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dation for safety assurance of distributed components which asynchronously com-
municate through multiparty sessions. Our theory establishes a framework for
semantically precise decentralised run-time enforcement and provides reasoning
principles over monitored distributed applications, which complement existing
static analysis techniques. We introduce asynchrony through the means of explicit
routers and global queues, and propose novel equivalences between networks, that
capture the notion of interface equivalence, i.e. equating networks offering the
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1. Introduction1

One of the main challenges in the engineering of distributed systems is the2

comprehensive verification of distributed software without relying on ad-hoc and3

expensive testing techniques. Multiparty session types (MPST) is a typing dis-4

cipline for communication programming, that was originally developed in the5

π-calculus [33, 6, 9, 23, 24, 16] towards tackling this challenge. The idea is6

that applications are built starting from units of design called sessions. Each type7

of session, involving multiple roles, is first modelled from a global perspective8

(global type) and then projected onto local types, one for each role involved. As9

a verification method, the existing MPST systems focus on static type checking10

of endpoint processes against local types. The standard properties enjoyed by11

well-typed processes are communication safety (all processes conform to glob-12

ally agreed communication protocols) and freedom from deadlocks.13

The direct application of the theoretical MPST techniques to the current prac-14

tice, however, presents a few obstacles. First, the existing type systems are tar-15

geted at calculi with first class primitives for linear communication channels and16

communication-oriented control flow; the majority of mainstream engineering17

languages would need to be extended in this sense to be suitable for syntactic18

type checking using session types. Unfortunately, it is not always straightforward19

to add these features to the specific host languages. Furthermore, the executable20

processes in a distributed system may be implemented in different languages. Sec-21

ond, for domains where dynamically typed or untyped languages are popular (e.g.,22

Web programming), or in multi-organisational scenarios, the introduction of static23

typing infrastructure to support MPST may not be realistic.24

Development of Heterogeneous Systems based on MPSTs. This article pro-25

poses a theoretical framework addressing the issues discussed above, by support-26

ing the combination of static and dynamic verification of processes communi-27

cating in a network. Fig. 1 illustrates the proposed framework. As standard in28

MPST [33, 6], the first stage is to specify a global protocol as a global type, de-29

scribing how the participants should interact in a multiparty session. The global30

type is then mechanically projected to generate local protocols, as local types,31

specifying the communication behaviour expected of each role in the session. The32

global type in Fig. 1 involves three roles, yielding three local types upon projec-33

tion. Next, each principal in a network implements one (or possibly more) local34

types. We call these implementations endpoint processes, or simply processes.35

We aim to capture the decentralised nature of distributed application develop-36

ment, providing support for heterogeneous distributed systems by allowing com-37

ponents to be independently implemented, using different languages, libraries and38

programming techniques. Assume that (1) the process on the right-hand side of39

2
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Figure 1: Static/dynamic verification through global types and projection

Fig. 1 is implemented in a language that supports static verification with session40

typing techniques, and that conformance to the implemented local type is veri-41

fied this way, and (2) the other two processes are implemented in standard Java42

and Python, respectively, using simple session programming APIs and are not43

amenable to static typing. To ensure that the composition of these three processes44

conforms to the intended protocol we wrap the processes that cannot be stati-45

cally verified with dedicated distributed monitors, that dynamically verify their46

participation in the session. In other words, our framework allows processes to be47

independently verified, either statically during deployment, or dynamically during48

execution, while retaining the strong global safety properties of statically verified49

systems.50

This work is motivated in part by our ongoing collaboration with the Ocean51

Observatories Initiative (OOI) [44], a project to establish cyberinfrastructure for52

the delivery, management and analysis of scientific data from a large network53

of ocean sensor systems. Their architecture relies on the combination of high-54

level protocol specifications (to express how the infrastructure services should55

be used) and distributed run-time monitoring to regulate the behaviour of third-56

party applications in the system. An implementation of the framework in Fig. 1 is57

currently integrated into the OOI infrastructure. In this implementation, processes58

are specified using Scribble [47, 51, 31, 30] (a practical incarnation of MPST) and59

processes are implemented in the Python programming language and dynamically60

monitored [43, 34].61

3
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Figure 2: Architecture of monitored/unmonitored networks

Monitored Networks. Networks are organised as follows: a group of princi-62

pals run processes communicating via asynchronous message passing; dedicated63

trusted monitors (one for each principal) guard the run-time behaviour of both the64

environment and that principal, through the evaluation of incoming and outgo-65

ing messages. The aim is to protect the principal from violations by other prin-66

cipals, and also to prevent the principal from committing violation (this can be67

used e.g. for debugging). Monitors regulate (1) the initiation, by principals, of68

new sessions, each specified by a well-defined global type, and (2) the movement69

of messages within each session. Fig. 2 illustrates the architecture of a network70

with three principals (α1, α2 and α3); all principals are monitored except α3,71

namely we assume the processes run by α3 have been statically checked hence72

its monitor can be switched-off (indeed all outgoing and incoming messages can73

pass through without dynamic checking); each principal is associated with one74

or more shared queues, on which all other principals can send invitations to join75

new sessions. The messages exchanged within a session are all associated to one76

common session ID, and the exchange of messages in a session is regulated by77

verifying that the causality of messages follows the specification (roughly, the en-78

semble of local types) of that session. In Fig. 2 each principal is associated with79

exactly one shared queue, and we denote with ai the queue associated with αi,80

with i ∈ {1, 2, 3}; principal α1 is currently playing role Alice in two sessions with81

session IDs s and s′, whereas α2 and α3 are playing Bob and Carol, respectively,82

in just one session s (e.g., the invitations to join s′ have not yet been received by83

them).84

A Formal Theory for Dynamic Verification. Our theory is based on the idea85

that, if the endpoint processes in a system are independently verified (either stati-86

cally or dynamically) to conform a local type, then the corresponding global pro-87

4
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tocol is respected as a whole. To this goal, we propose a new formal model and88

a bisimulation theory for heterogeneous networks of monitored and unmonitored89

processes.90

For the first time, we model dynamic verification based on types for the π-91

calculus. We provide an explicit account of the routing mechanism that is im-92

plicitly present inside the MPST framework: in a session, messages are sent to93

abstract roles (e.g. to a Seller), and a router (a dynamically updated component of94

the network) translates these roles into actual addresses.95

Our approach also aims at giving a semantical equivalence for a collection of96

protocols (and networks), by reaching a formal criterion for equating services. By97

taking the routing feature into account when designing novel equivalences, our98

formal model can relate networks built in different ways (through different distri-99

butions or relocations of services) but offering the same interface to an external100

observer. The router, being in charge of associating roles with principals, hides101

to an external user the internal composition of a network: what distinguishes two102

networks is not their structure but the services they are able to provide, or more103

precisely, the local types they offer to the outside. We prove that bisimulation104

is compositional (Proposition 4.4) and that equivalent networks satisfy the same105

specification (Proposition 4.6).106

We formally define a satisfaction relation to express when the behaviour of a107

network conforms to a global specification and we prove a number of properties of108

our model: local safety (Theorem 5.2) states that a monitored process respects its109

local protocol, i.e. that dynamic verification by monitoring is sound; global safety110

(Theorem 5.4) extends local safety to networks involving multiple principals; lo-111

cal transparency (Theorem 6.1) states that a monitored process has equivalent112

behaviour to an unmonitored but well-behaved (e.g. statically typed) process; and113

global transparency (Theorem 6.3) states that a network where each principal is114

monitored has equivalent behaviour to an unmonitored but well-behaved network.115

Finally, we introduce a stronger property than global safety, session fidelity116

(Theorem 7.13), which not only guarantees conformance of each monitored pro-117

cess in a network to the ensemble of local specifications, but also requires that118

the overall flow of messages throughout the router is correct. In this way, session119

fidelity shows the correspondency between the behaviour of a monitored system120

and the behaviour specified by a global protocol. Together, these properties justify121

our framework for decentralised verification by allowing monitored and unmoni-122

tored processes to be safely mixed while preserving protocol conformance for the123

entire network. Technically, these properties also ensure the coherence of our the-124

ory, by relating the satisfaction relations with the semantics and static validation125

procedures.126

Our theory is more involved than most of the existing works in the domain127

of session verification [33] as, for the first time, both networks and monitoring128

5
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are made explicit. Our abstract model for session networks describe the evolution129

of the network at a lower-level; for instance, we introduce dynamic update of130

routing information: a participant taking part in a session does not send a message131

to another participant, but sends a message to a role which is then routed by the132

networks to the corresponding participant.133

Contributions and Outline. This work is an extended version of [7] that in-134

cludes: the definitions omitted in [7], additional examples, and full proofs. Specif-135

ically, we extended [7] by including the following additional material:136

• the formal definition of monitorability, a consistency condition on global137

types, together with a discussion on its relevance and a statement of its138

decidability (§ 2.2);139

• the detailed definitions, full formal statement and proofs of session fidelity140

and its relationship with global safety (in this introduction, § 5 and § 7),141

which is only outlined in [7];142

• a simpler but less restrictive semantics of networks (e.g., a principal is now143

allowed to engage as different participants in the same session);144

• a detailed formalisation for behavioural equivalences (§ 4.3)145

• a formal statement on global safety in mixed (i.e., monitored and unmoni-146

tored) networks (Corollary 6.4);147

§ 2 and § 3 introduce the formalisms for protocol specifications and networks, re-148

spectively. § 3 provides a formal framework for monitored networks based on149

π-calculus processes and protocol-based run-time enforcement through monitors.150

§ 4 introduces: a semantics for specifications (§ 4.1), a novel behavioural theory151

for compositional reasoning over monitored networks through the use of equiva-152

lences (bisimilarity and barbed congruence) and the satisfaction relation (§ 4.2).153

Local and global safety are stated and proved in § 5, transparency in § 6, and ses-154

sion fidelity in § 7. Related works are discussed in § 8 and future works in § 9.155

2. Monitorability in Multiparty Session Types156

This section provides basic definitions and well-formedness conditions for157

multiparty session types. In § 2.1 we summarise the syntax of multiparty ses-158

sion types annotated with logical assertions (MPST), which we use to model pro-159

tocols. In § 2.2, we introduce a condition called monitorability, enforceable on160

MPST, that sets the basis for the results presented in the next sections.161

6
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A ::= tt | ff |e1 = e2 |e1 < e2 |¬A |A1 ∧A2 |A1 ∨A2

e ::= v | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1 mod e2
S ::= bool | int | string

G ::= r1→r2 : {li(xi :Si){Ai}.Gi}i∈I | G1 | G2 | µt.G | t | end

T ::= r!{li(xi :Si){Ai}.Ti}i∈I | r?{li(xi :Si){Ai}.Ti}i∈I | µt.T | t | end

Figure 3: Global and local types with assertions

2.1. Multiparty Session Types with Assertions162

Multiparty session types with assertions [9] are abstract descriptions of the163

structure of interactions among the roles in a multiparty session (i.e., in a pro-164

tocol); they specify the potential flows of messages, the conditions under which165

interactions may occur, and the constraints on the communicated values.166

Global types with assertions, or just global types, describe multiparty sessions167

from a network perspective. Global types can be projected onto local types with168

assertions, or just local types, each describing the protocol from the perspective169

of a single role.170

The syntax of global types (G,G′, . . .) and local types (T, T ′, . . .) is defined171

in Fig. 3. We let values v, v′, . . . range over boolean constants, numerals and172

strings, and e, e′, . . . range over first-order expressions. Assertions, ranged over173

by A,A′, . . . are logical predicates used to express constraints on the values com-174

municated. We consider assertions following the grammar given in Fig. 3 although175

other decidable logics could be used. For instance, in [9, 24] the logics includes176

existential quantifiers which we have omitted for simplicity (of evaluation of the177

assertions by the run-time monitors), and because they are not necessary for our178

run-time theory. The sorts of exchanged values (S, S ′, . . .) consists of atomic179

types.180

Global Types with Assertions. r1 → r2 : {li(xi : Si){Ai}.Gi}i∈I models an181

interaction where role r1 sends role r2 one of the branch labels li, as well as a182

payload denoted by an interaction variable xi of sort Si. Interaction variable xi183

binds its occurrences in Ai and Gi. Ai is the assertion which needs to hold for r1184

to select li, and which may constrain the values instantiating xi. G1 | G2 specifies185

two (independent) parallel threads in a session. We assume G | end and end | G186

are identical with G. µt.G is a recursive type, where G is guarded in the standard187

way [45, 6], and end ends the session.188

Example 2.1 (ATM: the global type). Global typeGATM specifies an ATM scenario.
Each session of ATM involves three roles: a client C, a payment server S and a

7
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separate authenticator A.

GATM = C→ A : { Login(xi : string){tt}.
A→ S : { LoginOK(){tt}. A→ C : {LoginOK(){tt}. GLOOP},

LoginFail(){tt}. A→ C : {LoginFail(){tt}. end}}}
GLOOP = µ LOOP.

S→ C : { Account(xb : int){xb ≥ 0}.
C→ S : { Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,
Quit(){tt}.end}}

At the beginning of the session C sends A payload xi (i.e., the login details); then189

A decides whether the authentication is successful or not, and informs S and C of190

the choice by sending either label LoginOK or LoginFail. If LoginFail is cho-191

sen then the session terminates. If LoginOK is chosen then C and S enter a loop192

specified by GLoop. In each iteration of GLoop, S sends C the amount xb currently193

available in the account. The predicate states that xb must be non negative. C can194

then choose one of the following three labels: Withdraw (withdraws an amount195

xp, which must be positive and not exceed the current amount xb), Deposit (de-196

posits a positive amount xd in the account), or Quit (ends the session). If either197

Withdraw or Deposit was chosen then another iteration is executed.198

Local Types with Assertions. Each local type T is associated with a role taking199

part in a session. Local type r!{li(xi :Si){Ai}.Ti}i∈I models an interaction where200

the role under consideration (say p) sends r a branch label li and a message de-201

noted by an interaction variable xi of sort Si. Its dual is the receive interaction202

p?{li(xi : Si){Ai}.Ti}i∈I , where the role under consideration (say r) receives a203

message from p. As customary for MPST, only global types can be composed in204

parallel, namely there is no parallel composition of local types. This is guaranteed205

by a well-formedness condition on global types (see Definition 2.4) formally de-206

fined on the projection function, and requiring a given role to appear in only one207

side of a parallel composition. The remaining local type syntax is similar to the208

one of global types.209

Example 2.2 (On causalities in global type). Consider the following global type:

Gseq = r1 → r2 : (x : int){tt}.
r3 → r4 : (y : int){tt}.end

The interaction from r1 to r2 and the interaction from r3 to r4 are causally un-
related. In fact, due to distribution, one cannot enforce r3 to send y after r2 has
received x (unless additional interactions are introduced, for example between r2

8
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and r3). In fact (as in [33, 6, 9, 23, 24, 16]) the global type above specifies the
same behaviour as

Gpar = r1 → r2 : (x : int){tt}.end | r3 → r4 : (y : int){tt}.end

Where interactions are causally unrelated, we will use the parallel global types210

Gpar rather than the sequential one Gseq .211

The global type below, instead, requires the completion of the first interaction
before r2 can send the next message:

r1 → r2 : (x : int){tt}.
r2 → r4 : (y : int){tt}.end

In addition, due to asynchrony, causality may affect the send and receive actions
of an interaction in different ways, as shown by the global type below.

r1 → r2 : (x : int){tt}.
r1 → r4 : (y : int){tt}.end

Variable y must be sent by r1 only after variable x is sent, but possibly before x is212

received by r2.213

One can derive a set of local types Ti from a global type G by endpoint pro-214

jection. As in [23, 24], our definition of endpoint projection relies on a merge215

operator on local types which is useful to coherently assemble the behaviour that216

a role has in different branches of a global type, as illustrated in Example 2.3.217

Example 2.3 (Merging local behaviours). Consider the following global type:

r1 → r2 : { l1(x : int){tt}.r2 → r3 : l3(x
′ : int){tt}.end,

l2(y : string){tt}.r2 → r3 : l4(y
′ : string){tt}.end}

When defining the local behaviour of r3 one must take into account that the first
communication between r1 and r2 is not visible to r3. From the perspective of r3
the session will either be described as either r2?l3(x′ : int){tt}.end or r2?l4(y′ :
string){tt}.end. The overall behaviour of r3 is obtained by merging the two local
types above into one branching as follows:

r2?{l3(x′ : int){tt}.end, l4(y′ : string){tt}.end}

Definition 2.1. We define the union of two local types as the following partial218

operator:219

1. T ∪ T = T220

9
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2.
r?lk{(xk :Sk){Ak}.Tk}k∈I ∪ r?lk{(xk :Sk){Ak}.Tk}k∈J =
r?lk{(xk :Sk){Ak}.Tk}k∈I∪J with I ∩ J = ∅221

Local types are idempotent w.r.t. ∪ and is otherwise undefined when types are222

not both input types from the same sender. In this case, all possible labels, together223

with their associated payload, types, assertions and continuations are collected224

into a single type.225

Definition 2.2. Assume all labels are indexed and li = lj if and only if i = j.226

The merge operator t is a partial operator on local types, and is defined by the227

following axioms (closed by standard typed contexts):228

1. T t T = T229

2. r?{li(xi :Si){Ai}.Ti}i∈I t r?lj{(x′j :S ′j){A′j}.T ′j}j∈J =230

r?lk{(xk :Sk){Ak}.Tk}k∈I\J ∪ r?lk{(x′k :S ′k){A′k}.T ′k}k∈J\I∪
r?lk{(xk :Sk){Ak ∨ A′k}.Tk t T ′k}k∈I∩J

when ∀k ∈ I ∩ J, xk = x′k, and Sk = S ′k.
231

By (1) each local type is idempotent w.r.t. t. Axiom (2) merges two local types232

receiving messages from a common role, say r. The resulting local type includes233

the union of the branches having distinguished labels (i.e. in I \ J and J \ I), and234

integrates the common labels (i.e., in I∩J). When integrating the common labels,235

axiom (2) makes sure that they have the same sorts (i.e., Sk = S ′k). The merge236

operator in [23, 24] is defined on local types without assertions. We define the237

predicate of the resulting local type to be the disjunction of the predicates of the238

local types being merged (i.e.,Ak∨A′k). We motivate this choice via Examples 2.4239

and 2.5. The intuition is that, when allowing merging for receiving actions only,240

the message, from the point of view of the local participant, satisfies a predicate241

for one of the branches.242

Example 2.4 (Merging assertions). Consider the following global type:

r1 → r2 : { l1(x : int){tt}.r2 → r3 : l3(x
′ : int){x′ > 0}.end,

l2(y : string){tt}.r2 → r3 : l3(x
′ : int){x′ > 10}.end}

This scenario differs from the one in Example 2.3 from the fact that r3 is expecting
label l3 in both branches (hence the behaviours of the common label l3 need to be
integrated). Role r3 must be able to accept a value for x′ that satisfies x′ > 0 or
x′ > 10 (without knowing which branch between l1 or l2 was selected, hence to
which assertion r2 must obey). Therefore we relax the expectation of r3 to expect
either case (i.e., a value satisfying the disjunction of the predicates):

r2?{l3(x′ : int){x′ > 0 ∨ x′ > 10}.end}

10
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When merging two local types, say T1 and T2, if none of the axioms in Defini-243

tion 2.2 applies then we say that T1 and T2 are non mergeable. As in [23, 24] we244

let the local types for sending interactions to be non mergeable (i.e., axiom 2 can245

only be applied to receive interactions) unless the send interactions to be merged246

are identical (in which case one can merge by axiom 1). Example 2.5 illustrates247

the motivation of this choice.248

Example 2.5 (Non mergeability of send interactions). In the global type below

r1 → r2 : { l1(x : int){tt}.r3 → r2 : l3(x
′ : int){tt}.end,

l2(y : string){tt}.r3 → r2 : l4(y
′ : string){tt}.end}

Considering local behaviour of role r3 that role r3 must choose between l3 and
l4 without knowing which branch was chosen by r1 in the first interaction. If we
allowed to merge the two behaviours of r3 we would also allow, for instance, r3
to select l3 after r1 had selected l2. In this scenario the behaviour r3 would not
conform to the expectations of r2 with respect to the global type. In Definition 2.2
we require, instead, that when a sender r does not know which branch was chosen
by other roles in a previous interaction, then r must act in the same way in all
branches. The following global type is, for instance, mergeable by axiom (1) in
Definition 2.2:

r1 → r2 : { l1(x : int){tt}.r3 → r2 : l3(x
′ : int){tt}.end,

l2(y : string){tt}.r3 → r2 : l3(x
′ : int){tt}.end}

Let roles(G) be the set of roles in G. Formally,

roles(r1→r2 : {li(xi :Si){Ai}.Gi}i∈I) = {r1, r2}
⋃
i∈I roles(Gi)

roles(G1 | G2) = roles(G1) ∪ roles(G2)
roles(µt.G) = roles(G)

roles(t) = roles(end) = ∅

We next define ftv(G), the set of free type variables in G as:

ftv(r1→r2 : {li(xi :Si){Ai}.Gi}i∈I) = ∪i∈I ftv(Gi) ftv(end) = ∅
ftv(G1 | G2) = ftv(G1) ∪ ftv(G2) ftv(µt.G) = ftv(G) \ {t} ftv(t) = t

The set fv(A) of free variables occurring in A is defined as follows:

fv(tt) = fv(ff) = ∅ fv(e1 = e2) = fv(e1 < e2) = fv(e1) ∪ fv(e2)
fv(¬A) = fv(A) fv(A1 ∧ A2) = fv(A1 ∨ A2) = fv(A1) ∪ fv(A2)
fv(x) = {x}
fv(e1 op e2) = fv(e1) ∪ fv(e2) op ∈ {+,−, ∗, mod}
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Definition 2.3 (Projection). Assume r1, r2, r ∈ G and r1 6= r2. The projection
of G on r, written G � r, is defined as follows:

(r1 → r2 : {li(xi :Si){Ai}.Gi}i∈I) � r =



r2!{li(xi : Si){Ai}.(Gi � r)}i∈I if r = r1

r1?{li(xi : Si){Ai}.(Gi � r)}i∈I if r = r2

ti∈IGi � r {r1, r2} ∩ roles(Gi) 6= ∅
Gi Gi = t or Gi = end
undefined otherwise

(G1 | G2) � r =





Gi � r
if roles(G1) ∩ roles(G2) = ∅
and ftv(G1) ∩ ftv(G2) = ∅
i ∈ {1, 2} and r 6∈ roles(G3−i)

undefined otherwise.

µt.G � r =

{
µt.(G � r) if r ∈ G
end otherwise

t � r = t

end � r = end

The first rule projects an interaction onto sender or receiver role. Note that, if the249

role is not involved in the interaction (r 6= r2 6= r1) then the projection is the local250

type resulting by merging (Definition 2.2) the projections Gi � r for all i ∈ I . The251

side condition ensures that we write a parallel composition if the roles and type252

variables are disjoint (cf. Example 2.2). If some of the Gi � r are non mergeable253

then the projection rule cannot be applied. (G1 | G2) � r is defined only when the254

sets of roles of G1 and G2 are disjoint; in this case, the result of the projection is255

the projection of the side of the parallel composition in which r appears (if r does256

not appear further, then the projection of any side can only yield end). The other257

rules are straightforward.258

If none of the rules in Definition 2.3 can be applied on a global type G then G259

is not projectable.260

Definition 2.4 (Projectability). A global type G is projectable if all of its projec-261

tions to every role r ∈ roles(G) are defined by Definition 2.3.262

Hereafter in this article we will consider only projectable global types.263

Example 2.6 (ATM: the local type of C). We present the local type TC obtained by

12
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projecting GATM on role C.

TC= A!{Login(xi : string){tt}.
A?{LoginOK(){tt}. TLoop

LoginFail(){tt}. end}}

TLoop= µ LOOP.
S?{Account(xb : int){xb ≥ 0}.
S!{Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}.

LOOP,
Deposit(xd : int){xd > 0}.LOOP,
Quit(){tt}.end}}

TC specifies the behaviour that C should follow to meet the contract of global type264

GATM. TC states that C should first authenticate with A, then receive the message265

Account from S, and then has the choice of sending Withdraw, or Deposit or266

Quit. If label Withdraw or Deposit are chased another iteration is executed,267

otherwise the session terminates.268

2.2. Monitorability of Global Types269

When designing a global type to be used in a monitoring framework, one270

must ensure that the monitor associated to each role is always able to determine271

if an incoming or outgoing message conforms to the contract or not. Example 2.7272

shows that this is not the case for some global types.273

Example 2.7 (Non monitorable global type). In the global type below r3 does
not know which value has been given to x in the first interaction between r1 and
r2.

Gs = r1 → r2 : (x : int){x > 5}.
r2 → r3 : (y : int){tt}.
r3 → r1 : (z : int){x > z}.end

For any value sent by r3, the monitor of r3 cannot determine whether the value
sent for z by r3 is violating or not. Similarly (but for receive interactions) in the
global type below

Gr = r1 → r2 : (x : int){x > 5}.
r2 → r4 : (y : int){y > x}.end

the monitor of r4 will not have, at run-time, information on the value of variable274

x, hence will not be able to determine if the value sent by r2 for y conforms to the275

assertion y > x.276

We call global types as the ones illustrated in Example 2.7 non monitorable.277

In the rest of this section we will give a formal definition of monitorability.278

Definition 2.5 (Known variables). Let G′′ be a subterm of G. We say that p279

knows x in G′′ if:280

• there exists G′ subterm of G s.t. G′ = r1→r2 : {li(xi :Si){Ai}.Gi}i∈I ,281

13
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• p ∈ {r1, r2},282

• for some j ∈ I , G′′ is a subterm of Gj and x = xj .283

Namely, p knows a variable x in a subterm G′′ of G if x is introduced in an284

interaction of G that occurs before G′′ and that involves p.285

Definition 2.6 (Monitorability). Let G be a subterm of G0. G is monitorable286

w.r.t. G0 if one of the following conditions holds:287

1. G = r1 → r2 : {li(xi : inti){Ai}.Gi}i∈I , and for all i ∈ I , y ∈ fv(Ai),288

j ∈ {1, 2}, rj knows y in G and Gi is monitorable w.r.t. G0;289

2. G = G1|G2, and for all j ∈ {1, 2}, Gj is monitorable w.r.t. G0;290

3. G = µt.G′ and G′ is monitorable w.r.t. G0;291

4. G = t or G = end.292

We say that G is monitorable if it is monitorable w.r.t. G.293

Proposition 2.7 (Decidability). Let G and G0 be global types with G subterm of294

G0 and p ∈ roles(G0). It is decidable if:295

1. p knows x in G,296

2. G is monitorable w.r.t. G0.297

Proof. (1) follows directly from: (i) the finiteness of the number of subterms of298

G0 (and G), (ii) the finiteness of the number of labels in a branching (i.e., the299

cardinality of the set I of indices), and (iii) the decidability of inclusion in finite300

sets (e.g., p ∈ {r1, r2} and x ∈ {xi | i ∈ I} in Definition 2.5). Proposition 2.7(2)301

follows from: (i) the finiteness of the number of subterms of G, (ii) the finiteness302

of the number of variables in assertions, and (iii) the decidability of p knows x in303

G by (1).304

Knowledge of a name requires a linear search in the prefix. Monitorability305

requires a quadratic exploration.306

In the following sections we will show that, under the assumption that all un-307

derlying global types are projectable and monitorable, the runtime monitoring308

discipline we propose ensures that the interactions in a session are safe (e.g., a309

principal implementing a role never receives messages of unexpected type), and310

predictable (i.e., faithful to the global interaction pattern specified by the proto-311

col).312

Monitorability strengthens a similar property called history sensitivity in [9].313

By history sensitivity, only the sender of an interaction must know the free vari-314

ables of a predicate annotating that interaction. For instance, referring to Ex-315

ample 2.7, Gs is not history sensitive whereas Gr is. In [9] where only static316
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P ::= a〈s[r] : T 〉 | a(y[r] :T ).P | k[r1, r2]!l〈e〉 | k[r1, r2]?{li(xi).Pi}i∈I |
if e then P else Q | P | Q | 0 | µX.P | X | P ;Q | (νa) P | (νs)P

N ::= [P ]α | N1 | N2 | 0 | (νa)N | (νs)N | 〈r ; h〉
r ::= ∅ | r, s[r] 7→ α h ::= ∅ | h ·m m ::= a〈s[r] : T 〉 | s〈r1, r2, l〈v〉〉

r, r1, ... roles s, s′, ... session names X,Y, ... process variables
a, b, ... shared names x, y, ... variables P,Q, ... processes
α, β, ... principal names N,N ′, ... networks

Figure 4: Processes and the network: syntax

verification is used, it is sufficient to check that all roles send values satisfying the317

assertions. Receivers can rely on this fact thanks to the assumption that the pro-318

cesses implementing the other roles are well-typed. In the run-time verification319

scenario we cannot assume that the rest of the network behaves safely, hence both320

sent and received values must be checked. The requirement posed by monitorabil-321

ity, on the other hand, allows our theory to work using a logic without existential322

quantifiers. On the contrary, in [9] quantifiers were needed, during endpoint pro-323

jection, to close the assertions w.r.t. those variables that were unknown to the324

receivers.325

3. Formal Framework of Processes and Networks326

In this section we introduce a novel monitored session calculus as a variant of327

the π-calculus, which we use to model global networks. Global networks consists328

of monitors and distributed programs, run by principals and implementing some329

protocols.330

In our formal framework, each distributed application consists of one or more331

sessions among principals. A principal with behaviour P and name α is repre-332

sented as [P ]α. A network is a set of principals together with a (unique) global333

transport, which abstractly represents the communication functionality of a dis-334

tributed system. The syntax of processes, principals, and networks is given in Fig.335

4, building on the multiparty session π-calculus from [6].336

Processes. Processes, defined in Fig. 4, are ranged over by P, P ′, . . . and com-337

municate using two types of channel: shared channels (or shared names) used338

by processes for sending and receiving invitations to participate in sessions, and339

session channels (or session names) used for communication within established340

sessions. Each shared name, say a, is associated to one principal, say α, in the341

sense that α can read from a; a is shared in the sense that many other principals342

15
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can send messages to α through a. One may consider shared names as e.g., URLs343

or service names. The session invitation a〈s[r] : T 〉 invites, through a shared344

name a, another process to play r in a session s. The session accept a(y[r] :T ).P345

receives a session invitation and, after instantiating y with the received session346

name, behaves in its continuation P as specified by local type T for role r. The347

selection k[r1, r2]!l〈e〉 sends, through session channel k (of an established ses-348

sion), and as a sender r1 and to a receiver r2, an expression e with label l. The349

branching k[r1, r2]?{li(xi).Pi}i∈I is ready to receive one of the labels and a value,350

then behaves as Pi after instantiating xi with the received value. We omit labels351

when I is a singleton. The conditional, parallel and inaction are standard. The352

recursion µX.P defines X as P . Processes (νa)P and (νs)P hide shared names353

and session names, respectively.354

Principals and Network. Principals and networks are also formally defined in355

Fig. 4. A principal [P ]α, with process P and name α, represents a unit of be-356

haviour (hence verification) in a distributed system. A network N is a collection357

of principals with a unique global transport. The behaviour of a principal, de-358

scribed in its process, includes communication over shared channels to create or359

join new sessions, the communication over session channels, and control struc-360

tures such as conditional branching and recursion.361

A global transport is a pair 〈r ; h〉 of a routing table r that associates roles362

to principals, and a global queue h. The routing table r is a finite map from363

session-roles and shared names to principals. If, for instance, r(a) = α then a364

session invitation message through a will be delivered to principal α. Similarly,365

if r(s[r]) = α then a message for r in session s will be delivered to principal α.366

The global queue h is a sequence of messages a〈s[r] : T 〉 or s〈r1, r2, l〈v〉〉, ranged367

over bym. Thesem represent messages-in-transit, i.e. those messages which have368

been sent by some principal but have not yet been delivered. Possible shuffles369

changing the ordering of in-transit messages is discussed below. Networks are370

composed of principals and global transport.371

Let n, n′, . . . range over shared and session channels. A network N that sat-372

isfies the following conditions is well-formed: (1) N contains at most one global373

transport; (2) two principals in N never have the same principal name; and (3) if374

N ≡ (νñ)(
∏

i[Pi]αi
|〈r ; h〉) then each free shared or session name in Pi and h375

occurs in ñ (we use
∏

i Pi to denote P1 | P2 · · · | Pn).376

Semantics. The reduction relation for networks is generated from the rules de-377

fined in Fig. 5, which model the interactions of principals with the global queue.378

Rule bREQc places an invitation to participate as role r in session s into the global379

queue. Dually, in bACCc, a process receives an invitation on a shared name from380

the global queue, assuming a message on a is to be routed to α. As a result, the381
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[a〈s[r] : T 〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · a〈s[r] : T 〉〉 bREQc
[a(y[r] : T ).P ]α | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | 〈r, s[r] 7→ α ; h〉† bACCc

[s[r1, r2]!lj〈v〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · s〈r1, r2, lj〈v〉〉〉 bSELc
[s[r1, r2]?{li(xi).Pi}i]α | 〈r ; s〈r1, r2, lj〈v〉〉 · h〉 −→ [Pj [v/xj ]]α | 〈r ; h〉†† bBRAc

[if tt then P else Q]α −→ [P ]α [if ff then P else Q]α −→ [Q]α bCNDc
[P ]α | N −→ [P ′]α | N ′

[E(P )]α | N −→ [E(P ′)]α | N ′
e −→ e′

[E(e)]α −→ [E(e′)]α
N −→ N ′

E(N) −→ E(N ′)
bCTXc

† : r(a) = α †† : r(s[r2]) = α

E ::= ( ) | E | P | (νs)E | (νa)E | E ;P | E | N | if E then P else Q | s[r1, r2]!l〈E〉

Figure 5: Reduction for dynamic networks

routing table adds s[r] 7→ α in the entry for s. Rule bSELc puts in the queue a382

message sent from r1 to r2, which selects label lj and carries v, if it is not going383

to be routed to α (i.e. sent to self). Dually, bBRAc gets a message with label lj from384

the global queue, so that the j-th process Pj receives value v. Rules bCTXc are for385

a closure under the reduction context E . The other rules are standard.386

The reduction is also defined modulo the structural congruence ≡ defined by
the standard laws over processes/networks, the unfolding of recursion (µX.P ≡
P [µX.P/X]) and the associativity and commutativity and the rules of message
permutation in the queue [33, 23]. The rules are summarised in Fig. 6 where
u ∈ {s, a}. The rule for message permutation is

m1 ·m2 y m2 ·m1

h·m1 ·m2 ·h′ ≡ h·m2 ·m1 ·h′

and uses the notion of message permutation given in Definition 3.1. The rule for387

message permutation is needed to treat the inherent non-determinism arising in388

message orders when three or more participants are involved. The other rules are389

straightforward.390

Definition 3.1 (Message permutation). For messages in the global queue, we391

say messages m1 and m2 are permutable, denoted by m1 ·m2 y m2 ·m1, if they392

satisfy one of the following conditions:393

1. m1 = s〈r1, r2, l〈v〉〉 and m2 = s′〈r′1, r′2, l′〈v′〉〉, where s 6= s′, or (r1 6=394

r′1 ∧ r2 6= r′2).395

2. m1 = a〈s[r] : T 〉 and m2 = a′〈s′[r′] : T ′〉, where a 6= a′.396

3. mi = a〈s[r] : T 〉 and mj = s′〈r′, r′′, l〈v〉〉 and i, j ∈ {1, 2}, i 6= j, where397

s 6= s′, or (r 6= r′ ∧ r 6= r′′).398
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P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(ν u)P | Q ≡ (ν u)(P | Q) if u ∈ {s, a}, u 6∈ fn(Q) (ν uu′)P ≡ (ν u′u)P

(ν u)0 ≡ 0
P ≡ Q

[P ]α ≡ [Q]α
(ν u)[0]α ≡ [0]α

N | [0]α ≡ N N1 | N2 ≡ N2 | N1 (N1 | N2) | N3 ≡ N1 | (N2 | N3)

(ν u)N1 | N2 ≡ (ν u)(N1 | N2) if u 6∈ fn(N2) (ν uu′)N ≡ (ν u′u)N

∅ · h ≡ h m1 ·m2 y m2 ·m1

h·m1 ·m2 ·h′ ≡ h·m2 ·m1 ·h′
r = r h ≡ h′

〈r ; h〉 ≡ 〈r′ ; h′〉

Figure 6: Structural congruence for networks

By (1) two interaction messages (i.e., in ongoing sessions) are permutable if they399

are not related to the same session, or they are related to the same session but their400

roles are different. By (2) two invitation messages are permutable if they are for401

different principals. By (3) an invitation message and an interaction message are402

permutable if they are for different sessions or the invited role r in the invitation403

message is different from both the sender and receiver of the interaction message.404

Example 3.1 (ATM: an implementation). We now illustrate the processes imple-
menting the client role of the ATM protocol. We let PC be the process implement-
ing TC (from Example 2.6) and communicating on session channel s.

PC = s[C,A]!Login(“alice pwd123”);
s[A,C]?{LoginOK();µX.P ′

C, LoginFail().0}
P ′
C = s[S,C]?Account(xb);P

′′
C

P ′′
C = if getmore() ∧ (xb ≥ 10)

then s[C,S]!Withdraw(10);X
else s[C,S]!Quit();0

Note that PC selects only two of the possible branches (i.e., Withdraw and
Quit) and Deposit is never selected. One can think of PC as an ATM machine
that only allows to withdraw a number of £10 banknotes, until the amount exceeds
the current balance. This ATM machine does not allow deposits. We assume
getmore() to be a local function to the principal running PC that returns tt if more
notes are required, and ff otherwise. PS below implements the server role:

PS = s[A,S]?{LoginOK();µX.P ′
S, LoginFail().0}

P ′
S = s[S,C]!Account(getBalance());P ′′

S

P ′′
S = s[C,S]?{Withdraw(xp).X,

Deposit(xd).X,
Quit().0 }

We assume that getBalance() is a function, local to the principal running PS, that405

synchronously returns the current balance of the client.406
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4. The Monitored Network: Semantics and Equivalences407

In this section we formalise the specifications (based on local types) used to408

guard the runtime behaviour of the principals in a network. These specifications409

are the foundation of system monitors, each wrapping a principal to ensure that410

the ongoing communication conforms to the given specification. Then, we present411

a behavioural theory for monitored networks and their safety properties.412

4.1. Semantics of Global Specifications413

The specification of the (correct) behaviour of a principal consists of an as-
sertion environment 〈Γ; ∆〉, where Γ is the shared environment describing the
behaviour on shared channels, and ∆ is the session environment representing the
behaviour on session channels (i.e., describing the sessions that the principal is
currently participating in). The syntax of Γ and ∆ is given by:

Γ ::= ∅ | Γ, a : I(T [r]) | Γ, a : O(T [r]) ∆ ::= ∅ | ∆, s[r] :T

In Γ, the assignment a : I(T [r]) (resp. a : O(T [r])) states that the principal can,414

through a, receive (resp. send) invitations to play role r in a session instance415

specified by T . In ∆, we write s[r] : T when the principal is playing role r of416

session s specified by T . A network is monitored with respect to collections of417

specifications (later, just specifications) one for each principal in the network. A418

specification Σ,Σ′, . . . is a finite map from principals to assertion environments:419

Σ ::= ∅ | Σ, α :〈Γ; ∆〉
The semantics of Σ is defined using the following labels:

` ::= a〈s[r] :T 〉 |a〈s[r] :T 〉 |s[r1, r2]!l〈v〉 |s[r1, r2]?l〈v〉 |τ

The first two labels are for invitation actions, the first is for requesting and the sec-420

ond is for accepting. Labels with s[r1, r2] indicate interaction actions for sending421

(!) or receiving (?) messages within sessions. The labelled transition relation for422

specifications is defined by the rules in Fig. 7 Rule [REQ] allows α to send an invi-423

tation on a properly typed shared channel a (i.e., given that the shared environment424

maps a to T [r]). Rule [ACC] allows α to receive an invitation to be role r in a new425

session s, on a properly typed shared channel a. Rule [BRA] allows α, participating426

to session s as r2, to receive a message with label lj from r1, given thatAj is satis-427

fied after replacing xj with the received value v. After the application of this rule428

the specification is Tj . Rule [SEL] is the symmetric (output) counterpart of [BRA].429

We use ↓ to denote the evaluation of a logical assertion. [SPL] is the juxtaposition430

of two session environments. [TAU] says that the specification should be invariant431

under reduction of principals. [PAR] says if Σ1 and Σ3 are composable, after Σ1432

becomes as Σ2, they are still composable.433
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α :〈Γ, a : O(T [r]); ∆〉 a〈s[r]:T 〉−−−−−→ α :〈Γ, a : O(T [r]); ∆〉 [REQ]

s 6∈ dom(∆)

α :〈Γ, a : I(T [r]); ∆〉 a〈s[r]:T 〉−−−−−→ α :〈Γ, a : I(T [r]); ∆, s[r] :T 〉
[ACC]

Γ ` v :Sj , Aj [v/xj ] ↓ tt, j∈I
α :〈Γ; ∆, s[r2] :r1?{li(xi :Si){Ai}.Ti}i∈I〉

s[r1,r2]?lj〈v〉−−−−−−−−→ α :〈Γ; ∆, s[r2] :Tj [v/xj ]〉
[BRA]

Γ `v :Sj , Aj [v/xj ] ↓ tt, j∈I
α :〈Γ; ∆, s[r1] :r2!{li(xi :Si){Ai}.Ti}i∈I〉

s[r1,r2]!lj〈v〉−−−−−−−−→ α :〈Γ; ∆, s[r1] :Tj [v/xj ]〉
[SEL]

α :〈Γ1; ∆1〉 `−→ α :〈Γ′
1; ∆′

1〉
α :〈Γ1; ∆1,∆2〉 `−→ α :〈Γ′

1; ∆′
1,∆2〉

Σ
τ−→ Σ Σ1

`−→ Σ2

Σ1,Σ3
`−→ Σ2,Σ3

[SPL,TAU,PAR]

Figure 7: Labelled transition relation for specifications

4.2. Semantics of Dynamic Monitoring434

The endpoint monitor M,M′, ... for principal α is a specification α : 〈Γ; ∆〉
used to dynamically ensure that the messages to and from α are legal with respect
to Γ and ∆. A monitored network N is a network N with monitors, obtained by
extending the syntax of networks as:

N ::= N | M | N | N | (νs)N | (νa)N

The reduction rules for monitored networks are given in Fig. 8 and use, in the435

premises, the labelled transitions of monitors. The labelled transitions of a mon-436

itor are the labelled transitions of its corresponding specification (given in § 4.1).437

438

The first four rules model reductions that are allowed by the monitor (i.e., in439

the premise). Rule dREQe inserts an invitation in the global queue. Rule dACCe is440

symmetric and updates the router so that all messages for role r in session s will441

be routed to α. Similarly, dBRAe (resp. dSELe) extracts (resp. introduces) messages442

from (resp. in) the global queue. The error cases for dREQe and dSELe, namely443

dREQERe and dSELERe, ‘skip’ the current action (removing it from the process), and444

do not modify the queue, the router nor the state of the monitor. The error cases for445

dACCe and dBRAe, namely dACCERe and dBRAERe, do not affect the process, which446

remains ready to perform the action, and remove the violating message from the447

queue.448

Example 4.1 (ATM: a monitored network). We illustrate the monitored network
for the ATM scenario, where the routing table is defined as

r = a 7→ α, b 7→ β, c 7→ γ, s[S] 7→ α, s[C] 7→ β, s[A] 7→ γ
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dREQe M
a〈s[r]:T 〉−−−−−→ M′

[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · a〈s[r] : T 〉〉

dACCe M
a〈s[r]:T 〉−−−−−→ M′ r(a) = α

[a(y[r] : T ).P ]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | M′ | 〈r·s[r] 7→ α ; h〉

dBRAe M
s[r1,r2]?lj〈v〉−−−−−−−−→ M′ r(s[r2]) = α

[s[r1, r2]?{li(xi).Pi}i]α | M | 〈r ; s〈r1, r2, lj〈v〉〉 · h〉 −→ [Pj [v/xj ]]α | M′ | 〈r ; h〉

dSELe M
s[r1,r2]!l〈v〉−−−−−−−→ M′ r(s[r2]) 6= α

[s[r1, r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · s〈r1, r2, l〈v〉〉〉

dREQERe M 6a〈s[r]:T 〉−−−−−→
[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

dACCERe M 6a〈s[r]:T 〉−−−−−→
[a(y[r] : T ).P ]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [a(y[r] : T ).P ]α | M | 〈r ; h〉

dBRAERe M 6 `−→ ` = s[r1, r2]?lj〈v〉
[s[r1, r2]?{li(xi).Pi}i]α | M | 〈r ; s〈r1, r2, lj〈v〉〉 · h〉 −→

[s[r1, r2]?{li(xi).Pi}i]α | M | 〈r ; h〉

dSELERe M 6s[r1,r2]!l〈v〉−−−−−−−→
[s[r1, r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

Figure 8: Reduction for monitored networks (assume M = α :〈Γ; ∆〉).

We consider the fragment of session where the authentication has occurred, the
process of C (resp. S) is P ′C (resp. P ′S) from Example 3.1, and the process of A is
0.
NS=[P ′S]α | MS=[s[S,C]! Account〈100〉;P ′′S ]α | MS (assuming getBalance() = 100)
NC=[P ′C]β | MC=[s[S,C]? Account(xb).P

′′
C ]β | MC

NA=[0]γ | γ : 〈c : TA[A] ; s[A] : end〉
where MS = α : 〈a : TS[S] ; s[S] : C! Account(xb : int){xb ≥ 0}.T ′S〉 and MC is dual.

N1= [s[S,C]! Account〈100〉;P ′S]α | MS | [s[S,C]? Account(xb).P
′
C]β | MC |NA | 〈r ; ∅〉

−→−→ [P ′S]α | M′S | [P ′C[100/xb]]β | M′C | NA | 〈r ; ∅〉
where M′S = α : 〈a :TS[S] ; s[S] : T ′S〉 and M′C = β : 〈b : TC[C] ; s[C] : T ′C〉449

Above, xb ≥ 0 is satisfied since xb = 100. If the server tried to communicate e.g.,450

value −100 for xb, then the monitor (by rule dSELERe) would drop the message.451

Following Example 4.1, in the example that follows we show the different452

behaviours of monitored and unmonitored processes.453

Example 4.2 (Compare a monitored process to an unmonitored one.). Let

` = s[S,C]!Account〈−10〉
P1 = s[S,C]! Account〈−10〉;P ′S
MS = α : 〈a : TS[S] ; s[S] : C! Account(xb : int){xb ≥ 0}.T ′S〉
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The unmonitored principal [P1]α can make a step `, namely [P1]α
`−→. However,454

the its monitored counter-part NS = [P1]α | MS cannot make a step ` (that is455

NS 6 `−→) since the value −10 does not satisfy the predicate xb ≥ 0 attached to the456

local type of the session monitored by MS.457

Similarly, for type violations, consider:

` = s[S,C]!Account〈“hello”〉
P2 = s[S,C]! Account〈“hello”〉;P ′′S

then [P2]α
`−→ but [P2]α | MS 6 `−→.458

4.3. Network Satisfaction and Equivalences459

Based on the formal representations of monitored networks, we now intro-460

duce the key formal tools for analysing their behaviour. Concretely, we introduce461

two different equivalences to semantically compare networks: bisimulation and462

barbed congruence (the latter relying on the notion of interface, also given in463

this section). The two equivalences allow us to compare networks using different464

granularities. On the one side, bisimilarity addresses mainly partial networks, and465

gives an equivalence that distinguishes two networks containing different com-466

ponents. On the other side, (barbed) congruence addresses networks (includ-467

ing global transport) from the point of view of an external observer; thus, two468

networks built from different components but offering the same service will be469

equated. We choose to give two equivalences in order to give the theory a way to470

compare session networks from two different points of views: bisimulation allows471

designers to equate networks whose structures are similar, whereas barbed con-472

gruence allows users to equate networks, seen as black boxes, which provide the473

same service. Both equivalences are compositional, as proved in Proposition 4.4.474

Finally, using the definition of congruence, we define the satisfaction relation475

|= N . M, used in §5 and §7 to prove the properties of our framework.476

Bisimulations. We first define semantics for networks of components, or partial477

networks, on which we define bisimulation: we use M,M ′, ... for a partial net-478

work, that is a network without a global transport, hence allowing the global ob-479

servation of interactions. The labelled transition relation for processes and partial480

networks M is defined in Fig. 9. In (CTX), n(`) indicates the names occurring in481

` while bn(E) indicates binding induced by E . In (RES), sbj(`) denotes the subject482

of `. In (TAU) the axiom is obtained either from the reduction rules for dynamic483

networks given in § 3 (only those not involving the global transport), or from the484

corresponding rules for monitored networks (which have been omitted in § 4.2).485

Hereafter we write =⇒ for τ−→∗, `
=⇒ for =⇒ `−→=⇒, and

ˆ̀
=⇒ for =⇒ if ` = τ486

and `
=⇒ otherwise.487
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(REQ) [a〈s[r] : T 〉;P ]α
a〈s[r]:T 〉−−−−−→ [0]α (ACC) [a(y[r] : T ).P ]α

a〈s[r]:T 〉−−−−−→ [P [s/y]]α

(BRA) [s[r1, r2]?{li(xi :Si).Pi}i]α
s[r1,r2]?lj〈v〉−−−−−−−−→ [Pj [v/xj ]]α

(SEL) [s[r1, r2]!lj〈v〉]α
s[r1,r2]!lj〈v〉−−−−−−−−→ [0]α (CTX)

[P ]α
`−→ [P ′]α n(`) ∩ bn(E)=∅
[E(P )]α

`−→ [E(P ′)]α

(TAU) M −→M ′

M
τ−→M ′

(RES)
M

`−→M ′ a 6∈ sbj(`)

(νa)M
`\a−−→ (νa)M ′

(STR)
M ≡M0

`−→M ′0 ≡M ′

M
`−→M ′

Figure 9: Labelled transition relation for processes and partial networks

Definition 4.1 (Bisimulation over partial networks). A binary relation R over488

partial networks is a weak bisimulation when M1RM2 implies: whenever M1
`−→489

M ′
1 such that bn(`) ∩ fn(M2) = ∅, we have M2

ˆ̀
=⇒ M ′

2 such that M ′
1RM ′

2, and490

the symmetric case. We write M1 ≈M2 if (M1,M2) are in a weak bisimulation.491

Interface. As stated above, we build another model where two different imple-492

mentations of the same service are equated. Bisimilarity is too strong for this aim493

as shown in further Example 4.3. We therefore introduce a contextual congruence494

(barbed reduction-closed congruence [32]) ∼= for networks. Intuitively, two net-495

works are barbed-congruent when they are indistinguishable for any principal that496

connects to them. In this case we say that the two (barbed-congruent) networks497

propose the same interface to the exterior. More precisely, two networks are re-498

lated with ∼= when, composed with the same third network, they offer the same499

barbs (i.e., the messages to external principals in the respective global queues are500

on the same channels), and this property is preserved under reduction.501

We say that a message m is routed for α in N if N = (νñ)(M0 | 〈r ; h〉), m ∈502

h, either m = a〈s[r] : T 〉 and r(a) = α or m = s[r1, r2]!l〈e〉 and r(s[r2]) = α.503

Definition 4.2 (Barb). We write N ↓a when the global queue of N contains a504

message m to free a, and m is routed for a principal not in N . We write N ⇓a if505

N −→∗ N ′ ↓a.506

We denote P(N) for the set of principals inN , that is P(
∏

[Pi]αi
) = {α1, ..., αn}.507

We say N1 and N2 are composable when P(N1) ∩ P(N2) = ∅, the union of their508

routing tables remains a function, and their free session names are disjoint. If N1509

and N2 are composable, we define N1 �N2 = (νñ1, ñ2)(M1 |M2 | 〈r1 ∪ r2 ; h1 ·510

h2〉) where Ni = (νñi)(Mi | 〈ri ; hi〉) (i = 1, 2).511

Definition 4.3 (Barbed reduction-closed congruence). A relationR on networks512

with the same principals is a barbed r.c. congruence [32] if the following holds:513
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whenever N1RN2 we have: (1) for each composable N , N � N1RN � N2; (2)514

N1 −→ N ′1 implies N2 −→∗ N ′2 s.t. N ′1RN ′2 again, and the symmetric case; (3)515

N ′1 ⇓a iff N ′2 ⇓a. We write N1
∼= N2 when N1 and N2 are related by a barbed r.c.516

congruence.517

Properties. The following result states that composing two bisimilar partial net-518

works with the same network – implying the same router and global transport –519

yields two undistinguishable networks.520

Proposition 4.4 (Congruency). If M1 ≈ M2, then (1) M1|M ≈ M2|M for each521

composable partial network M ; and (2) M1|N ∼= M2|N for each composable522

network N .523

Proof. For (1) we show that the relation

R = {(M1|M, M2|M) |M1 ≈M2, M composable with M1 and M2}

is a bisimulation. Suppose (M1|M)R(M2|M) and M1|M `−→M1. We discuss the524

shape of M1:525

• If M1 = M ′
1|M , it means that M1

`−→ M ′
1. By definition of R, M2

ˆ̀
=⇒ M ′

2526

and M ′
1 ≈M ′

2, we conclude.527

• If M1 = M1|M ′, it means that M `−→M ′. It is easy to conclude.528

By examining the reduction rule associated to parallel composition, we observe529

that no reduction is induced through interactions between the two networks. Hence530

we have covered all cases. The symmetric case (when M2|M `−→M2) is similar.531

To prove (2) we proceed by showing that

R = {((νñ)(M1|N), (νñ)(M2|N)) |M1 ≈M2, N composable with M1 and M2}

is a barbed congruence. First, R is clearly a congruence since it is closed under532

composition. Second, for (2), we take a composable N ′. We have N ′ � (Mi|N) =533

Mi|(N ′ � N) for i ∈ {1, 2}. We use the definition of R to conclude. For (3),534

assume M1|N −→ N1.535

• If N1 = M1|N ′, it means that N −→ N ′. We use the definition of R to536

conclude.537

• If N1 = M ′
1|N ′, it means that N = M0|〈r ; ` ·H〉, N = M ′

0|〈r ; H〉538

and M1
`−→ M ′

1. We deduce N2 = M ′
2|N ′, with N = M0|〈r ; ` ·H〉,539

N = M ′
0|〈r ; H〉 and M2

`−→M ′
2. We use the definition ofR to conclude.540
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• If the reduction is induced by interaction between M1 and N , then M2 has541

the corresponding action, hence we can reason in the same way, hence done.542

For (2), we suppose that (M1|N) ⇓`. Two cases can occur:543

• Either N ⇓` and it follows directly that (M2|N) ⇓`.544

• orM1
`−→M ′

1 and by definition ofR,M2
`

=⇒M ′
2, meaning that (M2|N) ⇓a.545

The symmetric case is similar.546

By definition this shows ≈⊂∼=.547

Example 4.3 (Example of Equivalence). We give here an example illustrating our548

equivalences of networks. Consider the following networks:549

M ′
0 = [a1(y1[C] : TC).y1[C,A]!〈Login(xi)〉.y1[A,C]?LoginOK().PLOOP,C]α1

M ′
1 = [a2(y2[S] : TS).PLOOP,S]α2

| [(νs) a1〈s[C] : TC〉 | a2〈s[S] : TS〉 | a3〈s[A] : TA〉
| a3(y3[A] : TA).y3[C,A]?(Login(xi)).y3[A,S]!〈LoginOk()〉.PLOOP,A]β

M ′
2 = [a2(y2[S] : TS).PLOOP,S]α2

| [a4(y4[DB] : TDB).y4[A, DB]?(Query).y4[DB,A]!〈Answer〉]γ
| [(νs) (a1〈s[C] : TC〉 | a2〈s[S] : TS〉 | a3〈s[A] : TA〉 | a4〈s[DB] : TDB〉)
| a3(y3[A] : T ′A).y3[C,A]?(Login(xi)).
y3[A, DB]!〈Query〉.y3[DB,A]?(Answer).PLOOP,A]β

N ′1 = M ′
1 | 〈a1 7→ α1, a2 7→ α2, a3 7→ β ; ∅〉

N ′2 = (νa4) (M ′
2 | 〈a1 7→ α1, a2 7→ α2, a3 7→ β, a4 7→ γ ; ∅〉)

Our networks implement the ATM example defined in 2.1. For the sake of550

clarity, we have to take the following shortcuts: (1) we only consider the login551

phase of the protocol, the LOOP phase is abstracted into three processes PLOOP,C,552

PLOOP,A, PLOOP,S for the three different roles, (2) to lighten the notations, we do not553

make the logical annotations explicit, (3) as a result of (2), we do not implement554

login validation and only write the case were the login succeeds.555

We present two different networks N ′1 and N ′2, both are implementing the556

Server-Authenticator part of the ATM protocol. The Server part is the same in557

both processes (executed at principal α2), but the Authenticator part (executed at558

β) is different: N ′1 implements straightforwardly the protocol while N ′2 contains559

another indirection involving a fourth participant (executed at γ): the Authentica-560

tor sends a query to a Database to retrieve additional information required in the561

login process, and the Database answers.562

Thus, the protocols implemented in both networks are different, as one in-563

volves three participants and the other one four. Yet, the query to the Database564
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is N ′2 is unobservable from the outside, and an external client, such as N ′0 cannot565

distinguish between N ′1 and N ′2.566

This is captured by our equivalences: the two partial networks M ′
1 and M ′

2 do567

not contain the same components, and as a result, are not bisimilar: after some568

steps, M ′
2 is able to emit on the channel a4, which is impossible for M ′

1. How-569

ever, when encapsulated into dynamic networks N ′1 and N ′2, they are barbed r.c.570

congruent: they will offer it the same interface to the same external client.571

Satisfaction. We finally present a satisfaction relation for partial networks that572

include local principals. IfM is a partial network, |= M .Σ s.t. dom(Σ) = P(M),573

it means that: the specification Σ allows all the outputs from the network; the574

network M is ready to receive all the inputs indicated by the specification; and575

this is preserved by transition.576

Definition 4.5 (Satisfaction). Let sbj(`) denote the subject of ` 6= τ . A relation577

R from partial networks to specifications is a satisfaction when MRΣ implies:578

1. If Σ
`−→ Σ′ for an input ` and M has an input at sbj(`), then M `−→ M ′ s.t.579

M ′RΣ′.580

2. If M `−→M ′ for an output at `, then Σ
`−→ Σ′ s.t. M ′RΣ′.581

3. If M τ−→M ′, then Σ
τ−→ Σ′ s.t. M ′RΣ′ (i.e. M ′RΣ since Σ

τ−→ Σ always).582

When MRΣ for a satisfaction relationR, we say M satisfies Σ, denoted |= M .583

Σ. By Definition 4.5 and Proposition 4.4 we obtain:584

Proposition 4.6 (Satisfaction). If M1
∼= M2 and |= M1 . Σ then |= M2 . Σ.585

That is, if two networks present the same interface, they satisfy the same specifi-586

cations.587

5. Safety Assurance in Partial Networks588

In this section, we present the properties underpinning safety assurance in589

partial networks, that are networks without a global transport. By considering590

partial networks we focus on the properties of principals (and their respective591

monitors) with respect to specifications, abstracting from the routing mechanisms.592

The routing mechanisms will be taken into account in later sections. We first593

consider networks consisting of single monitored principals (local safety) and then594

extend the results to partial networks in general (global safety).595

Recall that: partial networks are networks without global transport;M denotes596

an unmonitored partial network; N denotes an unmonitored network; N denotes597

a (monitored or unmonitored) network. Monitors, ranged over by M, are specifi-598

cations (of the form α : 〈Γ; ∆〉) used for dynamic verification. See Table 5 for a599

summary of the notation.600
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M monitor specification used for monitoring
M unmonitored partial network without M, without 〈r ; h〉
N unmonitored network without M, with 〈r ; h〉
N network with or without M, with 〈r ; h〉

Table 1: Networks: summary of the notations

The partial network composed by a principal guarded by its monitor can take601

any action expected by the specification:602

Lemma 5.1. For any principal [P ]α, specification α : 〈Γ,∆〉, and action `, if603

α : 〈Γ,∆〉 `−→ α : 〈Γ′,∆′〉 and [P ]α
`−→ [P ′]α, then [P ]α | α : 〈Γ,∆〉 `−→ [P ′]α | α :604

〈Γ′,∆′〉.605

Proof. Direct, as no interaction can appear between [P ]α and its monitor with606

specification α : 〈Γ,∆〉 when ` is performed. �607

Local safety ensures that a monitored process always behaves well with re-608

spect to the specification used to define its monitor.609

Theorem 5.2 (Local safety). |= [P ]α | M . α : 〈Γ; ∆〉 with M = α :〈Γ; ∆〉.610

Proof. We define a relation R as:

R = {([P ]α | M, α : 〈Γ; ∆〉) | M = α :〈Γ; ∆〉}

Assume ([P0]α′ | M0, α
′ : 〈Γ0,∆0〉) ∈ R:611

1. For an input `, because M0 = α′ : 〈Γ0,∆0〉 by assumption, that α′ :612

〈Γ0,∆0〉 `−→ α′ : 〈Γ′0,∆′0〉 and [P0]α′ | M0 having an input at sbj(`) to-613

gether imply that [P0]α′
`−→ [P ′0]α′ , thus by Lemma 5.1, we have [P0]α′ |614

α′ : 〈Γ0,∆0〉 `−→ [P ′0]α′ | M′0, and M′0 = α′ : 〈Γ′0,∆′0〉. Thus we have615

([P ′0]α′ | M′0, α′ : 〈Γ′0,∆′0〉) ∈ R.616

2. For an output `, [P0]α′ | M0
`−→ [P ′0]α′ | M′0 implies M0 = α′ : 〈Γ0,∆0〉 `−→617

α′ : 〈Γ′0,∆′0〉 = M′0. Thus we have ([P ′0]α′ | M′0, α′ : 〈Γ′0,∆′0〉) ∈ R.618

3. For an τ , [P0]α′ | M0
τ−→ [P0]α′ | M0 implies that M0 = α′ : 〈Γ0,∆0〉 τ−→ α′ :619

〈Γ0,∆0〉 = M0.620

Therefore, by Definition 4.5, R is a satisfaction relation and |= [P ]α | M .621

α : 〈Γ; ∆〉 with M = α :〈Γ; ∆〉. �622

We define a safety property for partial networks that may include multiple623

principals. It describes the fact that a monitored network satisfies its specification.624

625
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Definition 5.3 (Network global safety). M | M is globally safe with respect to626

Σ if and only if |= M | M . Σ.627

We introduce a condition on the structure of a network and on its monitors,628

which guarantees global safety. A partial network is fully monitored w.r.t. Σ629

when all its principals are monitored and the collection of the monitors is weakly630

bisimilar to Σ. Formally, M | M is fully monitored w.r.t. Σ when M | M ≡631

[P1]α1 | M1 | . . . | [Pn]αn | Mn for some n ≥ 0 and M1, . . . ,Mn≈Σ. By Theorem632

5.4 a fully monitored network is globally safe. Theorem 5.4 justifies monitoring633

by ensuring that fully monitored systems behave as expected.634

Theorem 5.4 (Global safety). If M | M is fully monitored w.r.t. Σ, then |= M |635

M . Σ.636

Proof. Assume N is composed by monitored endpoints [Pi]αi
| Mi, i ∈ {1, ..., n}.

M | M ≡ [P1]α1 | M1 | ... | [Pn]αn | Mn

where Mi = αi : 〈Γi; ∆i〉 for i = {1, ..., n}, Σ = M1, ...,Mn. Based on Theorem
5.2, for each i ∈ {1, ..., n},

|= [Pi]αi
| Mi . αi :〈Γi; ∆i〉

with Mi = αi :〈Γi; ∆i〉. By Definition 4.5 and induction, we have

[P1]α1 | M1 | ... | [Pn]αn | Mn . α1 :〈Γ1; ∆1〉, ..., αn :〈Γn; ∆n〉

so that |= M | M . Σ. �637

6. Transparency of Monitored Networks638

Whereas safety assurance focuses on preventing violations from the principals,639

transparency ensures that monitors do not affect the behaviour of well-behaved640

principals. We first consider transparency for partial networks consisting of one641

single principal (local transparency) and then extend the result to monitored net-642

works with global transport.643

Theorem 6.1 (Local transparency). If |= [P ]α . α : 〈Γ; ∆〉, then [P ]α ≈ ([P ]α |644

M) with M = α : 〈Γ; ∆〉.645

That is, a correct participant is not impaired by monitoring.646

Proof. Define a relation R as:

R = {([P ]α, [P ]α | M) | |= [P ]α . α :〈Γ; ∆〉}

Assume ([P ]α, [P ]α | M) ∈ R,647
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• for an output ` (the case for τ is similar), [P ]α
`−→ [P ′]α implies M

`−→ M′648

due to |= [P ]α . M; by Lemma 5.1, we have [P ]α | M `−→ [P ′]α | M′;649

• for an input `, [P ]α
`−→ [P ′]α only when M

`−→ M′, which together imply650

that, by Lemma 5.1, [P ]α | M `−→ [P ′]α | M′.651

By Definition 4.5, we have |= [P ′]α . M′, so that ([P ′]α, [P ′]α | M′) ∈ R.652

653

Symmetrically, since, by Theorem 5.2, we have |= [P ]α | M . α : 〈Γ; ∆〉 with654

M = α :〈Γ; ∆〉,655

• for an output ` or τ , [P ]α | M `−→ [P ′]α | M′ implies M
`−→ M′ whenever656

[P ]α
`−→ [P ′]α;657

• for an input `, [P ]α | M `−→ [P ′]α | M′ says M
`−→ M′, which implies658

[P ]α
`−→ [P ′]α.659

By Definition 4.5, we have |= [P ′]α | M′ . M′, so that ([P ′]α | M′, [P ′]α) ∈ R. By660

Definition 4.1, [P ]α ≈ ([P ]α | M) with M = α :〈Γ; ∆〉. �661

By Proposition 4.4 and Theorem 6.1, we derive Corollary 6.2 stating that662

weakly bisimilar static networks combined with the same global transport are663

weakly bisimilar; i.e. monitoring does not affect routing of information to and664

from a correct principal.665

Corollary 6.2 (Bisimilarity). If |= [P ]α . α : 〈Γ; ∆〉, then for any 〈r ; h〉, we666

have ([P ]α | 〈r ; h〉) ≈ ([P ]α | M | 〈r ; h〉) with M = α :〈Γ; ∆〉.667

Global transparency (Theorem 6.3) states a collection of specifications (mon-
itors) does not alter the behaviour of a well-behaved networks. We consider net-
works with global transport to ensure that the correctness of the network is not
altered during the routing of messages. Observe that the reduction relation for
networks introduced in Fig. 5 models interactions with the global transport as
invisible actions. In order to enable the observation of the behaviour of a network
together with the dynamics of its global transport h we introduce a new set of
rules for the labelled transitions of networks, denoted by `−→g, and presented in
Fig. 10. The transitions in Fig. 10 allow us to globally observe, for example, that
a message sent by [P ]α enters the global transport:

〈r ; h〉 s[r1,r2]!lj〈v〉−−−−−−−→g 〈r ; h·s〈r1, r2, lj〈v〉〉〉
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{REQ} 〈r ; h〉 a〈s[r]:T 〉−−−−−→g 〈r ; h·a〈s[r] : T 〉〉

{ACC} 〈r ; a〈s[r] : T 〉·h〉 a〈s[r]:T 〉−−−−−→g 〈r ; h〉

{SEL} 〈r ; h〉 s[r1,r2]!l〈v〉−−−−−−→g 〈r ; h· s〈r1, r2, l〈v〉〉〉

{BRA} 〈r ; s〈r1, r2, l〈v〉〉·h〉
s[r1,r2]?l〈v〉−−−−−−−→g 〈r ; h〉

{NET}N=[P ]α | 〈r ; h〉 [P ]α
`−→ [P ′]α 〈r ; h〉 `−→g 〈r′ ; h′〉 N ′=[P ′]α | 〈r′ ; h′〉

N
`−→g N

′

{TAU} N −→ N ′

N
τ−→g N

′ {RES} N
`−→g N

′ a 6∈ sbj(`)

(νa)N
`\a−−→g (νa)N ′

{STR}N ≡ N0
`−→g N

′
0 ≡M ′

N
`−→g N

′

{PAR}N1
`−→g N

′
1 bn(`) ∩ fn(N2) = ∅ dest(`) 6∈ P(N2)

N1 ‖ N2
`−→g N

′
1 | N2

{MON}N = N | M N
`−→g N

′ M
`−→ M′ N′ = N ′ | M′

N
`−→g N

′

Figure 10: LTS for networks

Similarly, the parallel composition of a principal sending s[r1, r2]!lj〈v〉 and the
global transport is made visible as follows:

[s[r1, r2]!lj〈v〉;P ′]α | 〈r ; h〉 s[r1,r2]!lj〈v〉−−−−−−−→g [P ′]α | h·s〈r1, r2, lj〈v〉〉

We define dest as a partial function mapping a label, which representing an668

action, to its destination as:669

dest ::= a〈s[r] :T 〉 7→ a | a〈s[r] :T 〉 7→ a

| s[r1, r2]!l〈v〉 7→ s[r2] | s[r1, r2]?l〈v〉 7→ s[r2]

The notation of global observable transition `−→g, used to denote globally observ-670

able action `, is defined by the rules in Fig. 10. Rules {REQ} and {ACC} (resp.671

{SEL} and {BRA}) are for inserting and removing invitation messages (resp. mes-672

sages in established sessions) from the global transport. Rules {ACC} and {BRA}673

represent that, as a message leaves the global queue, there should be a local prin-674

cipal receiving it as an input. Similarly, rules {REQ} and {SEL} represent that, as675
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a message enters the global queue, there should be a local principal outputting676

it to the queue. By {NET} for unmonitored networks, as N `−→g N ′, it means677

∃[P ]α ∈ N , [P ]α
`−→ [P ′]α (i.e. locally visible) such that 〈r ; h〉 `−→g 〈r′ ; h′〉 (i.e.678

globally visible). Rule {TAU} summarizes the reduction rules defined in Section679

3. Rule {RES} and {STR} are standard. Rule {PAR} says that, the bound names of680

action ` should not be any free name appearing in networkN2, and it should not be681

absorbed by any process in network N2 (i.e. its destination is not in N2). By rule682

{MON} for monitored networks, N `−→g N′ means ∃[P ]α | M ∈ N, [P ]α
`−→ [P ′]α683

and M
`−→ M′ (i.e. locally visible) such that 〈r ; h〉 `−→g 〈r′ ; h′〉 (i.e. globally684

visible).685

Theorem 6.3 (Global transparency). Assume N and N have the same global686

transport 〈r ; h〉. If N is fully monitored w.r.t. Σ and N = M | 〈r ; h〉 is687

unmonitored but |= M . Σ, then we have N ≈ N .688

Proof. Define a relation R:

R = {N, N | N = M | 〈r ; h〉 and |= M . Σ}

We prove that R is a standard strong bisimilar relation over `−→g. Note that, M . Σ689

means ∀[Pi]αi
∈M , we have αi : 〈Γi; ∆i〉 ∈ Σ and |= [Pi]αi

: αi : 〈Γi; ∆i〉.690

1. As N `−→g N′, it implies ∃[Pj]αj
| Mj ∈ N, [Pj]αj

`−→ [P ′j ]αj
and Mj

`−→ M′j691

such that 〈r ; h〉 `−→g 〈r′ ; h′〉, and other monitored processes in N are692

not affected. When ` is an input, by Definition 4.5, since |= M . Σ, we693

should have [Pj]αj

`−→ [P ′j ]αj
; when ` is an output or a τ action, by Def-694

inition 4.5, the transition of [Pj]αj

`−→ [P ′j ]αj
is able to take place. Both695

cases lead to M
`−→ M ′ and 〈r ; h〉 `−→g 〈r′ ; h′〉 so that N = M |696

〈r ; h〉 `−→g M ′ | 〈r′ ; h′〉 = N ′, and |= [P ′]αj
: αj : 〈Γ′j; ∆′j〉 by697

Definition 4.5. αj : 〈Γ′j; ∆′j〉 is the resulting new configuration of αj in698

Σ. Other specifications {αi : 〈Γi; ∆i〉}i∈I\{j} ∈ Σ are not affected. Let699

Σ′ = αj : 〈Γ′j; ∆′j〉, {αi : 〈Γi; ∆i〉}i∈I\{j}. Therefore, for the resulting700

new network N ′ = M ′ | 〈r′ ; h′〉, we have |= M ′ . Σ′. Thus we have701

(N′, N ′) ∈ R.702

2. For the symmetric case, as N `−→g N
′, it implies ∃[Pj]αj

∈ N , [Pj]αj

`−→703

[P ′j ]αj
such that 〈r ; h〉 `−→g 〈r′ ; h′〉 and other processes in N are not af-704

fected. Since |= M . Σ, without loss of generality, let Mj = αj : 〈Γj; ∆j〉,705

then we have, for any `, [Pj]αj
| Mj

`−→ [P ′j ]αj
| M′j , where M′j = αj :706

〈Γ′j; ∆′j〉. It makes 〈r ; h〉 `−→g 〈r′ ; h′〉, so that N `−→g N′. Since N′707
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is a fully monitored network, its static part (i.e. the part when the global708

transport is taken off from N′), say [Pi]αi
| {Mi}i∈I where {Mi}i∈I =709

αj : 〈Γ′j; ∆′j〉, {αi : 〈Γi; ∆i〉}i∈I\{j}, |= [Pi]αi
| {Mi}i∈I : Σ′ where710

Σ′ = αj : 〈Γ′j; ∆′j〉, {αi : 〈Γi; ∆i〉}i∈I\{j}. Thus we have (N ′,N′) ∈ R.711

�712

By Theorems 5.4 and 6.3, we can mix unmonitored principals with monitored713

principals still obtaining global safety assurance:714

Corollary 6.4 (Mixed Network). If M | M is fully monitored with respect to Σ,715

|= M ′ . Σ, and P(M) ∩ P(M ′) = ∅, then |= (M | M) |M ′ . Σ.716

In the above corollary, untypedM is monitored by M which specifies Σ, while717

M ′ is unmonitored but statically checked to conform to Σ. The result shows that718

they can safely be composed.719

7. Session Fidelity720

The property of session fidelity says that, whenever all the principals in a721

static network conform to their specifications, then all of the derivatives of this722

static network conform to evolutions of the initial global specification.723

Global Safety vs Session Fidelity. Recall that global safety (Definition 5.3) only724

ensures that in a network where principals are well-behaved with respect to their725

local types, all interactions conform to the collection of these local types. Session726

fidelity is a stronger property than global safety (Definition 5.3) as illustrated in727

Example 7.1.728

Example 7.1. Consider a simple global type

G = r1 → r2 : {l1(x1){x1 > 9}.G1, l2(x2){x2 < 10}.G2}

and processes P and Q implementing roles r1 and r2 in established session s

P = s[r1, r2]!l1〈10〉.P ′
Q = s[r1, r2]?{li(xi).Qi}i∈{1,2}

Suppose that during runtime P sends out message s〈r1, r2, l1〈10〉〉 but,Q receives729

a message, perhaps revised by an attack, s〈r1, r2, l2〈8〉〉. These actions satisfy730

global safety since satisfy the specifications of P and Q, namely they are locally731

well-behaved. This scenario (i.e., the content of the message being modified be-732

tween a send and a corresponding receive action) does not conform to the intended733

global protocol. We define a property, session fidelity, that rules out the scenario734

above (Definition 7.8) and prove (Theorem 7.13) that fully monitored networks735
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with global transport satisfy session fidelity. This is due to the fact that: (1) s is a736

private session ID that can be viewed only by the participants in the session, (2) all737

principals are guarded by monitors hence all messages reaching the global trans-738

port are valid, and (3) the global transport preserves the values of the messages it739

gets.740

Configurations. We define session fidelity after giving the labelled transition re-741

lation for configurations, and a few auxiliary definitions.742

Definition 7.2 (Configuration). A configuration is denoted by Φ = Σ; 〈r ; h〉,743

where all messages corresponding to the actions guarded by Σ are in h.744

A configuration guides the global behaviours in a network. By including the745

global queue, we let configuration capture the global behaviour in a network,746

which accounts also for the correct routing and dispatch of messages. Before747

giving the semantics of configurations, it will be useful to define when and how748

configurations can be composed. Let P(Φ) be the set of principals involving in Φ.749

750

Definition 7.3 (Parallel composition of configurations). Let Φ1 = Σ1; 〈r1 ; h1〉751

and Φ2 = Σ2 ; 〈r2 ; h2〉 be configurations. We say that Φ1 and Φ2 are composable752

whenever P(Φ1) ∩ P(Φ2) = ∅ and the union of their routing tables remains a753

function. If Φ1 and Φ2 are composable, then we define the composition of Φ1 and754

Φ2 as: Φ1 � Φ2 = Σ1,Σ2 ; 〈r1 ∪ r2 ; h1 ·h2〉.755

The formal semantics of configurations is defined by the LTS in Fig. 11. The756

behaviour of each principal in a network is guided by the specification Σ, and is757

observed by the global transport 〈r ; h〉. Except rules [Acc] and [Par], all rules758

are straightforward from the LTS of specifications (defined in Section 4.1) and the759

one of dynamic networks (Fig. 10). We comment below on the interesting rules.760

1. Rule [Acc] indicates that, only when the invitation has been (internally)761

accepted by a principal in the network, the routing information registers762

s[r] 7→ α. When we observe the global transport (externally), we only763

observe that an invitation is moved out from the global queue (which implies764

that it has been accepted). However, we do not know who accepts it. Only765

Σ tells which principal accepts this invitation, so that we can register it in766

the routing information using α.767

2. Rule [Par] says if Φ1 and Φ3 are composable (Definition 7.3), after Φ1 be-768

comes as Φ2, they are still composable.769

Our framework relies on two structural (well-formedness) properties on speci-770

fications: consistency and coherence. Consistent specifications are the ones corre-771

sponding to well-formed concrete systems (i.e., where the session initiation proce-772

dures are well-regulated, and where the active sessions correspond to projections773

of some well-formed global type).774
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[Req] Σ
a〈s[r]:T 〉−−−−−→ Σ′

Σ ; 〈r ; h〉 a〈s[r]:T 〉−−−−−→g Σ′ ; 〈r ; h·a〈s[r] : T 〉〉

[Acc] α :〈Γ, a : I(T [r]); ∆〉 ∈ Σ Σ
a〈s[r]:T 〉−−−−−→ Σ′

Σ ; 〈r ; a〈s[r] : T 〉·h〉 a〈s[r]:T 〉−−−−−→g Σ′ ; 〈r, s[r] 7→ α ; h〉

[Sel] Σ
s[r1,r2]!l〈v〉−−−−−−→ Σ′

Σ ; 〈r ; h〉 s[r1,r2]!l〈v〉−−−−−−→g Σ′ ; 〈r ; h·s〈r1, r2, l〈v〉〉〉

[Bra] Σ
s[r1,r2]?l〈v〉−−−−−−−→ Σ′

Σ ; 〈r ; s〈r1, r2, l〈v〉〉·h〉
s[r1,r2]?l〈v〉−−−−−−−→g Σ′ ; 〈r ; h〉

[Par]
Φ1

`−→g Φ2

Φ1 � Φ3
`−→g Φ2 � Φ3

[Tau] Σ
τ−→ Σ

Σ; 〈r ; h〉 τ−→g Σ; 〈r ; h〉

Figure 11: Labelled transition relation for configurations

Definition 7.4 (Consistent and coherent specifications). Σ = {αi :〈Γi; ∆i〉}i∈I775

is consistent when776

1. there is one and only one i such that Γi ` a : I(T [r]), and777

2. as long as a : O(T [r]) exists in some Γi, ∃Γj such that a : I(T [r]) ∈ Γj; and778

3. for any s appearing in any ∆j , if {s[rk] : Tk}1≤k≤n is a collection appeared779

in {∆i}i∈I , there exists well-formed G such that roles(G) = {r1, .., rn} and780

G � ri = Ti.781

Two specifications Σ1 and Σ2 are coherent when their union is a consistent speci-782

fication.783

Next, we define receivability, configurational consistency and conformance784

for configurations, which are based on the LTS of configurations and dynamic785

networks. Receivability entices the ability for a message in transit to reach its786

destination.787

Definition 7.5 (Receivable configuration). Receivability of a configuration Σ; 〈r ; h〉788

is defined by the following induction:789

1. If h is empty then Σ; 〈r ; h〉 is receivable.790

2. If h ≡ m·h′, then Σ; 〈r ; h〉 is receivable when we have Σ; 〈r ; m·h′〉 `−→g791

Σ′; 〈r′ ; h′〉, where ` corresponding to m, and Σ′; 〈r′ ; h′〉 is receivable.792
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A configuration Σ; 〈r ; h〉 is configurationally consistent if all of its multi-step793

global input transition derivatives can be performed and the resulting specifica-794

tions Σ is consistent (according to Definition 7.4).795

Definition 7.6 (Configurational consistency). A configuration Φ = Σ; 〈r ; h〉 is796

configurationally consistent whenever797

1. h is empty and Σ is consistent, or798

2. h is not empty, Σ; 〈r ; h〉 is receivable, and after receiving all messages in799

h with Σ
`1...`n−−−→ Σ′ (by the LTS in Figure 7), where `i, i = {1, ..., n} are800

inputs and, ∀m ∈ h, ∃` ∈ `1 . . . `n such that ` corresponds to m, we have801

Σ′ is consistent.802

In other words, Σ; 〈r ; h〉 is configurationally consistent if, in each of its deriva-803

tives, all messages in the transport can be “received” by some monitors in Σ and,804

after absorbing all these messages, the resulting Σ′ is still consistent. Confor-805

mance links networks and configurations.806

Definition 7.7 (Conformance to a configuration). Assume a network N ≡M |807

〈r ; h〉 is given. We say that N conforms to Σ; 〈r ; h〉 when:808

1. h is empty, |= M . Σ and Σ is consistent, or809

2. h is not empty, and the following conditions hold810

(a) |= M . Σ,811

(b) all messages in h are receivable to M , and812

(c) as Σ; 〈r ; h〉 `1...`n−−−→g Σ′; 〈r′ ; ∅〉 so that M | h `1...`n−−−→g M
′ | ∅ where813

each `i, i = {1, ..., n} is an input, Σ′ is consistent.814

Session Fidelity. Session fidelity describes the relation between a network and815

the configuration specifying it: all evolutions of the network should correspond to816

expected evolutions of the configuration which does not lead to ill-formed config-817

urations. We now give the formal definition of session fidelity.818

Definition 7.8 (Session fidelity). Assume configuration Σ; 〈r ; h〉 is configura-819

tionally consistent. We say that N satisfies session fidelity w.r.t. Σ; 〈r ; h〉 if and820

only if, for any `, N `−→g N
′ implies Σ; 〈r ; h〉 `−→g Σ′; 〈r′ ; h′〉 and Σ′; 〈r′ ; h′〉 is821

configurationally consistent and N ′ satisfies session fidelity w.r.t. Σ′; 〈r′ ; h′〉.822

Before proving session fidelity for our monitored framework we give a few823

auxiliary lemmas. Lemma 7.9 states that, as a network conforms to some configu-824

rationally consistent configuration, the evolution of the configuration must be able825

to consume an output occurrence in the network:826
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Lemma 7.9. Assume a network N ≡ M |〈r ; h〉 conforms to Σ; 〈r ; h〉, and that827

Σ; 〈r ; h〉 is configurationally consistent. If N `−→g N
′ with ` being an output and828

Σ; 〈r ; h〉 `−→g Σ′; 〈r ; h·m〉, then Σ′; 〈r ; h·m〉 is receivable.829

Proof. We only show the interesting case. When ` = a〈s[r] : T 〉, since Σ is830

consistent, by Definitions 7.4, there exists a : I(T [r]) in some Γ of Σ. Because `831

does not affect the existence of a : I(T [r]), it remains in Γ of Σ′, thus invitation832

m = a〈s[r] : T 〉 is receivable to Σ′.833

Let αi = 〈Γi,∆i〉. When ` = s[r1, r2]!lj〈v〉, by Definitions 7.4 and 7.7, since
|= M . Σ and Σ is consistent, ∃αs, αr ∈ Σ, ∃G is well-formed of the form

G = r1 → r2 : {li(xi : (T [r])i){Ai}.Gi}i∈I

such that s obeys to G:834

∆s(s[r1]) = G � r1 = r2!{li(xi : (T [r])i){Ai}.Gi � r1}i∈I
∆r(s[r2]) = G � r2 = r1?{li(xi : (T [r])i){A′i}.Gi � r2}i∈I (1)

As action s[r1, r2]!lj〈v〉 fires, Equation 1 changes to

∆s(s[r1]) = Gj � r1
∆r(s[r2]) = G � r2 = r1?{li(xi : (T [r])i){A′i}.Gi � r2}i∈I

the receiving capability of r1? still remains in ∆r(s[r2]), where αr ∈ Σ′, thus835

m = s〈r1, r2, lj〈v〉〉 is receivable to Σ′.836

As N ≡ M | H and |= M . Σ, the satisfaction relation of M and Σ remains837

whenever action takes place.838

Lemma 7.10 says that, if the static part of a network satisfies a specification,839

then the evolution of the static part still satisfies the corresponding evolution of840

the specification.841

Lemma 7.10. Assume N ≡ M | H and |= M . Σ. If N `−→g N
′ ≡ M ′ | H ′ and842

Σ
`−→ Σ′, then |= M ′ . Σ′.843

Proof. Directly from Definition 4.5.844

Finally, Lemma 7.12 states that, if a network conforms to a configurationally845

consistent configuration, then any evolution of the network conforms to the corre-846

sponding evolution of the configuration, which is still configurationally consistent.847

Lemma 7.12 relier on the definition of routing table given below.848
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Definition 7.11 (Routing table). . We define route(Σ), the routing table derived
from Σ, as follows:

route(α : 〈Γ; ∆, s[r] : T 〉,Σ) = s[r] 7→ α, route(α : 〈Γ; ∆〉,Σ)
route(α : 〈Γ, a : I(T [r]); ∆〉,Σ) = a 7→ α, route(α : 〈Γ; ∆〉,Σ)
route(α : 〈Γ, a : O(T [r]); ∆〉,Σ) = route(α : 〈Γ; ∆〉,Σ)

The routing table is used to observe inputs. Note that by Definition 7.4 (2), as long849

as Σ is consistent, the existence of a : O(T [r]) in Γ implies that the corresponding850

a : I(T [r]) is also in Γ.851

Lemma 7.12. Assume configuration Σ; 〈r ; h〉 is configurationally consistent,852

and network N ≡ M |〈r ; h〉 conforms to configuration Σ; 〈r ; h〉. Then for any853

`, whenever we have N `−→g N
′ such that Σ; 〈r ; h〉 `−→g Σ′; 〈r′ ; h′〉, it holds that854

Σ′; 〈r′ ; h′〉 is configurationally consistent and that N ′ conforms to Σ′; 〈r′ ; h′〉.855

Proof. Assume N conforms to Σ; 〈r ; h〉, which is configurationally consistent.856

We prove the statement by inspection of each case.857

(Sel) Let ` = s[r1, r2]!lj〈v〉, N `−→g N
′ and Σ; 〈route(Σ) ; h〉 `−→g Σ′; 〈r ; h·m〉,858

where m = s〈r1, r2, lj〈v〉〉.859

860

Then r = route(Σ) = route(Σ′) because there is no change to the elements861

in Σ or to the routing table.862

863

Since Σ allows ` and Σ is consistent, then ∃αr, αs ∈ Σ, and ∃Gwell-formed
of the form

G = r1 → r2{li(xi : Si){Ai}.Gi}i∈I ,
such that

∆s(s[r1]) = G � r1 = r2!{li(xi : Si){Ai}.Gi � r1}i∈I ,
∆r(s[r2]) = G � r2 = r1?{li(xi : Si){A′i}.Gi � r2}i∈I .

Σ
`−→ Σ′ implies Σ′ has

∆s(s[r1]) = Gj � r1,
∆r(s[r2]) = r1?{li(xi : Si){A′i}.Gi � r2}i∈I .

Case 1: h is empty. By Lemma 7.9, after receiving m, say Σ′
`−→ Σ′′, Σ′′864

has s[r1] = Gj � r1 and s[r2] = Gj � r2, Σ′′ is thus consistent by Defini-865

tion 7.4. By Definition 7.6, Σ′; 〈r ; m〉 is configurationally consistent, and866
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|= M ′ . Σ′ by Lemma 7.10, thus N ′ conforms to Σ′; 〈r ; h·m〉.867

868

Case 2: h is not empty. Since Σ; 〈r ; h〉 is configurationally consistent,869

again, by Lemma 7.9, after receiving messages in h (but notm), say Σ′
`0...`n−−−→870

Σ′1, where every action in `0 . . . `n corresponds to each message in h, we871

have Σ′1; 〈r′ ; m〉 is configurationally consistent. After Σ′1 receives m, say872

Σ′1
s[p1,p2]?l〈v〉−−−−−−−→ Σ′′, where s[p1, p2]?l〈v〉 is dual to `, with the same reasoning873

above, Σ′′ has s[r1] = G′j � r1 and s[r2] = G′j � r2, so that Σ′′ is consis-874

tent. By Definition 7.6, Σ′; 〈r ; h ·m〉 is configurationally consistent, and875

|= M ′ . Σ′ by Lemma 7.10, thus N ′ conforms to Σ′; 〈r ; h·m〉.876

877

(Bra) Let ` = s[r1, r2]?lj〈v〉, N `−→g N
′ and N conforms to Σ; 〈route(Σ) ; h〉.878

879

Case 1: h is empty. Since Σ; 〈route(Σ) ; ∅〉 6 `−→g, so this case never happens.880

881

Case 2: h is not empty. Thus, N `−→g N
′ and

Σ; 〈route(Σ) ; h〉 `−→g Σ′; 〈r ; h/m〉,

where h/mmeans taking off messagem from h, wherem = s〈r1, r2, lj〈v〉〉882

883

We have r = route(Σ) = route(Σ′) because there is no change to the el-884

ements in Σ or to the routing table. By Definition 7.6, after receiving all885

messages in H , Σ is consistent, thus Σ′, which has received message m is886

consistent after receiving all messages in h/m. By Lemma 7.10, we have887

|= M ′ . Σ′ thus N ′ conforms to Σ′; 〈r ; h/m〉.888

889

(Req) Let ` = a〈s[r] : T 〉. N `−→g N
′ and

Σ; 〈route(Σ) ; h〉 `−→g Σ′; 〈r ; h·m〉,

where m = a〈s[r] : T 〉. Then r = route(Σ) = route(Σ′) because, by Defi-890

nition 7.11, nothing new is registered to the routing table.891

892

Since Σ allows ` and Σ is consistent, by Definition 7.4, ∃Γi,Γj ∈ Σ such893

that a : I(T [r]) ∈ Γi and a : O(T [r]) ∈ Γj . After Σ
`−→ Σ′, by rule [REQ] in894

the LTS of specifications, a : I(T [r]) remains in Γ′i, a : O(T [r]) remains in895
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Γ′j , and thus they both remain in Σ′.896

897

Case 1: h is empty. By Lemma 7.9, after receiving m, say Σ′
a〈s[r]:T 〉−−−−−→ Σ′′,898

both a : I(T [r]) and a : O(T [r]) remain in Σ′′, satisfying Definition 7.4, so899

that Σ′; 〈r ; m〉 is configurationally consistent. By Lemma 7.10, we have900

|= M ′ . Σ′, thus N ′ conforms to Σ′; 〈r ; h·m〉.901

902

Case 2: h is not empty. The proof is similar to the one in (Sel) and omitted.903

904

(Acc) Let ` = a〈s[r] : T 〉.905

906

Case 1: h is empty. Since Σ; 〈route(Σ) ; ∅〉 6 `−→g, this case never happens.907

908

Case 2: h is not empty. If N `−→g N
′ and

Σ; 〈route(Σ) ; h〉 `−→g Σ′; 〈r′ ; h/m〉,

where m = a〈s[r] : T 〉. Since there exists ∆ ∈ Σ′ s.t. s[r] ∈ ∆, by Defini-909

tion 7.11, r′ = route(Σ), s[r] 7→ α = route(Σ′).910

911

For the same reasoning in (Bra), we have Σ′; 〈r ; h/m〉 is configurationally912

consistent. By Lemma 7.10, we have |= M ′ . Σ′ thus N ′ conforms to913

Σ′; 〈r ; h/m〉.914

915

The proof for other cases is trivial.916

Theorem 7.13 (Session fidelity). If N is fully monitored and conforms to Σ; 〈r ; h〉,917

which is configurationally consistent, then N satisifies session fidelity.918

Proof. The proof is straightforward by Lemma 7.12 and Definition 7.8.919

Proposition 7.14. Whenever a network is fully monitored, global safety implies920

session fidelity.921

Proof. Simply by Definitions 7.6 and 7.7 and Corollary 6.2 and Theorems 5.4 and922

7.12.923
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8. Related Work924

Monitors. Our work features a located, distributed process calculus to model dy-925

namic monitored networks. An account of the state of the art of runtime monitors926

can be found in [29, 38]. According to Havelund and Goldberg [29], specification-927

based runtime verification consists of monitoring a program’s execution against a928

user-provided specification of the intended program’s behaviour. Leucker and929

Schallhart [38] define runtime verification as the discipline of dealing with the930

detection of violations (or satisfaction) of correctness properties. They point out931

the use of runtime verification for contract enforcement.932

Global specification languages. Message Sequence Charts (MSC), which are933

also known as UML sequence diagrams, have been the focus of many works [29,934

36, 27, 37]. Among them, Kruger et al. [37] propose a runtime monitoring frame-935

work based on projecting MSC to distributed monitors based on finite state ma-936

chines. They use aspect-oriented programming techniques to inject the monitors937

into the implementation of the components. Gan [26] follows the same path, but938

with a centralised approach. Both works do not provide a formal model, formal939

guarantees of correctness, nor support behavioural analysis. BPEL [4, 5, 27] is an940

orchestration description language that is now a common part of many industrial941

distributed systems where web services must be used in a coordinated manner. It942

supports the definition of abstract specifications as well as their execution. BPEL943

specifications are designed to be run in a centralised way. Baresi et. al [4] devel-944

oped a run-time monitoring tool with assertions based on BPEL as an execution945

language. When the execution of a BPEL process reaches the point where an946

assertion must be checked, the tool calls an external service to check its satis-947

faction. This work does not consider properties, such as transparency and local/-948

global safety. On another line of research, van der Aalst et al. [50] use abstract949

BPEL process as specifications. Their work focuses on checking conformance950

between execution logs (obtained by observing a number of executions based on951

SOAP message exchanges, and then translated into Petri Nets) and choreogra-952

phies expressed as abstract BPEL processes. The focus of [50] is on checking953

conformance a posteriori, as well as on revealing (mining) and re-engineering954

choreographies according to the actual system’s behaviour. Differently from [50]955

our work establishes a theory of dynamic monitoring. The aim of our work is to956

observe communication as they occur to prevent unsafe interactions, while provid-957

ing a formal framework that complements static (behavioural) typing techniques,958

and supports reasoning about equivalence of networks. Finally, WS-CDL is a959

more recent description language which aims at describing decentralised chore-960

ographies. Cambronero et al. [11] transform choreographies written in WS-CDL961

into timed-automata and verify systems against them. The work in [11] does not962
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develop a projection algorithm nor ensures global conformance with respect to a963

choreography.964

Theory of monitored networks. The work of Ferrari et al. [25] proposes an965

ambient-based run-time monitoring formalism, called guardians, targeted at ac-966

cess control rights for network processes, and Klaim [19] advocates a hybrid967

(dynamic and static) approach for access control against capabilities (policies)968

to support static checking integrated within a dynamic access-control procedure.969

These works address specific forms of access control for mobility, while our more970

general approach aims at ensuring correct behaviour in sessions through a combi-971

nation of static and run-time verification.972

The work of Capecchi et al. [12] presents a monitor-based information-flow973

analysis of multiparty sessions. The monitors in [12] are inline (following [14])974

and control the information-flow by tagging each message with security levels.975

Since each inlined monitor is located within a local process, the interactions be-976

tween endpoint processes and their corresponding monitors are synchronous. We977

study asynchronous communications that, while being closer to an actual network978

implementation, introduce considerable challenges in the development of a theory.979

Other works on inlined monitors, such as [28, 1, 49], provide a policy specifica-980

tion language. The aim is to write policies into the monitors, with the guarantee981

that the specifications in the inlined monitors satisfy the original policies. Inline982

monitors require direct access to the code, whereas our approach, outline monitor-983

ing (i.e., the implantation of monitors is independent from the implementation of984

the observed applications), ensures interoperability with any language and archi-985

tecture. Other related works on monitoring conversations are [48, 2]. Simmonds986

et al. [48] propose a runtime monitoring approach based on MSC as a specifica-987

tion language to represent global protocols, and transform MSC specifications into988

automata. They provide conformance checking of finite execution traces against989

specifications. Ancona et al. [2, 40] propose a dynamic monitoring framework990

based on MPST for Multi-Agent Systems (MAS) to guard interactions between991

local agents and their environments. They gave a procedure that automatically992

derives a self-monitoring MAS from Jason (a MAS development platform), and993

verifies that a MAS implementation is compliant with a given global session type,994

which can naturally be represented as cyclic Prolog terms. Their monitoring is995

only synchronous. Their development focuses on implementation and does not996

involve proofs of formal properties.997

Monitoring and MPST. An informal approach to monitoring based on MPST,998

and an outline of monitors are presented in [17]. However, [17] only gives an999

overview of the desired properties, and requires all local processes to be dynami-1000

cally verified through the protections of system monitors. In this article, instead,1001
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we integrate statically and dynamically verified local processes into one network,1002

and formally state the properties of this combination. Some recent works [3, 18]1003

use multiparty session types for dynamic updates. Anderson et al. [3] study1004

channel conditions of running processes to be able to update them and ensure1005

deadlock-freedom, while a system in Coppo et al. [18] enables to update global1006

types dynamically. The work [18] is based on the formulation (without assertions)1007

studied in this article. Recently, Jia and al. [35] proposed a linear-logic based1008

session-calculus close to ours describing monitor semantics for higher-order ses-1009

sions which include rules for blame assignment.1010

In summary, compared to these related works, our contribution focuses on the1011

enforcement of global safety, with protocols specified as multiparty session types1012

with assertions. It also provides formalisms and theorems for decentralised run-1013

time monitoring, targeting interaction between components written in multiple1014

(e.g., statically and dynamically typed) programming languages.1015

9. Conclusion and future work1016

We proposed a new formal safety assurance framework to specify and enforce1017

global safety of distributed systems through dynamic verification. We formally1018

proved the correctness of our architectural framework through a π-calculus based1019

theory, identified in two key properties of dynamic networks: global transparency1020

and safety. We introduced a behavioural theory over monitored networks which1021

allows compositional reasoning over trusted and untrusted (but monitored) com-1022

ponents.1023

Implementations. As a part of our collaboration with the Ocean Observatories1024

Initiative [44], our theoretical framework is currently realised by an implementa-1025

tion [34, 43, 21], in which each monitor supports all well-formed protocols and1026

is automatically self-configured, via session initiation messages, for all sessions1027

that the endpoint participates in. Our implementation of the framework automates1028

distributed monitoring by generating FSM from the local protocol projections. In1029

this implementation, the global protocol serves as the key abstraction that helps1030

unify the aspects of specification, implementation and verification (both static and1031

dynamic) of distributed application development. Our experience has shown that1032

the specification framework can accommodate diverse practical use cases, includ-1033

ing real-world communication patterns used in the distributed services of the OOI1034

cyberinfrastructure [44].1035

Future Work. Our objectives include the incorporation in the implementation of1036

more elaborate handling of error cases into monitor functionality, such as halting1037

all local sessions or coercing to valid actions [46, 39]. In order to reach this goal,1038
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we need to combine a simplification of [13] and nested sessions [20] to handle ex-1039

ceptions inside MPST. We aim to construct a simple and reliable way to raise and1040

catch exceptions in asynchronous networks. Another direct extension of this work1041

would be the addition of states (memories) to the syntax, as described in [8, 15].1042

It would require the monitors to maintain a model of the state of the applications1043

being monitored, which can be easily formalised in our setting. For the sake of1044

clarity, we did not add to our local type syntax other syntactical constructs such1045

as parallel composition but such an extension is possible and could be consid-1046

ered, as it allows one to reach greater expressiveness [22]. Our work is motivated1047

by ongoing collaborations with the Savara1 and Scribble2 projects [51, 31] and1048

OOI [44]. We are continuing the development of Scribble, its toolsuite and asso-1049

ciated environments towards an integration into [44]. The theoretical framework1050

developed in this article is extensible as a basis for other applications as demon-1051

strated in our recent dynamic monitoring implementations for distributed actors1052

[42] and timers [41]. For instance, the work in [41] extends run-time monitoring1053

to real-time processes: monitors verify the punctuality of interactions against time1054

constraints expressed as a timed extension of Scribble based on timed MPST [10].1055
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