
Monitoring Networks
through Multiparty Session Types

Laura Bocchi1, Tzu-Chun Chen2, Romain Demangeon1,
Kohei Honda2, Nobuko Yoshida1

2Queen Mary, University of London, 1Imperial College, London

FORTE/FMOODS 2013, Firenze, 03/06/2013

Background

Distributed programming

I Message-passing
concurrency.

I asynchronous networks.
I examples: services, web

applications, . . .

I Distant interactions.

I Interoperability.

Distributed verification
I Desirable properties:

I fidelity, lock-freedom,
governance, security, . . .

I Control is local1 only.

I Typechecking impossible2.

Communicating programs

I different languages, compilers, libraries.

I different hardware.

I different locations.

Solution: 2Monitoring through 1Multiparty Session-Types

Our collaboration: OOI

I international oceanography project.
I vast, connected array of sensors, buoys, intruments.

I using message-passing communications.
I applications written in different languages, running on heterogenous

hardware in an asynchronous network.
I web-based user interface for oceanographs.

I requires correct, safe interactions.
⇒ perfect framework for session type verification.

I integration into the CyberInfrastructure sub-project
I design and maintain Scribble, a protocol language strongly based on

MPST.

Session types

I Verification theory originating in typed π-calculi.
I formal methods,
I type systems naturally generate typecheckers.

I Principles:
I design a specification for network interactions called session

I session as atomic protocols (global types).
I participants are abstracted in roles (Instrument, Buyer, . . .).
I specifies only the message layer.

I project the session into local types
I local behaviors for each endpoint.

I ensure each endpoint conforms to its local type.
I Fidelity: Local conformance implies global correction w.r.t. the

specification.

I Multisession model: one participant can be engaged in several
sessions.

Session types (II)

G

p
~~

p

��

p

G : A −→ B; B −→ C; B −→ A

TA

v

��

TB

v

��

TC

v

��

TA :!B.?A

PA PB PC PA : s[B]!〈8〉.s[C]?(y) . . .

I p: projection from global types to local types.

I v : verification of processes against local types.
I type systems: ensure soundness and progress.
I type-checkers not adapted to heterogenous networks.
I suggests dynamic verification (monitors).

(session type theory includes choices, recursion, predicates, . . .)

Monitors

I run in parallel (can be embedded or external).

I act as membranes between the trusted network and applications.

I ensure interoperability (no access to source code).

I unmonitored trusted components can be introduced.

Session types for monitoring

I Adapting MPST theory
to monitoring.

I Allowing mixed networks.

I Principles:
I developers design

protocols for the
whole network in a
dedicated language,

I well-formedness is
checked,

I protocols are projected
into local types,

I local types generate
monitors,

I or are statically
typechecked.

Our Contribution

A theory for MPST-monitored networks:

I Formalise MPST-monitoring and asynchronous networks.

I Introduce monitors as first-class objects in the theory and make
explicit routing information propagation.

I Compare different networks through equivalences.

I Justify monitoring by soundness theorems.
I safety: monitors enforces specification conformance.
I transparency: monitors does not affect correct behaviors.
I fidelity: correspondence to global types is maintained.

I Ensure that theory interacts with implementation.

Formalism: MPST syntax

G ::= r1→r2 : {li (xi :Si){Ai}.Gi}i∈I | G1 | G2 | G1;G2 | µt.G | t | ε | end

T ::= r!{li (xi :Si){Ai}.Ti}i∈I | r?{li (xi :Si){Ai}.Ti}i∈I | T1 | T2 | T1;T2 |
µt.T | t | ε | end

I G : global types:
I interaction from role r1 to role r2 (with choice),
I parallel and sequential composition,
I recursion and end.

I T : local types.

I A: predicates and expressions used to validate properties over
messages inside types.

Formalism: Example

GATM = C→ A : { Login(xi : string){tt}.
A→ S : { LoginOK(){tt}. A→ C : {LoginOK(){tt}. GLoop},

LoginFail(){tt}. A→ C : {LoginFail(){tt}. end}}}
GLoop = µ LOOP.

S→ C : { Account(xb : int){xb ≥ 0}.
C→ S : { Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,
Quit(){tt}.end}}

I Protocol for interaction with ATM with three commands.

I Three roles are involved: Client, ATM and bank Server.

I Contains choices, nested loops and predicate checks.

Formalism: Example (projection)

TC = A!{Login(xi : string){tt}.
A?{LoginOK(){tt}. TLoop

LoginFail(){tt}. end}}

TLoop = µ LOOP.
S?{Account(xb : int){xb ≥ 0}.
S!{Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}.

LOOP,
Deposit(xd : int){xd > 0}.LOOP,
Quit(){tt}.end}}

I Projection of ATM example onto role Client.

I Session seen from the point of view of Client.

I Type used for monitoring (local enforcement).

Formalism: Networks

P ::= a〈s[r] : T 〉 | a(y [r] :T).P | k[r1, r2]!l〈e〉 | k[r1, r2]?{li (xi).Pi}i∈I |
if e then P else Q | P | Q | 0 | µX .P | X | P;Q | (νa) P | (νs)P

N ::= [P]α | N1|N2 | 0 | (νa)N | (νs)N | 〈r ; h〉

r ::= a 7→ α | s[r] 7→ α h ::= m · h | ∅ m ::= a〈s[r] : T 〉 | s〈r1, r2, l〈v〉〉

I π-based calculus.

I Asynchronous networks composed of:
I processes P located at principals α,

I abstracts local applications.
I router r ,

I abstracts network routing information, updated on-the-fly.
I global queue h.

I abstracts messages in transit.

Formalism: Semantics

[a〈s[r] : T 〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · a〈s[r] : T 〉〉

[a(y [r] : T).P]α | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P[s/y]]α | 〈r ·s[r] 7→ α ; h〉 †

[s[r1, r2]!lj 〈v〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · s〈r1, r2, lj 〈v〉〉〉 ††

[s[r1, r2]?{li (xi).Pi}i]α | 〈r ; s〈r1, r2, lj 〈v〉〉 · h〉 −→ [Pj [v/xj]]α | 〈r ; h〉 †††

† : r(a) = α †† : r(s[r2]) 6= α † †† : r(s[r2]) = α

(reductions can happen inside contexts)

I Two rules for session invitations.

I Two rules for session interactions.

I Asynchrony is handled through global queue.

I Routing information is used and updated at runtime.

Specifications

I Σ ::= ∅ | Σ, α :〈Γ; ∆〉,
Γ ::= ∅ | Γ, a :?(T [r]) | Γ, a :!(T [r]) ∆ ::= ∅ | ∆, s[r] :T ,

I Σ: spec., ∆: session env, Γ: shared env.

I Specifications have a semantics (used for satisfaction).

Monitored Networks

I Monitors M = α :〈Γ; ∆〉 are introduced as component of monitored
networks.

I Reduction rules for monitored networks (send rules):

M
s[r1,r2]!l〈v〉−−−−−−−→ M′ r(s[r2]) 6= α

[s[r1, r2]!l〈v〉]α | M|〈r ; h〉 −→ [0]α | M′|〈r ; h · s〈r1, r2, l〈v〉〉〉

M 6s[r1,r2]!l〈v〉−−−−−−−→
[s[r1, r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

Equivalences

I To compare networks, we use:
I weak bisimulation ≈ over partial networks (i.e. without transport)
I reduction-closed barbed congruence ∼= over networks.

I barbed congruence allows us to model interfaces:
I 2 structurally different networks implementing the same services are

equated,
I structure is hidden through routing.

Interface: example
G2
Loop = µ LOOP.

S→ T : { Query(){true}.
T→ S : { Answer(xt : int){true}.
S→ C : { Account(xb : int){xb ≥ 0}.
C→ S : { Withdraw(xp : int){xp ≥ 0 ∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,
Quit(){true}.end }}}}

I same protocol, except makes use of a transaction agent.

I PS: original server program, P2
S : new server program, PT: agent program.

I ([PS]α | 〈∅ ; s[S] 7→ α, s[C] 7→ β, s[A] 7→ γ〉)
∼= ([P2

S]α | [PT]δ | 〈∅ ; s[S] 7→ α, s[C] 7→ β, s[A] 7→ γ, s[T] 7→ δ〉)

Satisfaction
The satisfaction relation |= N : Σ relates networks and specification:

I if Σ expects an input, N should be able to process it.

I if N performs an output, Σ should be expecting it.

I still holds after reduction (coinductive definition).

I Tailored for monitoring.
I monitors do not enforce liveness.

Satisfaction equivalence
If N1

∼= N2 and |= N1 : Σ then |= N2 : Σ.

Results (Safety)

Local Safety
|= [P]α | M : α : 〈Γ; ∆〉 with M = α :〈Γ; ∆〉.

I A monitored process satisfies its specification.

Global Safety
If N is fully monitored w.r.t. Σ, then |= N : Σ.

I monitored networks behave as expected.

I does not ensure liveness.

Results (Transparency)

Local Transparency
If |= [P]α : α : 〈Γ; ∆〉, then [P]α ≈ ([P]α | M) with M = α : 〈Γ; ∆〉.

I unmonitored correct processes are undistinguishable from their
monitored counterparts.

I allows one to mix monitored and typechecked processes.

Global Transparency
Assume N and N have the same global transport 〈r ; h〉.
Assume:

1. N is fully monitored w.r.t. Σ and

2. N = M | 〈r ; h〉 is unmonitored but |= M : Σ.

We have N ∼= N.

I monitors does not alterate behaviors of correct networks.

I monitor actions are not observable on correct components.

Results (Fidelity)

I a configuration is consistent: when it corresponds to a well-formed
array of global types (G1, . . . ,Gn) through projection.

I conformance is satisfaction + receivability (queue can be emptied).

Session Fidelity
Assume:

1. configuration Σ; 〈r ; h〉 is consistent,

2. network N ≡ M|〈r ; h〉 conforms to configuration Σ; 〈r ; h〉.

For any `, whenever we have N
`−→g N ′ s.t. Σ; 〈r ; h〉 `−→g Σ′; 〈r ′ ; h′〉,

it holds that Σ′; 〈r ′ ; h′〉 is consistent and N ′ conforms to Σ′; 〈r ′ ; h′〉.

I consistence is preserved by reduction,

I at any time, the network correspond to a well-formed specification.

Conclusion

I A theory for monitoring through MPST inside asynchronous
networks:

I models monitor behaviors,
I models dynamic routers,
I monitoring ensures correction,
I equate networks with the same interface.

I Implementation is done.

I Future works:
I Ongoing partnership with OOI.
I Express governance properties.
I Handle interruptions and exceptional behaviors.

