
Meeting Deadlines Together
Laura Bocchi1, Julien Lange2, and Nobuko Yoshida2

1 University of Kent
2 Imperial College London

Abstract
This paper studies safety, progress, and non-zeno properties of Communicating Timed Automata
(CTAs), which are timed automata (TA) extended with unbounded communication channels,
and presents a procedure to build timed global specifications from systems of CTAs. We define
safety and progress properties for CTAs by extending properties studied in communicating finite-
state machines to the timed setting. We then study non-zenoness for CTAs; our aim is to prevent
scenarios in which the participants have to execute an infinite number of actions in a finite amount
of time. We propose sound and decidable conditions for these properties, and demonstrate the
practicality of our approach with an implementation and experimental evaluations of our theory.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Program

Keywords and phrases timed automata, multiparty session types, global specification

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Meeting deadlines is part of our everyday life; this is also the case for distributed software
systems that have real-time constraints, such as e-business and financial systems, where
exchanges of agreements and data transmissions need to be completed within specified time-
frames. Guaranteeing that a single entity will finish its assigned task within an upcoming
deadline is a crucial requirement that is generally difficult to attain. It is even harder to ensure
that several, distributed, and interdependent entities will work together in a timely fashion to
meet each other’s deadlines. To model such real-time distributed behaviours, communicating
timed automata (CTAs) [17] have been introduced as an extension of communicating finite-
state machines (CFSMs) [9] with time constraints. A system of CTAs consists of several
automata that exchange messages through unbounded FIFO channels and must comply with
time constraints on emission/reception of messages. These two features (unbounded channels
and time) make CTAs difficult to verify, e.g., reachability is undecidable in general [12].

This paper tackles the following two shortcomings of the current state-of-the-art of CTAs.
First, to the best of our knowledge, safety and progress properties, such as absence of
deadlocks and unspecified reception (type) errors, which are standard in the literature on
CFSMs [10], and essential for distributed systems, have not been studied in the context
of CTAs. Moreover, customary properties for TAs such as time-divergence [2] and non-
zenoness [7, 21] (preventing that some participant’s only possible way forward is by firing
actions at increasingly short intervals of time) have not been investigated for CTAs.

Second, while global specifications such as message sequent charts (MSC) and choreograph-
ies [8,16] are useful to model protocols from a global viewpoint, there has not been any work
to build global specifications from CTAs. The top-down approach [6] alone, which requires a
preexisting global specification, is not satisfactory in agile development life-cycles [23], in
refinement and reverse-engineering of existing systems, or to compose real-time distributed
components, possibly dynamically (see [14,18,19]).

© Laura Bocchi, Julien Lange, and Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Meeting Deadlines Together

U
U

se
r

U1

U0

U2

UW!task
x ă 1
x :“ 0

AU?result
x ď 15

W

W
or

ke
r

W0 W1 W2
UW?task
y “ 1

y :“ 0, y1 :“ 0

WA!data
y ă 1^ y1

ă 10
y :“ 0

WA!stop
y ă 1

A

A
gg

re
ga

to
r

A0 A1 A2

WA?data
z “ 1
z :“ 0

WA?stop
z “ 1
z :“ 0

AU!result
z ď 5

Figure 1 Scheduled Task Protocol (System Sst)

This work introduces classical properties of CFSMs and TAs to the world of CTAs,
and investigates the interplay between asynchronous communications through unbounded
channels and time constraints. We define the classes of CTAs that enjoy four properties –
safety, progress, non-zenoness, and eventual reception – and give a sound decision procedure
for checking whether a system of CTAs belongs to these classes. This procedure does
not rely on any other information than the CTAs themselves. Interestingly, a property
of CFSMs called multiparty compatibility (MC) [14], which characterises a sound and
complete correspondence with multiparty session types in the untimed setting [16], soundly
characterises safe CTAs and offers a basis for decidable decision procedures for progress and
non-zenoness in the timed setting. We give: (i) a sound characterisation for progress by
checking the satisfiability of first order logic formulae (thus verifiable by generic SMT solvers),
and (ii) a sound characterisation of non-zenoness by using a synchronous execution of CTAs.
Eventual reception follows from (i) and (ii). In addition, we present an algorithm to build a
timed global type [6] from CTAs, whose traces are equivalent to the original system. Thus,
if a system validates some of the properties discussed above, then the CTAs obtained by
projecting its timed global type onto its participants will preserve these properties.

The system Sst in Fig. 1 (Scheduled Task Protocol) will be used to illustrate our approach
throughout the paper. Sst consists of three participants (or machines): a user U, a worker
W, and an aggregator A, who exchange messages through unbounded FIFO buffers. Each
machine is equipped with one or more clocks, initially set to 0 and possibly reset during the
protocol. Time elapses at the same pace for all clocks, which is a standard assumption [17].
The protocol is as follows: U sends a task to W, W progressively sends intermediary data to A,
and finally A sends the aggregated result to U. The time constraints are:

U must send a task to W within one time unit, reset its clock x, and expects to receive the
result within 15 time units.
W must consume U’s task message at time 1, reset its clocks y and y1, and repeatedly
send data to A, waiting less than 1 time unit between each emission (modelled by the
constraint and reset on y). The overall iteration cannot last more than 10 time units
(modelled by the constraint on y1, which is not reset in the loop). When W has finished, it
must send a notification stop to A.
A must read intermediary data every 1 time unit, reset each time its clock z, and send
the overall result to U within 5 time units after receiving stop.

This example, albeit small, models a complex interaction where each machine has its own,
interdependent, deadlines; e.g., U relies on the other machines’ deadlines to receive the final
result within 15 time units. Note that the channel between W and A is unbounded: W can send to
A an arbitrary number of messages before A receives them, cf. WA!datapy ă 1^y1 ă 10, y :“ 0q.

Contribution and synopsis In the rest of the paper, we give several conditions that guarantee
that no participant misses its deadlines, that every message sent is eventually received on

L. Bocchi, J. Lange, and N. Yoshida 3

time, and that no participant is forced to perform actions infinitely fast, i.e., forced into a
zeno behaviour. In § 2 we recall basic definitions on CTAs. In § 3 we extend the standard
safety properties of CFSMs to the timed setting, and show that multiparty compatibility
(MC) is a sound condition for safety (Theorem 6). MC CTAs still allow undesirable scenarios
when, e.g., (1) the system gets stuck because of unmeetable deadlines, (2) the system’s
only possibility to meet its deadlines is through zeno behaviours, or (3) sent messages are
never received. We give sound and decidable conditions to rule out (1) in § 4 (Theorem 13)
and (2-3) in § 5 (Theorem 17 and Theorem 19). In § 6, we discuss the applications of our
theory and its implementation. The work in [6] studies a correspondence between timed
local types (projected from timed global types) and CTAs, focusing on type-checking timed
π-calculus processes. The present work studies CTAs directly, i.e., without relying on a
priori global knowledge of the system, and gives more general conditions for safety, progress,
and non-zenoness. None of the previous works [14,18,19] on building global specifications
from local ones caters for time constraints. Unlike existing work on the properties of
CTAs (e.g., reachability) our results do not set limitations to channel size or to network
topologies [12,17]. We discuss related work further in § 7. The proofs, additional material,
and the implementation are available online [3].

2 Communicating Timed Automata

We introduce communicating timed automata (CTA) following definitions from [14,17]. Fix
a finite setP of participants (ranged over by p, q, r, s, etc.). Let A be a finite alphabet of
messages ranged over by a, b, etc. The set of finite words on A is denoted by A˚, ww1 is the
concatenation of w and w1, and ε is the empty word (overloaded on any alphabet). The set
of channels is C def

“ tpq
ˇ

ˇ p, q PP and p ‰ qu. Given a (finite) set of clocks X (ranged over by
x, y, etc.), the set of actions (ranged over by `) is ActX

def
“ C ˆ t!, ?u ˆ Aˆ ΦpX q ˆ 2X , and

the set of guards (ranged over by g) ΦpX q is
g ::“ true | x ď c | c ď x | g | g1 ^ g2

where c ranges over constants in Qě0, and from which we derive the usual abbreviations.
We write fcpgq for the set of clocks in g and sr!apg, λq or sr?apg, λq for an element of ActX .
Action sr!apg, λq says that s sends a message a to r, provided that guard g is satisfied, and
resets the clocks in λ Ď X ; the dual receiving action is sr?apg, λq. Given ` “ sr!apg, λq or
` “ sr?apg, λq, we define: msgp`q “ a, guardp`q “ g, and resetp`q “ λ. We define the subject
of an action: subjppr!apg, λqq “ subjpsp?apg, λqq def“ p.

A communicating timed automaton, or machine, is a finite transition system given by a
tuple M “ pQ, q0,X , δq where Q is a finite set of states, q0 P Q is the initial state, X is a set
of clocks, and δ Ď QˆActX ˆQ is a set of transitions. We write q `

Ýã q1 when pq, `, q1q P δ.
A machine M “ pQ, q0,X , δq is deterministic if for all states q P Q and all actions

`, `1 P ActX , if pq, `, q1q, pq, `1, q2q P δ and msgp`q “ msgp`1q, then q1 “ q2 and ` “ `1. A
state q P Q is: final if it has no outgoing transitions; sending (resp. receiving) if it is not
final and each of its outgoing transitions is of the form sr!apg, λq (resp. sr?apg, λq); and
mixed if it is neither final, sending, nor receiving. We say that q is directed if it contains
only sending/receiving actions to/from the same participant. Hereafter, we only consider
deterministic machines, whose states are directed and not mixed. These assumptions, adapted
from [14], ensure that a machine corresponds to a syntactic local session type [16]. We discuss
how to lift some of these restrictions in § 7.

A timed communicating system consists of a finite set of machines and a set of queues (one

4 Meeting Deadlines Together

for each channel) used for asynchronous message passing. Given a valuation ν : X Ñ Rě0 of
the clocks in X , ν |ù g denotes that the guard g is satisfied by ν and λpνq denotes a valuation
where all clocks in λ are set to 0 (reset) and clocks not in λ keep their values in ν.

§ Definition 1 (Timed communicating system). A timed communicating system (or system),
is a tuple S “ pMpqpPP where each Mp “ pQp, q0p,Xp, δpq is a CTA and for all p ‰ q P
P : Xp X Xq “ H. A configuration of S is a triple s “ p~q; ~w; νq where: ~q “ pqpqpPP is the
control state and qp P Qp is the local state of machine Mp; ~w “ pwpqqpqPC with wpq P A˚ is
a vector of queues; ν :

Ť

pPP Xp Ñ Rě0 is a clock valuation. The initial configuration of S
is s0 “ p~q0; ~ε; ν0q with ~q0 “ pq0pqpPP, ~ε being the vector of empty queues, and ν0pxq “ 0 for
each clock x P

Ť

pPP Xp. ˛

Hereafter, we fix a machine Mp “ pQp, q0p,Xp, δpq for each participant p PP (assuming
that @p PP : pq, `, q1q P δp ùñ subjp`q “ p), and let S “ pMpqpPP be the corresponding
system. We write X for

Ť

pPP Xp and ν ` t for the valuation mapping each x P X to νpxq ` t.
The definition below is from [17, Definition 1], omitting internal transitions.

§ Definition 2 (Reachable configuration). Configuration s1 “ p~q1; ~w1; ν1q is reachable from
configuration s “ p~q; ~w; νq by firing the transition α, written s αÝÑs1 (or sÝÑs1 when the label
is immaterial), if either:
1. pqs, sr!apg, λq, q1sq P δs and (a) q1p “ qp for all p ‰ s; (b) w1sr “ wsra and w1pq “ wpq for

all pq ‰ sr; (c) ν1 “ λpνq; (d) α “ sr!apg, λq, and ν |ù g;
2. pqr, sr?apg, λq, q1rq P δr and (a) q1p “ qp for all p ‰ r; (b) wsr “ aw1sr and w1pq “ wpq for

all pq ‰ sr; (c) ν1 “ λpνq; (d) α “ sr?apg, λq and ν |ù g; or
3. α “ t P Rě0, ν1 “ ν ` t, w1pq “ wpq for all pq P C, and q1p “ qp for all p PP.
We let ρ range over sequences of labels α1 ¨ ¨ ¨αk and write ÝÑ˚ for the reflexive transitive
closure of ÝÑ. The reachability set of S is RSpSq def“ ts

ˇ

ˇ s0 ÝÑ
˚ su. ˛

Condition (1) allows a machine s to put a message a on queue sr, if the time constraints
in g are satisfied by ν; dually, (2) allows r to consume a message from the queue, if g is
satisfied; and (3) models the elapsing of time (or a delay).

3 Safety in CTAs

This section defines safe CTAs and gives a sufficient condition for safety, called multiparty
compatibility (MC) [14], in the timed setting. Here, we present a new approach based
on synchronous transition systems (STS); the STS is also useful for defining progress and
non-zeno properties in § 4.

Let n range over vectors of local states; and e range over events, which are elements of
the set C ˆAˆΦpX q ˆ 2X ˆΦpX q ˆ 2X , and write psÑr : a; gs, λs; gr, λrq for the event in
which s sends message a to r, with s (resp. r) having guard gs (resp. gr) and resets λs (resp.
λr). We introduce the synchronous transition system of S, following [19].

§ Definition 3 (Synchronous transition system). The synchronous transition system of S,
written STSpSq, is a tuple pN,n0, ãÝÑ, Eq such that:

ãÝÑ is the relation defined as n e
ãÝÑ n1 with e “ psÑ r : a; gs, λs; gr, λrq iff n “ ~q, n1 “

~q 1, qs
sr!apgs,λsq
ÝÝÝÝÝÝÝã q1s, qr

sr?apgr,λrq
ÝÝÝÝÝÝÝã q1r, and @p P Pzts, ru : qp “ q1p (write ãÝÑ when e is

unimportant and ãÝÑ˚ for the reflexive and transitive closure of ãÝÑ);
n0 “ ~q0 is the initial node; N “ tn

ˇ

ˇ n0ãÝÑ˚nu is the (finite) set of nodes; and E “

te
ˇ

ˇ Dn, n1 P N and n e
ãÝÑ n1u is the set of events.

L. Bocchi, J. Lange, and N. Yoshida 5

We write n1
e1¨¨¨ek
ãÝÝÑ nk`1, when, for some n2, . . . , nk P N , n1

e1
ãÝÑ n2 ¨ ¨ ¨nk

ek
ãÝÑ nk`1. Let ϕ range

over (possibly empty) sequences of events e1 ¨ ¨ ¨ ek, and ε denote the empty sequence. ˛

The STS of the Scheduled Task Protocol (Sst) is given in Fig. 2; essentially, it models all
the synchronous executions of Sst. In the following, we fix STSpSq “ pN,n0, ãÝÑ, Eq.

Given e “ psÑr : a; gs, λs; gr, λrq, we define sidpeq def“ s, ridpeq def“ r, and idpeq def“ ts, ru.
The projection of e on p (written eçp) is given by: psÑr : a; gs, λs; gr, λrqçs“ sr!apgs, λsq;
psÑr : a; gs, λs; gr, λrqçr“ sr?apgr, λrq; and psÑr : a; gs, λs; gr, λrqçp“ ε, if pRts, ru. We
extend ϕçp to sequences of events and, given n P N , define idspnq def“

Ť

tidpeq
ˇ

ˇ nãÝÑ˚ e
ãÝÑu.

§ Definition 4 (Multiparty compatibility (MC)). System S is multiparty compatible if for all
p PP, for all q P Qp, and for all n “ ~q P N , if qp “ q, then
1. if q is a sending state, then @pq, `, q1q P δp : Dϕ, De P E : n

ϕ¨e
ãÝÑ ^ eçp“ ` ^ ϕçp“ ε;

2. if q is a receiving state, then Dpq, `, q1q P δp : Dϕ, De P E : n
ϕ¨e
ãÝÑ ^ eçp“ ` ^ ϕçp“ ε. ˛

Intuitively, condition (1) ensures that for every sending state, all messages that can be
sent can also be received, while (2) guarantees that, for every receiving state, at least one
transition will be eventually fireable, i.e., an expected message will eventually be received.
System Sst, in Fig. 1, is multiparty compatible.

pU0, W0, A0q pU1, W1, A0q

pU1, W2, A1qpU2, W2, A2q

pUÑW : task; x ă 1, txu; y “ 1, ty, y1uq

pWÑA : stop; y ă 1,H; z “ 1, tzuq

pAÑU : result; z ď 5,H; x ď 15,Hq

pWÑA : data; y ă 1^ y1 ă 10, tyu; z “ 1, tzuq

Figure 2 STS for Scheduled Task, cf. Fig. 1

Observe that STSpSq and MC do not ad-
dress time constraints. In fact, STSpSq might
include interactions forbidden by time con-
straints. These can be ruled out at a later
stage when analysing time properties in § 4.
We deliberately kept communication and time
properties separated, so that we can provide
simpler and modular definitions in § 7. Cru-
cially, MC guarantees that any asynchronous
execution can be mapped to a path in STSpSq,
i.e., it can be simulated by STSpSq.

We recall two types of errors from the CFSM model, which are ruled out by MC also
in the timed setting. Let s “ p~q; ~w; νq be a configuration of a system S; s is a deadlock
configuration [10, Def. 12] if ~w “ ~ε, there is r PP such that qr is a receiving state, and for
every p PP, qp is a receiving or final state, i.e., all machines are blocked waiting for messages;
and s is an orphan message configuration if all qp P ~q are final but ~w ‰ ~ε, i.e., there is
at least a non-empty buffer and all the machines are in a final state.

§ Definition 5 (Safe system). S is safe if for all s P RSpSq, s is not a deadlock, nor an orphan
message configuration. ˛

§ Theorem 6 (Safety). If S is multiparty compatible, then it is safe.

The proof follows from the fact that piq MC guarantees safety in CFSMs [14] and piiq time
constraints imply that a subset of the configurations reachable in the untimed setting are
reachable in the timed setting (modulo clock valuations). Thus, if there is a deadlock or an
orphan message configuration in the timed setting, there is one in the untimed setting, which
contradicts the results in [14].

The projection STSpSqçp of a synchronous transition system STSpSq on a machine p is
given by substituting each event e P E with its projection eçp, then minimising the automaton
w.r.t. language equivalence. For example, the projections of STSpSq onto U, W, and A are
isomorphic to the system Sst in Fig. 1. Below „ denotes the standard timed bisimulation [15].

6 Meeting Deadlines Together

§ Theorem 7 (Equivalence). If S “ pMpqpPP is MC then S „ pSTSpSqçpqpPP.

Theorem 7 says that the behaviour of the original system is preserved by STSpSq, this result
is crucial to be able to construct a global specification that is equivalent to a system of CTAs.
It follows from the fact that, (i) if the system is MC, then all the machine’s behaviour is
preserved except for the receive actions that are never executed; and (ii) since we assume
that the machines are deterministic w.r.t. messages, the projections of STSpSq also preserve
all required transitions.

4 Progress with Time Constraints

This section introduces a progress property for CTAs, ensuring that no communication
mismatch prevents the progress of the overall system (cf. § 4.1). In § 4.2, we give a sufficient
condition to guarantee progress in CTAs (cf. Theorem 13).

4.1 Progress Properties
We identify several types of errors, inspired by their counterparts in the (untimed) CFSM
model, which may arise in timed communicating systems. Let s “ p~q; ~w; νq P RSpSq;
s is an unsuccessful reception configuration if there exists r P P such that qr is a
receiving state, and for all pqr, sr?apg, λq, q1rq P δr either (i) wsr ‰ ε and wsr R aA˚ or (ii)
@t P Rě0 : ν ` t /|ù g (i.e., r cannot receive messages from any of its queues, as they either
contain an unexpected message or none of the transition guards will ever be satisfied); and
s is an unfeasible configuration if there exists s PP such that qs is a sending state, and
pqs, sr!apg, λq, q1sq P δs implies that @t P Rě0 : ν ` t /|ù g (i.e., s is unable to send a message
because none of its guards will ever be satisfied).

§ Definition 8 (Progress). S satisfies the progress property if for all s P RSpSq, s is not a
deadlock, an orphan message, an unsuccessful reception, nor an unfeasible configuration. ˛

Observe that the original semantics of CTAs in [17] and in Def. 2 do not allow us to
identify unsuccessful reception or unfeasible configurations. From Def. 2, a system may take
a time transition which permanently prevents a machine from firing further actions. Below,
we adjust the semantics of CTAs and give examples of “undesirable” scenarios it prevents.

§ Definition 9 (Reachable configuration (2)). s αÝÑs1 is defined as Def. 2, replacing (3) with:
3. α “ t P Rą0, ν1 “ ν ` t, @ pq P C : w1pq“wpq, and @ p PP : q1p “ qp and

a. qp sending ùñ Dpqp, `, q
2
p q P δp : Dt1 P Rě0 : ν1 ` t1 |ù guardp`q

b. @pqp, sp?apg, λq, q2p q P δp : pwsp P aA˚ ùñ Dt1 P Rě0 : ν1 ` t1 |ù gq

Unless stated otherwise, we only consider this semantics hereafter. ˛

Condition (3a) handles the case of machines waiting to perform send actions, and (3b)
handles receive transitions, as illustrated by the examples below:

s : q0 q1

sr!apx ă 3q

sr!bpx ă 2q

r : q2 q3

sr?apy “ 4q

sr?bpy “ 5q

Consider configuration ppq0, q2q; ~ε; ν0q in which s must send a message within 3 time units.
Condition (3a) prevents a time transition with delay t “ 3. Indeed, with a clock valuation
ν0`3, none of the action of s from q0 can be fired. Consider now configuration ppq1, q2q; ~w; νq
with wsr “ a and νpxq “ νpyq “ 3.5. Condition (3b) rules out a time transition with t “ 1.
Indeed, even if r has a transition whose guard will be enabled after time νpyq ` 1 “ 4.5, i.e.,

L. Bocchi, J. Lange, and N. Yoshida 7

pq2, sr?bpy “ 5q, q3q, this transition cannot be fired due to the content of queue wsr R bA˚; on
the other hand transition pq2, sr?apy “ 4q, q3q is no longer fireable, due to its time constraint.

4.2 A Sound Characterisation of Progress
Roadmap We give a sound condition that guarantees progress in the presence of time
constraints. The main property, interaction-enabling (IE) in Def. 12, essentially checks that
future actions are possible. IE guarantees that: (1) whatever the past, each machine that is
in a sending state is eventually able to fire one of its transitions and (2) for every message
that is sent, there exists a (future) time where this message can be received. IE relies on
checking whether an action ` is progress enabling (Def. 11) which ensures that, for all possible
past clock valuations, there exists a future time where the guard of ` is satisfied.

In the rest of this section, we give (i) a procedure for understanding the past of a
configuration, based on a graph modelling the causal dependencies between previously
executed actions; and (ii) a procedure to check that, for any reachable configuration, there
is always a future time where an available action can be fired.

Understanding the past We check that S has progress by analysing paths, i.e., sequences
of events, in STSpSq. Since STSpSq gives an over-approximation of the causal dependencies
between actions, we will construct a graph of the actual dependencies of the underlying
actions of a path. We compute the underlying actions of a path via the function:

nodespe1 ¨ ¨ ¨ ekq
def
“ e1çsidpe1q ¨e1çridpe1q ¨ ¨ ¨ ekçsidpekq ¨ekçridpekq pk ě 0q

Remarkably, given a path ϕ and two actions `i and `j in nodespϕq, i ă j does not imply that
there is a causal dependency between `i and `j . For instance, in

nodespϕq “ sr!apx ă 10,Hq ¨ sr?ap10 ď y,Hq ¨ sp!apx ă 10,Hq ¨ sp?ap10 ď z,Hq

the two receive actions sr?ap10 ď y,Hq and sp?ap10 ď z,Hq may not always be executed in
that order, since they are executed by two different participants.

The graph of dependencies of an action `k in a sequence of actions `1 ¨ ¨ ¨ `k (Def. 10 below)
gives an abstraction of all actions on which `k depends. This is done by taking into account
two kinds of dependencies: output/input dependencies between matching send and receive
actions, and local dependencies within a single machine.

§ Definition 10 (Graph of Dependencies). Let deppε; `q def“ H and

deppρ ¨ `1; `2q
def
“

$

’

’

&

’

’

%

tp`1, `2qu Y deppρ; `iqi“1,2 if `1 “ sr!apg1, λ1q, `2 “ sr?apg2, λ2q

tp`1, `2qu Y deppρ; `1q if subjp`1q “ subjp`2q

deppρ; `2q otherwise

The graph of dependencies of ρ “ `1 ¨ ¨ ¨ `k (ką 0), written DGpρq, is the graph pD,Aq s.t.
A“depp`1 ¨ ¨ ¨ `k´1; `kqztp`i, `kq

ˇ

ˇ1 ď iă ku and D“t`r‰`k
ˇ

ˇ Dp`i, `jq P A^ r P ti, juu.1 ˛

DGp`1 ¨ ¨ ¨ `kq is a graph whose nodes form a subset of t`1, . . . , `k´1u and whose edges model
causal dependencies between actions (computed backwards starting from `k). In Fig. 3 (in
solid black), we give the graph of dependencies of WA?datapz “ 1, tzuq in the sequence ρst,
corresponding to an execution of the Scheduled Task Protocol.

1 For the sake of presentation, we write `i for the node pi, `iq in D where `i is an action in ρ and i is its
position in ρ. This guarantees that each element in ρ is assigned a unique node in D.

8 Meeting Deadlines Together

p1q UW!taskpx ă 1, txuq p2q UW?taskpy “ 1, ty, y1uq p3q WA!datapy ă 1^ y1 ă 10, tyuq

p5q WA!datapy ă 1^ y1 ă 10, tyuq

p4q WA?datapz “ 1, tzuq

p6q WA?datapz “ 1, tzuq

ρst “ UW!taskp...q¨UW?taskp...q¨WA!datap...q¨WA?datap...q¨WA!datap...q¨WA?datap...q

Figure 3 Graph of dependencies DGpρstq, in solid black, cf. Scheduled Task Protocol (Fig. 1)

idxpρq def“ ti
ˇ

ˇ `i P Du W i
x pρq

def
“

#

vi´vj if 0 ď j“max

j ă i
ˇ

ˇ `j PD ^ x P resetp`jq
(

vi otherwise
allpastpρq def“

ľ

iPidxpρq
absoluteρp`iq

elapsepρq def“
ľ

p`i,`jqPA

vi ď vj absoluteρp`iq
def
“ guardp`iq

x ÞÑW i
x pρq

(

xPX

Figure 4 Functions on graphs of dependencies, where DGpρq “ pD,Aq

Given a graph of dependencies DGpρq, we define several functions that allow us to
construct predicates modelling the past. The definitions of these functions are given in Fig. 4,
where we fix DGpρq “ pD,Aq. Below, we illustrate how they behave using DGpρstq in Fig. 3.
First, we transform the guard of an action `i such that its solutions are the possible absolute
times (i.e., from the initial configuration of the system) in which one may execute `i (taking
into account the last reset of each clock in ρ). In our example, we have:

absoluteρst
p`5q “ v5´v3 ă 1^v5´v2 ă 10 with `5 “ WA!datapy ă 1^ y1 ă 10, tyuq

Observe that clock y (resp. y1) is replaced by the difference between variable v5 and variable
v3 (resp. v2) corresponding to the latest step where y (resp. y1) was reset. Unifying, e.g., y
and y1 into v5 models the fact that time elapses at the same pace for all clocks. Next, we
aggregate the information in DGpρq, by (i) recording the indices of all the actions on which `k
depends (idxpρq); (ii) taking the conjunction of all constraints in absolute time (allpastpρq);
and (iii) recording the fact that time never decreases between two causally dependent actions
(elapsepρq). Taking the dependencies for ρst in Fig. 3, we have:

allpastpρstq “ v1ă1^ v2“1^ pv3´v2 ă 1^ v3´v2 ă 10q ^ v4 “ 1^ pv5´v3 ă 1^ v5´v2 ă 10q
elapsepρstq “ v1 ď v2 ^ v2 ď v3 ^ v3 ď v4 ^ v3 ď v5 idxpρstq “ t1, 2, 3, 4, 5u

Predicting the future We now give the main definition of this section, allowing to check
whether the past implies that there exists a satisfiable future. We use the functions defined
above to check whether a given event in STSpSq can indeed meet its time constraints.

§ Definition 11 (Progress enabling (PE)). A pair pn, eq is progress enabling (PE) for p P idpeq
if for all paths ϕ such that n0

ϕ
ãÝÑ n, letting:

ρ “

#

nodespϕ ¨ eq if p “ ridpeq
nodespϕq ¨ eçsidpeq otherwise

and k “ |ρ|, `k “ eçp, ~v “ tvi
ˇ

ˇ i P idxpρqu; the following holds

@~v Dvk : allpastpρq ^ elapsepρq ùñ absoluteρp`kq ^
Ź

viP~v
vi ď vk

L. Bocchi, J. Lange, and N. Yoshida 9

A pair pn, ϕq is recursively progress enabling (RPE) for P ĎP if ϕ “ ε and P “ H; or if pn, eq
is PE for sidpeq and for ridpeq and pn1, ϕ1q is RPE for P zidpeq with ϕ “ e ¨ ϕ1 and n e

ãÝÑ n1. ˛

Given a node n and an event e in STSpSq, and a participant p, the above definition ensures
that for all possible past clock valuations, there exists a future time where participant p has
the possibility to execute action eçp. For instance, the pair ppU1, W1, A0q, pWÑA : data; y ă
1^ y1 ă 10, tyu; z “ 1, tzuqq is PE for A, notably because the following holds:

@v1 . . . v5 Dv6 : allpastpρstq ^ elapsepρstq ùñ pv6 ´ v4q “ 1^ v1 ď v6 . . . v5 ď v6

Below, Def. 11 is used in STSpSq to ensure progress of the overall system.

§ Definition 12 (Interaction enabling (IE)). A node n P N is interaction enabling (IE) if either
(i) it is final or (ii) the following conditions hold:
1. There is e P E and ϕ such that n e¨ϕ

ãÝÑ and pn, e ¨ ϕq is RPE for idspnq;
2. For all e P E such that n e

ãÝÑ n1, pn, eq is PE for ridpeq, and n1 is IE.
A system S is interaction enabling (IE) if n0 is IE. ˛

Def. 12 recursively checks the nodes of STSpSq (starting from n0) and for each ensures that:
(1) there is at least one path, involving all the participants still active at node n, that is
RPE, i.e., where each guard along that path is satisfied for any past; (2) each receive action
is PE and its successor is IE (note that a send action is always a dependency of its receive
action). Condition (1) ensures that no sender will be left in a configuration where it cannot
send any message, due to time constraints being unsatisfiable; condition (2) ensures that a
receive action is always feasible given that its corresponding send action was executed.

Examples (1) The first example shows how resets affect the satisfiability of guards.

s : sr!apx “ 3q
sr!bpx “ 5q

sr!cpx “ 7q
r : sr?apy ď 3, y :“ 0q

sr?bpy ď 2, y :“ 0q
sr?cpy ď 2q

The system above is IE, notably, because the following holds:

@v1v2v3v4v5 Dv6 : v1 “ 3 ^ v2 ď 3 ^ v3 “ 5 ^ v4 ´ v2 ď 2 ^ v5 “ 7 ^
v1 ď . . . ď v5 ùñ v6 ´ v4 ď 2 ^ v1 ď v6 . . . v5 ď v6

Notice that the resets of clock y (recorded by subtracting v2 and v4 in the formula above)
allow r to receive message c before absolute time 7. If we modified the example by removing
the second reset of y in machine r, then the system would not be IE because message c
would be expected before absolute time 5, while c can only be sent at time 7. In fact, the
RHS of the implication above would become: v6 ´ v2 ď 2 ^ v1 ď v6 . . . v5 ď v6.

(2) The second example shows a system of three machines, which violates IE (Def. 12).

sr!a

sr!b
x ă 2 ps?c

sr?a

sr?b
ps!c

s r p

n0 n1 n2

psÑr : a; true,H; true,Hq

psÑr : b; x ă 2,H; true,Hq

ppÑs : c; true,H; true,Hq

If participant s does not send b before time 2, then message c (sent by p), will never be
received. This system is not IE because there is no path from n0 that is RPE for ts, r, pu.
The only transition that is PE from n0 is the loop on n0 (which does not involve p).

10 Meeting Deadlines Together

(3) The third example shows that IE captures a “global” notion of progress (i.e., all
participants must able to proceed). Consider the system of four machines below:

s1r1!a
x ą 2

s1r1!b
x ă 2 s 1

r 1
?a

s 1
r 1

?b

s 2
r 2

!c

s 2
r 2

!d

s 2
r 2

?c

s 2
r 2

?d

s1 r1 s2 r2

n0 n1

n3 n2

ps1Ñr1 : a; x ą 2,H; true,Hq

ps1Ñr1 : b; x ă 2,H; true,Hq

ps1Ñr1 : a; x ą 2,H; true,Hq

ps1Ñr1 : b; x ă 2,H; true,Hq

p
s 2
Ñ

r 2
:c

;
tr

ue
,
H

;
tr

ue
,
H
q

ps2Ñr2 : d; true,H; true,Hq

p
s 2
Ñ

r 2
:c

;
tr

ue
,
H

;
tr

ue
,
H
q

ps2Ñr2 : d; true,H; true,Hq

this system is not IE. Indeed, although there is one RPE path outgoing node n1 (machines
s2 and r2 can continue interacting), there is no path that is RPE for all participants
ts1, r1, s2, r2u. Observe that s1 is stuck in n1, as the transition with label s1r1!bpx ă 2, txuq
can never be fired by s1, i.e., @v0Dv1 : v0 ą 2 ùñ v0 ď v1 ă 2 does not hold.

§ Theorem 13 (Progress). Suppose S is multiparty compatible (Def. 4) and interaction
enabling (Def. 12). (1) Then S satisfies the progress property. (2) For all s “ p~q; ~w; νq P
RSpSq, if there is p PP such that qp is not final, then there is s1 such that sÝÑs1.

§ Theorem 14 (Decidability). Interaction enabling (Def. 12) is decidable.

The decidability of Def. 12 relies on the fact that the logic used in Def. 11 forms a subset of
the Presburger arithmetic, which is decidable; and that it is enough to check finite paths in
STSpSq. The complexity of the decision procedure is mostly affected by the enumeration
of paths in STSpSq (which can be reduced via partial order reduction techniques) and the
satisfiability of Presburger formulae (which can be relegated to an SMT solver).

5 Non-Zenoness and Eventual Reception in CTAs

In the presence of time constraints, one needs to make sure that some participant’s only
possible way forward is not by firing actions at increasingly short intervals of time, i.e., by
zeno behaviours. This is a common requirement in real-time systems [2], and it is justified by
the assumption that “any physical process, no matter how fast, cannot be infinitely fast” [21].

In order to identify zeno behaviours in our systems, we assume without loss of generality
that there is a special clock x̂ P X which is never reset, i.e., for all p PP and all pq, `, q1q P
δp : x̂ R resetp`q. Hence, x̂ keeps the absolute time since the beginning of the interactions.
Let s “ p~q; ~w; νq be a configuration of a system S, s is a zeno configuration if there exists
t P Rě0 such that for all s1 “ p~q1; ~w1; ν1q, s ÝÑ˚ s1 implies ν1px̂q ă t and s1ÝÑs2, for some s2.

§ Definition 15 (Non-zeno system). S is non-zeno (NZ) if @s P RSpSq, s is not a zeno
configuration. ˛

The following example shows that a zeno configuration may still occur in systems that are
multiparty compatible and interaction enabling.

s :
sr!apx ă 3q

sr!bpx ě 3q
r :

sr?apy ě 3q

sr?bpy ě 4q

The system above (ignoring the dashed transitions) satisfies MC and IE, e.g., @v0 Dv1 : v0 ă

3 ùñ v1 ě 3^ v0 ď v1, but is not NZ. Because of the upper bound x ă 3 and the fact that
x is not reset in the loop, machine s has to produce an infinite number of (send) actions in

L. Bocchi, J. Lange, and N. Yoshida 11

a finite amount of time (3 time units). A dramatic consequence of this zeno behaviour is
that machine r will never be able to consume any message a due to the fact that constraint
y ě 3 will never be satisfied (cf. Def. 9). This system violates eventual reception, a property
which guarantees that every message that is sent is eventually received. Formally, a system
S satisfies eventual reception (ER) if for all s “ p~q; ~w; νq P RSpSq, if wsr P aA˚, then
sÝÑ˚ sr?apg, λq

ÝÝÝÝÝÝÑ.
The system above (considering the dashed transitions) is NZ and satisfies ER: the dashed

transitions offer an ‘escape’ from zeno-only behaviours where time can elapse and thus allow
machine r to consume any messages that were sent. Observe that in general NZ alone is not
sufficient to guarantee ER. However, ER is guaranteed for systems which validate all the
condition presented in this paper, see Theorem 19 below.

The example also shows a fundamental difference between CTAs and models with
synchronous communications, such as Networks of Timed Automata (NTAs) [2]. The work
in [7] shows that it is sufficient that one machine in each loop of an NTA satisfies non-zenoness
for the whole system to be non-zeno. This is not generally true for CTAs. In the example
above (ignoring the dashed transitions), time cannot diverge despite the machine on the right
being non-zeno.

Checking non-zenoness Now we give a condition on STSpSq that, together with MC,
guarantees non-zenoness. A walk in STSpSq is an alternating sequence n1 ¨ e1 ¨n2 ¨ ¨ ¨ ek´1 ¨nk
such that ni

ei
ãÝÑ ni`1 for all 1 ď i ă k. We let ω range over walks in STSpSq. A walk is

elementary if pni ¨ eiq ‰ pnj ¨ ejq for all 1 ď i ‰ j ă k. A (elementary) cycle in STSpSq is a
(elementary) walk n1 ¨ e1 ¨ n2 ¨ ¨ ¨ ek´1 ¨ nk such that n1 “ nk.

Given guard g and clock x, we say that g is an upper bound for x, written g is UB for x,
if there is a sub-term x ď c in g (not under a negation) or a sub-term c ď x under a negation.
We say that g is strictly positive, written g is SP, if for all clocks x P fcpgq and for all
sub-terms in g of the form x ď c (not under negation) or c ď x (under negation), c P Qą0.

§ Definition 16 (Cycle enabling (CE)). System S is cycle enabling (CE) if for each elementary
cycle ω in STSpSq, and for each clock x such that there is psÑr : a; gs, λs; gr, λrq in ω and
gs is UB for x, the following holds, either
1. there are (i) pp Ñ q : b; gp, λp; gq, λqq in ω s.t. x P λp Y λq, and (ii) pp1 Ñ q1 :

b1; gp1 , λp1 ; gq1 , λq1q in ω s.t. gp1 is SP; or
2. for each pni ¨ e ¨ ni`1q in ω, there is n1 ‰ ni P N and e1 ‰ e P E such that idpeq “ idpe1q,

ni
e1

ãÝÑ n1, and pni, e1q is PE for sidpe1q ˛

Condition (1) adapts structural non-zenoness from [22] to CTAs by requiring that: (i) each
x is reset in ω, and (ii) it is possible to let some time elapse at each iteration. Condition (2)
requires that the “escape” event e1, leading to a different node n1, can always be taken. Our
running example satisfies CE (Def. 16); STSpSstq has one (elementary) cycle in which two
clocks have an upper bound: clock y satisfies (1) since it is reset and the guards have upper
bounds strictly greater than 0 in the cycle; clock y1 satisfies (2) since there is an escape event,
e1 “ pWÑA : end; y ă 1,H; z “ 1, tzuq, which is PE for W.

§ Theorem 17 (Non-zenoness). If S is MC and CE, then S is non-zeno.

§ Theorem 18 (Decidability). Cycle enabling (Def. 16) is decidable.

§ Theorem 19 (Eventual reception). If S is MC, IE, and CE, then S satisfies ER.

12 Meeting Deadlines Together

U (x ă 1 |x :“ 0)

task

W (y “ 1 | y :“ 0, y1 :“ 0)

W (y ă 1^ y1
ă 10 | y :“ 0)

data

A (z “ 1 | z :“ 0)

W (y ă 1)
stop

A (z “ 1 | z :“ 0)

A (z ď 5)

result

U (x ď 15)

xSendery (xsender guardy | xsender reset(s)y)

xlabely

xReceivery (xreceiver guardy | xreceiver reset(s)y)

Figure 5 Timed choreography for the Scheduled Task Protocol (Sst)

6 Applications and Implementation

Constructing global specifications Our theory can be easily applied and integrated with
other works, to construct sound (i.e., satisfying safety, progress, and non-zenoness) timed
global specifications, such as (syntactic) multiparty session types [6, 16], or graphical choreo-
graphies [8, 13, 19]. Thanks to Theorem 7, we can build on the algorithm in [14] to construct
(syntactic) timed global types from CTAs. In Appendix [3], we give the formal definitions
of the adaptation of the algorithm in [14]. Given an MC system S our algorithm generates
a timed global type [6] equivalent to the original system S (i.e., its projections are timed
bisimilar to those of S). This implies that if S is IE (resp. CE) then the constructed timed
global type will also enjoy progress (resp. non-zenoness). Similarly, building on the algorithm
in [19], we obtain a graphical representation reminiscent of BPMN Choreographies, see [8,19].
When applied to the Scheduled Task Protocol, the algorithm adapted from [19] produces the
choreography in Fig. 5; giving a much clearer specification for Sst.

Implementation To assess the applicability and cost of our theory, we have integrated our
theory into the tool first introduced in [19], which builds graphical choreographies from CFSMs.
Our tool [3] (implemented in Haskell and using Z3) takes as input a textual representation of
CTAs on which each condition (MC, IE, and CE) is checked for, and produces an equivalent
choreography (such as the one in Fig. 5). The results of our experiments (executed on a Intel
i7 computer, with 16GB of RAM) are below; where |P| is the number of machines, and |N |
(resp. |ãÝÑ|) is the number of nodes (resp. transitions) in STSpSq.

S |P| |N | | ãÝÑ | MC IE CE s |P| |N | | ãÝÑ | MC IE CE s
Running Example 3 4 4 X X X 0.41 ˆ4 12 256 1024 X X X 28.49
Bargain 3 5 5 X X X 0.44 ˆ2 6 25 50 X X X 12.30
Temp. calculation [6] 3 6 6 X X X 0.45 ˆ2 6 36 72 X X X 9.24
Word Count [20] 3 6 6 X X X 0.41 ˆ2 6 36 72 X X X 8.63
ATM (Template) [11] 3 9 8 X X X 0.36 ˆ3 9 729 1944 X X X 94.01
ATM (Instance) [11] 3 9 8 X X X 0.53 ˆ3 9 729 1944 X X X 96.09
Consumer-Producer [11] 2 1 1 X X X 0.16 ˆ5 10 1 5 X X X 43.19
Fischers Mutual Excl. [5] 2 4 3 X X X 0.21 ˆ4 8 256 768 X X X 3.19

Most of the protocols are taken from the literature and all are checked within a minute on
average. For the sake of space, we have used small examples throughout the paper, however
our benchmarks include bigger protocols (up-to 12 machines), which have comparable size
with those we encountered through our collaboration with Cognizant [19, 23]. Since the size
of the STS is the most critical parameter for scalability, we have tested systems consisting of
the parallel composition of several instances of a protocol. For instance, Running Example
ˆ4 is the parallel composition of four instances of Sst, cf. Fig. 1.

L. Bocchi, J. Lange, and N. Yoshida 13

7 Conclusions and Related Work

Our results are summarised in the table below. Multiparty compatibility (MC) gives (i) an
equivalence between an MC system and a system consisting of the projections of its STS ;
and (ii) a sufficient condition for safety. MC and interaction enabling (IE) form a sufficient
condition for progress; while MC and cycle enabling (CE) form a sufficient condition for
non-zenoness (NZ). Together, MC, IE, and CE ensure safety, progress, NZ, and eventual
reception (ER).

Property S „ pSTSpSqçpqpPP Safety Progress Non-Zeno ER
MC (Def. 4) X X 7 7 7
MC+IE (Def. 12) X X X 7 7
MC+CE (Def. 16) X X 7 X 7
MC+IE+CE X X X X X

Multiparty session types The work in [6] studies a typing system for a timed π-calculus
using timed global types. A class of CTAs which are safe and have progress is given in [6] via
projection of (well-formed) timed global types onto timed local types (which correspond to
deterministic, non-mixed, and directed CTAs). Well-formedness yields conditions on CTAs
that are more restrictive than the ones given in this paper. For instance, the system in Fig. 1,
which is safe and enjoys progress, is ruled out by the conditions in [6]. In addition, this paper
gives sufficient conditions for CTAs to belong to the class of safe CTAs with progress, which
was left as an open problem in [6]. The construction of timed global types from either local
types or CTAs is not addressed in [6]. Recently, [4] introduced a compliance and sub-typing
relation for binary timed session types without queues (synchronous communication semantics).
The existing works for constructing global specifications from local specifications [14, 18, 19]
only apply to untimed models. Our conditions (IE and CE) are given independently of the
definition of MC. The use of a more general notion of MC, as the one given in [19], would
allow us to lift the assumptions that the machines are directed and have no mixed states (cf.
§ 2). Hence, we could capture more general timed choreographies.

Reachability and decidability When extending NTAs [2] with unbounded channels, reachab-
ility is no longer decidable in general [17]. Existing work tackles undecidability by restricting
the network topologies [12,17] or the channel size [1]. We give general (w.r.t. topology and
channel size) decidable conditions ensuring that a configuration violating safety, progress, or
NZ will not be reached. Observe that the scenario in Fig. 1 would be ruled out in [17] (its
topology is not a polyforest) and in [1] (wWA is unbounded). Our conditions are based, instead,
on the conversation structures, which also enable the construction of global specifications.

Non-zeno conditions In § 5 we set the conditions for time divergence, by ruling out
specifications in which the only way forward is a zeno behaviour. This condition is called
time progress in [2] and it is built-in in the definition of runs of a TA. Several conditions
have been proposed to ensure absence of non-zeno behaviours in TAs: some, e.g., [21], do
not allow any zeno execution, and some, e.g., [7], and this work (cf. Def. 15), ensure that
there is always a non-zeno way forward. The condition in [7] can be checked with a simple
form of reachability analysis which introduced the notion of ‘escape’ from a zeno loop, which
we also use. [7, 21] consider Networks of TAs (NTAs), which do not feature asynchrony nor
unbounded channels.

Acknowledgements We would like to thank the ZDLC team at Cognizant for their stim-
ulating conversations and Dominic Orchard for some (very useful) Haskell tips. This

14 Meeting Deadlines Together

work is partially supported by UK EPSRC projects EP/K034413/1, EP/K011715/1, and
EP/L00058X/1; and by EU 7FP project under grant agreement 612985 (UPSCALE).

References
1 S. Akshay, Paul Gastin, Madhavan Mukund, and K. Narayan Kumar. Model checking time-

constrained scenario-based specifications. In FSTTCS, volume 8 of LIPIcs, pages 204–215,
2010.

2 Rajeev Alur and David L. Dill. A theory of timed automata. TCS, 126:183–235, 1994.
3 Webpage of this paper, 2015. http://www.doc.ic.ac.uk/~jlange/cta/.
4 Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Sebastian Podda, and

Livio Pompianu. Compliance and subtyping in timed session types. In FORTE, volume
9039 of LNCS, pages 161–177. Springer, 2015.

5 Johan Bengtsson et al. Uppaal - a tool suite for automatic verification of real-time systems.
In Hybrid Systems III, volume 1066 of LNCS, pages 232–243. Springer, 1996.

6 Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session types. In
CONCUR, volume 8704 of LNCS, pages 419–434. Springer, 2014.

7 Howard Bowman and Rodolfo Gómez. How to stop time stopping. FAC, 18(4):459–493,
2006.

8 BPMN 2.0 Choreography, 2012. http://en.bpmn-community.org/tutorials/34/.
9 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. JACM,

30(2):323–342, 1983.
10 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication.

I&C, 202(2):166–190, 2005.
11 Prakash Chandrasekaran and Madhavan Mukund. Matching scenarios with timing con-

straints. In FORMATS, volume 4202 of LNCS, pages 98–112. Springer, 2006.
12 Lorenzo Clemente, Frédéric Herbreteau, Amelie Stainer, and Grégoire Sutre. Reachability

of communicating timed processes. In FOSSACS, volume 7794 of LNCS, pages 81–96.
Springer, 2013.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of LNCS, pages 194–213. Springer, 2012.

14 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In ICALP (2), volume
7966 of LNCS, pages 174–186. Springer, 2013.

15 Uno Holmer, Kim Guldstrand Larsen, and Wang Yi. Deciding properties of regular real
time processes. In CAV, volume 575 of LNCS, pages 443–453. Springer, 1991.

16 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In POPL, pages 273–284. ACM, 2008.

17 Pavel Krcál and Wang Yi. Communicating timed automata: The more synchronous, the
more difficult to verify. In CAV, volume 4144 of LNCS, pages 249–262, 2006.

18 Julien Lange and Emilio Tuosto. Synthesising Choreographies from Local Session Types.
In CONCUR, volume 7454 of LNCS, pages 225–239. Springer, 2012.

19 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to
graphical choreographies. In POPL, pages 221–232, 2015.

20 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. In BEAT, volume 162 of EPTCS, pages 19–26, 2014.

21 Stavros Tripakis. Verifying progress in timed systems. In Formal Methods for Real-Time
and Probabilistic Systems, volume 1601 of LNCS, pages 299–314. Springer, 1999.

22 Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking timed büchi automata
emptiness efficiently. Formal Methods in System Design, 26(3):267–292, 2005.

23 Zero Deviation Lifecycle. http://www.zdlc.co.

http://www.doc.ic.ac.uk/~jlange/cta/
http://en.bpmn-community.org/tutorials/34/
http://www.zdlc.co

L. Bocchi, J. Lange, and N. Yoshida 15

A Additional Examples for Interaction Enabling

This example illustrates a non-trivial set of constraints in cycle. The system below, where
we let k P Ną1, be a constant, is not IE.

s : sr!apx ă 1q

sr!bpx “ 2_ x “ 4_ . . ._ x “ 2kq

sr!cpx “ 3_ x “ 5_ . . ._ x “ 2k ` 1q

r : sr!a
sr?b

sr?c

This system does not have progress, e.g., when νpxq “ 2k ` 1, machine s will get stuck the
state highlighted in black. It is ruled out by IE since we have to check n in STSpSq that
correspond to the configuration where both machines are in their highlighted state is IE. This
amount to checking that the pair pn, eq is @-PE for s, with e “ psÑr : b; p. . .q,H; p. . .q,Hq.
However, the path n0

a
ãÝÑ n

b
ãÝÑ n1

c
ãÝÑ n violates the condition, i.e.,

@v1, v2, v3 Dv4 :
v1 ă 1 ^
pv2 “ 2_ v2 “ 4_ . . ._ v2 “ 2kq ^
pv3 “ 3_ v3 “ 5_ . . ._ v3 “ 2k ` 1q ^
v1 ď v2 ^ v2 ď v3

ùñ pv4 “ 2_ v4 “ 4_ . . ._ v4 “ 2kq ^ v1 ď v4 ^ v2 ď v4 ^ v3 ď v4

does not hold. In addition, observe that this system is not CE (due to the upper bound on
x, which is never reset).

B Additional Definitions for Section 5

We give the formal definition of upper and lower bounds, used in § 5.

g is UB for x ðñ

$

’

’

&

’

’

%

g “ x ď c,

g “ g1 and not g1 is UB for x
g “ g1 ^ g2 and Di P t1, 2u : gi is UB for x

g is SP ðñ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

g “ x ď c with c P Qą0,

g “ c ď x,

g “ g1 and not g1 is SP
g “ g1 ^ g2 and @i P t1, 2u : gi is SP
g “ true

C Additional Examples for Zeno Systems

In this section we give additional examples to illustrate the notions of zeno configuration
and zeno system.

C.1 Progress vs non-zenoness
First we show that progress and non-zenoness are orthogonal properties. The example in § 5
shows that a MC and IE system (hence enjoying progress) may or may not be zeno. The

16 Meeting Deadlines Together

example below shows that a system not enjoying progress may be non-zeno.

s :
q0 q1

q2

sr!apx ă 3q

sr?bpx “ 4q
r :

q1
0 q1

1

q1
2

sr?apy “ 3q

sr!bpy ą 4q

Consider the configuration s “ ppq1, q
1
1q; ~ε; νq. s is an unsuccessful reception configuration

since s cannot receive b at time x “ 4 (b will be sent only at a time y ą 4) hence s ÝÑ˚ s1 only
for an empty step with s “ s1. Taking an arbitrary t, the (non-zeno configuration) condition

for all s1 “ p~q1; ~w1; ν1q, s ÝÑ˚ s1 implies ν1px̂q ă t and s1ÝÑs2, for some s2

does not hold since s “ s1 {Ñ, hence s is a non-zeno configuration. Similarly, one can show
that all the other reachable configurations of the system above are non-zeno.

C.2 Progress and non-zenoness
The example in this paragraph shows the application of the definition of non-zeno configuration
to a configuration that: (1) has a zeno loop, (2) and all the other non-zeno way forward are
not viable (stuck).

s :
q0 q1

q2

sr?apx “ 1q

sr!cpx ă 1q

sr!bpx ă 3q

r :
q1

0 q1
1

q1
2

sr!apy ă 1q sr?bpy “ 3q

sr?cpy “ 3q

Consider the configuration s “ ppq1, q
1
1q; ~ε; νq with νpxq “ 1. Since νpxq “ 1 machine

s can no longer send c (having constraint x ă 1), hence s ÝÑ˚ s1 only for s1 of the form
ppq1, q

1
1q; ~w; ν1q for some ~w and ν1pxq ă 3. Similarly s1 can always and only move to

configurations having the same form. We observe that s (and s1) is a zeno configuration as
ν1px̂q “ t can never be reached for t “ 3.

Note that s above is not an unsuccessful reception configuration: constraint y “ 3 of r is
satisfiable at some point in the future, although this point will never be reached due to zeno
behaviour.

C.3 Non-zeno configurations and systems
The example in this paragraph illustrates how the definition of non-zeno configuration applies
to the definition of non-zeno system. In particular, we show how the definitions capture the
intended property: some zeno-behaviour may be possible but there is always a non-zeno way
forward.

s :
q0 q1

q2

sr!apx ă 1q

sr!bpx ă 1q

sr!apx ă 3q

r :
q1

0 q1
1

q1
2

sr?apy “ 1q sr?apy “ 3q

sr?bpy “ 1q

Configuration s0 “ pq0, q
1
0; ~ε; ν0q is non-zeno as there exists a future configuration, of

the form pq2, q
1
2; ~w; νq which allows time to diverge (note that final states allow time

L. Bocchi, J. Lange, and N. Yoshida 17

divergence). On the other hand, configurations of the form pq1, q
1
1; ~w1; ν1q are obviously

zeno configurations. The overall system does not satisfy Def. 15 (non-zenoness) since it can
reach some zeno configuration (i.e., with no possible non-zeno way forward).

If we modify the example above by moving the outgoing non-zeno path to the state with
the outgoing zeno loop, we obtain a non-zeno system. For instance, in the example below
configurations of the form pq1, q

1
1; ~w1; ν1q have a possible non-zeno way forward. The system

below is non-zeno.

s :
q0 q1

q2

sr!apx ă 1q

sr!bpx ă 3q

sr!apx ă 3q

r :
q1

0 q1
1

q1
2

sr?apy “ 1q sr?apy “ 3q

sr?bpy “ 3q

D Construction of Timed Global Types

In this section, we give a new approach to construct timed global types from CTAs; it is
adapted from the construction algorithm in [14] while using projection functions similar to
the ones given in [19].

A timed global type is generated from the following grammar:

G ::“ s Ñ r : taixAiy.GiuiPI | µt.G | t | end where Ai ::“ gsi, λsi ; gri, λri

Type s Ñ r : taixAiy.GiuiPI models an interaction: s chooses a branch i P I, and sends a
message ai to r, the interaction then continues as specified by Gi. Each branch is annotated
with a time assertion Ai “ gsi, λsi ; gri, λri, where gsi and λsi are the clock constraint and
reset for the send action, and gri and λri are for the receive action. We write s Ñ r : axAy.G
for interactions with one branch. Type µt.G is a recursive type, t is a type variable, and
end is for termination.

The main transformation from CTAs to timed global types concerns the removal of
branches in STSpSq that correspond to concurrent executions of the system (i.e., interleaving).
This transformation is realised by Definition 20 below, relying on the following auxiliary
function which separates a set Ê of events according to the (two) participants they refer to:

indeppÊq def“
!

E1 Ď Ê
ˇ

ˇ @e, e1 P E1 : idpeq “ idpe1q ^ @e P ÊzE1 @e1 P E1 : idpeq ‰ idpe1q
)

We define n‚ def
“ te

ˇ

ˇ Dn1 P N : n
e

ãÝÑ n1u.

§ Definition 20 (Reduction). Let STSpSq “ pN,n0, ãÝÑ, Eq. The transition system RTSpSq “
pN 1, n0, ÞÝÑ, Eq is a reduction of STSpSq, if the following conditions holds: (1) n0 P N

1, N 1 Ď
N , and ÞÝÑĎãÝÑ; (2) @n P N : n˝ “ H ðñ n‚ “ H; (3) for all cycle n1 ¨e1 ¨ ¨ ¨nk´1 ¨ek´1 ¨n1
in RTSpSq: @1 ď i ă k : e P n‚i ùñ D1 ď j ă k : e “ ej ; (4) @n P N 1 : n˝ P indeppn‚q
where n˝ def

“ te
ˇ

ˇ Dn1 P N 1 : n
e
ÞÝÑ n1u. ˛

Condition (1) ensures that the RTSpSq is a sub-graph of STSpSq; condition (2) says that if a
node n has at least one successor in STSpSq, then n has also a successor in RTSpSq; condition
(3) is adapted from partial order reduction techniques and ensures that no transition is
forever disabled in a cycle of RTSpSq; and condition (4) selects only the outgoing transitions
of node which involve the same (two) participants.

For instance, in Section 4.2, we gave the STSpSq (right) of the system consisting of
machines s1, r1, s2, and r2 (left). The reduction of STSpSq, i.e., RTSpSq, is the sub-graph
of STSpSq consisting of edges:

18 Meeting Deadlines Together

pn0, ps1Ñr1 : a; x ą 2,H; true,Hq, n1q

pn1, ps2Ñr2 : c; true,H; true,Hq, n2q

pn2, ps1Ñr1 : b; x ă 2,H; true,Hq, n3q

pn3, ps2Ñr2 : d; true,H; true,Hq, n0q

Observe that the reduction preserves all the events of STSpSq (see below).
The lemma below is useful to show the completeness of the transformation as well as the

equivalence between the original system and its projections; it follows from Definitions 3
and 20, and the definition of indepp_q.

§ Lemma 21. The following holds:
1. For all S, there exists a reduction RTSpSq of STSpSq.
2. For all p PP, STSpSqçp“ RTSpSqçp

3. Let RTSpSq “ pN,n0, ÞÝÑ, Eq, then @n P N,@e, e1 P E : pn
e
ÞÝÑ ^n

e1
ÞÝÑ ùñ sidpeq “

sidpe1q ^ ridpeq “ ridpe1qq.

Proof. (1) and (3) follow since we assumed that the machines are directed and non-mixed,
and once we observe that for all n P N and for all e1, e2 P E, with idpe1q X idpe2q “ H, such
that n ei

ãÝÑ ni, there is n1 P N such that ni
ej
ãÝÑ n1, with i ‰ j P t1, 2u (two independent event

commute).
For (2), we use the fact that independent event commute (i.e, we do not forget event in a

sequence) and the fact that no event is “left out” in cycles. đ

We now give an algorithm to construct a syntactic timed global type from RTSpSq.

§ Definition 22 (Construction of timed global types). Suppose S is multiparty compatible.
Let RTSpSq “ pN,n0, ÞÝÑ, Eq, then the function Gpn,N 1q is defined as follows:
1. if n˝ “ H, then return end;
2. if n P N 1, then return tn;
3. if n R N 1, then, letting n˝ “ tei “ psÑ r : ai; gsi, λsi; gri, λriq

ˇ

ˇ 1 ď i ď ku, return
µtn.s Ñ r : taixgsi, λsi ; gri, λriy.Gpni, N

1 Y tnuqu, with n ei
ÞÝÑ ni.

Finally, erase any unnecessary µt if t R Gpn,N 1q. We write GpSq def“ Gpn0,Hq for the timed
global type obtained from a reduction RTSpSq of S. ˛

Synchronous transition systems and timed global types can be projected onto participants
so to obtain CTAs. We define a generic projection function from a transition system (whose
transitions are labelled by events e) onto machines.

§ Definition 23 (Projection). The projection of a transition system T “ pN,n0, ãÝÑq on
participant p, written T çp, is the (minimised w.r.t. language equivalence) automaton
pQ, q0,X , δq where Q “ N , q0 “ n0, δ Ď Q ˆ ActX Y tεu ˆ Q is s.t. pn1, eçp, n2q P δ ðñ

n1
e

ãÝÑ n2, and X is the set of clocks in δ. ˛

The projection of a timed global type G, written Gçp, is defined by translating G into a
transition system, then applying Def. 23.

Hereafter, we assume that bound (recursion) variables are pairwise distinct and that
there is no free variable in G.

§ Definition 24 (TS of G). The transition system of G is obtained as follows. Let TGpGq def“
pN,n0, ãÝÑq, with TGpG,n0, ˝q “ pN, ãÝÑq; where ˝ is the empty map and TGpG,n,Γq is
defined as follows:2

2 We assume that each node n0, n, n1 and ni is freshly created.

L. Bocchi, J. Lange, and N. Yoshida 19

1. if G “ s Ñ r : taixgsi, λsi ; gri, λriy.GiuiPI then return

ptnu Y YiPINi , YiPItpn, psÑr : ai; gsi, λsi; gri, λriq, niquY ãÝÑiq

where pNi, ãÝÑiq “ TGpGi, ni,Γq for i P I.
2. if G “ µt.G1 then return ptnu YN 1 , tpn, ε, n1quY ãÝÑ1q where pN 1, ãÝÑ1q “ TGpG1, n1,ΓZ

tt ÞÑ nuq.
3. if G “ end, then return ptnu,Hq.
4. if G “ t, then return ptnu, tpn, ε,Γptqqu.

˛

In the Scheduled Task Protocol, our construction algorithm yields the following timed
global type:

Gst “ U Ñ W : taskxx ă 1, x :“ 0 ; y “ 1, y :“ 0, y1 :“ 0y.
µt.W Ñ A : t dataxy ă 1^ y1 ă 10, y :“ 0 ; z “ 1, z :“ 0y.t ,

stopxy ă 1 ; z “ 1, z :“ 0y.A Ñ U : resultxz ď 5 ; x ď 15y u

The projection of a timed global type G, written Gçp, is given by translating G into a
transition system, where each transitions is projected onto p (cf. projection of an event e).
As in the case of projection of a STS , the projections of Gst onto U, W, and A are isomorphic
to the system Sst in Fig. 1.

§ Theorem 25 (Equivalence 2). If S “ pMpqpPP is MC then S „ pGpSqçpqpPP.

E Extended Related Work

E.1 Multiparty session types
The conditions required in [6] are more restrictive that the ones required in this paper For
instance, the system in Fig. 1, which is safe and enjoys progress, is ruled out by the conditions
in [6]. This is due, in particular, to a condition called infinite satisfiability [6] which requires
that, in each loop, either all clocks are reset or there is no upper bound on any clock. The
example in Fig. 1 is not infinite satisfiable since z is never reset and there is an upper bound
in constraint z ă 10. We relaxed infinite satisfiability by using a notion of ‘escape’ along the
lines of [7].

E.2 Non-zeno conditions
The condition given in [21], called Strong Non-Zenoness (SNZ), is syntactic and requires
that time elapses of some c ě 1 in all loop cycles. This condition disallows zeno executions
altogether. We allow possible zeno behaviour as long as there is a non-zeno way to continue
the computation.

E.3 Reachability and decidability
Although complex (NL-complete with one clock [33], NP-hard [33] and PSPACE-complete [30]
with two clocks, and PSPACE-hard with three or more clocks [28]) reachability is a decidable
problem for Timed Automata and NTAs [2]. These models are well-supported by model-
checking tools such as UPPAAL [5] and KRONOS [25]. Several works tackle this complexity
by using abstraction [29], approximations [31], local time semantics [24], or considering limited
scenarios (with no recursion) [26]. Unfortunately, when one extends NTAs with unbounded

20 Meeting Deadlines Together

data structures [32] or unbounded channels [12] (as in the case of CTAs) decidability no longer
holds in the general case. In the case of CTAs, existing work [12,17] tackles undecidability
by limiting the network topologies. For CTAs with dense time and urgent semantics (i.e.,
internal actions are disabled if a message can be received) decidability is limited to topologies
in the form pM1,M2, w1,2q while all other topologies have the power of Turing machines [17].
With a non-urgent semantics, reachability is decidable if the topology is a polyforest (i.e., it
is a direct acyclic graph with no undirected cycles) [12]. Asynchronous communication is
considered in [1] using Message Sequence Charts (MSCs) annotated with time constraints
and where participants communicate through FIFO channels. For decidability of verification,
the topology of the participants involved in each loop should be a single strongly connected
component, which implies that each message is implicitly acknowledged, hence channels have
an upper bound. Unlike [1, 12, 17], our verification framework does not require limitations of
the topology or buffer size. Note, for example, that the scenario in Fig. 1 is a not polyforest,
and it does not satisfy the condition on the topology posed by [1] due to the iterative one-way
messaging from W to A (i.e., channel wWA is unbounded since). Reachability is also decidable
when restricting the unbounded data structures [32] or, in the untimed scenario, the channels
(i.e., using unordered ‘bag’ channels instead of FIFO channels) [27]. Our conditions are
based, instead, on the conversation structures, which also enables the construction of global
specifications.

Additional References for the Appendix

24 J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed systems.
In CONCUR, volume 1466 of LNCS, pages 485–500. Springer, 1998.

25 M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-
checking tool for real-time systems. In FTRTFT, volume 1486 of LNCS, pages 298–302.
Springer, 1998.

26 M. Cambronero, G. Díaz, V. Valero, and E. Martínez. Validation and verification of web
services choreographies by using timed automata. J. Log. Algebr. Program., 80(1):25–49,
2011.

27 L. Clemente, F. Herbreteau, and G. Sutre. Decidable topologies for communicating auto-
mata with FIFO and bag channels. In CONCUR, pages 281–296, 2014.

28 C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time
systems. Formal Methods in System Design, 1(4):385–415, 1992.

29 C. Daws and S. Tripakis. Model checking of real-time reachability properties using abstrac-
tions. In TACAS, LNCS, pages 313–329. Springer, 1998.

30 J. Fearnley and M. Jurdzinski. Reachability in two-clock timed automata is pspace-
complete. CoRR, abs/1302.3109, 2013.

31 F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz. Using non-convex approxim-
ations for efficient analysis of timed automata. In FSTTCS, volume 13 of LIPIcs, pages
78–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

32 R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Reachability results for timed automata
with unbounded data structures. Acta Inf., 47(5-6):279–311, 2010.

33 F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata with one
or two clocks. In CONCUR, volume 3170 of LNCS, pages 387–401. Springer, 2004.

L. Bocchi, J. Lange, and N. Yoshida 21

F Proofs

F.1 Correspondence between S and STSpSq
In this section, we introduce a formal correspondence between the reachable configurations
of S and its synchronous transition system (STSpSq). This correspondence does not rely on
time constraints because: (i) STSpSq disregards time, (ii) the machines are deterministic,
and (iii) the reachable configurations of a system without its time constraints form a superset
of the original system (modulo clock valuations); cf. Prop. F.1. Hence, we will first in this
subsection ignore time constraints.

§ Definition 26 (Untimed systems). The untimed system of a system S “ pMpqpPP, where each
Mp “ pQp, q0p,Xp, δpq, written UTpSq, is the system S where every transition pqp, `, q

1
pq P δp

in every machine Mp is replaced by pqp, ˆ̀, q1pq where ˆ̀ is the same as ` except that the guard
guardpˆ̀q “ true and resetpˆ̀q “ H. ˛

Since an untimed system does not have any time constraints, we can safely ignore clock
valuations, i.e., we write p~q; ~wq for a configuration p~q; ~w; νq P RSpUTpSqq. Similarly, we
write sr!a (resp. sr?a) instead of sr!aptrue,Hq (resp. sr?aptrue,Hq), and s Ñ r : a for
ps Ñ r : a; true,H; true,Hq. We formalise the relationship between UTpSq and S in the
proposition below.
§ Proposition F.1.

p~q; ~w; νq P RSpSq ùñ p~q; ~wq P RSpUTpSqq

We now give safety properties guaranteed by multiparty compatible (untimed) systems. First,
we define the projection of a sequence of events ϕ onto channel sr, written ϕçsr, as follows:

ϕçsr“

$

’

’

&

’

’

%

a ¨ ϕ1çsr if ϕ “ sÑr : a ¨ ϕ1

ϕ1çsr if ϕ “ s1Ñr1 : a ¨ ϕ1 and s1r1 ‰ sr

ε otherwise

Def. 27 below introduces a correspondence between a (untimed) configuration p~q; ~wq and
a sequence of events ϕ linking two nodes n and n1 in STSpSq. Below given n “ pqpqpPP, we
write nrps for qp.

§ Definition 27 (Correspondence with STSpSq). Given a system S, STSpSq “ pN,n0, ãÝÑ, Eq,
s “ p~q; ~wq P RSpSq and, n, n1 P N , we write s(pn, ϕ, n1q iff

@sr P C : Dn1, n2 P N : n
ϕ1
ãÝÑ n1

ϕ2
ãÝÑ n2

ϕ3
ãÝÑ n1 with ϕ “ ϕ1 ¨ ϕ2 ¨ ϕ3

n1rrs “ qr ^ n2rss “ qs ^ ϕ2çsr“ wsr

˛

Later, we will often consider only minimal correspondences, as defined in Def. 28 below.

§ Definition 28 (Minimality). Given a system S, STSpSq “ pN,n0, ãÝÑ, Eq, s “ p~q; ~wq P RSpSq
and, n, n1 P N , we say that s(pn, ϕ, n1q is minimal if

@n2 P N : n
ϕ1
ãÝÑ n2

ϕ2
ãÝÑ n1 ^ ϕ “ ϕ1 ¨ ϕ2 ùñ

`

s(pn, ϕ1, n
2q _ s(pn2, ϕ2, n

1q
˘

˛

22 Meeting Deadlines Together

§ Lemma 29. Let S be multiparty compatible and STSpSq “ pN,n0, ãÝÑ, Eq. For all s “
p~q; ~wq P RSpSq, there exist ϕ and n, n1 P N such that s(pn, ϕ, n1q.

Proof. We show this result by induction on the length of the execution reaching s (from s0).
If the execution has length 0, then s “ s0 and we have ~q “ n0 and wsr “ ε for all sr P C.
The result follows trivially from the definition of STSpSq, with s(pn0, ε, n0q.

Assume the result holds for any s reachable with n steps and let us show that the result
still holds with an n` 1 step execution. Hence, we have s (pn, ϕ, n1q (minimal, without
loss of generality) and s `ÝÑs1, and we have to show that s1 (pn2, ϕ1, n3q, for some n2, n3
and ϕ1.

Case 1. Assume ` “ sr?a. Then, by the semantics of CFSMs, we must have wsr “ a w1sr
and pqr, sr?a, q1rq P δr. While, by Def. 27, we must have

Dn1, n2 P N : n
ϕ1
ãÝÑ n1

ϕ2
ãÝÑ n2

sÑr:a
ãÝÑ n3

ϕ3
ãÝÑ n4

ϕ4
ãÝÑ n1

with ϕ “ ϕ1 ¨ϕ2 ¨ sÑr : a ¨ϕ3 ¨ϕ4, n1rrs “ qr, n4rss “ qs, and ϕ2 ¨ sÑr : a ¨ϕ3çsr“ wsr. We
can safely assume that ϕ2ç“ ε, otherwise there would be a previous occurrence of sÑr : a in
ϕ.

We have to show that s1 (pn, ϕ, n1q, i.e., the correspondence is preserved. Let n2 be the
first node on the walk following ϕ such that n2rrs “ qr, i.e., we have

n
ϕ5
ãÝÑ n2

ϕ6
ãÝÑ n2

sÑr:a
ãÝÑ

ϕ7
ãÝÑ n1 with ϕ “ ϕ5 ¨ ϕ6 ¨ sÑr : a ¨ ϕ7

Hence, by Def. 27 and since only machine r makes a move, we have to show that

@p ‰ r PP : ϕ6çpr“ ε ^ ϕ6çrp“ ε

By contradiction, if there is rp or pr such that ϕ6çrp‰ ε or ϕ6çpr‰ ε, then there must be an
event involving r in ϕ6. Let e be the first event in ϕ6 involving r.

(a) If e “ rÑp : b, then we obtain a contradiction with the assumption that the machines
have no mixed states.

(b) If e “ pÑr : b, then, by directedness, we must have p “ s. Assuming b ‰ a, if b is
in the queue wsr, then it is at the top of the queue wsr, which contradicts the fact that we
considered the first such element (see assumption wrt ϕ2çsr“ ε above).

Case 2. Assume ` “ sr!a. By Def. 27, we must have

Dn1, n2 P N : n
ϕ1
ãÝÑ n1

ϕ2
ãÝÑ n2

ϕ3
ãÝÑ n1

with ϕ “ ϕ1 ¨ ϕ2 ¨ ϕ3, n1rrs “ qr, and n2rss “ qs (with qs a sending state).

By multiparty compatibility, we have n2
ϕ1¨sÑr:a
ãÝÝÝÝÑ with ϕ1çs“ ε.

(a) If ϕ3 “ ϕ13 ¨ sÑr : a ¨ ϕ23, with ϕ13çs“ ε, then we have the result immediately since
must have wps “ wrp “ ε for all p ‰ s PP (since s is not involved in ϕ13).

(b) If ϕ3 ‰ ϕ13 ¨ sÑr : a ¨ ϕ23, with ϕ13çs“ ε, then there are two sub-cases, either
1. ϕ3çs“ ε, i.e., s is not involved in ϕ3, or
2. ϕ3 “ ϕ13 ¨ sÑr : b ¨ ϕ23, with ϕ13çs“ ε.
For (1), we have the result immediately by multiparty compatibility, i.e., we must have
n1

ϕ2¨sÑr:a
ãÝÝÝÝÑ n2 (with ϕ2çs“ ε). Hence, we have s1 (pn, ϕ ¨ ϕ2 ¨ sÑr : a, n2q.

L. Bocchi, J. Lange, and N. Yoshida 23

In the case (2), we have the following situation (by multiparty compatibility):

n n1 n2

n2

n1

ϕ1 ϕ2

ϕ4

ϕ3

with sÑr : a P ϕ4 and sÑr : b P ϕ3.

Hence, we only have to show that s (pn, ϕ1 ¨ ϕ2 ¨ ϕ4, n
2q. Then we can return to the

previous case. Let ϕ1 “ ϕ1 ¨ ϕ2 ¨ ϕ4. We show that for all pq P C : Dn3, n4 P N such that,
letting ϕ1 “ ϕ11 ¨ ϕ

1
2 ¨ ϕ

1
3,

n
ϕ11
ãÝÑ n11

ϕ12
ãÝÑ n12

ϕ13
ãÝÑ n2 with n11rrs “ qq, n

1
2rss “ qp, and wpq “ ϕ12çpq

Without loss of generality, assume that ϕ12 is the shortest possible.
First, we note that if ϕ11 ¨ϕ12 is a prefix of ϕ1 ¨ϕ2, then the result holds by the assumption

that s(pn, ϕ, n1q.
Otherwise, there is a suffix of ϕ11 ¨ϕ12 which is a prefix of ϕ3 (there is an overlapping), call

it ϕ̂. We have to show that ϕ4 “ ϕ5 ¨ ϕ6 with ϕ5çpq“ ϕ̂çpq. Since ϕ2 is the shortest possible
and there is an overlapping, we must have wpq “ ρ ¨ ρ1 with ρ1 “ ϕ̂çpq. If the queue is empty,
we have the result immediately. Otherwise, it implies that machine p is a sending state in
node n2, which implies, by multiparty compatibility, that its behaviour must be the same in
both branches, hence we obtain the result. đ

§ Lemma 30. Let S be a multiparty compatible system and STSpSq “ pN,n0, ãÝÑ, Eq. For all
s “ p~q; ~wq P RSpSq, such that s (pn, ϕ, n1q, there is s1 stable such that s ÝÑ˚ s1 “ p~q1; ~w1q
and ~q1 “ n1.

Proof. By induction on the length of ϕ, assuming that s(pn, ϕ, n1q is minimal. If ϕ “ ε,
then s is stable, hence we have the result with s(pn, ε, nq and s “ s1.

Assume the result holds for path of length k, ϕ “ sÑr : a ¨ ϕ1 (with |ϕ| “ k), and that
n

sÑr:a
ãÝÑ n2. There are four cases:

1. If qs “ nrss and qr “ nrrs, then we have s sr!a
ÝÝÑ

sr?a
ÝÝÝÑs1 and s1 (pn2, ϕ1, n1q. We have the

result by induction hypothesis.
2. If qs ‰ nrss and qr ‰ nrrs, then we have a contradiction with the fact that s(pn, ϕ, n1q

is minimal (i.e., ϕ1 is a sufficient path).
3. If qs “ nrss and qr ‰ nrrs, then, by Def. 27, the content of the queue wsr cannot rely

on the sÑ r : a (since qr ‰ nrrs); hence we have a contradiction with the fact that
s(pn, ϕ, n1q is minimal, as above.

4. If qs ‰ nrss and qr “ nrrs, then we have wsr “ aw1sr. Thus, we have s sr?a
ÝÝÝÑs1 and

s1 (pn2, ϕ1, n1q. We have the result by induction hypothesis.
đ

§ Lemma 31. Let S be a multiparty compatible system. For all s “ p~q; ~wq P RSpSq and r PP,
if pqr, sr?b, q1rq P δr and wsr “ ε then s ÝÑ˚ sr!a

ÝÝÑ and pqr, sr?a, q2r q P δr.

Proof. Follows directly from Lemma 30. If s (pn, ϕ, n1q and sÑr : a P ϕ, then we have
the result since s ÝÑ˚ p~n; ~εq. Otherwise, then the result follows directly by MC, once p~n; ~εq
has been reached. đ

24 Meeting Deadlines Together

§ Lemma 32 (General input availability). Assume S “ pMpqpPP is multiparty compatible, then
for all s P RSpUTpSqq, if s sr!a

ÝÝÑs1
ρ
ÝÑs1, with sr?a R ρ, then s1 ρ

1

ÝÑs2
sr?a
ÝÝÝÑ.

Proof. Follows directly from Lemmas 29 and 30. đ

§ Lemma 33. Let S be a multiparty compatible system. Then for all s P RSpSq, s is neither
a deadlock nor an orphan message configuration.

Proof. Absence of deadlock configurations. By contradiction, let s “ p~q; ~w; νq P RSpSq
be a deadlock configuration. Then, by definition of deadlock, we have ~w “ ~ε, hence
s(p~q, ε, ~qq, and by multiparty compatibility there is ~q psÑr :a ; gs,λs; gr,λrq

ãÝÝÝÝÝÝÝÝÝÝÝÝÑ n1, which leads to
a contradiction with the fact that each machine is either in a final or receiving state.

Absence of orphan message configurations. By contradiction, let s “ p~q; ~w; νq P
RSpSq be an orphan message configuration. Then, by definition of orphan message configur-
ations, all qp are final and ~w ‰ ~ε, which contradicts Lemma 29, since we cannot find a path
ϕ such that ε ‰ wsr “ ϕçsr. đ

F.2 Equivalence between systems and projections
In this section, we study an equivalence between S and pSTSpSqçpqpPP.

We first define a simulation relation between two machines M and M 1.

§ Definition 34 (Simulation À). Let M1 “ pQ1, q01,X1, δ1q and M2 “ pQ2, q02,X2, δ2q. We
write M1ÀM2 iff q01À q02 where, given q1 P Q1 and q2 P Q2, q1À q2 iff
1. q1

`
Ýã q11 implies that there is q12 such that q2

`
Ýã q12 and q11À q12.

2. q2
sr!apg,λq
ÝÝÝÝÝÝã q12 implies that there is q11 such that q1

sr!apg,λq
ÝÝÝÝÝÝã q11 and q11À q12.

3. q1 is final implies that q2 is final. ˛

§ Definition 35 (Bisimulation „). We write S1„S2 iff
1. S1

`
ÝÑS11 implies that there is S12 such that S2

`
ÝÑS12 and S11„S12.

2. S2
`
ÝÑS12 implies that there is S11 such that S1

`
ÝÑS11 and S11„S12. ˛

§ Lemma 36. Let S “ pMpqpPP be a multiparty compatible system. Then for all p P

P : STSpSqçp ÀMp.

Proof. Straightforward from the definition of multiparty compatibility (Def. 4), the definition
of projections (Def. 23), and the fact that each machine is deterministic. đ

§ Theorem 37. If S is multiparty compatible, then Ŝ “ pSTSpSqçpqpPP is also multiparty
compatible.

Proof. We have to show that multiparty compatibility holds for Ŝ wrt STSpŜq. By Lemma 38,
we have that STSpSq„STSpŜq; hence checking for multiparty compatibility on either
transition system is equivalent (if a node n validates the conditions, then any bisimilar node
n1 does as well).

A state q̂ in a machine obtained by minimising the projection of STSpŜq, maps to a set
of nodes in STSpŜq, which in turn map to bisimilar nodes in STSpSq. Since S is multiparty
compatible, by Lemma 36, there must be a state q in the original machine such that qÀ q̂
for which the conditions in Def. 4 hold. Since qÀ q̂ and STSpSq„STSpŜq, these conditions
must also hold for q̂. đ

Below, we overload „ for the standard bisimulation between two transition systems.

L. Bocchi, J. Lange, and N. Yoshida 25

§ Lemma 38. Let S be a multiparty compatible system, and Ŝ “ pSTSpSqçpqpPP. Then
STSpSq„STSpŜq.

Proof. Let STSpSq “ pN,n0, ãÝÑ, Eq, write Ŝ„n (n P N) if
Ŝ sr!a
ÝÝÑ

sr?a
ÝÝÝÑŜ1 implies that n sÑr:a

ãÝÝÑ n1 and Ŝ1„n1, and
n

sÑr:a
ãÝÝÑ n1 implies that Ŝ sr!a

ÝÝÑ
sr?a
ÝÝÝÑŜ1 and Ŝ1„n1.

By definition of STSpŜq, we have to show that Ŝ„n0. Note that after projection and
minimisation, each state qp of a machine Mp in Ŝ corresponds to a set of nodes from STSpSq;
hence, we write, e.g., n P qp.

(1) First, we show the following:

@p PP : n P qp ùñ ps sr!a
ÝÝÑ

sr?a
ÝÝÝÑ ðñ n

sÑr:a
ãÝÝÑq (1)

for p~q; ~εq “ s P RSpŜq such that ~q0 ãÝÑ ~q and n P N .
(ñ) If qs

sr!a
ÝÝã and qr

sr?a
ÝÝÝã, and @p PP : n P qp, then we must have n sÑr:a

ãÝÝÑ by definition
of ãÝÑ.

(ð) If n sÑr:a
ãÝÝÑ and @p PP : n P qp, then we must also have qs

sr!a
ÝÝã and qr

sr?a
ÝÝÝã, by

definition of ãÝÑ.
(2) We show that Ŝ„n0 by induction on the length of a (synchronous) execution, as per

definition of ãÝÑ, showing that the property in (1) is preserved.
Base case. If the execution has length 0, then we consider s0 and n0. By definition of

projection and minimisation, we have @p PP : n0 P qp0.
Inductive case. Assume the property holds for s (stable) and n (i.e., @p PP : n P qp),

s sr!a
ÝÝÑ

sr?a
ÝÝÝÑs1 and n sÑr:a

ãÝÝÑ n1. We have to show that @p PP : n1 P q1p.
For s (resp. r), it must be the case that for each n1 that is reachable by firing sr!a

ÝÝã (resp.
sr?a
ÝÝÝã), n1 P qs (resp. n1 P qr); by definition of minimisation.
For p PPzts, ru, by definition of minimisation, each state qp must contain all the nodes
n1 that are ε-reachable. In particular, n1 is ε-reachable by definition of projection.

đ

§ Lemma 39. Let S be a multiparty compatible system. Then pSTSpSqçpqpPP„S.

Proof. Let s P RSpSq, Ŝ “ pSTSpSqçpqpPP, ŝ P RSpŜq.
By Lemma 36, we know that Ŝ `

ÝÑŜ1 implies that S `
ÝÑS1; and S sr!apg, λq

ÝÝÝÝÝÝÑS1 implies that
Ŝ sr!apg, λq
ÝÝÝÝÝÝÑŜ1. Hence the only difficulty is to show that if S sr?apg, λq

ÝÝÝÝÝÝÑS1 then Ŝ sr?apg, λq
ÝÝÝÝÝÝÑŜ1.

Abusing notation slightly, we show that s “ p~q; ~w; νq „ p~q1; ~w1; νq “ ŝ, with ~w “ ~w1, by
induction on the length of the execution.

Initial configuration. If qp “ q0p and q1p “ q10p, for all p PP and wsr “ ε for all sr P C,
then we have that s `ÝÑs1 iff ŝ `ÝÑs2 since ` must be of the form sr!apg, λq (due to the queues
being empty). We maintain ~w “ ~w1, trivially, hence we can apply the induction hypothesis
on s1„ s2.

Send action. If s sr!apg, λq
ÝÝÝÝÝÝÑs1 then we must have ŝ sr!apg, λq

ÝÝÝÝÝÝÑs2; and vice-versa if ŝ sr!apg, λq
ÝÝÝÝÝÝÑs2,

then s sr!apg, λq
ÝÝÝÝÝÝÑs1, by Lemma 36. In both cases, we maintain ~w “ ~w1, trivially, hence we can

apply the induction hypothesis on s1„ s2.
Receive action (1). If ŝ sr?apg, λq

ÝÝÝÝÝÝÑs2, then s sr?apg, λq
ÝÝÝÝÝÝÑs1, by Lemma 36. Hence, we

maintain ~w “ ~w1, trivially, hence we can apply the induction hypothesis on s1„ s2.
Receive action (2). By contradiction, assume s sr?apg, λq

ÝÝÝÝÝÝÑs1 and pŝ sr?apg, λq
ÝÝÝÝÝÝÑq. By

Lemma 36, machine r is not in a terminal state in neither system. By directedness, machine
r in Ŝ must also expect a message (‰ a) from machine s. However, since a is on top of the
queue, machine r is therefore permanently stuck in state qp. This contradicts the fact that Ŝ

26 Meeting Deadlines Together

is multiparty compatible (Theorem 37) and that multiparty compatibility implies that every
message is eventually received, cf. Lemma 32. đ

§ Theorem 25 (Equivalence 2). If S “ pMpqpPP is MC then S „ pGpSqçpqpPP.

Proof. Follows from Lemma 39. đ

§ Theorem 6 (Safety). If S is multiparty compatible, then it is safe.

Proof. Follows from the fact that piq MC guarantees safety in CFSMs and piiq timing
constraints imply that only a subset of the configurations reachable in the untimed setting
are reachable in the timed setting (cf. Prop. F.1). Hence, if there is a deadlock or an orphan
message configuration in the timed setting, there is also one in the untimed setting, which
contradicts Lemma 33. đ

In the following, given a system of CTAs S, STSpSq “ pN,n0, ãÝÑ, Eq, and s “ p~q; ~w; νq P
RSpSq, we write s (pn, ϕ, n1q when p~q; ~wq (pn, ϕ, n1q. This is a sound notation, cf.
Lemma 29 and Proposition F.1.

F.3 Progress properties
§ Lemma 40. Let S be a MC and IE system and STSpSq “ pN,n0, ãÝÑ, Eq. For all s “
p~q; ~w; νq P RSpSq with s `ÝÑ, and subjp`q “ p,

(1) Dn P N : s(pn0, ϕ0 ¨ e ¨ ϕ1, nq with n0
ϕ0
ãÝÑ n1

e¨ϕ1
ãÝÑ n, eçp“ ` and n1rps “ qp, and,

(2) letting, ρ “ nodespϕ0 ¨ eq if p “ ridpeq, ρ “ nodespϕ0q ¨ eçsidpeq otherwise, and k “ |ρ|,
` “ `k “ eçp, ~v “ tvi

ˇ

ˇ i P idxpρqu, the following holds:

D~v Dvk : allpastpρq ^ elapsepρq ^ absoluteρp`kq ^
ľ

viP~v

vi ď vk ^
ľ

xPXp

W k
x pρq “ νpxq

Proof. (1) follows straightforwardly from Lemma 29. We show (2) by induction on the
length h of an execution s α1 ¨ ¨ ¨αhÝÝÝÝÝÑs. First observe that s `ÝÑ implies ν |ù guardp`q.

Base Case. If h “ 0 then we have s “ s0, `k “ ` “ sp!apg, λq, and pq0p, `, q
1
pq P δp.

We can take s0 (pn0, ϕ0 ¨ e, nq (since all queues are empty) and let n0
ϕ0
ãÝÑ n1

e
ãÝÑ n and

ρ “ nodespϕ0q ¨ eçp, |ρ| “ k. Since ` is the first action fired, it does not depend on any other
transitions, hence we have DGpρq “ pH,Hq which implies that

idxpρq “ H
allpastpρq ðñ true
elapsepρq ðñ true
absoluteρp`kq “ guardp`q tx ÞÑ vkuxPX
Ź

viP~v
vi ď vk ðñ true

Ź

xPXp
W k
x pρq “ νpxq ðñ

Ź

xPXp
vk “ 0

We have the result by the hypothesis: ν0 “ ν |ù guardp`q.
Inductive Case. Assume the result hold for execution of length less than h and let us

show that result holds for h.
(1) Assume that ` “ pr!apg, λq. Without loss of generality, let us assume that the last

action executed by p is `1 “ `k´1 “ e1çp s(pn0, ϕ0 ¨ e
1 ¨ e ¨ ϕ1, nq and let n0

ϕ0¨e
1

ãÝÑ n1
e

ãÝÑ n. If
there are other actions between the last actions of p before `, they are ignored the construction
of the graph of dependencies. Pose ρ1 “ nodespϕ0 ¨ e

1q, with |ρ1| “ k ´ 1 and assume that ν1

L. Bocchi, J. Lange, and N. Yoshida 27

is the clock valuation at the time where `1 was executed. By induction hypothesis, we have
that

D~v1 Dvk´1 : allpastpρ1q ^ elapsepρ1q ^ absoluteρ1p`k´1q ^
ľ

viP~v1

vi ď vk´1 ^
ľ

xPXp

W k´1
x pρ1q “ ν1pxq

is true, with ~v1 “ tvi
ˇ

ˇ i P idxpρ1qu.
Now, let νpx̂q´ν1px̂q “ t, and ρ “ nodespϕ0 ¨e

1q¨eçp, with |ρ| “ k and ~v “ tvi
ˇ

ˇ i P idxpρqu
we have, by definition of DGp_q and its associated functions:
1. idxpρq “ idxpρ1q Y tk ´ 1u
2. allpastpρq ðñ allpastpρ1q ^ absoluteρ1p`k´1q

3. elapsepρq ðñ elapsepρ1q ^ vi ď vk´1 for any i P idxpρ1q such that there is no p_, `iq P A.
4.

Ź

viP~v
vi ď vk ðñ

Ź

viP~v1
vi ď vk´1 ^ vk´1 ď vk

Hence the first three components of the formulae holds by induction hypothesis (remember
that vk´1 does not appear in allpastpρ1q nor elapsepρ1q). We have left to show that

absoluteρp`kq
def
“ guardp`q

x ÞÑW k
x pρq

(

xPX

holds assuming that
ľ

xPXp

W k
x pρq “ νpxq

The assumption that ν |ù guardp`q implies that, letting Mpxq “ νpx̂q ´ νpxq (i.e., the
difference between the absolute time and the current valuation of clock x):

guardp`q tx ÞÑ νpx̂q ´MpxquxPX is true

We have, for each x P Xp

W k
x pρq “ vk ´ vk´1 “ t if x P resetp`k´1q,

W k
x pρq “W k

x pρ
1q tvk`t{vk´1u “ ν1pxq ` t otherwise.

thus we have the result since the only further restriction on vk is vk´1 ď vk.
(2) The case were ` “ pr?apg, λq is similar but for the fact that ` may have up to two

dependencies. However, these dependencies must come from different participants and must
therefore be independent (in DGp_q), hence we can reason as in the case above. đ

§ Lemma 41. Let S be a MC and IE system; for all p~q; ~w; νq “ s P RSpSq and for all p PP:
if qp is sending, then Dpqp, `, q

1
pq P δp such that Dt P Rě0 : ν ` t |ù guardp`q,

if qp is receiving, then
`

pqp, sp?apg, λq, q1pq P δp ^ wsp P aA˚
˘

ùñ Dt P Rě0 : ν ` t |ù g.

Proof. We show this result by induction on the length of an execution from s0
Base Case. If the execution has length 0, then s “ s0 “ p~q; ~ε; ν0q and ~q “ n0 (by

definition of STSpSq). Since all the queues are empty (~w “ ~ε), we only have to show the
first item of the result (the second holds trivially). Hence, we must show that for all p PP if
q0p is sending, then Dpq0p, `, q

1
pq P δp such that Dt P Rě0 : ν ` t |ù guardp`q. We show this by

contradiction: assume there is p PP such that for all pq0p, `, q
1
pq P δp and ν0 ` t /|ù guardp`q,

for all t P Rě0.
By definition of IE, there must be e P E and ϕ with n0

e¨ϕ
ãÝÑ such that pn0, e ¨ϕq is RPE for

idspn0q Note that idspn0q “P, by MC. Hence, there should be a path e ¨ ϕ “ e1 ¨ ¨ ¨ ei ¨ ¨ ¨ ek
such that sidpeiq “ p and, assuming n is the node from which ei is fired, pn, eiq is PE for p.

Since eiçp is a sending action and it is the first action for p, we have

DGpnodespe1 ¨ ¨ ¨ ei´1q ¨ eiçpq “ pH,Hq

28 Meeting Deadlines Together

Thus checking PE for this pair amounts to checking whether the following holds:

Dv : true ùñ guardpeiçpqtx ÞÑ vuxPX

which contradicts our hypothesis that no action of p was eventually fireable.
Inductive Case. Let us assume that result holds for s “ p~q; ~w; νq P RSpSq and let us

show that it holds for s1 “ p~q1; ~w1; ν1q with s αÝÑs1. There are five cases, depending on the
type of action that is α and, if α is a send or receive action, on the type of state reached by
subjpαq.
1. α “ sp?apg, λq and q1p is a sending state. Then we have ν1 “ ν, qq “ q1q for all q PPztpu.

We have to show that

Dpq1p, `
1, q2p q P δp such that Dt P Rě0 : ν ` t |ù guardp`1q

Take s(pn, ϕ,_q such that, assuming that e1çp“ `1,

ϕ “ ϕ1 ¨ ps Ñ p : a; gs, λs; gp, λpq “ e ¨ ϕ2 ¨ pp Ñ _ : a1; g1s,_; _,q“ e1 ¨ ϕ3

and

n
ϕ1
ãÝÑ n1

psÑp:a; gs,λs; gr,λrq
ãÝÝÝÝÝÝÝÝÝÝÝÑ n2

ϕ2
ãÝÑ n3

ppÑ_:a1; g1s,_;_,q
ãÝÝÝÝÝÝÝÝÝÝÑ n4

ϕ3
ãÝÑ n1rps “ qp and n3rps “ q1p

this is possible since (i) wsp P aA˚ and (ii) q1p is a sending, thus there must be continuation
of that path so that p does fire a sending action.
By Lemma 40, we know that there is path ϕ1 from n0 to n1 for which the pair pn1, eq is
PE for p. In addition, by IE, there must be a path ϕ2 from n2 that must be RPE for
idspn2q (note that p P idspn2q). Assume that ϕ above is a suffix of this path. For ϕ2 to
be RPE, one must check, notably, that the pair pn3, e

1q is PE for p. Since, by assumption,
e1 is the first event involving p since e and p is the sender; then the dependency graph is
for e1 is the same as the one for e with the addition of the guard corresponding to eçp,
and this guard is satisfiable since the corresponding action has just been executed and
ν1 “ ν. Hence, the LHS of the implication is satisfiable in the check for PE of e1, thus
there must also be a (future) time where e1çp is fireable; and we have the result.

2. α “ sp?apg, λq and q1p is a receiving state. We have ν1 “ ν, qq “ q1q for all q PPztpu. We
have to show that

if pq1p, qp?bpg1, λ1q, q2p q P δp and wqp P bA˚ then Dt P Rě0 : ν ` t |ù g1

Take s(pn, ϕ,_q such that

ϕ “ ϕ1 ¨ ps Ñ p : a; gs, λs; gr, λrq “ e ¨ ϕ2 ¨ pq Ñ p : b; _,_; g1,q“ e1 ¨ ϕ3

and

n
ϕ1
ãÝÑ n1

psÑp:a; gs,λs; gr,λrq
ãÝÝÝÝÝÝÝÝÝÝÝÑ n2

ϕ2
ãÝÑ n3

pqÑp:b;_,_; g1,q
ãÝÝÝÝÝÝÝÝÝÑ n4

ϕ3
ãÝÑ n1rps “ qp and n3rps “ q1p

We reason similarly as above (cf. (1)), however in this case, the dependency graph for
the check of the pair pn3, e

1çpq must also include the action e1çq. However, since e1çq

was indeed executed (there is a corresponding message in the queue) and there is no
dependence between e1çq and eçp (if q “ s, then it contradicts the fact that the first
message in the queue is a); the LHS of the implication is again satisfiable for the current
clock valuation (Lemma 40). Therefore, there must be a future time when g1 is satisfied.

L. Bocchi, J. Lange, and N. Yoshida 29

3. α “ pr!apg, λq and q1p is a sending state. In this case, we have to show that
a. Dpq1p, `1, q2p q P δp such that Dt P Rě0 : ν ` t |ù guardp`1q, and
b. if pq1r, pr?apg1, λ1q, q2r q P δr and wpr P aA˚ then Dt P Rě0 : ν ` t |ù g1

We can show (3a) following the same reasoning as (1), and show (3b) following the same
reason as (2).

4. α “ pr!apg, λq and q1p is a receiving state. We have to show that
a. if pq1p, qp?bpg1, λ1q, q2p q P δp and wqp P bA˚ then Dt P Rě0 : ν ` t |ù g1, and
b. if pq1r, pr?apg2, λ2q, q2r q P δr and wpr P aA˚ then Dt P Rě0 : ν ` t |ù g2

for which we use the same reasoning as the case above.
5. α “ t. Follows immediately from the semantics of CTAs (cf. Def. 9).

đ

§ Lemma 42. Let S be a MC and IE system. For all s “ p~q; ~w; νq P RSpSq and r PP, if
pqr, sr?bpg1, λ1q, q1rq P δr and wsr “ ε then s ÝÑ˚ sr!a

ÝÝÑ and pqr, sr?apg1, λ1q, q2r q P δr.

Proof. The result follows from its untimed counterpart (Lemma 31) and the fact that IE
requires each node to allow an RPE path which involves all the active participant, include r.
By MC, if r is active at from a node n, then r is involved in all branching outgoing n. đ

§ Theorem 13 (Progress). Suppose S is multiparty compatible (Def. 4) and interaction
enabling (Def. 12). (1) Then S satisfies the progress property. (2) For all s “ p~q; ~w; νq P
RSpSq, if there is p PP such that qp is not final, then there is s1 such that sÝÑs1.

Proof. We show (1), (2) is a direct corollary of (1).
Absence of deadlock and orphan message follows directly from Theorem 6.
Absence of unfeasible configuration follows from Lemma 41.
Absence of unsuccessful reception configuration follows from Lemmas 33, 41 and 42. In
particular, Lemma 33 guarantees that only expected messages can arrive in a queue;
while Lemma 41 guarantees there is always a future time where this message can be
received. Finally, concerning the special case of unsuccessful reception configuration where
s “ p~q; ~w; νq and there exists r PP such that qr is a receiving state, pqr, sr?apg, λq, q1rq P δr,
wsr “ ε, and @t P Rě0 : ν ` t /|ù g Lemma 42 guarantees that if a participant is in a
receiving state, there is a future time where it will receive a message. Hence Lemma 41
eventually applies and this type of configuration is also ruled out.

đ

Given two walks ω1 and ω2 in STSpSq such that the last node of ω1 is the same as the
first node of ω2, we write ω1 ¨ ω2 for the walk corresponding to the concatenation of ω1 and
ω2.

§ Definition 43 (Non-redundant walk). A walk ω in STSpSq is non-redundant if ω ‰ ω1 ¨ ω2 ¨

ω2 ¨ ω3, with ω2 ‰ ε. ˛

§ Lemma 44. Given STSpSq “ pN,n0, ãÝÑ, Eq, there is a finite number of non-redundant
walks in STSpSq.

Proof. Straightforward since there is a finite number of elementary cycle starting from a
given node (also finite) and a finite number of permutation of these cycles.. đ

§ Lemma 45. Let ϕ “ e1 ¨ ¨ ¨ ek (0 ď k) and ρ “ nodespϕq, A1 “ deppρ; `q and A2 “

deppρ ¨ ρ; `q. @p`i, `jq P A1 ùñ Dp`i, `jq P A2.

30 Meeting Deadlines Together

Proof. Straightforward since the dependencies are at least duplicated, e.g., eiçp is a (possibly
indirect) dependency of ei`kçp (where k “ |ρ|) since subjpeiçpq “ subjpei`kçpq. đ

§ Theorem 14 (Decidability). Interaction enabling (Def. 12) is decidable.

Proof. We first note that STSpSq is a finite transition system and that our logic is a subset
of the (decidable) Presburger arithmetic (once each constant c has been multiplied by a
common multiple of all the constants in the guards, as in [2]). Next, we show that it is
enough to consider finite path in STSpSq by showing that if a par is PE for a non-redundant
path ω1 ¨ ω2 ¨ ω3 path, then it is also PE for ω1 ¨ ω2 ¨ ω2 ¨ ω3.

Assume that a pair pn, eq is PE for p P idpeq on a given path ϕ “ ϕ1 ¨ ϕ2 ¨ ϕ3. Take
p “ sidpeq (for simplicity) and

n0
ϕ1
ãÝÑ n1

ϕ2
ãÝÑ n1

ϕ3
ãÝÑ n and ρ “ nodespϕ ¨ eq and |ρ| “ k

If the pair is PE then the following holds, with `k “ eçp, ~v “ tvi
ˇ

ˇ i P idxpρqu

@~v Dvk : allpastpρq ^ elapsepρq ùñ absoluteρp`kq ^
ľ

viP~v

vi ď vk

Assume |nodespϕ1q “ h1 |nodespϕ2q “ h2, let us write σ for the variable substitution that
maps

each vi s.t. 1 ď i ď h1 ` h2 to itself
each vi h1 ` h2 ď i ď k to vi`h2 .

Now consider the path ϕ1 “ ϕ1 ¨ϕ2 ¨ϕ2 ¨ϕ3 and ρ1 “ nodespϕ1 ¨eq. Take ~v “ tvi
ˇ

ˇ i P idxpρ1qu.
By Lemma 45 and logical weakening, we have

allpastpρ1q ùñ allpastpρqσ and elapsepρ1q ùñ elapsepρqσ

In addition, we have absoluteρp`kqσ ðñ absoluteρp`k`h2q.
Finally,
˜

elapsepρ1q ^
ľ

viP~v

vi ď vk

¸

σ ùñ
ľ

viP~v1

vi ď vk`h2

since each variable that is added by the duplication is either (i) related to its predecessor
(which was already present) or (ii) is added by a dependency on the duplication of the cycle,
which means that it is dependent on a variable in the cycle, with was also required to be less
or equal than than vk`h2 . đ

F.4 Non-zeno properties
In this appendix we give the proof of the main theorems of § 5: Theorem 17, Theorem 18,
and Theorem 19, after a few auxiliary lemmas. Lemma 46 states that if a system S has an
infinite execution then its STS has an elementary cycle. Lemma 46 also sets a correspondence
between states of the infinite execution of S and nodes of the cycle in STSpSq. Reversely,
Lemma 47 states that if STSpSq has no cycles then S will stop executing non-time actions
at some point (either because the system is stuck or because each machine is in a final state).
By Lemma 48 these (‘final’ or stuck) configurations are non-zeno.

L. Bocchi, J. Lange, and N. Yoshida 31

§ Lemma 46. Let S be a multiparty compatible system and s P RSpSq. If for all s1 such
that sÝÑ˚s1 there exists s2 such that s1 `ÝÑs2 with ` not being a time action, then there exist
si P RSpSq, ni, n1i P STSpSq, and ϕi such that sÝÑ˚si, si (pni, ϕ, n

1
iq and ni is in an

elementary cycle in STSpSq.

Proof. By hypothesis, the set RSpsq “ tsi | sÝÑ˚siu is infinite. By multiparty compatibility
of S we can build STSpSq. By Lemma 29, for each si P RSpsq there exist ni, n1i P STSpSq
and ϕi such that sj (pnj , ϕj , n

1
jq. Since RSpsq is infinite, but the set of nodes of STSpSq

is finite, then there exist si, sj P RSpsq such that si (pni, ϕi, n
1
iq, sj (pnj , ϕj , n

1
jq and

ni “ nj . By ni “ nj , the walk from ni to nj is a cycle. The lemma follows by the fact that
any cycle includes an elementary cycle. đ

§ Lemma 47. Let S be a multiparty compatible system. If STSpSq has no cycles then for
all s P RSpSq there exists s1 such that sÝÑ˚s1 and s1 cannot make any action which is not a
time action.

Proof. Follows similar arguments than the proof of Lemma 46, by observing the correspond-
ence between the number of possible walks in STSpSq, which in this case is finite, and the
corresponding configurations of S. đ

§ Lemma 48. Let S be a multiparty compatible system. If s P RSpSq and for all s1 such that
sÝÑ˚s1 there exists s2 such that s1 `ÝÑs2 where ` can only be a time action then s is not a zeno
configuration.

Proof. There are two cases in which s1 can only make time actions: (1) s1 is a final state,
and (2) s1 is a configuration violating progress. In case (1) s1 is non-zeno as a final state
always allows time to diverge. Case (2) cannot occur as this would imply that s1 could reach
a state with no further possible transitions, which contradicts the hypothesis. đ

§ Theorem 17 (Non-zenoness). If S is MC and CE, then S is non-zeno.

Proof. We proceed by contradiction, assuming that both of the following conditions hold:
1. S is MC and CE,
2. there exists s P RSpSq which is a zeno configuration.
Since s is zeno then for all s1 such that sÝÑ˚s1 there exists s2 such that s1 `ÝÑs2. Fix one s1.
By Lemma 48 we can fix an action ` that is not a time action. Since S is MC then we can
apply Lemma 46, yielding that there exist n, n1, ϕ such that s1 (pn, ϕ, n1q and n is in an
elementary cycle ω. Let n e

ãÝÑ n2 for some e “ ps Ñ r : a; gs, λs; gr, λrq. Since S is CE, then
by Def. 16 we can create a partition of fcpgsq, which consists of the three sets of the following
form:

C1 “ tx | x P fcpgsq ^ gs is not UB for xu
C2 “ tx | x P fcpgsq ^ gs is UB for x ^

Dpp Ñ q : b; gp, λp; gq, λqq in ω s.t. x P tλp Y λqu ^

Dpp1 Ñ q1 : c; g1p, λ1p; g1q, λ1qq in ω s.t. g1p is SP u

C3 “ tx | x P fcpgsq ^ gs is UB for x ^ there is n3 ‰ n and e1 ‰ e

s.t. idpeq {“idpe1q, n
e1
ãÝÑ n3 and pn, e1q is @-PE for sidpe1qu

Note that more than one partition of fcpgsq may exist (since e.g., a clock can be both reset
and not have an upper bound). However, as all partition are of the form above, we consider
one without loss of generality.

We next proceed by induction on the number of elementary cycles in STSpSq.
(Base case - ω includes one elementary cycle)We consider two possible, and exhaustive
scenarios: C3 {“H and C3 “ H.

32 Meeting Deadlines Together

If C3 {“H then the (one) cycle ω has an ‘escape’ to n3. Since by hypothesis (base case of
induction) there is just one elementary cycle in ω this implies that n3 is not in another cycle
in STSpSq. Since n3 is not in a cycle, then by Lemma 47 it follows that there is no infinite
execution from s1. Therefore s1 is non zeno, which contradicts condition (2).

If C3 “ H then we proceed by induction on the number of nodes in ω that have at least
one clock with upper bound in the sender’s constraint (i.e., nodes in ω that have the second
set in the partition, of the form of C2, non empty).

In the base case there is only one node that has upper bounded clocks. For simplicity of
notation and without loss of generality, we assume the only node with clocks in C2 is
n (and recall that n has an outgoing event e “ ps Ñ r : a; gs, λs; gr, λrq). Since C2 is
a finite set, there exists a constant c which is the smallest upper bound for the clocks
in the guards gs of e. Also, note that by condition (1-ii) of Def. 16 c is strictly greater
than 0 (i.e., c P Qą0). We know, by definition of C2, that each x P C2 is reset at least
once in ω. Since all other nodes in ω do not have upper bounds (hypothesis of this base
case) then at every execution of the cycle, when reaching s1, it is possible to let time
elapse at least c time units. Note that this delay is allowed by: (i) the constraints on
clocks in C1 (as they have no upper bound), (ii) the constraints in C2 as they have upper
bound greater than or equal to c, and (iii) by sender’s constraints the other nodes in ω
which have no upper bound (by hypothesis of this base case). Since c ą 0 time units can
elapse at each cycle, and the execution is infinite by hypothesis, then after t´νs1 px̂q

c cycles
νs1px̂q ě t which contradicts the condition (2) by which s1 is zeno.
In the inductive case, we consider a cycle ω1 which is as ω except that the upper-binding
constraints of n have been removed from n in ω1. We assume by induction that s1 in
ω1 is non zeno and there are m nodes in ω1 with upper binding (sender’s) constraints.
Since s1 is non zeno in ω1 then either: the time elapsed in each iteration in ω1 is infinite
or has an upper bound c1 ą 0 (i.e., some time elapsed in each iteration, and it is not
progressively decreasing). In either case, at each iteration in ω1 at least c1 time units can
elapse. Now, considering the upper binding constraints of n in ω, which again we assume
to have an upper bound greater than or equal to c, we have that at least minpc, c1q time
units can elapse at each iteration in ω. Since both c and c1 are strictly greater than 0
then minpc, c1q ą 0 hence after t´νs1 px̂q

minpc,c1q cycles νs1px̂q ě t which, again, contradicts the
condition (2).

(Inductive case - ω includes more than one elementary cycles) If C3 “ H then we
can proceed exactly as for the base case (i.e., the case for only one cycle).

If C3 {“H, we assume by induction that (being S MC and CE) STSpSq has m loops which
do not have any zeno configuration. We extend STSpSq with one more loop. The topology
of this extension is irrelevant to this proof. By the case analysis we know that C3 {“H hence
C3 includes at least one clock that has an upper bound in s1. Recall that n is a node such
that s1 (pn, ϕ, n1q: since STSpSq is CE there exists an ‘escape’ from n yielding out of the
elementary cycle ω. Namely, n e1

ãÝÑ n3 for some e1 and n3.
If n3 is not included in any walk into or yielding to an elementary cycle then Lemma 47

yields that there is no infinite execution from s1. Therefore s1 is non zeno, which contradicts
condition (2).

If n3 is included in an elementary cycle ω2 then we have ω2 {“ω1 since n {“n3 (although
ω2 and ω1 could have some nodes in common). The condition in C3, which corresponds to
condition 1 in Def. 16, and requiring that pn, e1q is @-PE for sidpe1q, yields that it is always
possible for S to make a step s e1ÝÑs2 such that s1 (pn3, ϕ1, n4q (for some ϕ1, n4). By
induction ω2 does not have zeno configurations, hence it is possible to follow ω2 an arbitrary

L. Bocchi, J. Lange, and N. Yoshida 33

number of times until νspx̂q ě t which, again, contradicts condition (2).
đ

§ Theorem 18 (Decidability). Cycle enabling (Def. 16) is decidable.

Proof. Observe that the checks CE performs in each state are either (a) decidable syntactic
checks on the form of the guards, or (b) checks for PE, which are decidable by Lemma 14.
Observe also that the checks are made on the states all elementary cycles in STSpSq, which
are a finite number. Decidability follows from the fact that CE performs decidable checks on
a finite number of states. đ

§ Theorem 19 (Eventual reception). If S is MC, IE, and CE, then S satisfies ER.

Proof. Take a configuration s “ p~q; ~w; νq P RSpSq such that wsr P aA˚. We must have
s(pn, ϕ1 ¨ ps Ñ r : a; gs, λs; gr, λrq ¨ ϕ2, nq. Assume we have the following situation:

n
ϕ1
ãÝÑ n1

psÑr:a; gs,λs; gr,λrq
ãÝÝÝÝÝÝÝÝÝÝÝÑ n2

ϕ2
ãÝÑ n1 with n1rrs “ q1r ‰ qr and n2rss “ qs

i.e., s has just put the message a into queue wsr and r is not (yet) able to receive it. We first
show that there is an execution for r to reach a (local) state where it can receive a. This
follows simply for IE and RPE since there must be a satisfiable path involves all participant
(and by MC if a is sent in several branches, it is always received).

Once we are in a configuration s “ p~q; ~w; νq such that wsr P aA˚ and pqr, sr?apg, λq, q2r q P
δr, then we know by Theorem 13 that there is a future time where g is satisfiable. In addition,
this time is indeed reachable since s is not a zeno configuration (Theorem 19). đ

	Introduction
	Communicating Timed Automata
	Safety in CTAs
	Progress with Time Constraints
	Progress Properties
	A Sound Characterisation of Progress

	Non-Zenoness and Eventual Reception in CTAs
	Applications and Implementation
	Conclusions and Related Work
	Additional Examples for Interaction Enabling
	Additional Definitions for Section 5
	Additional Examples for Zeno Systems
	Progress vs non-zenoness
	Progress and non-zenoness
	Non-zeno configurations and systems

	Construction of Timed Global Types
	Extended Related Work
	Multiparty session types
	Non-zeno conditions
	Reachability and decidability

	Proofs
	Correspondence between S and STS(S)
	Equivalence between systems and projections
	Progress properties
	Non-zeno properties

