mod n) through the Sring-typed endpoint. The only exception is the “master thread”
P0: it sends the first Fwd message to P1, waits to get it back from Pn−1 (i.e., after one ring
loop), and decides whether to send another Fwd, or Stop after a certain amount of loops.

Streaming The implementation of this benchmark is similar to “Ring” above, except that
the “master thread” P0 sends at once a sequence (“stream”) of Fwd messages to P1, and then
waits to receive all such messages back from Pn−1. As a consequence, the level of parallelism
increases, because (depending on the system scheduling) all threads in the ring can have
at the same time one or more messages waiting on their Sring-typed channel endpoint, and
thus can run in parallel to receive and forward them.

Chameneos This benchmark is based on the classical peer-to-peer cooperation game [?]:
n colour-changing animals (i.e., the “chameneos”) repeatedly enter in a playground, interact
with one of their peers, and change their colour.

In the implementation, each chameneos is a thread, and the playground is represented
by a singleton broker object, with a method enter.

Two chameneos interact by communicating each other the respective name and colour,
through a channel with the following endpoint types:

Scham = !Greet((Name,Colour)) . ?Answer((Name,Colour))
Scham = ?Greet((Name,Colour)) . !Answer((Name,Colour))

However, two chameneos can only interact after entering the playground. When a
chameneos invokes enter, it obtains a channel endpoint of the following type, on which it
waits for an answer:

Sbroker = ?Start(Scham) & ?Wait(Scham) & ?Closed

while the broker/playground keeps the other (dually-typed) channel endpoint:

Sbroker = !Start(Scham) ⊕ !Wait(Scham) ⊕ !Closed

The broker collects such channel endpoints in an internal queue, and waits for two of them
to be available — i.e., for two chameneos to have invoked enter. Then, it creates a pair of
channel endpoints with types Scham, Scham and sends them to the two chameneos, respec-
tively as payloads of Start and Wait messages. At this point, the two chameneos have met,
and interact; then, each one changes its colour, and invokes enter again.

The broker/playground counts the total number of meetings, and when a certain amount
m is reached, it answers Closed to all further requests: when a chameneos receives such
an answer, it terminates. The benchmark measures the time required for n chameneos to
perform m meetings.

32 Lightweight Session Programming in Scala

C Session types

▸ Example C.1 (Subtyping with session types). Consider Sh from § 2. We have:

end ⩽ end
[⩽-End]

!Greet(String).(?Hello(String).Sh & ?Bye(String).end) ⊕ !Quit.end ⩽ !Quit.end
[⩽-Int]

Sh ⩽ !Quit.end
[⩽-µL]

D Linear types

▸ Remark D.1. The main difference between the linear types in Def. 7.3 and the ones used
in [8, 7, 6] are due to our goal of later bridging into Scala types (in § 7.3). In a nutshell:

1. we restrict the types syntax to the exact fragment we will need for our encoding in
Def. 7.6. See Example D.2 for more details;

2. we use records (with p,c labels) instead of tuples;
3. we cater for recursion (unlike [8]), but we allow the recursion operator µX .⋯ to only bind

a variable with a variant types, and not with a linear input/output type (unlike [7, 6]).
See Example D.3 for more details;

4. we require the payload type to be closed;
5. we do not require the syntax of session and linear types include dualized recursion vari-

ables (i.e., X). This is a design goal, and (in part) a consequence of item 4 above.

▸ Example D.2. The linear types syntax in Def. 7.3 does not allow to write a type like
!(?(Int)), representing a linear output channel carrying an input channel carrying an integer
value. However, a “morally” equivalent type can be written as:

!([a_{p ∶ ?([b_{p ∶ Int,c ∶ ●}]),c ∶ ●}])

i.e., an output type carrying a variant with a single label a, whose payload is an input type
carrying a single-labelled variant (label b) whose payload is an Int.

▸ Example D.3. The linear types syntax in Def. 7.3 does not allow to write a type like
µX .!([a_{p ∶ Int,c ∶X}]), representing a linear output channel carrying a single-labelled
variant (label b) with an integer payload, and a recursive continuation consisting in the type
itself. However, a “morally” equivalent type can be written as:

!(µX .[a_{p ∶ Int,c ∶ !(X)}])

i.e., an output type carrying a recursive, single-labelled variant (label a) with an integer
payload, and a continuation consisting in an output type carrying the variant itself.

Thanks to our treatment of recursion and restriction to closed payloads (items 3 and 4 in
Remark D.1), our definition of linear type duality is remarkably intuitive, and simpler than
[6]: it only requires to turn the top level input into an output (or vice versa), leaving the
carried type untouched. Such a property is shared with [8], which however does not cater
for recursive types. This is a key feature that, in § 7.3, will allow us to easily treat the two
communication endpoints in Scala.

The encoding in Def. 7.6 ensures that a (possibly recursive) internal (resp. external)
choice results in an output (resp. input) linear type, with a (possibly recursive) variant
payload featuring a case for each branch: such a property is formalised in Proposition D.4.

Alceste Scalas, Nobuko Yoshida 33

▸ Proposition D.4. For all S, JSK is either ● or, for some U , ?(U) or !(U).

Proof. Straightforward from Def. 7.6. ◂

▸ Remark D.5. Def. 7.6 is inspired to the encodings in [8, 7, 6]. The main differences are due
to the goals of our approach and the linear types we use (as outlined in Remark D.1), that
lead to a noticeably more complex encoding:

1. the encoding must ensure that top-level recursions in the original session type are “moved”
in the payload of the resulting linear input/output type;

2. as a consequence, encoding rules are duplicated: each JSKΓ (used until a recursion is met
in S) is usually paired with JSKµΓ (used inside a recursion, until an external/internal choice
is met in S). Some combinations (e.g. JXKµΓ) are never used, and thus left undefined;

3. unlike [6], our encoding of recursion is based on an environment Γ; by treating duality
on such an environment, we do not need dualized recursion variables in the types syntax,
as observed in item 5 of Remark D.1.

▸ Example D.6. Consider the following session type, and its encoding:

Sr = µX .(!Msg(String).X ⊕ !Stop(Unit)) JSrK = !(µX .[
Msg_{p ∶ String,c ∶ ?(X)},

Stop_{p ∶ Unit,c ∶ ●}
])

We can notice that the main recursive message type appears first within the top-level output
type, and then (as X) within an input type.

Theorem E.2 also appears in [8, 7, 6]: the technical details of our proof are closer to [8],
albeit more complex due to the complexity of Def. 7.6.

Theorem E.3 also appears in [8], which however does not address recursive types. More-
over, it does not appear in [7, 6], and is thus a contribution of this work. The main difference
w.r.t. [8] is that our proof is necessarily coinductive (instead of inductive), and more complex
due to the complexity of Def. 7.6.

E Proofs for § 7.2

▸ Lemma E.1 (Substitution for encoding). JS{S′/X}K = JSK{JS′K/X}.

Proof. By structural induction on S, proving the following stronger statement, for all Γ
such that fv(S) ⊆ dom(Γ) ∖ {X}:

JS{S′/X}KΓ = JSKΓ{JS′K/X} (1)

◂

▸ Theorem E.2 (Encoding preserves duality).
q
S

y
= JSK.

Proof. We prove the following stronger statement, for all (possibly open) S and Γ such that
fv(S) ⊆ dom(Γ):

q
S

y
Γ = JSKΓ where Γ(X) = Γ(X) (2)

We proceed by induction on S:

base case S = end. We have:
q
S

y
Γ = ● = ● = JSKΓ

34 Lightweight Session Programming in Scala

base case S = X. Then, S = X = X, and by hypothesis, Γ(X) = L′ (for some L′).
Therefore, we have:

q
S

y
Γ =

q
X

y
Γ = JXKΓ = L′ = L′ = JXKΓ = JSKΓ

inductive case S =
˘
i∈I?li(Ti).S′i. We have:

q
S

y
Γ =

r
⊕i∈I !li(Ti).S′i

z

Γ
= !([li_{p ∶ JTiK,c ∶

r
S′i

z

Γ
}]i∈I) (3)

By the induction hypothesis, we have ∀i ∈ I ∶
r
S′i

z

Γ
=

q
S′i

y
Γ — and therefore, ∀i ∈

I ∶
r
S′i

z

Γ
=

q
S′i

y
Γ = JS′iKΓ. Hence, from (3), we conclude:

q
S

y
Γ = !([li_{p ∶ JTiK,c ∶ JS′iKΓ}]i∈I) = ?([li_{p ∶ JTiK,c ∶

q
S′i

y
Γ}]i∈I) = JSKΓ

inductive case S =⊕i∈I !li(Ti).S′i. We have:
q
S

y
Γ =

r˘
i∈I?li(Ti).S′i

z

Γ
= ?([li_{p ∶ JTiK,c ∶

r
S′i

z

Γ
}]i∈I) (4)

By the induction hypothesis, we have ∀i ∈ I ∶
r
S′i

z

Γ
=

q
S′i

y
Γ. Hence, from (4), we con-

clude:
q
S

y
Γ = ?([li_{p ∶ JTiK,c ∶

q
S′i

y
Γ}]i∈I) = !([li_{p ∶ JTiK,c ∶

q
S′i

y
Γ}]i∈I) = JSKΓ

inductive case S = µX .S
′. We have:

q
S

y
Γ = act(S′)(µX .

q
S′

yµ
Γ′) where Γ′ = Γ{act(S′)(X)/X} (5)

For some n ≥ 0 and S0 ≠ µZ .S
′′′, we also have S′ = µYn µY1 .S0. We can observe that,

from (5), by performing n more encoding steps as per Def. 7.6, we get:
q
S

y
Γ = act(S′)(µX .

q
µYn µY1 .S0

yµ
Γ′)

= act(S′)(µX .µYn .
q
µYn−1 µY1 .S0

yµ
Γ′{act(S′

n−1)(Yn)/Yn}
)

= ⋯

= act(S′)(µX .µYn µY1 .
q
S0

yµ
Γ′{act(S′

n−1)(Yn)/Yn}⋯{act(S′0)(Y1)/Y1}
)

(6)

We now show two key properties of such encoding steps. Let:

Γ′n+1 = Γ′
∀k such that 1 ≤ k ≤ n, Γ′k = Γ′k+1{

act(S′
k−1)(Yk)/Yk}

and S′k = µYk .Sk−1 (hence, S′ = S′n)
(7)

First, we prove that:

∀h such that 0 ≤ h ≤ n∶ fv(S′h) ⊆ dom(Γ′h+1) (8)

We proceed by induction on the number of function updates applied to Γ′n+1 = Γ′ in the
definition of Γ′h+1 (see (7) above), i.e. on the length of the following sequence:

{act(S′n−1)(Yn)/Yn}{act(S′n−2)(Yn−1)/Yn−1}⋯{act(S′
h
)(Yh+1)/Yh+1}

Such a length is n−h, and it ranges from 0 (when h = n) to n (when h = 0), thus covering
all the values of h required in (8). We have the following cases:

Alceste Scalas, Nobuko Yoshida 35

base case n − h = 0. In this case, n = h. Since fv(S) ⊆ dom(Γ) (by hypothesis), by
(5) we have fv(S′) ⊆ dom(Γ′). Thus, since S′h = S′n = S′ and Γ′n+1 = Γ′h+1 = Γ′, we
conclude fv(S′h) ⊆ dom(Γ′h+1);
inductive case n − h = m + 1. Therefore, h = n − m − 1, and we need to prove
fv(S′n−m−1) ⊆ dom(Γ′n−m). By the induction hypothesis (on statement (8)), the thesis
holds for h′ such that n − h′ =m, i.e.:

fv(S′h′) = fv(S′n−m) = fv(µYn−m .S′n−m−1) ⊆ dom(Γ′n−m+1) = dom(Γ′h′+1)

Therefore, we obtain:

fv(S′h) = fv(S′n−m−1) ⊆ dom(Γ′n−m+1{act(S′n−m−1)(Yn−m)/Yn−m})

= dom(Γ′n−m) = dom(Γ′h+1)

which concludes the proof of statement (8).
Second, we prove the following key statement:

∀h such that 0 ≤ h ≤ n∶
r
S′h

zµ

Γ′
h+1

= JS′hK
µ

Γ′
h+1

(9)

We proceed by induction on h:
base case h = 0. Note that S0 cannot be a recursion variable, nor end. Therefore,
we have two sub-cases:
∗ S0 =

˘
j∈Jlj(Tj).S′′j . Then,

q
S0

yµ
Γ′1

=

r
⊕j∈Jlj(Tj).S′′j

zµ

Γ′1
= [lj_{p ∶ JTjK,c ∶

r
S′′j

z

Γ′1
}]j∈J (10)

We now observe that each S′′j is a subterm of S′0, which in turn is a subterm of S;
moreover, since fv(S′′j) ⊆ fv(S′0) and (by (8)) fv(S′0) ⊆ dom(Γ′1), we have fv(S′′j) ⊆
dom(Γ′1). Therefore, we can apply the main induction hypothesis (statement (2)),

and we get ∀j ∈ J ∶
r
S′′j

z

Γ′1
=

r
S′′j

z

Γ′1
, i.e., ∀j ∈ J ∶

r
S′′j

z

Γ′1
=

r
S′′j

z

Γ′1
=

q
S′′j

y
Γ′1
.

Hence, from (10), we obtain:

r
S′0

zµ

Γ′1
= [lj_{p ∶ JTjK,c ∶

r
S′′j

z

Γ′1
}]j∈J = JS′0K

µ

Γ′1
(11)

∗ S′0 =⊕j∈Jlj(Tj).S′′j . Then,

r
S′0

zµ

Γ′1
=

r˘
j∈Jlj(Tj).S′′j

zµ

Γ′1
= [lj_{p ∶ JTjK,c ∶

r
S′′j

z

Γ′1
}]j∈J (12)

Since each S′′j is a subterm of S and fv(S′′j) ⊆ fv(S′0) ⊆ dom(Γ′1), by the main

induction hypothesis (statement (2)) we get ∀j ∈ J ∶
r
S′′j

z

Γ′1
=

r
S′′j

z

Γ′1
. Hence, from

(12), we obtain:
r
S′0

zµ

Γ′1
= [lj_{p ∶ JTjK,c ∶

r
S′′j

z

Γ′1
}]j∈J = JS′0K

µ

Γ′1
(13)

Summing up, in both cases (11) and (13) we conclude
r
S′h

zµ

Γ′
h+1

= JS′hK
µ

Γ′
h+1

;

36 Lightweight Session Programming in Scala

inductive case h =m + 1. We have:
r
S′h

zµ

Γ′
h+1

=
q
µYm+1 .S

′
m

yµ
Γ′m+2

=
q
µYm+1 .S

′
m

yµ
Γ′m+2

= µYm+1 .
q
S′m

yµ
Γ′m+1

(14)

By the induction hypothesis (on statement (9)), we have
q
S′m

yµ
Γ′m+1

= JS′mKµ
Γ′m+1

.
Therefore, from (14) we obtain:

r
S′h

zµ

Γ′
h+1

= µYm+1 .JS
′
mKµΓ′m+1

= JµYm+1 .S
′
mKµΓ′m+2

= JS′m+1K
µ

Γ′m+2
= JS′hK

µ

Γ′
h+1

which concludes the proof of statement (9).
Finally, by rewriting (5) using the notation in (7), and applying (9), we conclude the
proof of statement (2):

q
S

y
Γ = act(S′)(µX .

q
S′

yµ
Γ′) = act(S′)(µX .

q
Sn

yµ
Γ′n+1

)

= act(S′)(µX .JSnKµΓ′n+1
) = act(S′)(µX .JSnKµΓ′n+1

) = JSKΓ

The proof of the original statement of this theorem follows from (2), when Γ = ∅. ◂

▸ Theorem E.3 (Encoding preserves subtyping). S ⩽ S′ iff JSK ⩽` JS′K.

Proof. For the Ô⇒ direction, consider the relation: R = Rs ∪ Rt ∪ R? ∪ R!, where:

Rs = { (JSK, JS′K) ∣ S ⩽ S′ } R? = { (U,U ′) ∣ (?(U), ?(U ′)) ∈ Rs }

Rt = { (JT K, JT ′K) ∣ T ⩽ T ′ } R! = { (U ′, U) ∣ (!(U), !(U ′)) ∈ Rs }

We prove that R satisfies the coinductive rules obtained from Def. 7.4 by replacing each
occurrence of x ⩽` y with xR y (where x, y range over L, U and T). We develop the proof
by examining the elements of Rs, Rt, R? and R!.

For each pair (JSK, JS′K) ∈Rs, reminding that S and S′ are closed, we have two cases:

if S = S′ = end, then JSK = JS′K = end. Hence, we conclude that the pair (JSK, JS′K)
satisfies rule [⩽`-End];
otherwise, we can observe that for some U,U ′ we have JSK = act(S)(U) and JS′K =

act(S′)(U ′); moreover, we have act(S) = act(S′). Thus, we have two sub-cases:
act(S) = act(S′) = ?. Then, the pair (U,U ′) belongs to R?, and thus to R. Hence,
we conclude that the pair (JSK, JS′K) satisfies rule [⩽`-In];
act(S) = act(S′) = !. Then, the pair (U ′, U) belongs to R!, and thus to R. Hence,
we conclude that the pair (JSK, JS′K) satisfies rule [⩽`-Out].

For each pair (JT K, JT ′K) ∈Rt, we proceed by cases on the rule in Def. 7.2 whose conclu-
sion is T ⩽ T ′:

[⩽-B]. Then, T ⩽B T ′, which means T ,T ′ ∈ B. Therefore, by Def. 7.6, T = JT K and
T ′ = JT ′K. Hence, we conclude that the pair (JT K, JT ′K) satisfies rule [⩽`-B];
in all the other cases, T and T ′ must be closed session types, and thus we also have
(JT K, JT ′K) ∈Rs: the proof falls back into the case above.

For each pair (U,U ′) ∈ R?, there exists a corresponding pair (?(U), ?(U ′)) ∈ Rs, and
thus there exist S,S′ such that JSK = ?(U), JS′K = ?(U ′) and S ⩽ S′. Hence, S,S′ must
be (possibly recursive) external choices. We proceed by cases on the rule in Def. 7.2 whose
conclusion is S ⩽ S′:

Alceste Scalas, Nobuko Yoshida 37

[⩽-End] and [⩽-Int]. These cases are impossible, because act(S) = act(S′) = ?;
[⩽-Ext]. We have S =

˘
i∈I?li(Ti).Si and S′ =

˘
i∈I∪J ?li(T ′i).S′i; moreover, for all

i ∈ I, Ti ⩽ T ′i and Si ⩽ S
′
i — i.e.:

∀i ∈ I ∶ (JTiK, JT ′i K) ∈Rt and (JSiK, JS′iK) ∈Rs (thus, both pairs belong to R) (15)

Now, we observe:

JSK = ?(U) implies U = [li_{p ∶ JTiK,c ∶ JSiK}]i∈I
JS′K = ?(U ′) implies U ′ = [li_{p ∶ JT ′i K,c ∶ JS′iK}]i∈I∪J

(16)

Hence, from (16) and (15), we conclude that the pair (U,U ′) satisfies rule [⩽`-VR];
[⩽-µL]. We have S = µX .S

′′ ⩽ S′; moreover, from the rule premise, S′′{µX .S′′/X} ⩽ S′,
which implies:

(JS′′{µX .S′′/X}K, JS′K) belongs to Rs (17)

We observe that act(S) = act(S′′) = ?. Moreover, from

JSK = JµX .S′′K = act(S′′)(µX .JS′′K
µ

{act(S′′)(X)/X}
)

we have:

JSK = JµX .S′′K = act(S′′)(µX .U ′′
) where U ′′

= JS′′Kµ
{act(S′′)(X)/X}

(18)

which also gives us:

U = µX .U
′′ (19)

From (18), by Lemma E.1, we know that:

JS′′{µX .S′′/X}K = JS′′K{JµX.S′′K/X} = JS′′K⎧⎪⎪⎪⎨⎪⎪⎪⎩
act(S′′)

⎛

⎜
⎜
⎜

⎝

µX.JS′′K
µ

{act(S′′)(X)/X}

⎞

⎟
⎟
⎟

⎠

/X
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(20)

Note that S′′ cannot be a recursion variable, nor end — and the same holds for
S′′{µX .S

′′

/X}. Hence, from (20) we also have:

JS′′{µX .S′′/X}K = act(S′′)(U ′′′
) where U ′′′

= JS′′Kµ⎧⎪⎪⎪⎨⎪⎪⎪⎩
act(S′′)

⎛

⎜
⎜
⎜

⎝

µX.JS′′K
µ

{act(S′′)(X)/X}

⎞

⎟
⎟
⎟

⎠

/X
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(21)

Now, we can notice that the unfolding of µX .U ′′ from (18), is equal to U ′′′ from (21):

U ′′{µX .U
′′

/X} = JS′′Kµ
{act(S′′)(X)/X}

{µX .JS′′K
µ

{act(S′′)(X)/X}/X}

= JS′′Kµ⎧⎪⎪⎪⎨⎪⎪⎪⎩
act(S′′)

⎛

⎜
⎜
⎜

⎝

µX.JS′′K
µ

{act(S′′)(X)/X}

⎞

⎟
⎟
⎟

⎠

/X
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= U ′′′ (22)

Summing up from (21) and (22), we can rewrite (17) as:

(act(S′′)(U ′′
{µX .U

′′

/X}) , act(S′′)(U ′
)) belongs to Rs (23)

Since act(S′′) = ?, from (23) we have:

(U ′′
{µX .U

′′

/X} , U ′
) belongs to R?, and thus to R (24)

Hence, reminding (19), we conclude that (µX .U
′′, U ′) = (U,U ′) satisfies rule [⩽`-µL];

38 Lightweight Session Programming in Scala

[⩽-µR]. We have S ⩽ S′ = µX .S
′′. The proof is symmetric to that for [⩽-µL] above:

1. we develop the unfoldings of S′ and U ′ (instead of S and U);
2. we conclude that the pair (U,U ′) satisfies rule [⩽`-µR].

For each pair (U,U ′) ∈ R!, there exists a corresponding pair (!(U ′), !(U)) ∈ Rs, and
thus there exist S,S′ such that JSK = !(U ′), JS′K = !(U) and S ⩽ S′. Hence, S,S′ must
be (possibly recursive) internal choices. We proceed by cases on the rule in Def. 7.2 whose
conclusion is S ⩽ S′:

[⩽-End] and [⩽-Ext]. These cases are impossible, because act(S) = act(S′) = !;
[⩽-Int]. We have S = ⊕i∈I∪J !li(Ti).Si and S′ = ⊕i∈I !li(T ′i).S′i; moreover, for all i ∈ I,
T ′i ⩽ Ti and Si ⩽ S

′
i — which implies S′i ⩽ Si. Therefore, we have:

∀i ∈ I ∶ (JT ′i K, JTiK) ∈Rt and (

r
S′i

z
,
q
Si

y
) ∈Rs (thus, both pairs belong to R)

By Theorem E.2, this implies:

∀i ∈ I ∶ (JT ′i K, JTiK) ∈Rt and (
q
S′i

y
, JSiK) ∈Rs (thus, both pairs belong to R) (25)

Now, we observe:

JSK = !(U ′) implies U ′ = [li_{p ∶ JTiK,c ∶ JSiK}]i∈I∪J

JS′K = !(U) implies U = [li_{p ∶ JT ′i K,c ∶
q
S′i

y
}]i∈I

(26)

Hence, from (26) and (25), we conclude that the pair (U,U ′) satisfies rule [⩽`-VR];
[⩽-µL]. The proof is similar to the case [⩽-µL] in the proof for the relation R? above,
except that:
1. we have act(S′′) = ! (instead of act(S′′) = ?);
2. in the step corresponding to (24), we use the relation R! (instead of R?);
[⩽-µR]. The proof is similar to the case [⩽-µR] in the proof for the relation R? above,
except for the two changes just mentioned (i.e., act(S′′) = ! and use of R!).

We can now conclude the proof for the Ô⇒ direction of the statement, by noticing
that ⩽` is the largest relation coinductively defined by the rules in Def. 7.4 — and therefore,
R ⊆ ⩽`. Hence, since S ⩽ S′ implies (JSK, JS′K) ∈ Rs ⊆ R ⊆ ⩽`, we conclude that S ⩽ S′

implies JSK ⩽` JS′K.
We now prove the ⇐Ô direction of the statement. Consider the relation R =Rs ∪Rt,

where:

Rs = { (S,S′) ∣ JSK ⩽` JS′K } Rt = { (T ,T ′) ∣ JT K ⩽` JT ′K }

We prove that R satisfies the coinductive rules obtained from Def. 7.2 by replacing each
occurrence of x ⩽ y with x R y (where x, y range over S and T). We develop the proof by
examining the elements of Rs and Rt.

For each pair (S,S′) ∈Rs, we proceed by cases on the rule in Def. 7.4 whose conclusion
is JSK ⩽` JS′K:

[⩽`-End]. Then, JSK = JS′K = ●, i.e. S = S′ = end. Hence, we conclude that the pair
(S,S′) satisfies rule [⩽-End];
[⩽`-In]. Then, there exist U,U ′ such that JSK = ?(U), JS′K = ?(U ′) and U ⩽` U

′. We
proceed by cases on the rule in Def. 7.4 whose conclusion is U ⩽` U

′:

Alceste Scalas, Nobuko Yoshida 39

[⩽`-VR]. We have:
U = [li_{p ∶ Vi,c ∶ Li}]i∈I U ′

= [li_{p ∶ T ′i ,c ∶ L′i}]i∈I∪J (27)
such that ∀i ∈ I ∶ Vi ⩽` V ′

i and Li ⩽` L
′
i (28)

From (27), by Def. 7.6, we obtain:
JSK = ?(U) implies S =

¯
i∈I

?li(Ti).Si (29)

∀i ∈ I ∶ ∃Ti, Si∶ JTiK = Vi and JSiK = Li (30)

JS′K = ?(U ′
) implies S′ =

¯
i∈I∪J

?li(T ′i).S
′
i (31)

∀i ∈ I ∪ J ∶ ∃T ′i , S
′
i∶ JT ′i K = V

′
i and JS′iK = L

′
i (32)

Therefore, from (28), (30) and (32) we know that for all i ∈ I, (Si, S
′
i) ∈ Rs and

(Ti, T
′
i) ∈Rt — i.e., both pairs belong to R. Hence, from (29) and (31), we conclude

that the pair (S,S′) satisfies rule [⩽-Ext];
[⩽`-µL]. We have U = µX .U

′′ — and thus, by Def. 7.6,
JSK = ?(U) = ?(µX .U ′′

) implies S = µX .S
′′ where JS′′Kµ

{act(S′′)(X)/X}
= U ′′ (33)

and thus, by Def. 7.6,

JS′′K{act(S′′)(X)/X} = act(S′′)(JS′′Kµ
{act(S′′)(X)/X}

) (34)

We notice that:

act(S) = act(S′′) = ? (35)

Moreover, by Lemma E.1, we get:

JS′′{µX .S′′/X}K = JS′′K{JµX.S′′K/X}

= JS′′K⎧⎪⎪⎪⎨⎪⎪⎪⎩
act(S′′)

⎛

⎜
⎜
⎜

⎝

µX.JS′′K
µ

{act(S′′)(X)/X}

⎞

⎟
⎟
⎟

⎠

/X
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= JS′′K{act(S′′)(X)/X}{
µX .JS′′Kµ

{act(S′′)(X)/X}/X}

(from (34)) = act(S′′)(JS′′Kµ
{act(S′′)(X)/X}

){µX .JS′′K
µ

{act(S′′)(X)/X}/X}

(from (33)) = act(S′′)(U ′′){µX .U
′′

/X}

= act(S′′)(U ′′{µX .U
′′

/X})

(from (35)) = ?(U ′′{µX .U
′′

/X})

(36)

Now, we observe that from the premise of rule [⩽`-µL], we also have:

U ′′
{µX .U

′′

/X} ⩽` U
′ (37)

Since ⩽` is the largest relation coinductively defined by the rules in Def. 7.4, by [⩽`-In]

and (37) we get:

?(U ′′
{µX .U

′′

/X}) ⩽` ?(U ′
) (38)

Therefore, from (36), we know that the pair (S′′{µX .S
′′

/X}, S′) belongs to Rs, and
thus to R. Hence, we conclude that the pair (S,S′) = (µX .S

′′, S′) satisfies rule [⩽-µL].
[⩽`-µR]. We have U ⩽` U

′ = µX .U
′′. The proof is symmetric to that for [⩽`-µL] above:

40 Lightweight Session Programming in Scala

1. we develop the unfoldings of U ′ and S′ (instead of U and S);
2. we conclude that the pair (S,S′) satisfies rule [⩽-µR];

[⩽`-Out]. Then, there exist U,U ′ such that JSK = !(U), JS′K = !(U ′) and U ′ ⩽` U . We
proceed by cases on the rule in Def. 7.4 whose conclusion is U ′ ⩽` U :

[⩽`-VR]. We have:
U = [li_{p ∶ Vi,c ∶ Li}]i∈I∪J U ′

= [li_{p ∶ T ′i ,c ∶ L′i}]i∈I (39)
such that ∀i ∈ I ∶ V ′

i ⩽` Vi and L′i ⩽` Li, i.e. Li ⩽` L′i (40)
From (39), by Def. 7.6, we obtain:

JSK = !(U) implies S = ⊕
i∈I∪J

!li(Ti).Si (41)

∀i ∈ I ∪ J ∶ ∃Ti, Si∶ JTiK = Vi and JSiK = Li (42)

JS′K = !(U ′
) implies S′ =⊕

i∈I
!li(T ′i).S′i (43)

∀i ∈ I ∶ ∃T ′i , S
′
i∶ JT ′i K = V

′
i and JS′iK = L′i (44)

Therefore, from (40), (42) and (44) we know that for all i ∈ I, (Si, S
′
i) ∈ Rs and

(T ′i , Ti) ∈Rt — i.e., both pairs belong to R. Hence, from (41) and (43), we conclude
that the pair (S,S′) satisfies rule [⩽-Int];
[⩽`-µL]. The proof is similar to the sub-case [⩽`-µL] in the proof for case [⩽`-In] above,
except that:
1. we have act(S′′) = ! (instead of act(S′′) = ?);
2. we reach the step corresponding to (38) via rule [⩽`-Out] (instead of [⩽`-In]);
[⩽`-µR]. The proof is similar to the sub-case [⩽`-µR] in the proof for case [⩽`-In] above,
except for the two changes just mentioned (i.e., act(S′′) = ! and use of [⩽`-Out]).

For each pair (T ,T ′) ∈Rt, we proceed by cases on the rule in Def. 7.4 whose conclusion
is JT K ⩽ JT ′K:

[⩽`-B]. Then, JT K ⩽B JT ′K, which means JT K, JT ′K ∈ B. Therefore, by Def. 7.6, we can
only have JT K = T and JT ′K = T ′. Hence, we conclude that the pair (JT K, JT ′K) satisfies
rule [⩽-B];
in all the other cases, JT K and JT ′K must have the form ?(⋅), !(⋅) or ● — which, by
Def. 7.6, can only be originated if, for some S, and S′, T = S and T ′ = S′. Thus, we also
have (T ,T ′) ∈Rs: the proof falls back into the case above.

We can now conclude the proof for the ⇐Ô direction of the statement, by noticing
that ⩽ is the largest relation coinductively defined by the rules in Def. 7.2 — and therefore,
R ⊆ ⩽. Hence, since JSK ⩽` JS′K implies (S,S′) ∈ Rs ⊆ R ⊆ ⩽, we conclude that JSK ⩽` JS′K
implies S ⩽ S′. ◂

▸ Theorem 7.7 (Encoding preserves duality, subtyping).
q
S

y
= JSK, and S ⩽ S′ iff JSK⩽` JS′K.

Proof. Direct consequence of Theorem E.2 and Theorem E.3. ◂

F Scala types

▸ Remark F.1. Note that when encoding S into a linear type, Def. 7.3 inductively maps each
internal/external choice subterm of S to some unique variant type. Therefore, a nominal
environment N which is suitable for S implicitly gives a distinct name to all such variants,
and JN K allows to retrieve it.

Alceste Scalas, Nobuko Yoshida 41

▸ Proposition F.2. If N is suitable for S, then JN K is suitable for JSK and
q
S

y
.

Proof. Follows from Remark F.1. ◂

▸ Lemma F.3. ⟪S⟫N = ⟪S⟫N .

Proof. By Def. 7.11, Theorem E.2 and Def. 7.10, ⟪S⟫N = k
q
S

y
p
JN K

S

= lJSKq
JN KS

. Then, by
Def. 7.5, case analysis on Def. 7.9 (first three cases) and applying duality for In/Out/Unit,
we get lJSKq

JN KS
= jJSKoJN KS

. By Def. 7.11, we conclude jJSKoJN KS
= ⟪S⟫N . ◂

▸ Lemma F.4. prot⟪S⟫N = prot⟪S⟫N .

Proof. We have:

prot⟪S⟫N = jcarr(JSK)oJN KS
(by Def. 7.11)

= lcarr(JSK)q
JN KS

(by Def. 7.5 and Def. 7.3)
= kcarr(

q
S

y
)p

JN KS
(by Theorem E.2)

= kcarr(
q
S

y
)p

JN K
S

(by Def. 7.10 and item (iv) of Def. 7.8)
= prot⟪S⟫N (by Def. 7.11)

◂

▸ Theorem 7.13. For all S, ⟪S⟫N = ⟪S⟫N and prot⟪S⟫N = prot⟪S⟫N .

Proof. Direct consequence Lemma F.3 and Lemma F.4. ◂

F.1 Subtyping in session types and Scala
We define the subtyping relation <∶ in Scala similarly to [24], i.e., through a class table
mapping each class name to its declaration. In our case, we consider class tables whose
entries have 3 possible forms, corresponding to the declarations generated by Def. 7.918:

A sealed abstract class A or B case class B(...) extends C or D case class D(...)

▸ Definition F.5 (Scala subtyping). Given a class table CT, <∶ is the smallest relation that
(i) contains the reflexive and transitive closure of the immediate subclass relation given by
the extends clauses in CT, and (ii) is closed forward under the following rules:

A <∶ B
In[A] <∶ In[B]

[<∶-In] B <∶ A
Out[A] <∶ Out[B]

[<∶-Out]
Unit <∶ Unit

[<∶-Unit]
Unit <∶ AnyVal

[<∶-AnyVal]

A /∈ {Unit,Nothing}
Null <∶ A [<∶-Null]

A /∈ {Unit,Any,AnyVal}
A <∶ AnyRef

[<∶-AnyRef]

Nothing <∶ A [<∶-Nothing]
A <∶ Any

[<∶-Any]

We write A ≨∶ B iff A <∶ B and A ≠ B. We write ∶> (resp. ∶≩) for the inverse of <∶ (resp. ≨∶).

Rule [<∶-In] in Def. F.5 reflects the covariance of In[+A], and [<∶-Out] reflects the con-
travariance of Out[-A], as per Fig. 6 (left). The rest of the rules reflect the Scala unified
types structure [28], shown in Fig. 12: a complete lattice with Any as top element, Nothing at
bottom element, AnyVal as LUB of all value types (in this case, just Unit), and AnyRef/Null

42 Lightweight Session Programming in Scala

Figure 12 Scala types structure (from [28]).

respectively as LUB/GLB of all reference types (in this case, In[⋅], Out[⋅], and all the classes
declared in CT).

▸ Example F.6. Consider the following class table:

A sealed abstract class A
B1 case class B1(...) extends A
B2 case class B2(...) extends A
C case class C(...)

By Def. F.5, it yields A <∶ A, B1 <∶ B1, B2 <∶ B2, B1 <∶ A, B2 <∶ A, C <∶ C. It also yields
Unit <∶ Unit (by [<∶-Unit]), In[B1] <∶ In[A] (by [<∶-In]), and Out[A] <∶ Out[B1] (by [<∶-Out]).
Moreover, we get Nothing <∶ A (by [<∶-Nothing]), In[Nothing] <∶ In[A] (by [<∶-Nothing] and
[<∶-In]), A <∶ Any (by [<∶-Any]), and Out[A] <∶ Out[Any] (by [<∶-Any] and [<∶-Out]).

▸ Notation F.7. We write A ∈ prot⟪S⟫N iff A is in the domain of the class table of prot⟪S⟫N .
In Theorem 7.14 below, we intend <∶ to be based on the class table given by prot⟪S⟫N .

▸ Theorem 7.14. For all A, S,N , A <∶ ⟪S⟫N implies one of the following:
(a1) S = end, and: A <∶ Unit and ∀B∶A /∈ {In[B],Out[B]};
(a2) act(S) = ?, and: A <∶ Null or ∃B∶A = In[B] and (Null ≨∶ B implies ∃S′,N ′ ∶ A = ⟪S′⟫N ′ and S′ ⩽ S);
(a3) act(S) = !, and: A <∶ Null or ∃B∶A = Out[B] and (B ≨∶ AnyRef implies A = ⟪S⟫N).
Moreover, for all A, S,N , ⟪S⟫N <∶ A implies one of the following:

18To avoid cluttering the notation, we are not representing the (curried) class fields: they do not influence
the subtyping relation.

Alceste Scalas, Nobuko Yoshida 43

(b1) S = end, and: Unit <∶ A and ∀B∶A /∈ {In[B],Out[B]};
(b2) act(S) = ?, and: AnyRef <∶ A or ∃B∶A = In[B] and (B ≨∶ AnyRef implies A = ⟪S⟫N);
(b3) act(S) = !, and: AnyRef <∶ A or ∃B∶A = Out[B] and (Null ≨∶ B implies ∃S′,N ′ ∶ A = ⟪S′⟫N ′ and S ⩽ S′).

Proof. Note that the leftmost clauses of a1–a3 and b1–b3 are mutually exclusive, and cover
all possible shapes of S: end, or (possibly recursive) external/internal choice.

For the first part of the statement, assume A <∶ ⟪S⟫N :

a1. if S = end, then by Def. 7.11, ⟪S⟫N = Unit. The rest follows from Def. F.5;
a2. if act(S) = ?, then S is a (possibly recursive) external choice, and by Def. 7.11, ⟪S⟫N =

In[C], for some C occurring in the class table given by prot⟪S⟫N . Moreover, by Def. F.5,
A <∶ ⟪S⟫N can only hold either by rule [<∶-In], or [<∶-Null]/[<∶-Nothing]. The latter two cases
give us A <∶ Null. Otherwise, when A <∶ ⟪S⟫N holds by [<∶-In], we have A = In[A1], for
some A1 such that A1 <∶ C. Now, we prove the existential quantification on B in the
statement by letting B = A1. We get B <∶ C, and assuming Null ≨∶ B, we proceed by cases
on the declaration of C given by prot⟪S⟫N :

case class C(...). Then, besides Null and Nothing, the only subtype of C is C
itself, and thus B = C, and we get A = In[C] = ⟪S⟫N . By letting S′ = S and N ′ = N ,
we conclude A = ⟪S′⟫N ′ and S′ ⩽ S (by reflexivity of ⩽);
case class C(...) extends D (for some D). Again, C is the only subtype of itself
(besides Null and Nothing), and we conclude with S′ = S and N ′ = N as above;
sealed abstract class C. In this case, B’s declaration can only be:

case class B(...) extends C

and by Def. 7.11 and Def. 7.9, this combination is only obtained when JSK = ?(U), with
S being a (possibly recursive) non-singleton external choice, and U being a (possibly
recursive) non-singleton variant with a case B_{p ∶ JT1K,c ∶ JS1K}, corresponding to a
branch ?B(T1).S1 of S. Now, we can define S′ by removing the other external choice
branches of S, and define N ′ by reflecting the pruning on the elements of dom(N):
we obtain S′ ⩽ S (by [⩽-Ext], possibly preceded by applications of [⩽-µL]/[⩽-µR]), and
A = ⟪S′⟫N ′ ;

a3. if act(S) = !, then S is a (possibly recursive) internal choice, and by Def. 7.11, ⟪S⟫N =

Out[C], for some C occurring in the class table given by prot⟪S⟫N . Moreover, by Def. F.5,
A <∶ ⟪S⟫N can only hold either by rule [<∶-Out], or [<∶-Null]/[<∶-Nothing]. The latter two cases
give us A <∶ Null. Otherwise, when A <∶ ⟪S⟫N holds by [<∶-Out], we have A = Out[A1],
for some A1 such that C <∶ A1. Now, we prove the existential quantification on B in the
statement by letting B = A1. We get C <∶ B, and assuming B ≨∶ AnyRef, we proceed by
cases on the declaration of C given by prot⟪S⟫N :

case class C(...). Then, besides AnyRef and Any, the only supertype of C is C
itself, and thus B = C, and we get A = Out[C] = ⟪S⟫N . By letting S′ = S and N ′ = N ,
we conclude A = ⟪S′⟫N ′ and S′ ⩽ S (by reflexivity of ⩽);
case class C(...) extends D (for some D). This case is absurd: it could only be
obtained from prot⟪S⟫N if C is a label of some non-singleton internal choice mapped
to D in N , i.e. C appears as a proper subterm of S; but then, we must conclude
⟪S⟫N ≠ Out[C] (contradiction);
sealed abstract class C. Then, C is the only supertype of itself (besides AnyRef
and Any), and we conclude with S′ = S and N ′ = N as above.

We now prove the second part of the statement. Assume ⟪S⟫N <∶ A:

44 Lightweight Session Programming in Scala

b1. if S = end, then by Def. 7.11, ⟪S⟫N = Unit. The rest follows from Def. F.5;
b2. if act(S) = ?, then S is a (possibly recursive) external choice, and by Def. 7.11,

⟪S⟫N = In[C], for some C occurring in the class table given by prot⟪S⟫N . Moreover,
by Def. F.5, ⟪S⟫N <∶ A can only hold either by rule [<∶-In], or [<∶-AnyRef]/[<∶-Any]. The latter
two cases give us A <∶ AnyRef. Otherwise, when ⟪S⟫N <∶ A holds by [<∶-In], we have
A = In[A1], for some A1 such that C <∶ A1. Now, we prove the existential quantification
on B in the statement by letting B = A1. We get C <∶ B, and assuming B ≨∶ AnyRef, we
proceed by cases on the declaration of C given by prot⟪S⟫N :

case class C(...). Then, besides AnyRef and Any, the only supertype of C is C
itself, and thus B = C, and we get A = In[C] = ⟪S⟫N . By letting S′ = S and N ′ = N ,
we conclude A = ⟪S′⟫N ′ and S ⩽ S′ (by reflexivity of ⩽);
case class C(...) extends D (for some D). This case is absurd: it could only be
obtained from prot⟪S⟫N if C is a label of some non-singleton external choice mapped
to D in N , i.e. C appears as a proper subterm of S; but then, we must conclude
⟪S⟫N ≠ In[C] (contradiction);
sealed abstract class C. Then, C is the only supertype of itself (besides AnyRef
and Any), and we conclude with S′ = S and N ′ = N as above.

b3. if act(S) = !, then S is a (possibly recursive) internal choice, and by Def. 7.11,
⟪S⟫N = Out[C], for some C occurring in the class table given by prot⟪S⟫N . Moreover,
by Def. F.5, ⟪S⟫N <∶ A can only hold either by rule [<∶-Out], or [<∶-AnyRef]/[<∶-Any]. The latter
two cases give us AnyRef <∶ A. Otherwise, when ⟪S⟫N <∶ A holds by [<∶-Out], we have
A = Out[A1], for some A1 such that A1 <∶ C. Now, we prove the existential quantification
on B in the statement by letting B = A1. We get B <∶ C, and assuming Null ≨∶ B, we
proceed by cases on the declaration of C given by prot⟪S⟫N :

case class C(...). Then, besides Null and Nothing, the only subtype of C is C
itself, and thus B = C, and we get A = Out[C] = ⟪S⟫N . By letting S′ = S and N ′ = N ,
we conclude A = ⟪S′⟫N ′ and S ⩽ S′ (by reflexivity of ⩽);
case class C(...) extends D (for some D). Again, C is the only subtype of itself
(besides Null and Nothing), and we conclude with S′ = S and N ′ = N as above;
sealed abstract class C. In this case, B’s declaration can only be:

case class B(...) extends C

and by Def. 7.11 and Def. 7.9, this combination is only obtained when JSK = ?(U), with
S being a (possibly recursive) non-singleton internal choice, and U being a (possibly
recursive) non-singleton variant with a case B_{p ∶ JT1K,c ∶ JS1K}, corresponding to a
selection !B(T1).S1 of S. Now, we can define S′ by removing the other internal choice
branches of S, and define N ′ by reflecting the pruning on the elements of dom(N):
we obtain S ⩽ S′ (by [⩽-Int], possibly preceded by applications of [⩽-µL]/[⩽-µR]), and
A = ⟪S′⟫N ′ .

◂

G Related and future work

We give a more detailed comparison between our work and [35].
The main similarities are that both works are based on [8], and overcome the lack of

static linearity guarantees in the host language via runtime checks, and focus on session
safety and easy-to-use APIs.

Alceste Scalas, Nobuko Yoshida 45

Technically, [35] focuses on structural types in an equi-recursive, coinductive framework;
as we target Scala’s nominal type system and we want to extract CPS protocol classes, we
need a more delicate treatment of recursion. [35] focuses on duality (with Theorem E.2
as common result), while we address subtyping more thoroughly. For API design, [35]
focuses on type inference in OCaml, while we deal with its limited availability in Scala.
[35] implements ad hoc runtime linearity checks, while we shape lchannels around Scala’s
Promises/Futures, trying to leverage a notion of “linear” usage that is already familiar to
Scala programmers. [35] adopts from [14] the idea of send/receive and select/branch oper-
ations returning continuation channels; instead, we merge send/select and receive/branch
(with a simpler API for n-ary choices) and represent continuations as part of CPS messages
(providing a natural form of session delegation, see Example 4.3), with a simplified API
(§ 4.3).

	Introduction and motivation
	Programming with session types: background and challenges
	Background: binary session types in a nutshell
	Background: safe, deadlock-free interaction via duality/subtyping
	From session-typed to linearly-typed programs
	From session types to session programming in Scala: an outline

	scalaColorlchannels, a (small) library for type-safe interaction
	The programmer interface
	A local implementation

	Session programming with scalaColorlchannels and CPS protocols
	Representing sequential inputs/outputs
	A development approach for session-based applications
	Interlude: automating channel creation
	Examples

	Optimisations, transport abstraction and error handling
	Evaluation
	A case study: application server with frontend
	The protocols
	The implementation
	Lessons learned

	Benchmarks

	A formal foundation
	Session types and subtyping
	Linear I/O types (with records and variants)
	From session types to Scala types

	Related work
	Conclusions
	scalaColorlchannels: further comments and advanced features
	Stream-based channels
	Medium-parametric channel endpoints

	Evaluation
	Case study
	Benchmarks

	Session types
	Linear types
	Proofs for sec:linear-types
	Scala types
	Subtyping in session types and Scala

	Related and future work

