Monitoring Networks
through Multiparty Session Types

Laura Bocchi!, Tzu-Chun Chen?, Romain Demangeon!,
Kohei Honda?, Nobuko Yoshidal

2Queen Mary, University of London, ‘Imperial College, London

FORTE/FMOODS 2013, Firenze, 03/06,/2013

Background

Distributed programming

» Message-passing
concurrency.

> asynchronous networks.
> examples: services, web
applications, ...

» Distant interactions.

» Interoperability.

Distributed verification

» Desirable properties:
> fidelity, lock-freedom,

governance, security, ...

» Control is local® only.

» Typechecking impossible?.

Negotiation Initialisation

B .-

Streaming

Communicating programs

> different languages, compilers, libraries.
» different hardware.

» different locations.

Solution: 2Monitoring through *Multiparty Session-Types

Our collaboration: OOl

OCEAN OBSERVATORIES INITIATIVE

» international oceanography project.
> vast, connected array of sensors, buoys, intruments.

> using message-passing communications.
> applications written in different languages, running on heterogenous

hardware in an asynchronous network.
> web-based user interface for oceanographs.

> requires correct, safe interactions.
= perfect framework for session type verification.

> integration into the CyberInfrastructure sub-project
> design and maintain Scribble, a protocol language strongly based on

MPST.

Session types

» Verification theory originating in typed m-calculi.
» formal methods,
> type systems naturally generate typecheckers.
» Principles:
> design a specification for network interactions called session

> session as atomic protocols (global types).
> participants are abstracted in roles (Instrument, Buyer, ...).
> specifies only the message layer.

> project the session into local types
> local behaviors for each endpoint.
> ensure each endpoint conforms to its local type.
> Fidelity: Local conformance implies global correction w.r.t. the
specification.
» Multisession model: one participant can be engaged in several
sessions.

Session types (Il)

G G:A—BB—CB—A
AN
P
P
Ty Ts Tc T, :1B.7A
P, P P Py - 5[B]1(8).s[C]?(y) - ..

> p: projection from global types to local types.
» v: verification of processes against local types.

> type systems: ensure soundness and progress.
> type-checkers not adapted to heterogenous networks.
> suggests dynamic verification (monitors).

(session type theory includes choices, recursion, predicates, ...)

Monitors

Typed Distributed
Typed compgnent infrastructure

component
Governed network: .
- transport, routing through
AMQP

- messages organised as
conversation

Untrusted principals, untrusted world ... -

run in parallel (can be embedded or external).

act as membranes between the trusted network and applications.

|
»
> ensure interoperability (no access to source code).
>

unmonitored trusted components can be introduced.

Session types for monitoring

» Adapting MPST theory
to monitoring.

> Allowing mixed networks.

» Principles:

> developers design
protocols for the
whole network in a
dedicated language,
> well-formedness is
checked,
> protocols are projected
into local types,
> local types generate
monitors,
> or are statically
typechecked.

’ Global Protocol

T

Specification Pr 0] e C\t ion
(Scribble) o v T
Local Local Local
Specifications || Specifications | | Specifications
~— /’/777\‘ ,,,_/'/7\ ~ ,/‘4/ —

Implementation Source Code | || Source Code| | Source Code
(Java, Scala, C, <

Ocaml, Python) Conversation| || Conversation| | Conversation
Runtime Runtime Runtime
Static Type

Checker

Verifying | TL . [
Communication / N\

(Static & Dynamic)

1 Safe Networkt

Our Contribution

A theory for MPST-monitored networks:

» Formalise MPST-monitoring and asynchronous networks.

» Introduce monitors as first-class objects in the theory and make
explicit routing information propagation.

» Compare different networks through equivalences.

» Justify monitoring by soundness theorems.

» safety: monitors enforces specification conformance.
> transparency: monitors does not affect correct behaviors.
» fidelity: correspondence to global types is maintained.

» Ensure that theory interacts with implementation.

Formalism: MPST syntax

= ri—ro: {i(x:S){A}.Gilie ’ G| G | G1; G2 | pt.G | t | € | end

s= ol{li(xi: S){Ai}. Tities ’ r?{li(xi: S){Ai}. Tities | Ti| T2 | Ty; T ‘
ut.T‘t|e‘end

> G: global types:

> interaction from role r! to role r* (with choice),
> parallel and sequential composition,
> recursion and end.

» T: local types.

» A: predicates and expressions used to validate properties over
messages inside types.

Formalism: Example

Gim= C—A:{ Login(x;:string){tt}.
A—S:{ LoginOK(){tt}. A — C: {LoginOK(){tt}. Groop},
LoginFail(){tt}. A — C: {LoginFail(){tt}. end}}}
GLOOp = u LOOP.
S —C:{ Account(xp :int){x, > 0}.
C—S:{ Withdraw(x, : int){x, > 0 A x, — x, > 0}. LOOP,
Deposit(xg : int){xs > 0}. LOOP,
Quit(){tt}.end}}

» Protocol for interaction with ATM with three commands.
» Three roles are involved: Client, ATM and bank Server.

» Contains choices, nested loops and predicate checks.

Formalism: Example (projection)

Tec = Al{Login(x; : string){tt}.
A?{LoginOK(){tt}. Troop
LoginFail(){tt}. end}}

TLoop = p LOOP.
S?{Account(x, : int){x, > 0}.
Si{Withdraw(xp : int){xp > 0 A xp — xp > 0}.

LOOP,
Deposit(xy : int){xg > 0}.LOOP,
Quit(){tt}.end}}

> Projection of ATM example onto role Client.
» Session seen from the point of view of Client.

» Type used for monitoring (local enforcement).

Formalism: Networks

P = a(s[x]: T) | a(y[r]: T).P | k[r1,r2]!{e) | k[r1, 2] ?{li(x;).Pi}ies |
ifethenPelse @ | P1Q | 0 | uxP | X | P;@ | (va)P | (vs)P
N o= [Pla | MIN: | 0| wa)N | ws)N | (r; B

ron= ara ’ sltl—a hu=m-h | 0 mo=3a(s[x]: T) | s(r1, T2, [{v))

» m-based calculus.

» Asynchronous networks composed of:
> processes P located at principals «,
> abstracts local applications.
> router r,
> abstracts network routing information, updated on-the-fly.
> global queue h.
> abstracts messages in transit.

Formalism: Semantics

[0la | (r; h-3(s[x] : T))
[Pls/¥]la | (r-slz] = a; h) T
[0 | (r; h-s(ry,ra, f{v))) T
[Pilv/xilla | (r; h) TTT

[3(s[r] : T)]a | (r: h)

[a(y[r] : T).Pla | (r; a(s[z]: T) - h)

[s[r1, r2]'fi(V)]a | (r: h)

[s[r1, x2]?{/i(xi)-Pi}tila | (r: s{ri, 2, [i{v})) - h)

Ll

fir(@=a tror(slra]) #a it r(s[re]) = o
(reductions can happen inside contexts)
Two rules for session invitations.

Two rules for session interactions.
Asynchrony is handled through global queue.

vV v v Y

Routing information is used and updated at runtime.

Specifications
> Y =0 | I,a:(;4A),
Fo=0 | FaATk])|Ma: (T]) Au=0 | A,sx]:T,
> Y: spec., A: session env, [: shared env.

» Specifications have a semantics (used for satisfaction).

Monitored Networks

» Monitors M = «:: (I'; A) are introduced as component of monitored
networks.

» Reduction rules for monitored networks (send rules):

M LR v (s[n)) £ o
[s[r1, 2]/ (V)]a | MI(r; h) — [0]a | M/|{r; h-s(r1,x2,l{V)}))

s[ry,ro]l{v)

[sfer, r2] I (V)la [M [(r; h) — [0]a [M [(r; h)

Equivalences

» To compare networks, we use:

> weak bisimulation & over partial networks (i.e. without transport)
> reduction-closed barbed congruence = over networks.

» barbed congruence allows us to model interfaces:

> 2 structurally different networks implementing the same services are
equated,
> structure is hidden through routing.

Interface: example

Goop = #+ LOOP.
S — T: { Query(){true}.

T — S : { Answer(x; : int){true}.

S — C: { Account(xp : int){x, > 0}.

C — S :{ Withdraw(xp : int){x, > 0 A x, — x, > 0}. LOOP,
Deposit(xy : int){xg > 0}. LOOP,

Quit(){true}.end j3a

» same protocol, except makes use of a transaction agent.
s: original server program, Pg: new server program, Pr: agent program.

([Psla [(0 ; s[S] = a,s[C] — B, s[A] — 7))

" e ([P3la [[Pr]s [(0 s[S] = a,s[C] > B, s[A] = v, s[T] — 4))

Satisfaction
The satisfaction relation = N : ¥ relates networks and specification:

» if ¥ expects an input, N should be able to process it.
» if N performs an output, ¥ should be expecting it.

v

still holds after reduction (coinductive definition).

v

Tailored for monitoring.
» monitors do not enforce liveness.

Satisfaction equivalence
If Ny =2 N, and):Nl : 2 then ':NQ D

Results (Safety)

Local Safety
E[Pla |M:a:(lA) with M=a:(l;A).

» A monitored process satisfies its specification.

Global Safety
If N is fully monitored w.r.t. X, then =N : X.

» monitored networks behave as expected.

» does not ensure liveness.

Results (Transparency)

Local Transparency
If E[Pla : a:([;A), then [Pla = ([Pla | M) with M =« : (I; A).

» unmonitored correct processes are undistinguishable from their
monitored counterparts.

» allows one to mix monitored and typechecked processes.

Global Transparency

Assume N and N have the same global transport (r ; h).
Assume:

1. N is fully monitored w.r.t. ¥ and

2. N= M| {(r; h)is unmonitored but =M : ¥.
We have N = N.

» monitors does not alterate behaviors of correct networks.

> monitor actions are not observable on correct components.

Results (Fidelity)

> a configuration is consistent: when it corresponds to a well-formed
array of global types (G, ..., G,) through projection.

» conformance is satisfaction + receivability (queue can be emptied).

Session Fidelity
Assume:
1. configuration X; (r ; h) is consistent,
2. network N = M|(r ; h) conforms to configuration ¥; (r ; h).
For any ¢, whenever we have N £>g N st. X, (r; h) i>g (' W),
it holds that X’; (v’ ; h') is consistent and N’ conforms to X’; (r' ; h’).
» consistence is preserved by reduction,

> at any time, the network correspond to a well-formed specification.

Conclusion

> A theory for monitoring through MPST inside asynchronous
networks:
> models monitor behaviors,
> models dynamic routers,
> monitoring ensures correction,
> equate networks with the same interface.

» Implementation is done.
» Future works:

» Ongoing partnership with OOI.
» Express governance properties.
» Handle interruptions and exceptional behaviors.

