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Abstract. In large-scale distributed infrastructures, applications are re-
alised through communications among distributed components. The need
for methods for assuring safe interactions in such environments is recog-
nized, however the existing frameworks, relying on centralised verification
or restricted specification methods, have limited applicability. This paper
proposes a new theory of monitored π-calculus with dynamic usage of
multiparty session types (MPST), offering a rigorous foundation for safety
assurance of distributed components which asynchronously communicate
through multiparty sessions. Our theory establishes a framework for se-
mantically precise decentralised run-time enforcement and provides rea-
soning principles over monitored distributed applications, which com-
plement existing static analysis techniques. We introduce asynchrony
through the means of explicit routers and global queues, and propose
novel equivalences between networks, that capture the notion of interface
equivalence, i.e. equating networks offering the same services to a user.
We illustrate our static-dynamic analysis system with an ATM protocol
as a running example and justify our theory with results: satisfaction
equivalence, local/global safety and transparency, and session fidelity.

1 Introduction

One of the main engineering challenges for distributed systems is the comprehen-
sive verification of distributed software without relying on ad-hoc and expensive
testing techniques. Multiparty session types (MPST) is a typing discipline for
communication programming, originally developed in the π-calculus [14, 1, 2,
10, 11, 6] towards tackling this challenge. The idea is that applications are built
starting from units of design called sessions. Each type of session, involving mul-
tiple roles, is first modelled from a global perspective (global type) and then
projected onto local types, one for each role involved. As a verification method,
the existing MPST systems focus on static type checking of endpoint processes
against local types. The standard properties enjoyed by well-typed processes are
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communication safety (all processes conform to globally agreed communication
protocols) and freedom from deadlocks.

The direct application of the theoretical MPST techniques to the current
practice, however, presents a few obstacles. Firstly, the existing type systems
are targeted at calculi with first class primitives for linear communication chan-
nels and communication-oriented control flow; the majority of mainstream en-
gineering languages would need to be extended in this sense to be suitable for
syntactic session type checking. Unfortunately, it is not always straightforward
to add these features to the specific host languages (e.g. linear resource typing
for a very liberal language like C). Furthermore, the executable processes in
a distributed system may be implemented in different languages. Secondly, for
domains where dynamically typed or untyped languages are popular (e.g., Web
programming), or in multi-organizational scenarios, the introduction of static
typing infrastructure to support MPST may not be realistic.

This paper proposes a theoretical system addressing the above issues by en-
abling both static and dynamic verification of communicating processes. The
aim is to capture the decentralised nature of distributed application develop-
ment, providing better support for heterogeneous distributed systems by allow-
ing components to be independently implemented, using different languages,
libraries and programming techniques, as well as being independently verified,
either statically or dynamically, while retaining the strong global safety proper-
ties of statically verified homogeneous systems.

This work is motivated in part by our ongoing collaboration with the Ocean
Observatories Initiative (OOI) [16], a project to establish cyberinfrastructure for
the delivery, management and analysis of scientific data from a large network
of ocean sensor systems. Their architecture relies on the combination of high-
level protocol specifications (to express how the infrastructure services should
be used) and distributed run-time monitoring to regulate the behaviour of third-
party applications in the system.

A formal theory for static/dynamic verification Our framework is based on the
idea that, if each endpoint is independently verified (statically or dynamically)
to conform to their local protocols, then the global protocol is respected as a
whole. To this goal, we propose a new formal model and bisimulation theories of
heterogeneous networks of monitored and unmonitored processes.

For the first time, we make explicit the routing mechanism implicitly present
inside the MPST framework: in a session, messages are sent to abstract roles (e.g.
to a Seller) and the router, a dynamically updated component of the network,
translates these roles into actual addresses.

By taking this feature into account when designing novel equivalences, our
formal model can relate networks built in different ways (through different distri-
butions or relocations of services) but offering the same interface to an external
observer. The router, being in charge of associating roles with principals, hides
to an external user the internal composition of a network: what distinguishes
two networks is not their structure but the services they are able to perform, or
more precisely, the local types they offer to the outside.
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We formally define a satisfaction relation to express when the behaviour of
a network conforms to a global specification and we prove a number of prop-
erties of our model. Local safety states that a monitored process respects its
local protocol, i.e. that dynamic verification by monitoring is sound, while lo-
cal transparency states that a monitored process has equivalent behaviour to an
unmonitored but well-behaved process, e.g. statically verified against the same
local protocol. Global safety states that a system satisfies the global protocol,
provided that each participant behaves as if monitored, while global transparency
states that a fully monitored network has equivalent behaviour to an unmoni-
tored but well-behaved network, i.e. in which all local processes are well-behaved
against the same local protocols. Session fidelity states that, as all message flows
of a network satisfy global specifications, whenever the network changes because
some local processes take actions, all message flows continue to satisfy global
specifications. Together, these properties justify our framework for decentralised
verification by allowing monitored and unmonitored processes to be safely mixed
while preserving protocol conformance for the entire network. Technically, these
properties also ensure the coherence of our theory, by relating the satisfaction
relations with the semantics and static validation procedures.

Paper summary and contributions § 2 introduces the formalisms for protocol
specifications (§ 2.1) and networks (§ 2.2) used to provide a formal framework
for monitored networks based on π-calculus processes and protocol-based run-
time enforcement through monitors. § 3 introduces: a semantics for specifications
(§ 3.1), a novel behavioural theory for compositional reasoning over monitored
networks through the use of equivalences (bisimilarity and barbed congruence)
and the satisfaction relation (§ 3.2). § 3.4 establishes key properties of monitored
networks, namely local/global safety, transparency, and session fidelity. We dis-
cuss future and related work in § 4. The proofs can be found in the Appendices.

2 Types, Processes and Networks: a Formal Presentation

This section and the next one provide a theoretical basis for protocol-centred
safety assurance. We first summarise the syntax of MPSTs (multiparty session
types) annotated with logical assertions [2]. We then introduce a novel moni-
tored session calculus as a variant of the π-calculus, modelling distributed dy-
namic components (whose behaviours are realised by processes) and monitors,
all residing in global networks.

2.1 Multiparty Session Types with Assertions

Multiparty session types with assertions [2] are abstract descriptions of the struc-
ture of interactions among the participants of a multiparty session, specifying
potential flows of messages, the conditions under which these interactions may
be done, and the constraints on the communicated values. In this framework,
global types with assertions, or just global types, describe multiparty sessions
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from a network perspective. From global types one can derive, through endpoint
projection, local types with assertions, or just local types, describing the protocol
from the perspective of a single endpoint.

A ::= tt | ff | e1 = e2 | e1 < e2 | ¬A | A1 ∧A2 | A1 ∨A2

e ::= v | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1 mod e2 S::=bool | int | string

G ::= r1→r2 : {li(xi :Si){Ai}.Gi}i∈I | G1 | G2 | G1;G2 | µt.G | t | ε | end

T ::= r!{li(xi :Si){Ai}.Ti}i∈I | r?{li(xi :Si){Ai}.Ti}i∈I | T1 | T2 | T1;T2 |
µt.T | t | ε | end

The syntax of the global types (G,G′, . . .) and local types (T, T ′, . . .) is given
above. The grammar is based on [2, 11] extended with parallel threads, which also
require sequential composition to merge parallel threads as in [18]. We let values
v, v′, . . . range over boolean constants, numerals and strings, and e, e′, . . . range
over first-order expressions. For expressing constraints, we use logical predicates,
or assertions, ranged over by A,A′, . . ., following the grammar given above,
although other decidable logics could be used.1 The sorts of exchanged values
(S, S′, . . .) consists of atomic types.

Global types with assertions r1 → r2 : {li(xi : Si){Ai}.Gi}i∈I models an
interaction where role r1 sends role r2 one of the branch labels li, as well as a
value denoted by an interaction variable xi of sort Si. Interaction variable xi
binds its occurrences in Ai and Gi. Ai is the assertion which needs to hold for r1
to select li, and which may constrain the values instantiating xi. G1 | G2 specifies
two parallel sessions, and G1;G2 denotes sequential composition (assuming that
G1 does not include end). µt.G is a recursive type, where t is guarded in G in
the standard way, ε is the inaction for absence of communication, and end ends
the session.

Example 1 ( ATM: the global type). We present global type GATM that specifies
an ATM scenario. Each session of ATM involves three roles: a client (C), the
payment server (S) and a separate authenticator (A).

GATM = C→ A : { Login(xi : string){tt}.
A→ S : { LoginOK(){tt}. A→ C : {LoginOK(){tt}. GLoop},

LoginFail(){tt}. A→ C : {LoginFail(){tt}. end}}}
GLoop = µ LOOP.

S→ C : { Account(xb : int){xb ≥ 0}.
C→ S : { Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,
Quit(){tt}.end}}

At the start of the session C sends its login details xi to A, then A informs S

and C whether the authentication is successful, by choosing either the branch

1 We use a logic without quantifiers, contrary to [2], to simplify the presentation and
because monitorability, defined later in this section, makes them unnecessary.
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with label LoginOK or LoginFail. In the former case C and S enter a transaction
loop specified by GLoop. In each iteration S sends C the amount xb available in
the account, which must be non negative. Next, C has three choices: Withdraw
withdraws an amount xp (xp must be positive and not exceed the current amount
xb) and repeats the loop, Deposit deposits a positive amount xd in the account
and repeats the loop, and Quit ends the session.

We consider global types that satisfy the consistency conditions defined in [10, 2,
11] which rule out, for instance, protocols where interactions have causal relations
that cannot be enforced (e.g., we write rA → rB : l1(){tt} | rC → rD : l2(){tt}
instead of rA → rB : l1(){tt}.rC → rD : l2(){tt}). In addition we assume
monitorability requiring that in all the interactions of the form r → r′ : l(x :
S){A} occurring in a global type G both r and r′ know (i.e., have sent or received
in a previous or in this interaction) the free variables in A.

Local types with assertions Each local type T is associated with a role
taking part in a session. Local type r!{li(xi :Si){Ai}.Ti}i∈I models an interaction
where the role under consideration sends r a branch label li and a message
denoted by an interaction variable xi of sort Si. Its dual is the receive interaction
r?{li(xi :Si){Ai}.Ti}i∈I . The other local types are similar to the global types.

One can derive a set of local types Ti from a global type G by endpoint
projection, defined as in [2]. We write G � r for the projection of G onto role r. We
illustrate the main projection rule, which is for projecting a global type modelling
an interaction. Let G be (r → r′ : {li(xi : Si){Ai}.Gi}i∈I); the projection of
G on r is r′!{li(xi : Si){Ai}.(Gi � r)}i∈I , and the projection of G on r′ is
r?{li(xi : Si){Ai}.(Gi � r′)}i∈I . The other rules are homomorphic, following the
grammar of global types inductively.

Example 2 ( ATM: the local type of C). We present the local type TC obtained by
projecting GATM on role C.

TC = A!{Login(xi : string){tt}.
A?{LoginOK(){tt}. TLoop

LoginFail(){tt}. end}}

TLoop = µ LOOP.
S?{Account(xb : int){xb ≥ 0}.
S!{Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}.

LOOP,
Deposit(xd : int){xd > 0}.LOOP,
Quit(){tt}.end}}

TC specifies the behaviour that C should follow to meet the contract of global
type GATM . TC states that C should first authenticate with A, then receive the
Account message from S, and then has the choice of sending Withdraw (and enact
the recursion), or Deposit (and enact the recursion) or Quit (and end the session).

2.2 Formal Framework of Processes and Networks

In our formal framework, each distributed application consists of one or more
sessions among principals. A principal with behaviour P and name α is repre-
sented as [P ]α. A network is a set of principals together with a (unique) global
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transport, which abstractly represents the communication functionality of a dis-
tributed system. The syntax of processes, principals and networks is given below,
building on the multiparty session π-calculus from [1].

P ::= a〈s[r] : T 〉 | a(y[r] :T ).P | k[r1, r2]!l〈e〉 | k[r1, r2]?{li(xi).Pi}i∈I |
if e then P else Q | P | Q | 0 | µX.P | X | P ;Q | (νa) P | (νs)P

N ::= [P ]α | N1 | N2 | 0 | (νa)N | (νs)N | 〈r ; h〉

r ::= a 7→ α | s[r] 7→ α h ::= m · h | ∅ m ::= a〈s[r] : T 〉 | s〈r1, r2, l〈v〉〉
r, r1, . . . roles s, s′, . . . session names X,Y, . . . process variables
a, b, . . . shared names x, y, . . . variables P,Q, . . . processes
α, β, . . . principal names N,N ′, . . . networks

Processes Processes are ranged over by P, P ′, . . . and communicate using two
types of channel: shared channels (or shared names) used by processes for sending
and receiving invitations to participate in sessions, and session channels (or
session names) used for communication within established sessions. One may
consider session names as e.g., URLs or service names.

The session invitation a〈s[r] : T 〉 invites, through a shared name a, another
process to play r in a session s. The session accept a(y[r] : T ).P receives a
session invitation and, after instantiating y with the received session name, be-
haves in its continuation P as specified by local type T for role r. The selection
k[r1, r2]!l〈e〉 sends, through session channel k (of an established session), and
as a sender r1 and to a receiver r2, an expression e with label l. The branching
k[r1, r2]?{li(xi).Pi}i∈I is ready to receive one of the labels and a value, then be-
haves as Pi after instantiating xi with the received value. We omit labels when I
is a singleton. The conditional, parallel and inaction are standard. The recursion
µX.P defines X as P . Processes (νa)P and (νs)P hide shared names and session
names, respectively.

Principals and network A principal [P ]α, with its process P and name α,
represents a unit of behaviour (hence verification) in a distributed system. A
network N is a collection of principals with a unique global transport.

A global transport 〈r ; h〉 is a pair of a routing table which delivers messages
to principals, and a global queue. Messages between two parties inside a single
session are ordered (as in a TCP connection), otherwise unordered. More pre-
cisely, in 〈r ; h〉, h is a global queue, which is a sequence of messages a〈s[r] : T 〉
or s〈r1, r2, l〈v〉〉, ranged over by m. These m represent messages-in-transit, i.e.
those messages which have been sent from some principals but have not yet been
delivered. The routing table r is a finite map from session-roles and shared names
to principals. If, for instance, s[r] 7→ α ∈ r then a message for r in session s will
be delivered to principal α.

Let n, n′, . . . range over shared and session channels. A network N which
satisfies the following conditions is well-formed: (1) N contains at most one
global transport; (2) two principals in N never have the same principal name;
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and (3) if N ≡ (νñ)(
∏
i[Pi]αi |〈r ; h〉), each free shared or session name in Pi

and h occurs in ñ (we use
∏
i Pi to denote P1 | P2 · · · | Pn).

Semantics The reduction relation for dynamic networks is generated from the
rules below, which model the interactions of principals with the global queue.

[a〈s[r] : T 〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · a〈s[r] : T 〉〉 breqc

[a(y[r] : T ).P ]α | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | 〈r ·s[r] 7→ α ; h〉 † baccc

[s[r1, r2]!lj〈v〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · s〈r1, r2, lj〈v〉〉〉 †† bselc

[s[r1, r2]?{li(xi).Pi}i]α | 〈r ; s〈r1, r2, lj〈v〉〉 · h〉 −→ [Pj [v/xj ]]α | 〈r ; h〉 ††† bbrac

[if tt then P else Q]α −→ [P ]α [if ff then P else Q]α −→ [Q]α bcndc
[P ]α | N −→ [P ′]α | N ′

[E(P )]α | N −→ [E(P ′)]α | N ′
e −→ e′

[E(e)]α −→ [E(e′)]α
N −→ N ′

E(N) −→ E(N ′)
bctxc

† : r(a) = α †† : r(s[r2]) 6= α † †† : r(s[r2]) = α

E ::= ( ) | E | P | (νs)E | (νa)E | E ;P | E | N | if E then P else Q | s[r1, r2]!l〈E〉

Rule breqc places an invitation in the global queue. Dually, in baccc, a pro-
cess receives an invitation on a shared name from the global queue, assuming a
message on a is to be routed to α. As a result, the routing table adds s[r] 7→ α
in the entry for s. Rule bselc puts in the queue a message sent from r1 to r2,
which selects label lj and carries v, if it is not going to be routed to α (i.e. sent
to self). Dually, bbrac gets a message with label lj from the global queue, so
that the j-th process Pj receives value v. The reduction is also defined modulo
the structural congruence ≡ defined by the standard laws over processes/net-
works, the unfolding of recursion (µX.P ≡ P [µX.P/X]) and the associativity
and commutativity and the rules of message permutation in the queue [14, 10].
The other rules are standard.

Example 3 ( ATM: an implementation). We now illustrate the processes imple-
menting the client role of the ATM protocol. We let PC be the process imple-
menting TC (from Example 2) and communicating on session channel s.

PC = s[C, A]!Login(alice pwd123);
s[A, C]?{LoginOK();µX.P ′

C , LoginFail().0}
P ′
C = s[S, C]?Account(xb);P

′′
C

P ′′
C = if getmore() ∧ (xb ≥ 10)

then s[C, S]!Withdraw(10);X
else s[C, S]!Quit();0

Note that PC selects only two of the possible branches (i.e., Withdraw and
Quit) and Deposit is never selected. One can think of PC as an ATM machine
that only allows to withdraw a number of £10 banknotes, until the amount
exceeds the current balance. This ATM machine does not allow deposits. We
assume getmore() to be a local function to the principal running PC that returns
tt if more notes are required (ff otherwise). PS below implements the server role:

PS = s[A, S]?{LoginOK();µX.P ′
S , LoginFail().0}

P ′
S = s[S, C]!Account(getBalance());P ′′

S

P ′′
S = s[C, S]?{Withdraw(xp).X,

Deposit(xd).X,
Quit().0 }
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where getBalance() is a local function to the principal running PS that syn-
chronously returns the current balance of the client.

3 Theory of Dynamic Safety Assurance

In this section we formalise the specifications (based on local types) used to
guard the runtime behaviour of the principals in a network. These specifications
can be embedded into system monitors, each wrapping a principal to ensure
that the ongoing communication conforms to the given specification. Then, we
present a behavioural theory for monitored networks and its safety properties.

3.1 Semantics of Global Specifications

The specification of the (correct) behaviour of a principal consists of an assertion
environment 〈Γ ;∆〉, where Γ is the shared environment describing the behaviour
on shared channels, and ∆ is the session environment representing the behaviour
on session channels (i.e., describing the sessions that the principal is currently
participating in). The syntax of Γ and ∆ is given by:

Γ ::= ∅ | Γ, a : I(T [r]) | Γ, a : O(T [r]) ∆ ::= ∅ | ∆, s[r] :T

In Γ , the assignment a : I(T [r]) (resp. a : O(T [r])) states that the principal can,
through a, receive (resp. send) invitations to play role r in a session instance
specified by T . In ∆, we write s[r] : T when the principal is playing role r of
session s specified by T . Networks are monitored with respect to collections of
specifications (or just specifications) one for each principal in the network. A
specification Σ,Σ′, . . . is a finite map from principals to assertion environments:

Σ ::= ∅ | Σ,α :〈Γ ;∆〉
The semantics of Σ is defined using the following labels:

` ::= a〈s[r] :T 〉 | a〈s[r] :T 〉 | s[r1, r2]!l〈v〉 | s[r1, r2]?l〈v〉 | τ
The first two labels are for invitation actions, the first is for requesting and
the second is for accepting. Labels with s[r1, r2] indicate interaction actions for
sending (!) or receiving (?) messages within sessions. The labelled transition
relation for specification is defined by the rules below.

α :〈Γ, a : O(T [r]);∆〉 a〈s[r]:T 〉−−−−−→ α :〈Γ, a : O(T [r]);∆〉 [Req]

s 6∈ dom(∆)

α :〈Γ, a : I(T [r]);∆〉 a〈s[r]:T 〉−−−−−→ α :〈Γ, a : I(T [r]);∆, s[r] :T 〉
[Acc]

Γ ` v :Sj , Aj [v/xj ] ↓ tt, j∈I

α :〈Γ ;∆, s[r2] :r1?{li(xi :Si){Ai}.T ′
i}i∈I〉

s[r1,r2]?lj〈v〉−−−−−−−−→ α :〈Γ ;∆, s[r2] :T ′
j [v/xj ]〉

[Bra]

Γ `v :Sj , Aj [v/xj ] ↓ tt, j∈I

α :〈Γ ;∆, s[r1] :r2!{li(xi :Si){Ai}.T ′
i}i∈I〉

s[r1,r2]!lj〈v〉−−−−−−−−→ α :〈Γ ;∆, s[r1] :T ′
j [v/xj ]〉

[Sel]

α :〈Γ1;∆1〉
`−→ α :〈Γ ′

1;∆′
1〉

α :〈Γ1;∆1|∆2〉
`−→ α :〈Γ ′

1;∆′
1|∆2〉

Σ
τ−→ Σ Σ1

`−→ Σ2

Σ1, Σ3
`−→ Σ2, Σ3

[Spl,Tau,Par]
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Rule [Req] allows α to send an invitation on a properly typed shared channel a
(i.e., given that the shared environment maps a to T [r]). Rule [Acc] allows α to
receive an invitation to be role r in a new session s, on a properly typed shared
channel a. Rule [Bra] allows α, participating to sessions s as r2, to receive a
message with label lj from r1, given that Aj is satisfied after replacing xj with
the received value v. After the application of this rule the specification is Tj .
Rule [Sel] is the symmetric (output) counterpart of [Bra]. We use ↓ to denote
the evaluation of a logical assertion. [Spl] is the parallel composition of two
session environments where ∆1|∆2 composes two local types: ∆1|∆2 = {s[r] :
(T1 | T2) | Ti = ∆i(s[r]), s[r] ∈ dom(∆1) ∩ dom(∆2)} ∪ dom(∆1)/dom(∆2) ∪
dom(∆2)/dom(∆1). [Tau] says that the specification should be invariant under
reduction of principals. [Par] says if Σ1 and Σ3 are composable, after Σ1 becomes
as Σ2, they are still composable.

3.2 Semantics of Dynamic Monitoring

The endpoint monitor M,M′, ... for principal α is a specification α : 〈Γ ;∆〉 used
to dynamically ensure that the messages to and from α are legal with respect to
Γ and ∆. A monitored network N is a network N with monitors, obtained by
extending the syntax of networks as:

N ::= N | M | N | N | (νs)N | (νa)N

The reduction rules for monitored networks are given below and use, in the
premises, the labelled transitions of monitors. The labelled transitions of a mon-
itor are the labelled transitions of its corresponding specification (given in § 3.1).

dReqe M
a〈s[r]:T 〉−−−−−→ M′

[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · a〈s[r] : T 〉〉

dAcce M
a〈s[r]:T 〉−−−−−→ M′ r(a) = α

[a(y[r] : T ).P ]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | M′ | 〈r ·s[r] 7→ α ; h〉

dBrae M
s[r1,r2]?lj〈v〉−−−−−−−−→ M′ r(s[r2]) = α

[s[r1, r2]?{li(xi).Pi}i]α | M | 〈r ; s〈r1, r2, lj〈v〉〉 · h〉 −→ [Pj [v/xj ]]α | M′ | 〈r ; h〉

dSele M
s[r1,r2]!l〈v〉−−−−−−−→ M′ r(s[r2]) 6= α

[s[r1, r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · s〈r1, r2, l〈v〉〉〉

dReqEre M 6a〈s[r]:T 〉−−−−−→
[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

dAccEre M 6a〈s[r]:T 〉−−−−−→
[a(y[r] : T ).P ]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [a(y[r] : T ).P ]α | M | 〈r ; h〉

dSelEre M 6s[r1,r2]!l〈v〉−−−−−−−→
[s[r1, r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

The first four rules model reductions that are allowed by the monitor (i.e., in
the premise). Rule dReqe inserts an invitation in the global queue. Rule dAcce
is symmetric and updates the router so that all messages for role r in session
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s will be routed to α. Similarly, dBrae (resp. dSele) extracts (resp. introduces)
messages from (resp. in) the global queue. The error cases for dReqe and dSele,
namely dReqEre and dSelEre, ‘skip’ the current action (removing it from the
process), do not modify the queue, the router nor the state of the monitor.
The error cases for dAcce and dBrae, namely dAccEre and dBraEre (the latter
omitted for space constraint), do not affect the process, which remains ready to
perform the action, and remove the violating message from the queue.

Example 4 (ATM: a monitored network). We illustrate the monitored networks
for the ATM scenario, where the routing table is defined as

r = a 7→ α, b 7→ β, c 7→ γ, s[S] 7→ α, s[C] 7→ β, s[A] 7→ γ

We consider the fragment of session where the authentication has occurred, the
process of C (resp. S) is P ′C (resp. P ′S) from Example 3, and the process of A is 0.

NS = [P ′
S ]α | MS = [s[S, C]! Account(100);P ′′

S ]α | MS (assuming getBalance() = 100)
NC = [P ′

C ]β | MC = [s[S, C]? Account(xb).P
′′
C ]β | MC

NA = [0]γ | γ : 〈c : TA[A] ; s[A] : end〉

where MS = α : 〈a : TS[S] ; s[S] : C! Account(xb : int){xb ≥ 0}.T ′
S〉 and MC is dual.

N1 = [s[S, C]! Account(100);P ′
S ]α | MS | [s[S, C]? Account(xb).P

′
C ]β | MC | NA | 〈r ; ∅〉

−→−→ [P ′
S ]α | M′

S | [P ′
C [100/xb]]β | M′

C | NA | 〈r ; ∅〉

where M′
S = α : 〈a :TS[S] ; s[S] : T ′

S〉 and M′
C = β : 〈b : TC[C] ; s[C] : T ′

C〉

Above, xb ≥ 0 is satisfied since xb = 100. If the server tried to communicate e.g.,
value −100 for xb, the monitoring (by rule dSelEre) would drop the message.

3.3 Network Satisfaction and Equivalences

Based on the formal representations of monitored networks, we now introduce the
key formal tools for analysing their behaviour. First, we introduce bisimulation
and barbed congruence over networks, and develop the notion of interface. Then
we define the satisfaction relation |= N : M, used in § 3.4 to prove the properties
of our framework.

Bisimulations We use M,M ′, ... for a partial network, that is a network which
does not contain a global transport, hence enabling the global observation of
interactions. The labelled transition relation for processes and partial networks
M is defined below.

(Req) [a〈s[r] : T 〉;P ]α
a〈s[r]:T 〉−−−−−→ [0]α (Acc) [a(y[r] : T ).P ]α

a〈s[r]:T 〉−−−−−→ [P [s/y]]α

(Bra) [s[r1, r2]?{li(xi :Si).Pi}i]α
s[r1,r2]?lj〈v〉−−−−−−−−→ [Pj [v/xj ]]α

(Sel) [s[r1, r2]!lj〈v〉]α
s[r1,r2]!lj〈v〉−−−−−−−−→ [0]α (ctx)

[P ]α
`−→ [P ′]α n(`) ∩ bn(E)=∅
[E(P )]α

`−→ [E(P ′)]α

(tau) M −→M ′

M
τ−→M ′ (res)

M
`−→M ′ a 6∈ sbj(`)

(νa)M
`\a−−→ (νa)M ′

(str)M ≡M0
`−→M ′

0 ≡M ′

M
`−→M ′

10



In (ctx), n(`) indicates the names occurring in ` while bn(E) indicates binding E
induces. In (res), sbj(`) denotes the subject of `. In (tau) the axiom is obtained
either from the reduction rules for dynamic networks given in § 2.2 (only those
not involving the global transport), or from the corresponding rules for monitored
networks (which have been omitted in § 3.2).

Hereafter we write =⇒ for
τ−→
∗
,

`
=⇒ for =⇒ `−→=⇒, and

ˆ̀
=⇒ for =⇒ if ` = τ

and
`

=⇒ otherwise.

Definition 1 (Bisimulation over partial networks). A binary relation R
over partial networks is a weak bisimulation when M1RM2 implies: whenever

M1
`−→M ′1 such that bn(`)∩ fn(M2) = ∅, we have M2

ˆ̀
=⇒M ′2 such that M ′1RM ′2,

and the symmetric case. We write M1 ≈ M2 if (M1,M2) are in a weak bisimu-
lation.

Interface We want to build a model where two different implementations of
the same service are related. Bisimilarity is too strong for this aim (as shown in
Example 5). We use instead a contextual congruence (barbed reduction-closed
congruence [13]) ∼= for networks. Intuitively, two networks are barbed-congruent
when they are indistinguishable for any principal that connects to them. In
this case we say they propose the same interface to the exterior. Formally, two
networks are related with ∼= when, composed with the same third network, they
offer the same barbs (the messages to external principals in the respective global
queues are on the same channels) and this property is preserved under reduction.

We say that a message m is routed for α in N if N = (νñ)(M0 | 〈r ; h〉),
m ∈ h, eitherm = a〈s[r] : T 〉 and r(a) = α orm = s[r1, r2]!l〈e〉 and r(s[r2]) = α.

Definition 2 (Barb). We write N ↓a when the global queue of N contains a
message m to free a and m is routed for a principal not in N . We write N ⇓a if
N −→∗ N ′ ↓a.

We denote P(N) for a set of principals in N , P(
∏

[Pi]αi
) = {α1, ..., αn}. We say

N1 and N2 are composable when P(N1)∩P(N2) = ∅, the union of their routing
tables remains a function, and their free session names are disjoint. If N1 and
N2 are composable, we define N1 �N2 = (νñ1, ñ2)(M1 |M2 | 〈r1 ∪ r2 ; h1 · h2〉)
where Ni = (νñi)(Mi | 〈ri ; hi〉) (i = 1, 2). Notice that both equivalences are
compositional, as proved in Proposition § 4.

Definition 3 (Barbed reduction-closed congruence). A relationR on net-
works with the same principals is a barbed r.c. congruence [13] if the following
holds: whenever N1RN2 we have: (1) for each composable N , N �N1RN �N2;
(2) N1 −→ N ′1 implies N2 −→∗ N ′2 s.t. N ′1RN ′2 again, and the symmetric case;
(3) N1 ⇓a iff N2 ⇓a. We write N1

∼= N2 when they are related by a barbed r.c.
congruence.

The following result states that composing two bisimilar partial networks
with the same network – implying the same router and global transport – yields
two undistinguishable networks.
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Proposition 4 (Congruency). If M1 ≈M2, then (1) M1|M ≈M2|M for each
composable partial M ; and (2) M1|N ∼= M2|N for each composable N .

Example 5 (ATM: an example of behavioural equivalence). We use an example
to illustrate our notion of interface. As our verification by monitors is done sep-
arately for each endpoint, one can safely modify a global specification as long
as its projection on the public roles stays the same. The barbed congruence
we introduce takes this into account: two networks proposing the same service,
but organised in different ways, are equated even if the two networks corre-
spond to different global specifications. As an example, consider global type
G2

ATM defined as GATM where G2
Loop is used in place of GLoop from Example 3.

G2
Loop involves a fourth party, the transaction agent B: S sends a query to B

which gives back a one-use transaction identifier. Then, the protocol proceeds
as the original one. Notably, GATM and G2

ATM have the same interfaces for the
client (resp. the authenticator), as their projections of on C (resp. A) are equal.
G2

Loop = µ LOOP.
S→ B : { Query(){true}.
B→ S : { Answer(xt : int){true}.
S→ C : { Account(xb : int){xb ≥ 0}.
C→ S : { Withdraw(xp : int){xp ≥ 0 ∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,
Quit(){true}.end }}}}

We define P 2
S as PS in Example 3 but replacing the occurrence of P ′S in PS by

s[S, B]!Query〈〉; s[B, S]?Answer(xt).P
′
S

and alsoN2
S = [P 2

S ]α andNB = [µX.s[S, B]?Query〈〉; s[B, S]!Answer〈getTrans()〉]δ.
By definition, the two following networks are barbed-congruent:

(NS | 〈∅ ; s[S] 7→ α, s[C] 7→ β, s[A] 7→ γ〉) ∼=
(N2

S | NB | 〈∅ ; s[S] 7→ α, s[C] 7→ β, s[A] 7→ γ, s[B] 7→ δ〉)

even if the first one implements the original ATM protocol while the second one
implements its variant. Indeed, composed with any tester, such as NC | NA =
[PC]β | [PA]γ these two networks will produce the same interactions.

However, the corresponding partial networks N2
S | NB and NS are not bisim-

ilar: the former is able to perform a transition labelled s[S, B]!Query〈〉 while the
latter is not. This difference in behaviour is not visible to the barbed congruence,
as it takes into account the router which prevents the messages s[S, B]!Query〈〉
to be caught by a tester. As an example of network bisimilar to NS, consider:

N1 = (νk) ([PS | PS[k/s]]α | [PC[k/s]]δ)

In this partial network, principal α plays both S in public session s (as in NS)
and S in the private session k. Principal δ plays C in the latter. As k is private, N1

offers the same observable behaviour than NS (no action on k can be observed),
and we have N1 ≈ NS.
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Satisfaction We present a satisfaction relation for partial networks, which in-
clude local principals. If M is a partial network, |= M : Σ s.t. dom(Σ) = P(M),
means that the specification allows all outputs from the network; that the net-
work is ready to receive all the inputs indicated by the specification; and that
this is preserved by transition.

Definition 5 (Satisfaction). Let sbj(`) denote the subject of ` 6= τ . A relation
R from partial networks to specifications is a satisfaction when MRΣ implies:

1. If Σ
`−→ Σ′ for an input ` and M has an input at sbj(`), then M

`−→ M ′ s.t.
M ′RΣ′.

2. If M
`−→M ′ for an output at `, then Σ

`−→ Σ′ s.t. M ′RΣ′.
3. If M

τ−→M ′, then Σ
τ−→ Σ′ s.t. M ′RΣ′ (i.e. M ′RΣ since Σ

τ−→ Σ always).

When MRΣ for a satisfaction relation R, we say M satisfies Σ, denoted |= M :
Σ. By Definition 5 and Proposition 4 we obtain:

Proposition 6. If M1
∼= M2 and |= M1 : Σ then |= M2 : Σ.

3.4 Safety Assurance and Session Fidelity

In this section, we present the properties underpinning safety assurance in the
proposed framework from different perspectives.

Theorem 7 shows local safety/transparency, and global safety/transparency
for fully monitored networks. A network N is fully monitored wrt Σ when all its
principals are monitored and the collection of the monitors is congruent to Σ.

Theorem 7 (Safety and Transparency).

1. (Local Safety) |= [P ]α | M : α : 〈Γ ;∆〉 with M = α :〈Γ ;∆〉.
2. (Local Transparency) If |= [P ]α : α : 〈Γ ;∆〉, then [P ]α ≈ ([P ]α | M)

with M = α : 〈Γ ;∆〉.
3. (Global Safety) If N is fully monitored w.r.t. Σ, then |= N : Σ.
4. (Global Transparency) Assum N and N have the same global transport
〈r ; h〉. If N is fully monitored w.r.t. Σ and N = M | 〈r ; h〉 is unmonitored
but |= M : Σ, then we have N ∼ N .

Local safety (7.1) states that a monitored process always behaves well with
respect to the specification. Local transparency (7.2) states that a monitored pro-
cess behaves as an unmonitored process when the latter is well-behaved (e.g.,
it is statically checked). Global safety (7.3) states that a fully monitored net-
work behaves well with respect to the given global specification. This property is
closely related to session fidelity, introduced later in Theorem 11. Global trans-
parency (7.4) states that a monitored network and an unmonitored network have
equivalent behaviour when the latter is well-behaved with respect to the same
(collection of) specifications.

By Proposition 4 and (7.2), we derive Corollary 8 stating that weakly bisim-
ilar static networks combined with the same global transport are congruent.
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Corollary 8 (Local transparency). If |= [P ]α : α : 〈Γ ;∆〉, then for any
〈r ; h〉, we have ([P ]α | 〈r ; h〉) ∼= ([P ]α | M | 〈r ; h〉) with M = α :〈Γ ;∆〉.

By Theorem 7, we can mix unmonitored principals with monitored principals
still obtaining the desired safety assurances.

In the following, we refer to a pair Σ; 〈r ; h〉 of a specification and a global
transport as a configuration. The labelled transition relation for configurations,

denoted by
`−→g, defined in Figure 2 in Appendix B. Here it is sufficient to notice

that the transitions of a configuration define the correct behaviours (with respect
to Σ) in terms of the observation of inputs and outputs from/to the global
transport 〈r ; h〉. We write that a configuration Σ; 〈r ; h〉 is configurationally
consistent if all of its multi-step input transition derivatives are receivable and
the resulting specifications Σ is consistent.

We also use
`−→g to model globally visible transitions of networks (i.e., those

locally visible transitions of a network that can be observed by its global trans-
port). Below, we state that a message emitted by a valid output action is always
receivable.

Lemma 9. Assume a network N ≡M |〈r ; h〉 conforming to Σ; 〈r ; h〉 which is

configurationally consistent, ifN
`−→g N

′ such that ` is an output andΣ; 〈r ; h〉 `−→g

Σ′; 〈r ; h·m〉 then h ·m is receivable to Σ′.

Also, we state that, as N ≡ M | H and |= M : Σ, the satisfaction relation of
M and Σ is preserved by transitions.

Lemma 10. Assume N ≡ M | H and |= M : Σ. If N
`−→g N

′ ≡ M ′ | H ′ and

Σ
`−→ Σ′, then |= M ′ : Σ′.

Theorem 11 (Session Fidelity). Assume configuration Σ; 〈r ; h〉 is config-
urationally consistent, and network N ≡ M |〈r ; h〉 conforms to configuration

Σ; 〈r ; h〉. For any `, whenever we have N
`−→g N

′ s.t. Σ; 〈r ; h〉 `−→g Σ
′; 〈r′ ; h′〉,

it holds that Σ′; 〈r′ ; h′〉 is configurationally consistent and N ′ conforms to
Σ′; 〈r′ ; h′〉.

By session fidelity, if all session message exchanges in a monitored/unmonitored
network behave well with respect to the specifications (as communications oc-
cur), then this network exactly follows the original global specifications.

4 Conclusion and future work

We proposed a new formal safety assurance framework to specify and enforce the
global safety for distributed systems, through the use of static and dynamic ver-
ification. We formally proved the correctness (with respect to distributed princi-
pals) of our architectural framework through a π-calculus based theory, identified
in two key properties of dynamic network: global transparency and safety. We
introduced a behavioural theory over monitored networks which allows compo-
sitional reasoning over trusted and untrusted (but monitored) components.
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Implementation As a part of our collaboration with the Ocean Observatories
Initiative [16], our theoretical framework is currently realised by an implemen-
tation, in which each monitor supports all well-formed protocols and is auto-
matically self-configured, via session initiation messages, for all sessions that the
endpoint participates in. Our implementation of the framework automates dis-
tributed monitoring by generating FSM from the local protocol projections. In
this implementation, the global protocol serves as the key abstraction that helps
unify the aspects of specification, implementation and verification (both static
and dynamic) of distributed application development. Our experience has shown
that the specification framework can accommodate diverse practical use cases,
including real-world communication patterns used in the distributed services of
the OOI cyberinfrastructure [16].

Future work Our objectives include the incorporation in the implementation of
more elaborate handling of error cases into monitor functionality, such as halt-
ing all local sessions or coercing to valid actions [17, 15]. In order to reach this
goal, we need to combine a simplification of [4] and nested sessions [9] to handle
an exception inside MPSTs. We aim to construct a simple and reliable way to
raise and catch exceptions in asynchronous networks. Our work is motivated by
ongoing collaborations with the Savara2 and Scribble3 projects and OOI [16].
We are continuing the development of Scribble, its toolsuite and associated en-
vironments towards a full integration of sessions into the OOI infrastructure.

4.1 Related Work

Our work features a located, distributed process calculus to model monitored
networks. Due to space limitations, we focus on the key differences with related
work on dynamic monitoring.

The work in [12] proposes an ambient-based run-time monitoring formalism,
called guardians, targeted at access control rights for network processes, and
Klaim [8] advocates a hybrid (dynamic and static) approach for access control
against capabilities (policies) to support static checking integrated within a dy-
namic access-control procedure. These works address specific forms of access
control for mobility, while our more general approach aims at ensuring correct
behaviour in sessions through a combination of static or run-time verification.

The work in [3] presents a monitor-based information-flow analysis in multi-
party sessions. The monitors in [3] are inline (according to [5]) and control the
information-flow by tagging each message with security levels. Our monitors are
outline and aim at the application to distributed systems.

An informal approach to monitoring based on MPSTs, and an outline of
monitors are presented in [7]. However, [7] only gives an overview of the desired
properties, and requires all local processes to be dynamically verified through
the protections of system monitors. In this paper, instead, we integrate statically

2 http://www.jboss.org/savara
3 http://www.scribble.org
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and dynamically verified local processes into one network, and formally state the
properties of this combination.

In summary, compared to these related works, our contribution focuses on the
enforcement of global safety, with protocols specified as multiparty session types
with assertions. It also provides formalisms and theorems for decentralised run-
time monitoring, targeting interaction between components written in multiple
(e.g., statically and dynamically typed) programming languages.
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A Safety

Theorem 7.1 (Local safety) |= [P ]α | M : α :〈Γ ;∆〉 with M = α :〈Γ ;∆〉.

Proof. Since [P ]α is a partial network, by Definition 5, it is straightforward that
the network [P ]α | M : satisfies α :〈Γ ;∆〉 due to M = α :〈Γ ;∆〉.

Theorem 7.2 (Local transparency (bisim)) If |= [P ]α : α : 〈Γ ;∆〉, then
[P ]α ≈ ([P ]α | M) with M = α :〈Γ ;∆〉.

Proof. By Theorem 7.1, we have |= [P ]α | M : α : 〈Γ ;∆〉 with M = α : 〈Γ ;∆〉.
Define a relation R:

R = {([P ]α, [P ]α | M) | |= [P ]α : α :〈Γ ;∆〉}

Assume ([P ]α, [P ]α | M) ∈ R,

– for an output ` or τ , [P ]α
`−→ [P ′]α implies M

`−→ M′ due to |= [P ]α : M, so

that [P ]α | M
`−→ [P ′]α | M′;

– for an input `, [P ]α
`−→ [P ′]α only when M

`−→ M′, which together imply that

[P ]α | M
`−→ [P ′]α | M′.

By Definition 5, we have |= [P ′]α : M′, so that ([P ′]α, [P
′]α | M′) ∈ R. Symmet-

rically,

– for an output ` or τ , [P ]α | M
`−→ [P ′]α | M′ implies M

`−→ M′ whenever

[P ]α
`−→ [P ′]α;

– for an input `, [P ]α | M
`−→ [P ′]α | M′ says M

`−→ M′, which implies [P ]α
`−→

[P ′]α.

By Definition 5, we have |= [P ′]α | M′ : M′, so that ([P ′]α | M′, [P ′]α) ∈ R. By
Definition 1, [P ]α ≈ ([P ]α | M) with M = α :〈Γ ;∆〉.

Theorem 7.3 (Global safety) If N is fully monitored w.r.t. Σ, then |= N : Σ.

Proof. Assume N is composed by monitored endpoints [Pi]αi | Mi, i ∈ {1, ..., n}
and a global transport 〈r ; h〉

N ≡ [P1]α1
| M1 | ... | [Pn]αn

| Mn | 〈r ; h〉

where Mi = αi : 〈Γi;∆i〉 for i = {1, ..., n}, Σ = M1, ...,Mn. Based on Theorem
7.1, for each i ∈ {1, ..., n},

|= [Pi]αi
| Mi : αi :〈Γi;∆i〉

with Mi = αi :〈Γi;∆i〉. By Definition 5 and induction, we have

[P1]α1 | M1 | ... | [Pn]αn | Mn : α1 :〈Γ1;∆1〉, ..., αn :〈Γn;∆n〉

so that |= N : Σ.

17



As the rules of reduction relation for dynamic networks, introduced in Section
2.2, define the invisible actions for proving the properties of global transparency
(Theorem 7.4) and session fidelity (Theorem 11), we introduce the LTS of dy-
namic networks in Figure 1, where the actions are observable through observ-
ing the dynamics of the global transport h. The notation of global observable

transition
`−→g is used to denote globally observable action `. For unmonitored

{Req} 〈r ; h〉 a〈s[r]:T 〉−−−−−→g 〈r ; h·a〈s[r] : T 〉〉
{Acc} 〈r ; a〈s[r] : T 〉·h〉 a〈s[r]:T 〉−−−−−→g 〈r ; h〉
{Sel} 〈r ; h〉 s[r1,r2]!l〈v〉−−−−−−−→g 〈r ; h· s〈r1, r2, l〈v〉〉〉
{Bra} 〈r ; s〈r1, r2, l〈v〉〉·h〉

s[r1,r2]?l〈v〉−−−−−−−−→g 〈r ; h〉

{In}〈r ; h〉 `−→g 〈r′ ; h′〉 ` input dest(`, r) ∈ P(M)

M | 〈r ; h〉 `−→g M | 〈r′ ; h′〉

{Out}〈r ; h〉 `−→g 〈r′ ; h′〉 ` output dest(`, r) 6∈ P(M)

M | 〈r ; h〉 `−→g M | 〈r′ ; h′〉

{tau} N −→ N ′

N
τ−→ N ′ {res} N

`−→ N ′ a 6∈ sbj(`)

(νa)N
`\a−−→ (νa)N ′

{str}N ≡ N0
`−→ N ′

0 ≡M ′

N
`−→ N ′

{par}N1
`−→g N

′
1 bn(`) ∩ fn(N2) = ∅ dest(()`) 6∈ P(()N2)

N1 ‖ N2
`−→g N

′
1 | N2

Fig. 1. LTS for dynamic networks

networks, as N
`−→g N

′, it means ∃[P ]α ∈ N , [P ]α
`−→ [P ′]α (i.e. locally visible)

such that 〈r ; h〉 `−→g 〈r′ ; h′〉 (i.e. globally visible). Similarly, for monitored

networks, N
`−→g N′ means ∃[P ]α | M ∈ N, [P ]α

`−→ [P ′]α and M
`−→ M′ (i.e. locally

visible) such that 〈r ; h〉 `−→g 〈r′ ; h′〉 (i.e. globally visible). As a message leaves
the global queue, there should exist a local process receiving it as an input. Rules
{acc} and {bra} are generalised as rule {In}, and rules {req} and {sel} are gen-
eralised as rule {Out}. As we explained above, the visible actions in these rules
are observable in the global queue. Rule {Out} means there is a local process
in M outputting a message to the global queue, thus the destination of action
` should not be inside M but outside it. Similarly, rule {In} means there is a
local process in M going to receive a message from the global queue, thus the
destination of action ` should be inside M . Rule {tau} summarise the reduction
rules defined in Section 2.2. Rule {res} and {str} are standard. Rule {par}
says that, the bound names of action ` should not be any free name appearig in
network N2, and it should not be absorbed by any process in network N2 (i.e.
its destination is not in N2).
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Theorem 7.4 (Global transparency) Assum N and N have the same global
transport 〈r ; h〉. If N is fully monitored w.r.t. Σ and N = M | 〈r ; h〉 is
unmonitored but |= M : Σ, then we have N ∼ N .

Proof. Define a relation R:

R = {N, N | N = M | 〈r ; h〉 and |= M : Σ}

We prove that R is a standard strong bisimilar relation over
`−→g. Note that,

M : Σ means ∀[P ]αi
∈M , we have αi : 〈Γi;∆i〉 ∈ Σ and |= [P ]αi

: αi : 〈Γi;∆i〉.

1. As N
`−→g N′, it implies ∃[P ]αj

| Mj ∈ N, [P ]αj

`−→ [P ′]αj
and Mj

`−→ M′j

such that 〈r ; h〉 `−→g 〈r′ ; h′〉, and other monitored processes in N are not
affected. When ` is an input, by Definition 5, since |= M : Σ, we should

have [P ]αj

`−→ [P ′]αj
; when ` is an output or a τ action, by Definition 5, the

transition of [P ]αj

`−→ [P ′]αj
is able to take place. Both cases lead to M

`−→M ′

and 〈r ; h〉 `−→g 〈r′ ; h′〉 so that N = M | 〈r ; h〉 `−→g M
′ | 〈r′ ; h′〉 = N ′,

and |= [P ′]αj : αj : 〈Γ ′j ;∆′j〉 by Definition 5. αj : 〈Γ ′j ;∆′j〉 is the resulting
new configuration of αj in Σ. Other specifications {αi : 〈Γi;∆i〉}i∈I\{j} ∈ Σ
are not affected. Let Σ′ = αj : 〈Γ ′j ;∆′j〉, {αi : 〈Γi;∆i〉}i∈I\{j}. Therefore, for
the resulting new network N ′ = M ′ | 〈r′ ; h′〉, we have |= M ′ : Σ′. Thus we
have (N′, N ′) ∈ R.

2. For the symmetric case, as N
`−→g N

′, it implies ∃[P ]αj
∈ N , [P ]αj

`−→ [P ′]αj

such that 〈r ; h〉 `−→g 〈r′ ; h′〉 and other processes in N are not affected.
Since |= M : Σ, without loss of generality, let Mj = αj : 〈Γj ;∆j〉, then we

have, for any `, [P ]αj
| Mj

`−→ [P ′]αj
| M′j , where M′j = αj : 〈Γ ′j ;∆′j〉. It makes

〈r ; h〉 `−→g 〈r′ ; h′〉, so that N
`−→g N′. Since N′ is a fully monitored network,

its static part (i.e. the part when the global transport is taken off from N′),
say [Pi]αi | {Mi}i∈I where {Mi}i∈I = αj : 〈Γ ′j ;∆′j〉, {αi : 〈Γi;∆i〉}i∈I\{j},
|= [Pi]αi

| {Mi}i∈I : Σ′ where Σ′ = αj : 〈Γ ′j ;∆′j〉, {αi : 〈Γi;∆i〉}i∈I\{j}.
Thus we have (N ′,N′) ∈ R.

B Session Fidelity

To prove the property of session fidelity, we define the LTS of configurations in
Figure 2. All rules are straightforward from the LTS of specifications and the
one of networks.

Definition 12 (Configuration). A configuration is denoted by Φ = Σ; 〈r ; h〉,
in which the group of monitors correspond to h. In other words, all messages
corresponding to the actions guarded by Σ are in h.

A Φ thus guides and captures the behaviours in the network. Let P(Φ) be the
set of prinicipals involving in Φ. We define the composition of configurations as
follows.
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[Req] Σ
a〈s[r]:T 〉−−−−−→ Σ′

Σ ; 〈r ; h〉 a〈s[r]:T 〉−−−−−→g Σ′ ; 〈r ; h·a〈s[r] : T 〉〉

[Acc]
α :〈Γ, a : I(T [r]);∆〉 ∈ Σ Σ

a〈s[r]:T 〉−−−−−→ Σ′

Σ ; 〈r ; a〈s[r] : T 〉·h〉 a〈s[r]:T 〉−−−−−→g Σ′ ; 〈r, s[r] 7→ α ; h〉

[Sel] Σ
s[r1,r2]!l〈v〉−−−−−−−→ Σ′

Σ ; 〈r ; h〉 s[r1,r2]!l〈v〉−−−−−−−→g Σ′ ; 〈r ; h·s〈r1, r2, l〈v〉〉〉

[Bra] Σ
s[r1,r2]?l〈v〉−−−−−−−−→ Σ′

Σ ; 〈r ; s〈r1, r2, l〈v〉〉·h〉
s[r1,r2]?l〈v〉−−−−−−−−→g Σ′ ; 〈r ; h〉

[Par]
Φ1

`−→g Φ2

Φ1 � Φ3
`−→g Φ2 � Φ3

[Tau] Σ
τ−→ Σ

Σ; 〈r ; h〉 τ−→g Σ; 〈r ; h〉

Fig. 2. Labelled transition relation for configurations

Definition 13 (Parallel composition of configurations). Assume Φ1 =
Σ1 ; 〈r1 ; h1〉 and Φ2 = Σ2 ; 〈r2 ; h2〉, we say Φ1 and Φ2 are composable
whenever P(Φ1) ∩ P(Φ2) = ∅ and the union of their routing tables remains a
function. If Φ1 and Φ2 are composable, we define the composition of Φ1 and Φ2

as: Φ1 � Φ2 = Σ1, Σ2 ; 〈r1 ∪ r2 ; h1 ·h2〉.

The behaviours of each principal in a network are guided by the Σ (specifi-
cation), and are observed by the 〈r ; h〉 (global transport). Except rules [Acc]
and [Par], all rules are straightforward from the LTS of specifications (defined
in Section 3.1) and the one of dynamic networks (Figure 1).

1. Rule [Acc] indicates that, only when the invitation has been (internally)
accepted by a principal in the network, the routing information registers
s[r] 7→ α. When we observe the global transport (externally), we only observe
that an invitation is moved out from the global queue (which implies that
it has been accepted). However, we do not know who accepts it. Only Σ
tells which principal accepts this invitation, so that we can register it in the
routing information using α.

2. Rule Par says if Φ1 and Φ3 are composable (Definition 13), after Φ1 becomes
as Φ2, they are still composable.

Definition 14 (Consistency, Coherence). Σ = {αi : 〈Γi;∆i〉}i∈I is consis-
tent when

1. there is one and only one i such that Γi ` a : I(T [r]), and
2. as long as a : O(T [r]) exists in some Γi, ∃Γj such that a : I(T [r]) ∈ Γj ; and
3. for any s appearing in any ∆j , if {s[rk] : Tk}1≤k≤n is a collection appeared

in {∆i}i∈I , there exists well-formed G such that roles(G) = {r1, .., rn} and
G � ri = Ti.
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Two specifications Σ1 and Σ2 are coherent when their union is a consistent
specification.

Definition 15 (Routing table). We define route(Σ), the routing table derived
from Σ, as follows:

route(α : 〈Γ ;∆, s[r] : T 〉, Σ) = s[r] 7→ α, route(α : 〈Γ ;∆〉, Σ)
route(α : 〈Γ, a : I(T [r]);∆〉, Σ) = a 7→ α, route(α : 〈Γ ;∆〉, Σ)
route(α : 〈Γ, a : O(T [r]);∆〉, Σ) = route(α : 〈Γ ;∆〉, Σ)

for route(α : 〈Γ, a : O(T [r])), because a : O(T [r]) implies that a : I(T [r]) should exist in
the network, routing table should have contained the routing information for a.

The theorem of session fidelity states that, whenever a network conforms to
specifications, i.e., its all local processes (static network) conform to specifca-
tions, all of its derivatives conform to specifications. In the follows, we firstly
formally define receivability, consistency and conformance based on LTS of con-
figurations and dynamic networks.

Definition 16 (Receivable Configuration). Define Σ; 〈r ; h〉 is receivable
by the following induction:

1. If h is empty then Σ; 〈r ; h〉 is receivable.

2. If h ≡ m ·h′, then Σ; 〈r ; h〉 is receivable when we have Σ; 〈r ; m ·h′〉 `−→g

Σ′; 〈r′ ; h′〉, where ` corresponding to m, and Σ′; 〈r′ ; h′〉 is receivable.

A configuration Σ; 〈r ; h〉 is configurationally consistent if all of its multi-step
global input transition derivatives are receivable and the resulting specifications
Σ is consistent. The consistency of specifications is defined in Definition 14.

Definition 17 (Configurational Consistency). A configuration Φ = Σ; 〈r ; h〉
is configurationally consistent whenever

1. If h is empty and Σ is consistent, or
2. h is not empty, the sequence of messages in h are receivable to Σ, and after

receiving all messages in h with Σ
`1...`n−−−−→ Σ′, where `i, i = {1, ..., n} are

inputs and, ∀m ∈ h, ∃` ∈ `1 . . . `n such that ` corresponds to m, we have Σ′

is consistent.

In other words, Σ; 〈r ; h〉 is configurationally consistent if, in each of its deriva-
tives, all messages in the transport can be “received” by some monitors in Σ
and, after absorbing all these messages, the resulting Σ′ is still consistent.

Definition 18 (Conformance to a Configuration). Assume a network N ≡
M | 〈r ; h〉 is given. Define N conforms to Σ; 〈r ; h〉 when:

1. h is empty, |= M : Σ and Σ is consistent, or
2. h is not empty, and the following conditions hold

(a) |= M : Σ,
(b) all messages in h are receivable to M , and
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(c) as Σ; 〈r ; h〉 `1...`n−−−−→g Σ
′; 〈r′ ; ∅〉 so that M | h `1...`n−−−−→g M

′ | ∅ where
each `i, i = {1, ..., n} is an input, Σ′ is consistent.

The following session fidelity theorem states: assume network N ≡M |〈r ; ∅〉
is given, suppose that M satisfies Σ. If Σ is consistent and if r = route(Σ),
then we say N conforms to Σ. If this holds, then, with the messages which
N exchanges follow the specification, the dynamics of the network witnesses the
validity of specifications. In the follows, we always assume Σ is consistent, unless
otherwise stated.

Theorem 19 (Session Fidelity). Assume configuration Σ; 〈r ; h〉 is config-
urationally consistent. and network N ≡ M |〈r ; h〉 conforms to configuration

Σ; 〈r ; h〉. Then for any `, whenever we have N
`−→g N ′ s.t. Σ; 〈r ; h〉 `−→g

Σ′; 〈r′ ; h′〉, it holds that Σ′; 〈r′ ; h′〉 is configurationally consistent and that
N ′ conforms to Σ′; 〈r′ ; h′〉.

Before proving the property of session fidelity, we first prove the following
lemmas.

Lemma 9 Assume a network N ≡M |〈r ; h〉 conforming to Σ; 〈r ; h〉 which is

configurationally consistent, ifN
`−→g N

′ such that ` is an output andΣ; 〈r ; h〉 `−→g

Σ′; 〈r ; h·m〉 then h ·m is receivable to Σ′.

Proof. When ` = a〈s[r] : T 〉, since Σ is consistent, by Definitions 14, there exists
a : I(T [r]) in some Γ of Σ. Because ` does not affect the existence of a : I(T [r]),
it remains in Γ of Σ′, thus invitation m = a〈s[r] : T 〉 is receivable to Σ′.

Let αi = 〈Γi, ∆i〉. When ` = s[r1, r2]!lj〈v〉, by Definitions 14 and 18, since
|= M : Σ and Σ is consistent, ∃αs, αr ∈ Σ, ∃G is well-formed and s obeys to
G,

G = r1 → r2 : {li(xi : (T [p])i){Ai}.Gi}i∈I

such that

∆s(s[r1]) = G � r1 = r2!{li(xi : (T [p])i){Ai}.Gi � r1}i∈I
∆r(s[r2]) = G � r2 = r1?{li(xi : (T [p])i){A′i}.Gi � r2}i∈I (1)

As action s[r1, r2]!lj〈v〉 fires, Equation 1 changes to

∆s(s[r1]) = Gj � r1
∆r(s[r2]) = G � r2 = r1?{li(xi : (T [p])i){A′i}.Gi � r2}i∈I (2)

the receiving capability of r1? still remains in ∆r(s[r2]), where αr ∈ Σ′, thus
m = s〈r1, r2, lj〈v〉〉 is receivable to Σ′.

As N ≡ M | H and |= M : Σ, the satisfaction relation of M and Σ remains
whenever action takes place.
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Lemma 10 Assume N ≡ M | H and |= M : Σ. If N
`−→g N

′ ≡ M ′ | H ′ and

Σ
`−→ Σ′, then |= M ′ : Σ′.

Proof. Directly from Definition 5.

Now we prove session fidelity:

Proof. Assume N conforms to Σ; 〈r ; h〉, which is configurationally consistent.
We prove the statement by inspection of each case.

(Sel) Let ` = s[r1, r2]!lj〈v〉, N
`−→g N

′ and Σ; 〈route(Σ) ; h〉 `−→g Σ
′; 〈r ; h·m〉,

where m = s〈r1, r2, lj〈v〉〉.

Then r = route(Σ) = route(Σ′) because there is no change to the elements
in Σ or to the routing table.

Since Σ allows `, and Σ is consistent, ∃αr, αs ∈ Σ, ∃G is well-formed,

G = r1 → r2{li(xi : Si){Ai}.Gi}i∈I ,

such that

∆s(s[r1]) = G � r1 = r2!{li(xi : Si){Ai}.Gi � r1}i∈I ,
∆r(s[r2]) = G � r2 = r1?{li(xi : Si){A′i}.Gi � r2}i∈I .

Σ
`−→ Σ′ implies Σ′ has

s[r1] = Gj � r1,
s[r2] = r1?{li(xi : Si){A′i}.Gi � r2}i∈I .

Consider (case 1: h is empty). By Lemma 9, after receiving m, say Σ′
`−→ Σ′′,

Σ′′ has s[r1] = Gj � r1 and s[r2] = Gj � r2, Σ′′ is thus consistent by Defi-
nition 14. By Definition 17, Σ′; 〈r ; m〉 is configurationally consistent, and
|= M ′ : Σ′ by Lemma 10, thus N ′ conforms to Σ′; 〈r ; h·m〉.

Consider (case 2: h is not empty). Since Σ; 〈r ; h〉 is configurationally con-
sistent, again, by Lemma 9, after receiving messages in h (but not m), say

Σ′
`0...`n−−−−→ Σ′1, where every action in `0 . . . `n corresponds to each message

in h, we have Σ′1; 〈r′ ; m〉 is configurationally consistent. After Σ′1 receives

m, say Σ′1
s[p1,p2]?l〈v〉−−−−−−−−→ Σ′′, where s[p1, p2]?l〈v〉 is dual to `, with the same

reasoning above, Σ′′ has s[r1] = G′j � r1 and s[r2] = G′j � r2, so that Σ′′

is consistent. By Definition 17, Σ′; 〈r ; h·m〉 is configurationally consistent,
and |= M ′ : Σ′ by Lemma 10, thus N ′ conforms to Σ′; 〈r ; h·m〉.

(Bra) Let ` = s[r1, r2]?lj〈v〉, N
`−→g N

′ and N conforms to Σ; 〈route(Σ) ; h〉.
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Consider (case 1: h is empty). Since Σ; 〈route(Σ) ; ∅〉 6 `−→g, so this case never
happens.

Consider (case 2: h is not empty). When h is not empty. N
`−→g N

′ and

Σ; 〈route(Σ) ; h〉 `−→g Σ
′; 〈r ; h/m〉,

where h/m means taking off message m from h, where m = s〈r1, r2, lj〈v〉〉

We have r = route(Σ) = route(Σ′) because there is no change to the elements
in Σ or to the routing table. By Definition 17, after receiving all messages
in H, Σ is consistent, thus Σ′, which has received message m is consistent
after receiving all messages in h/m. By Lemma 10, we have |= M ′ : Σ′ thus
N ′ conforms to Σ′; 〈r ; h/m〉.

(Req) Let ` = a〈s[r] : T 〉. N `−→g N
′ and

Σ; 〈route(Σ) ; h〉 `−→g Σ
′; 〈r ; h·m〉,

where m = a〈s[r] : T 〉. Then r = route(Σ) = route(Σ′) because, by Defini-
tion 15, nothing new is registered to the routing table.

Since Σ allows ` and Σ is consistent, by Definition 14, ∃Γi, Γj ∈ Σ such that

a : I(T [r]) ∈ Γi and a : O(T [r]) ∈ Γj . After Σ
`−→ Σ′, by rule [Req] in the

LTS of specifications, a : I(T [r]) remains in Γ ′i , a : O(T [r]) remains in Γ ′j ,
and thus they both remain in Σ′.

Consider (case 1: h is empty): By Lemma 9, after receivingm, sayΣ′
a〈s[r]:T 〉−−−−−→

Σ′′, both a : I(T [r]) and a : O(T [r]) remain in Σ′′, satisfying Definition 14,
so that Σ′; 〈r ; m〉 is configurationally consistent. By Lemma 10, we have
|= M ′ : Σ′, thus N ′ conforms to Σ′; 〈r ; h·m〉.

Consider (case 2: h is not empty). The proof is similar to the one in (Sel)
and ommitted.

(Acc) Let ` = a〈s[r] : T 〉.

Consider (case 1: h is empty). Since Σ; 〈route(Σ) ; ∅〉 6 `−→g, this case never
happens.

Consider (case 2: h is not empty). If N
`−→g N

′ and

Σ; 〈route(Σ) ; h〉 `−→g Σ
′; 〈r′ ; h/m〉,

where m = a〈s[r] : T 〉. Since there exists ∆ ∈ Σ′ s.t. s[r] ∈ ∆, by Definition
15, r′ = route(Σ), s[r] 7→ α = route(Σ′).
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For the same reasoning in (Bra), we have Σ′; 〈r ; h/m〉 is configurationally
consistent. By Lemma 10, we have |= M ′ : Σ′ thusN ′ conforms toΣ′; 〈r ; h/m〉.

The proof for other cases are trivial.

C Satisfaction

Proposition 4 [Congruency] If M1 ≈M2, then
(1) M1|M ≈M2|M for each composable partial M ; and
(2) M1|N ∼= M2|N for each composable N .

Proof. For (1) we show that the relation

R = {(M1|M, M2|M) | M1 ≈M2, M composable with M1 and M2}

is a bisimulation. Suppose (M1|M)R(M2|M) and M1|M
`−→M1. We discuss the

shape of M1:

– If M1 = M ′1|M , it means that M1
`−→ M ′1. By definition of R, M2

ˆ̀
=⇒ M ′2

and M ′1 ≈M ′2, we conclude.

– If M1 = M1|M ′, it means that M
`−→M ′. It is easy to conclude.

By examining the reduction rule associated to parallel composition, we observe
no reduction is induced through interactions between two networks. Hence we

have covered all cases. The symmetric case (when M2|M
`−→M2) is easy.

To prove (2) we proceed by showing that

R = {((νñ)(M1|N), (νñ)(M2|N)) |M1 ≈M2, N comp. with M1, M2}

is a barbed congruence. First, this is clearly a congruence since it is closed under
composition. Second, for (1), we take a composable N ′. We have N ′ � (Mi|N) =
Mi|(N ′ �N). We use the definition of R to conclude. For (2), assume M1|N −→
N1.

– If N1 = M1|N ′, meaning that N −→ N ′. We use the definition of R to
conclude.

– If N1 = M ′1|N ′, meaning that N = M0|〈r ; ` ·H〉, N = M ′0|〈r ; H〉 and

M1
`−→M ′1. We deduce N2 = M ′2|N ′, with N = M0|〈r ; ·̀H〉, N = M ′0|〈r ; H〉

and M2
`−→M ′2. We use the definition of R to conclude.

– If the reduction is induced by interaction between M1 and N , then M2 has
the corresponding action, hence we can reason in the same way, hence done.

For (2), we suppose that (M1|N) ⇓`. Two cases can occur:

– Either N ⇓` and it follows directly that (M2|N) ⇓`.
– or M1

`−→M ′1 and by definition of R, M2
`

=⇒M ′2, meaning that (M2|N) ⇓a.
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The symmetric case is similar.

By definition this shows ≈⊂∼=.
The two satisfactions are related by the following cut-rule-like composition

principle, which enables a composition of a new partial network to a full network,
as Proposition 23.

Proposition 20 (Determinism). Σ
`−→ Σ1 and Σ

`−→ Σ2 imply Σ1 = Σ2.

Proposition 20 does not mean a behaviour satisfying a specification is determin-
istic. The determinism is essential for our dynamic verification to predictably
guarantee safety properties.

Proof. Suppose Σ
`−→ Σ1 and Σ

`−→ Σ2. We discuss the nature of `.

– If ` = a〈s[r] : T 〉. We deduce Σ = Σ0, α :〈Γ, a : I(T [r]); ∆〉 and Σ1 = Σ0, α :
〈a : I(T [r]), Γ ; ∆〉. The definition of Σ ensures that α /∈ Σ0. We deduce
Σ2 = Σ0, α :〈a : I(T [r]), Γ ; ∆〉.

– If ` = s[r1, r2]!lj〈v〉. We deduce Σ = Σ0, α :〈Γ ; ∆, s[r1] :T 〉 and Σ1 = Σ0, α :
〈Γ ; ∆, s[r1] : T ′j{v/xj}〉. The definition of Σ ensures that α /∈ Σ0.

– The other cases are similar or straightforward.

Hereafter we denote the set of roles in G with roles(G).
The following states that if a partial network satisfies a specification, then we
can add a global transport to it to obtain a full network satisfying any coherent
specification.

Proposition 21 (Completion of partial network). Let M0 be a partial net-
work s.t. |= M0 : Σ1. IfΣ2 is coherent withΣ1, then |= Σ2 . (M0|〈route(Σ1) ; ∅〉).

Proof. In the proof we use a “processisation” of a queue in order to identify,
from an external point of view, the processes

(M1|〈route(M1) ; a〈s[r] : T 〉·H〉)

and
(M1|a〈s[r] : T 〉.|〈route(M1) ; H〉).

This operation is defined as follows:

Pss((M1|〈route(M1) ; a〈s[r] : T 〉·H〉)) =
Pss((M1|a〈s[r] : T 〉|〈route(M1) ; H〉));

Pss((M1|〈route(M1) ; s〈r1, r2, lj〈v〉〉·H〉)) =
Pss((M1|s[r1, r2]!lj〈v〉;P |〈route(M1) ; H〉));

Pss((M1|〈route(N1) ; ∅〉)) =
(M1|〈route(M1) ; ∅〉)

We prove that the relation

R = {((M1|〈route(M1) ; H〉), Σ2), for all M1, Σ2 such that
|= Pss(M1) : Σ1 for some Σ1 coherent with Σ2}

is an external satisfaction relation. We have the following cases:
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– IfΣ2
`−→ Σ′2 then, asΣ1 is coherent withΣ2, we haveΣ1

`−→ Σ′1 withΣ′1 coher-

ent withΣ′2. By the internal satisfaction relation, we have Pss(M1|〈route(M1) ; H〉) `−→
Pss(M ′1|〈route(M1) ; H ′〉) and |= Pss(M1|〈route(M1) ; H ′〉) : Σ′1. By defi-
nition of R, we conclude.

– If (M1|〈route(M1) ; H〉) `−→ N ′, meaning that N ′ = (M1|〈route(M1) ; H ′〉),
we have

Pss(M1|〈route(M1) ; H〉) `−→ Pss(M1|〈route(M1) ; H ′〉);

the internal satisfaction relation givesΣ′1 s.t.Σ1
`−→ Σ′1 and |= Pss(M1|〈route(M1) ; H ′〉) :

Σ′1. By coherence Σ2
`−→ Σ′2 coherent with Σ′1. By definition of R, we con-

clude.
– If (M1|〈route(M1) ; H〉) τ−→ N ′ = M ′1|〈route(M ′1) ; H ′〉 then we have

Pss(M1|〈route(M1) ; H〉) τ−→ Pss(M1|〈route(M1) ; H〉).

By the internal satisfaction relation, we get Σ′1 such that Σ1
τ−→ Σ′1 and

|= Pss(M ′1|〈route(M ′1) ; H ′〉) : Σ′1.

By coherence Σ2
τ−→ Σ′2 coherent with Σ′1. By definition of R, we conclude.

Proposition 22 (Compositionality). If |= Mi : Σi (i = 1, 2) such that Σ1

and Σ2 are coherent, then |= M1|M2 : Σ1, Σ2.

Proof. We prove that {(M1|M2, Σ1, Σ2) for all (M1,M2) verifying |= Mi : Σi}
is a satisfaction relation.

1. Suppose Σ2, Σ1
`−→ Σ′. Exactly one of the two following statements is true:

– Σ1
`−→ Σ′1. The satisfaction relation gives M1

`−→ M ′1 such that |= M ′1 :
Σ′1, allowing us to conclude.

– Σ2
`−→ Σ′2. We reason in a similar way.

2. Suppose (M1|M2)
`−→ M ′. As ` 6= τ , exactly one of the two following state-

ments is true:
– M1

`−→M ′1. The satisfaction relation Σ1
`−→ Σ′1 and |= M ′1 : Σ′1, allowing

us to conclude.
– N2

`−→M ′2. We reason in a similar way.

3. Suppose (M1|M2)
τ−→ M ′. Then either M1

τ−→ M ′1 or M2
τ−→ M ′2, and we

reason as in the previous case, no interaction between two networks can take
place, following the definition of the transition relation.

We define n(Σ) with Σ = (αi : 〈Γi;∆i〉)i to be the set of names present in
at least one of the ∆i.

Proposition 23 (Mixed compositionality). If n(Σ1)∩n(Σ2) = ∅, |= Σ1, Σ2.
N and |= M : Σ2, then |= Σ1 . (ν n(Σ2))(N |M).
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Proof. We prove that the relation

R = {(ν n(Σ2)) (N1|M2, Σ1), for all N1, M2, Σ1 such that
|= Σ1, Σ2 . N1 and |= M2 : Σ2}

is a satisfaction relation.

– If Σ1
`−→ Σ′1 with ` output, then the external satisfaction relation gives N1

`−→
N ′1 and |= Σ′1, Σ2 . N

′
1. As n(Σ1)∩n(Σ2) = ∅, we have (νn(Σ2)) (N1|M2)

`−→
(νn(Σ2)) (N ′1|M2). The definition of R allows us to conclude.

– If (νn(Σ2)) (N1|M2)
`−→ N ′ with ` output, then it means than the subject of

` is not in n(Σ2). Suppose M2
`−→ M ′2, this means Σ2

`−→ Σ′2: contradiction.

Thus N1
`−→ N ′1. The external transition relation gives Σ1

`−→ Σ′1 and |=
Σ′1, Σ2 . N

′
1. The definition of R allows us to conclude.

– If (N1|M2)
τ−→ N ′, then

• either N1
τ−→ N ′1 or M2

τ−→M ′2, and we use the stability of the satisfaction
relation by τ -transition to conclude;

• or N1
`−→ N ′1 and M2

`−→M ′2.

1. If ` is an output, then M2
`−→ M ′2 gives us, by M2 : Σ2 and by the

definition of partial satisfaction,

Σ2
`−→ Σ′2 such that |= M ′2 : Σ′2 (3)

We now combine the first part of (3) with N1
`−→ N ′1, as well as

determinacy of specification transition (Prop. 20), to obtain, through
|= Σ1, Σ2 . N1,

|= Σ1, Σ
′
2 . N

′
1 (4)

By (3) and (4) as well as noting the name extrusion does not occur
in the present system, the result is again in the closure, hence done.

2. If ` is an input, then we reason symmetrically: by N1
`−→ N ′1 (an

output transition) and by the definition of full satisfaction, we get

Σ2
`−→ Σ′2, such that |= Σ1, Σ

′
2 . N

′
1 (5)

By the first part of (5), M2
`−→M ′2 and |= M2 : Σ2, we obtain

|= M ′2 : Σ′2. (6)

Again we note the result is in the closure again. We have exhausted
all cases.
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