
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Multicompatibility for Multiparty-Session Composition
Franco Barbanera

University of Catania, Italy, barba@dmi.unict.it

Mariangiola Dezani-Ciancaglini

University of Torino, Italy, dezani@di.unito.it

Lorenzo Gheri

University of Oxford, UK, lorenzo.gheri@cs.ox.ac.uk

Nobuko Yoshida

University of Oxford, UK, nobuko.yoshida@cs.ox.ac.uk

ABSTRACT
Modular methodologies for the development and verification of

concurrent/distributed systems are increasingly relevant nowadays.

We investigate the simultaneous composition of multiple systems

in a multiparty-session-type setting, working on suitable notions

of interfacing policy and multicompatibility. The resulting method

is conservative (it makes only the strictly needed changes), flexible

(any system can be looked at as potentially open) and safe (relevant

communication properties, e.g. lock-freedom, are preserved by com-

position). We obtain safety by proving preservation of typability.

We also provide a sound and complete type inference algorithm.

CCS CONCEPTS
• Theory of computation→ Process calculi; Type theory.

KEYWORDS
Multiparty Sessions, Global Types, Open System Composition, Mod-

ularity.

ACM Reference Format:
Franco Barbanera,Mariangiola Dezani-Ciancaglini, LorenzoGheri, andNobuko

Yoshida. 2023. Multicompatibility for Multiparty-Session Composition. In

International Symposium on Principles and Practice of Declarative Program-
ming (PPDP 2023), October 22–23, 2023, Lisboa, Portugal. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3610612.3610614

1 INTRODUCTION
Verification of communication patterns is of central importance

for concurrent/distributed implementations of multiple commu-

nicating participants, as well as the possibility of ensuring good

behavioural properties (e.g., lock-freedom). The shortcoming of

many approaches to such an issue, both structured, – e.g., Mul-

tiParty Session Types (MPSTs) [21, 22] – and unstructured – e.g.

Communicating Finite State Machines (CFSMs) [9] – is to design

and analyse communicating systems as stand-alone closed enti-
ties: the designer/analyser has full knowledge of every and each

interaction between any two participants. This hinders modularity

features, which are crucial for the specification and development

of large-scale, complex, distributed communicating systems.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PPDP 2023, October 22–23, 2023, Lisboa, Portugal
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0812-1/23/10.

https://doi.org/10.1145/3610612.3610614

Realistically, systems should be open, i.e. liable to interact with

an external environment (typically other systems). In [3] an ap-

proach to (binary) composition – dubbed Participants-as-Interfaces
(PaI) composition – was devised enabling to look at any system,

even closed ones, as virtually open. In a nutshell, given two sys-

tems, one first selects two participants – one per system – which

exhibit “compatible behaviours”; then transforms them into coupled

gateways connecting the two systems. Such gateways work simply

as “forwarders”: a message intended for the interface-participant

in one system is instead received by the gateway and immediately

forwarded to the coupled gateway in the other system which, in

turn, sends it to appropriate participants. For example, if one inter-

face is ready to receive a message and another interface is ready to

send the same message, then the gateway replacing the first inter-

face will forward the received message to the gateway replacing

the second interface. Essentially the gateways are obtained from

the interfaces by adding forwarding of messages between them.

Graphically

h

𝑎
|
|
|
|

k 𝑎

become

h

𝑎

k 𝑎

This composition mechanism is “conservative”, i.e. it makes only

the strictly needed changes; and “flexible”, i.e., it allows to look at

any system as potentially open. The PaI approach was exploited

in a number of papers for both MPTSs [4, 5] and CFSMs [3, 6, 8],

where another essential feature of this approach was proved: safety.
Safe composition mechanisms being those that do not “break” any

relevant property of the single systems. A drawback of the above

mentioned investigations on PaI is that they have been carried out

for binary composition only; or for a restricted notion of multiple

connection in a client-server setting [4].

In the present paper, we push forward the PaI composition, ex-

ploring the setting of multiple simultaneous composition of several

sessions.
1
Note that if we compose, two by two, several sessions

using binary composition, we get to tree-like structures only. In

fact, by looking at sessions as vertices and gateway connections

as undirected edges, the only way to get a cycle using binary com-

position is by connecting two interfaces belonging to the same

composed session.

1
A (multiparty) session, i.e. a set of named processes in parallel, formalises in this

paper the general notion of “system”.

1

https://doi.org/10.1145/3610612.3610614
https://doi.org/10.1145/3610612.3610614

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko Yoshida

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

h

𝑎

𝑐

|
|
|
|

k

𝑏

𝑎

− − − − − − − − −

v

𝑎

𝑏

|
|
|
|

w 𝑐

𝑎

𝑏

In order to illustrate the idea underlying PaI multicomposition
and its related issues, let us assume to have four sessions,M1,M2,

M3 andM4, containing respectively four participants, h, k, v and w,
that we decide to transform into gateways (if possible) enabling to

connect the four sessions into a single one. For the sake of simplicity

we abstract here from the way communications are performed and

from the logical order of the exchanged messages. The drawing

above represents the messages the participants do exchange inside

their respective sessions. The composition of the four sessions

then consists in replacing the participants h, k, v and w, chosen as

interfaces, by gateways. Note that a message, say the 𝑎 that inM1

is sent to h, could be forwarded (unlike the binary case) to different

other gateways. This means that an interfacing policy has to be set

up in order to appropriately define the gateways. An interfacing

policy for the present example could be for instance the one that

forwards to w the 𝑎 received by h; to k the 𝑎 received by v; to v
the 𝑏’s received by w and k; to h the 𝑐 received by w. According to

such an interfacing policy, the interface participants are replaced

by gateways as described below.

h

𝑎

𝑐 k

𝑏

𝑎

v

𝑎

𝑏 w 𝑐

𝑎

𝑏

We notice that such a composition cannot be done using the

mechanisms currently available in the literature [3–6, 8].

The key issue when implementing such a simple idea into a

particular formalism is to ensure the above construction to be safe.
In the binary case safety can be ensured by the duality of the in-

terfaces [3, 5, 6, 8]. For client-server composition, the compliace of

server interfaces with the client interface allows to obtain safe com-

positions [4]. Here the sitation is more tricky; we shall preserve the

system properties by identifying a correct notion of compatibility

for PaI multicomposition (which we dub multicompatibility) in the

setting of MPSTs.

In MPST approaches to session specification and verification,

two phases are distinguished: implementation (where code is inde-

pendently and distributively written for each single participant)

and verification. The former can happen after the latter, as an

analysis of existing code; or before, with a sound design of the

communicating systems (and, e.g., the generation of APIs that

will guide the programmers). MPSTs have spawned a variety of

tools for the sound modular implementation of a communicating

system [13, 20, 27, 29, 32, 38, 39]: the code is safe, as long as it

is well typed. However, in the vast majority of the MPST litera-

ture [14, 18, 21, 22, 32, 37], the verification of the whole session

is treated as a single, centralised operation. More precisely the

behaviours of sessions are described by global types prescribing
the order and the type of the communications between session

participants. The MPST literature dealing with modular verifica-

tion and composition of open sessions is however still at its early

stages [4, 5, 19, 36]. In particular the present paper is the first one

dealing with the safe PaI composition of an arbitrary number of

sessions.

Contributions and Structure of the Paper. This paper intro-
duces a conservative, flexible and safe PaI multicomposition method

based on the notions of interfacing policy and multicompatibility,

thus improving on the state of the art [4, 5, 19, 36]. In Section 2

we recall the MPST calculus of multiparty sessions with its type

system, as defined in [4]: we note that well-typed sessions are lock-

free. Section 3 contains our main contributions. In particular, a

precise notion of interfacing policy (Definition 3.6) is identified for

an arbitrary number of multiparty sessions; building on that, multi-

compatibility (Definition 3.8) is defined in terms of typability of any

of the possible interfacing policies. PaI multicomposition for ses-

sions is then given in terms of interfacing policies (Definition 3.12).

It is safe since we prove that multicomposition of multicompatible

sessions is typable (Theorem 3.17), and hence lock-free. In Section 4

we define an inference algorithm for the global types of an arbitrary

session, if any. We prove the soundness and completeness of this
algorithm (Theorem 4.7). Section 5 discusses related works and

concludes the paper.

2 THE CALCULUS OF MULTIPARTY SESSIONS
AND ITS TYPE SYSTEM

In the present section we recall the calculus of multiparty sessions

and its type system as defined in [4], to which we refer for more

detailed explanations and for proofs.

We assume to have the following denumerable base sets: mes-
sages (ranged over by 𝜆, 𝜆′, . . .); session participants (ranged over

by h, p, q, r, . . .); indexes (ranged over by 𝑖, 𝑗, 𝑙, 𝑛, . . .); sets of indexes
(ranged over by 𝐼 , 𝐽 , . . .).

Processes, ranged over by 𝑃,𝑄, 𝑅, 𝑆, 𝐻, 𝐾, . . . , implement the be-

haviour of participants. In the following and in later definitions

the symbol ::=𝑐𝑜𝑖𝑛𝑑 will indicate that the productions have to be

interpreted coinductively and that only regular terms are allowed.

Then we can adopt in proofs the coinduction style advocated in

[25] which, without any loss of formal rigour, promotes readability

and conciseness.

Multiparty sessions are parallel compositions of pairs partici-

pant/process of the form p[𝑃].

Definition 2.1 (Processes and Multiparty Sessions). Processes are
defined by:

𝑃 ::=𝑐𝑜𝑖𝑛𝑑 0 | p!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 | p?{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Multicompatibility for Multiparty-Session Composition PPDP 2023, October 22–23, 2023, Lisboa, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

[Comm-T]

𝑙 ∈ 𝐼 ⊆ 𝐽

p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽] ∥ M
p𝜆𝑙q−−−−→ p[𝑃𝑙] ∥ q[𝑄𝑙] ∥ M

Figure 1: LTS for multiparty sessions.

where 𝐼 ≠ ∅ and 𝜆 𝑗 ≠ 𝜆𝑙 for 𝑗, 𝑙 ∈ 𝐼 and 𝑗 ≠ 𝑙 .
Multiparty sessions (sessions, for short) are expressions of the

shape:

p1 [𝑃1] ∥ · · · ∥ p𝑛 [𝑃𝑛]

where p𝑗 ≠ p𝑙 for 1 ≤ 𝑗, 𝑙 ≤ 𝑛 and 𝑗 ≠ 𝑙 . We useM to range over

multiparty sessions.

In the above definition, the output process p!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 non-

deterministically chooses one message 𝜆𝑖 for some 𝑖 ∈ 𝐼 , and sends

it to the participant p, thereafter continuing as 𝑃𝑖 . Symmetrically,

the input process p?{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 waits for one of the messages 𝜆𝑖
from the participant p, then continues as 𝑃𝑖 after receiving it. When

there is only one output we write p!𝜆.𝑃 and similarly for one input.

We use 0 to denote the terminated process.

We assume the standard structural congruence ≡ on multiparty

sessions, stating that parallel composition is associative and com-

mutative and has neutral elements p[0] for any p. If 𝑃 ≠ 0 we write
p[𝑃] ∈ M as short forM ≡ p[𝑃] ∥ M′

for someM′
. We shall also

write Π𝑛
𝑖=1

p𝑖 [𝑃𝑖] as short for p1 [𝑃1] ∥ · · · ∥ p𝑛 [𝑃𝑛].
The set of participants of a session M, notation prt(M), is as

expected:

prt(M) = {p | p[𝑃] ∈ M}

To define the synchronous operational semantics of sessions we
use an LTS, whose transitions are decorated by communications.

Definition 2.2 (LTS for Multiparty Sessions). The labelled transi-
tion system (LTS) for multiparty sessions is the closure under ≡ of

the reduction specified by the unique rule shown in Figure 1.

Rule [Comm-T] makes the communication possible: participant p
sends message 𝜆𝑙 to participant q. This rule is non-deterministic in

the choice of messages. The condition 𝐼 ⊆ 𝐽 ensures that the sender

can freely choose the message, since the receiver must offer all

sender messages and possibly more. This allows us to distinguish

in the operational semantics between internal (output) and external

(input) choices. Note that this condition will always be true in

well-typed sessions.

Communications are triples of the form p𝜆q ranged over by

Λ,Λ′, We define traces as (possibly infinite) sequences of com-

munications by:

𝜎 ::=𝑐𝑜𝑖𝑛𝑑 𝜖 | Λ ·𝜎

where 𝜖 is the empty sequence. We use |𝜎 | to denote the length of

the trace 𝜎 , where |𝜎 | = ∞ when 𝜎 is an infinite trace. We define

the participants of communications and traces:

prt(p𝜆q) = {p, q} prt(𝜖) = ∅ prt(Λ ·𝜎) = prt(Λ) ∪ prt(𝜎)

When 𝜎 = Λ1 · . . . ·Λ𝑛 (𝑛 ≥ 0) we writeM 𝜎−→ M′
as short for

M
Λ1−−→ M1 · · ·

Λ𝑛−−→ M𝑛 = M′

We give now a very simple example, that shall be used through-

out the paper in order to clarify the notions we introduce.

Example 2.3 (Working example). Let us consider a session with

two participants
2
:

M1 = h1 [𝐻1] ∥ p[𝑃]

Process 𝐻1 controls the entrance of customers in a mall (via some

sensor). As soon as a customer enters, 𝐻1 sends a message start to

the process 𝑃 which controls a display for advertisements. After

the start message, 𝑃 displays a general advertising image. Process

𝑃 does control also a sensor detecting emotional reactions as well

as a card reader distinguishing regular from new customers. Such

information, through the messages react, rc and nc is sent to𝐻1. Us-

ing that information 𝐻1 sends to 𝑃 a customised image, depending

on the kind of the customer, through message img. The processes of

such a session can then be defined as follows

𝐻1 = p!start. p?react. p?
{

rc. p!img. 𝐻1

nc. p!img. 𝐻1

𝑃 = h1?start. h1!react. h1!
{

rc.h1?img. 𝑃
nc.h1?img. 𝑃

where sets of alternatives are denoted by branchings. ⋄
Lock-freedom for multiparty sessions is defined as in [24, 30]. In

words, each participant ready to communicate is never prevented

from finding a partner exposing a dual communication action. Lock-

freedom ensures progress for each participant, and hence deadlock-

freedom.

Definition 2.4 (Lock-freedom). A multiparty sessionM is a lock-

free session if M
𝜎−→ M′

and p[𝑃] ∈ M′
imply M′ 𝜎 ′ · Λ−−−−→ M′′

for

some 𝜎′ and Λ such that p ∈ prt(Λ).

Notice that we need to considerM′
in the above definition, since

otherwise the multiparty session p[q!𝜆.0] ∥ q[p?𝜆.p?𝜆.0] would
be lock-free.

We recall now the type system of [4], in which sessions are

directly typed by global types without using projections [21, 22].

If the global type respects a well-formedness condition (namely

boundedness, see Definition 2.7), the typed session does evolve in

agreement with what the global type prescribes (subject reduction

and session fidelity) and lock-freedom is ensured.

Definition 2.5 (Global Types). Global types are defined by:

G ::=𝑐𝑜𝑖𝑛𝑑 End | p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
where 𝐼 ≠ ∅ and 𝜆 𝑗 ≠ 𝜆𝑙 for 𝑗, 𝑙 ∈ 𝐼 and 𝑗 ≠ 𝑙 .

The type p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 formalises a protocol where partic-

ipant p must send to q a message 𝜆 𝑗 for some 𝑗 ∈ 𝐼 , (and q must

2
For the sake of simplicity, in our examples we consider only sessions with two or three

participants. Our definitions and results are however independent from the number of

participants in the single sessions.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko Yoshida

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

[End]
End ⊢ p[0]
================ [Comm]

G𝑖 ⊢ p[𝑃𝑖] ∥ q[𝑄𝑖] ∥ M prt(G𝑖) \ {p, q} = prt(M) ∀𝑖 ∈ 𝐼

p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 ⊢ p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽] ∥ M
=== 𝐼 ⊆ 𝐽

Figure 2: Typing rules.

D =

D
==
h1 → p:img.G1 ⊢ h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃]

D
==
h1 → p:img.G1 ⊢ h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃]

==
G′
1
⊢ h1 [𝐻 ′

1
] ∥ p[𝑃1]

===
p → h1:react.G′

1
⊢ h1 [p?react. 𝐻 ′

1
] ∥ p[h1!react. 𝑃1]

===
G1 ⊢ h1 [𝐻1] ∥ p[𝑃]

Figure 3: Derivation of Example 2.10.

receive it) and then, depending on which 𝜆 𝑗 was chosen by p, the
protocol continues as G𝑗 . The notation p → q : 𝜆.G is used when

there is only one message. The terminal symbol End denotes the

terminated protocol.

The set of paths of a global type G, notation paths(G), is defined
as the greatest set such that:

paths(End) = {𝜖}
paths(p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼) =

⋃
𝑖∈𝐼 {p𝜆𝑖q ·𝜎 | 𝜎 ∈ paths(G𝑖)}

Clearly, paths of global types are traces as defined after Defini-

tion 2.2. The set of participants of a global type is the set of partici-
pants of its paths:

prt(G) = ⋃
𝜎∈paths(G) prt(𝜎)

For any G, regularity of global types ensures prt(G) to be finite.

In order to ensure lock-freedom by typing, each participant is

required to occur in all the paths from the root. Technically, this

is obtained by means of the notions of depth and of bounded type
below. The 𝑛-th communication in a path 𝜎 , where 𝑛 ∈ N and

1 ≤ 𝑛 ≤ |𝜎 |, is denoted by 𝜎 [𝑛].

Definition 2.6 (Depth). Let G be a global type. For 𝜎 ∈ paths(G)
we define

depth(𝜎, p) = inf{𝑛 | p ∈ prt(𝜎 [𝑛])}

and define depth(G, p), the depth of p in G, as follows:

depth(G, p) =
{
sup{depth(𝜎, p) | 𝜎 ∈ paths(G)} if p ∈ prt(G)
0 otherwise

Definition 2.7 (Boundedness). A global type G is bounded if

depth(G′, p) is finite for all participants p ∈ prt(G′) and all types

G′
which occur in G.

Intuitively, this means that if p ∈ prt(G′) for a subexpression of

G which is a type, then the search for an interaction of the shape

p𝜆q or q𝜆p along a path 𝜎 ∈ paths(G′) terminates (and recall that

G′
can be infinite, in which caseG is such). As shown in [4, Example

2], it is necessary to consider all types occurring in a global type

when defining boundedness.

Since global types are regular, the boundedness condition is

decidable. Only bounded global types will be allowed in typing

sessions.

The simplicity of the multiparty session calculus allows to for-

mulate a type system deriving directly global types for multiparty

sessions, i.e. judgments of the form G ⊢ M (where G is bounded).

Here and in the following, the double line indicates that the rules

are interpreted coinductively [31, Chapter 21].

Definition 2.8 (Type System). The type system is defined by the

axiom and rule in Figure 2, where sessions are considered modulo

structural equivalence.

Rule [Comm] just adds simultaneous communications to global types

and to corresponding processes inside sessions. Note that this rule

allows more inputs than corresponding outputs, in agreement with

the condition in Rule [Comm-T] (Definition 2.2). It also allows more

branches in the input process than in the global type, just mim-

icking the subtyping for session types [17]. Instead, the number

of branches in the output process and the global type must be the

same. This does not restrict typability as shown in [5], while it

improves session fidelity as discussed after Theorem 2.13. The con-

dition prt(G𝑖) \ {p, q} = prt(M) for all 𝑖 ∈ 𝐼 ensures that the global
type and the session have exactly the same set of participants. In

this way we forbid for example to derive

p → q : 𝜆.End ⊢ p[q!𝜆.0] ∥ q[p?𝜆.0] ∥ r[𝑅] with 𝑅 ≠ 0

arbitrary.

The regularity of processes and global types ensures the decid-

ability of type checking. Besides, it is worth also remarking that

typability alone does not ensure boundedness of types as shown in

the following example.

Example 2.9 (Typability does not ensure boundedness). The fol-
lowing global type is unbounded, since depth(G′, r) = ∞:

G = r → q : 𝜆.G′
where G′ = p → q : {𝜆1 .q → r : 𝜆′ .End, 𝜆2 .G′}

Without the boundedness condition we can assign G to the session

p[𝑃] ∥ q[r?𝜆.𝑄] ∥ r[q!𝜆.q?𝜆′ .0], where 𝑃 = q!{𝜆1 .0, 𝜆2 .𝑃} and
𝑄 = p?{𝜆1 .r!𝜆′ .0, 𝜆2 .𝑄}. ⋄

Example 2.10 (Typing the multiparty session of Example 2.3). It is
easy to check that, for the multiparty sessionM1 of Example 2.3,

we can derive G1 ⊢ M1 with the derivation D of Figure 3, where

G1 = h1 → p:start. p → h1:react.G′
1

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Multicompatibility for Multiparty-Session Composition PPDP 2023, October 22–23, 2023, Lisboa, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

[Ecomm]

𝑗 ∈ 𝐼

p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
p𝜆 𝑗q−−−−→ G𝑗

[Icomm]

G𝑖

p𝜆q
−−−→ G′

𝑖 ∀𝑖 ∈ 𝐼 {p, q} ∩ {r, s} = ∅

r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
p𝜆q
−−−→ r → s : {𝜆𝑖 .G′

𝑖 }𝑖∈𝐼

Figure 4: LTS for global types.

G′
1
= p → h1:

{
rc. h1 → p:img.G1

nc. h1 → p:img.G1

𝐻 ′
1
= p?

{
rc. p!img. 𝐻1

nc. p!img. 𝐻1

𝑃1 = h1!
{

rc.h1?img. 𝑃
nc.h1?img. 𝑃 ⋄

To formalise the properties of subject reduction and session

fidelity [21, 22], the standard LTS for global types can be used.

Definition 2.11 (LTS for Global Types). The labelled transition
system (LTS) for global types is specified by the rules in Figure 4.

Rule [Icomm]makes sense since, in a global type r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 ,
behaviours involving participants p and q, ready to interact with

each other uniformly in all branches, can do so if neither of them

is involved in a previous interaction between r and s. In this case,

the interaction between p and q is independent of the choice of r,
and may be executed before it. For example (omitting final End) we
have

r → s : {𝜆1 .p → q : 𝜆, 𝜆2 .p → q : 𝜆}
p𝜆q
−−−→ r → s : {𝜆1, 𝜆2}

Subject reduction ensures that the transitions of well-typed ses-

sions are mimicked by those of global types.

Theorem 2.12 (Subject Reduction [4]). If

G ⊢ M and M
p𝜆q
−−−→ M′

then G
p𝜆q
−−−→ G′ and G′ ⊢ M′.

This theorem requires boundedness of global types: for example,

if 𝑃 = q!{𝜆1 .0, 𝜆2 .𝑃} and 𝑄 = p?{𝜆1 .0, 𝜆2 .𝑄}, then
p[𝑃] ∥ q[𝑄] ∥ r[s!𝜆.0] ∥ s[r?𝜆.0] r𝜆s−−→ p[𝑃] ∥ q[𝑄]

but the type G = p → q:{𝜆1 .r → s:𝜆.End, 𝜆2 .G} does not have the
same reduction. Clearly this session can be typed by the bounded

type r → s:𝜆.G′
where G′ = p → q:{𝜆1 .End, 𝜆2 .G′}.

Session fidelity ensures that the communications in a session

typed by a global type proceed as prescribed by the global type.

Theorem 2.13 (Session Fidelity [4]). If G ⊢ M and G
p𝜆q
−−−→ G′,

thenM
p𝜆q
−−−→ M′ and G′ ⊢ M′.

Note that, if Rule [Comm] had allowed more branches in the global

type than in the output process as the subtyping of [17] does, then

Theorem 2.13 would have failed. An example is

p → q : {𝜆.End, 𝜆′ .End} ⊢ p[q!𝜆.0] ∥ q[p?{𝜆.0, 𝜆′ .0}]

since p → q : {𝜆.End, 𝜆′ .End}
p𝜆′q
−−−−→ End, but there is no transition

labelled p𝜆′q from p[q!𝜆.0] ∥ q[p?{𝜆.0, 𝜆′ .0}].

Typability does ensure lock-freedom.

Theorem 2.14 (Lock-freedom [4]). If M is typable, then M is
lock-free.

We notice that global types, as presented in this section, en-

sure properties of closed multiparty sessions, where all participant

behaviours are fully described,

3 MULTICOMPOSITION AND
MULTICOMPATIBILITY

As discussed in the Introduction, in the present paper we extend

the PaI approach to the PaI multicomposition of closed sessions.

In order to exemplify the notions we introduce and their related

formal definitions, we shall recur to the following example where

we consider four sessions we wish to compose.

Example 3.1 (Four multiparty sessions). Let M1 be as in Exam-

ple 2.3, and let us consider also the following multiparty sessions

M2,M3 andM4.

Session M2 = h2 [𝐻2] ∥ q[𝑄]. Process 𝐻2 controls an image

display. Images are provided by process 𝑄 according to some pa-

rameters with sender 𝐻2 depending on the reaction acquired by a

sensor driven by q and distinguishing the kind of customers on the

basis of their cards. Process𝑄 is also able to receive a reset message

even if 𝐻2 cannot ever send it. 𝐻2 and𝑄 can hence be implemented

as follows.

𝐻2 = q?react.q!pars. q!
{
rc. q?img. 𝐻2

nc. q?img. 𝐻2

𝑄 = h2!react.h2?pars. h2?

rc. h2!img. 𝑄
nc. h2!img. 𝑄
reset.𝑄

SessionM3 = h3 [𝐻3] ∥ r[𝑅] ∥ r′ [𝑅′]. Process 𝑅 controls a sensor

detecting the entrance of people from a door. Once someone enters,

a message start is sent by 𝑅 to process 𝐻3 which turns on a light.

The reaction of who enters, detected by a sensor driven by 𝐻3 is

sent back to 𝑅, which, according to the reaction, communicates to

𝑅′ the greeting to be broadcasted from the speakers.

𝐻3 = r?start. r!react. 𝐻3

𝑅 = h3!start. h3?react. r′!greet. 𝑅 𝑅′ = r?greet. 𝑅′

SessionM4 = h4 [𝐻4] ∥ s[𝑆]. Some sensors managed by process

𝐻4 do acquire the first reactions of people getting into a hall with

several Christmas lights. This reactions enable process 𝑆 to send to

𝐻4 a set of parameters allowing to adjust the lights of the hall.

𝐻4 = s!react. s?pars. 𝐻4 𝑆 = h4?react. h4!pars. 𝑆 ⋄

We shall prove that lock-freedom, ensured by typing on single

sessions, is preserved by composition. The sessions of the above

example are lock-free.

Example 3.2. The multiparty sessionM1 of Example 2.3 can be

typed by the global type G1 of Example 2.10, and the multiparty

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko Yoshida

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

sessionsM2,M3 andM4 can be typed by the following global types.

G2 = q → h2:react. h2 → q:pars. h2 → q:
{

rc. q → h2:img.G2

nc. q → h2:img.G2

G3 = r → h3:start. h3 → r:react. r → r′:greet.G3

G4 = h4 → s:react. s → h4:pars.G4 ⋄

The PaI multicomposition consists in replacing one participant

per session identified as “interface” by a “gateway” (sort of for-

warder). Any participant in a session, say h, can be considered as

an interface. In particular, we can look at the behaviour (a process

in our formalism) of h as what the session would expect from a

number of outer sessions (through their respective interfaces). By

looking at h as an interface then, whenever h receives (resp. sends)

a message 𝜆, this has to be interpreted as a message to be sent to

(resp. to be received from) some other interface among the available

ones.

Example 3.3 (Interfaces). For the sessions of Example 3.1 we

shall consider the participants h1, h2, h3 and h4 as interfaces for,
respectively, the sessionsM1,M1,M1 andM4. ⋄

By having several sessions, the gateways are not uniquely deter-

mined. In order to produce gateways out of interfaces we need to

decide how the interfaces do interact. We hence call “interfacing

policy” a description of a possible way interfaces could communi-

cate with each other. To formalise such a notion we first associate

to each process a set of processes doing dual communications with

participants taken from a fixed set. We call “interfacing set” this set

of processes.

Definition 3.4 (Interfacing Set). The interfacing set of a process
𝐻 w.r.t. a finite set P of participants, notation IS(𝐻,P), is the
minimal set of processes such that:

• 0 ∈ IS(0,P);
• if 𝐾𝑖 ∈ IS(𝐻𝑖 ,P) for all 𝑖 ∈ 𝐼 and p ∈ P, then

p!{𝜆𝑖 .𝐾𝑖 }𝑖∈𝐼 ∈ IS(q?{𝜆𝑖 .𝐻𝑖 }𝑖∈𝐼 ,P)

• if 𝐾𝑖 ∈ IS(𝐻𝑖 ,P) for all 𝑖 ∈ 𝐼 and p ∈ P, then

p?{𝜆𝑖 .𝐾𝑖 }𝑖∈𝐼 ∈ IS(q!{𝜆𝑖 .𝐻𝑖 }𝑖∈𝐼 ,P)

Example 3.5 (Interfacing set of 𝐻1). Let 𝐻1 be as in Example 2.3

and P = {h2, h3, h4}, then the interfacing set of 𝐻1 contains all and

only the processes

𝐾 = k1?start. k2!react.k3!
{

rc. k4?img. 𝐾
nc. k5?img. 𝐾

where k1, k2, k3, k4, k5 ∈ {h2, h3, h4}. ⋄
Interfacing sets are finite, since they contain processes which

only differ for the names of participants and these names belong to

a finite set.

An interfacing policy is then obtained by choosing, for each

interface, an element of its interfacing set having as participants

the other interfaces. Of course one cannot expect an arbitrary in-

terfacing policy to lead to a sound composition. Let us consider,

for example, the sessions of Example 3.1 and an interfacing policy

where we choose the following element of IS(𝐻1, {h2, h3, h4}):

𝐾 = h2?start. h3!react.h4!
{

rc. h2?img. 𝐾
nc. h2?img. 𝐾

This would lead to a composition where the gateway we substitute

for h1 would first expect from h2 the message start to be forwarded

to p. Such a composition would immediately get stuck, since no

message start is ever handled by 𝐻2 and hence by the gateway we

would substitute for it. Sound compositions will actually be the one

induced by typable interfacing policies, which we dub as “valid”.

Definition 3.6 (Interfacing Policy). An interfacing policy K for a

multiparty session Π𝑖∈𝐼h𝑖 [𝐻𝑖] is a multiparty session Π𝑖∈𝐼h𝑖 [𝐾𝑖]
such that𝐾𝑖 ∈ IS(𝐻𝑖 ,P\{h𝑖 }) for all 𝑖 ∈ 𝐼 , where P = {h𝑖 | 𝑖 ∈ 𝐼 }.
An interfacing policy is valid if K is typable.

Example 3.7 (Interfacing policies). Let us consider the four ses-
sions of Example 3.1. Then an interfacing policy for the multiparty

session Π4

𝑖=1
h𝑖 [𝐻𝑖] is the multiparty session Π4

𝑖=1
h𝑖 [𝐾𝑖] where

𝐾1 = h3?start. h4!react.h2!
{

rc. h2?img. 𝐾1
nc. h2?img. 𝐾1

𝐾2 = h3!react. h4?pars. h1?
{

rc. h1!img. 𝐾2
nc. h1!img. 𝐾2

𝐾3 = h1!start. h2?react. 𝐾3 𝐾4 = h1?react. h2!pars. 𝐾4

This policy is valid, since the multiparty session Π4

𝑖=1
h𝑖 [𝐾𝑖] can be

typed by the following global type

G = h3 → h1:start. h2 → h3:react. h1 → h4:react. Ĝ

where

Ĝ = h4 → h2:pars. h1 → h2:
{

rc. h2 → h1:img.G
nc. h2 → h1:img.G

Note that, according to the above interfacing policy, the greeting

depends on the reactions sent by the sensor driven by q. It is not
difficult to check that there exists another valid interfacing pol-

icy for Π4

𝑖=1
h𝑖 [𝐻𝑖], namely the one according to which the greet-

ing depends on the reactions sent by the sensor driven by p. I.e.
also Π4

𝑖=1
h𝑖 [𝐾 ′

𝑖
] is an interfacing policy for the multiparty session

Π4

𝑖=1
h𝑖 [𝐻𝑖] where

𝐾 ′
1
= h3?start. h3!react. h2!

{
rc. h2?img. 𝐾 ′

1

nc. h2?img. 𝐾 ′
1

𝐾 ′
2
= h4!react. h4?pars. h1?

{
rc. h1!img. 𝐾 ′

2

nc. h1!img. 𝐾 ′
2

𝐾 ′
3
= h1!start. h1?react. 𝐾 ′

3
𝐾 ′
4
= h2?react. h2!pars. 𝐾 ′

4

This policy is valid, since the multiparty session Π4

𝑖=1
h𝑖 [𝐾 ′

𝑖
] can be

typed by the following global type

G′ = h3 → h1:start. h1 → h3:react. h2 → h4:react. ˆG′

where

ˆG′ = h4 → h2:pars. h1 → h2:
{

rc. h2 → h1:img.G′

nc. h2 → h1:img.G′ ⋄
For a given multiparty session the number of interfacing policies

is finite, since interfacing sets are finite.

Our PaI multicomposition requires that the sessions to be com-

posed be multicompatible. We say that multiparty sessions are mul-

ticompatible if they are typable and their participants are disjoint

and we identify an interface for each of them and a corresponding

valid interfacing policy.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Multicompatibility for Multiparty-Session Composition PPDP 2023, October 22–23, 2023, Lisboa, Portugal

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

p h1 h2 q

r′

r

h3 h4 s
react

start

rc

nc

img

nc

rc

pars

img

react

greet

start

react

react

pars

Figure 5: Representation of the composed session in Example 3.13.

Definition 3.8 (Multicompatibility). The multiparty sessions

{M𝑖 }𝑖∈𝐼 are multicompatible with respect to {h𝑖 }𝑖∈𝐼 and K
if they are typable and prt(M𝑗) ∩ prt(M𝑙) = ∅ for all 𝑗, 𝑙 ∈ 𝐼 , 𝑗 ≠ 𝑙 ,
and h𝑖 [𝐻𝑖] ∈ M𝑖 for all 𝑖 ∈ 𝐼 and K is a valid interfacing policy for

Π𝑖∈𝐼h𝑖 [𝐻𝑖].

Example 3.9 (Multicompatible sessions). Example 3.7 shows that

Π4

𝑖=1
h𝑖 [𝐾𝑖] is an interfacing policy for Π4

𝑖=1
h𝑖 [𝐻𝑖]. Such a policy

is valid, therefore the multiparty sessions {M𝑖 }𝑖∈{1,2,3,4} are multi-

compatible with respect to {h𝑖 }𝑖∈{1,2,3,4} and Π4

𝑖=1
h𝑖 [𝐾𝑖]. ⋄

We have almost all the required notions to define the multicom-

position of multicompatible multiparty sessions. The only missing

piece is that of building the gateways, using the operation of pro-

cess composition. Two processes can be composed only if they offer

exactly matching outputs and inputs: in the composition the inputs

always precede the outputs.

Definition 3.10 (Process Composition). The partial composition of
two processes 𝑃 and 𝑄 , notation 𝑃 ◦𝑄 , is the commutative operator

defined by

0 ◦ 0 = 0 p!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 ◦ q?{𝜆𝑖 .𝑄𝑖 }𝑖∈𝐼 = q?{𝜆𝑖 .p!𝜆𝑖 .𝑃𝑖 ◦𝑄𝑖 }𝑖∈𝐼

Example 3.11 (Composition of 𝐻1 and 𝐾1). Let 𝐻1 be as in Exam-

ple 2.3 and 𝐾1 be as in Example 3.7, then

𝐻1 ◦ 𝐾1 = h3?start. p!start. p?react. h4!react. 𝐻𝐾1

𝐻𝐾1 = p?
{

rc. h2!rc. h2?img. p!img. 𝐻1 ◦ 𝐾1
nc. h2!nc. h2?img. p!img.𝐻1 ◦ 𝐾1 ⋄

Definition 3.12 (PaI Multicomposition). Let the multiparty ses-

sions {M𝑖 }𝑖∈𝐼 bemulticompatible with respect to {h𝑖 }𝑖∈𝐼 andK. We

define the PaI multicomposition of {M𝑖 }𝑖∈𝐼 with respect to {h𝑖 }𝑖∈𝐼
and K by

Π𝑖∈𝐼h𝑖 [𝐻𝑖 ◦ 𝐾𝑖] ∥ M′
𝑖

whereM𝑖 ≡ h𝑖 [𝐻𝑖] ∥ M′
𝑖
for all 𝑖 ∈ 𝐼 and K = Π𝑖∈𝐼h𝑖 [𝐾𝑖].

In the above definition, h𝑖 [𝐻𝑖 ◦𝐾𝑖] are the gateways connecting
the multicompatible sessions.

Example 3.13 (A multicomposition of sessions). LetM1,M2,M3

andM4 be as in Example 3.1. In Example 3.9 it is shown that these

multiparty sessions are multicompatible. A PaI multicomposition

of the multiparty sessions {M𝑖 }𝑖∈{1,2,3,4} is
Π4

𝑖=1
h𝑖 [𝐻𝑖 ◦ 𝐾𝑖] ∥ p[𝑃] ∥ q[𝑄] ∥ r[𝑅] ∥ r′ [𝑅′] ∥ s[𝑆]

where 𝐻1, 𝑃 are defined in Example 2.3, 𝐻2, 𝐻3, 𝐻4, 𝑄 , 𝑅, 𝑅
′
, 𝑆 are

defined in Example 3.1, 𝐾1, 𝐾2, 𝐾3, 𝐾4 are defined in Example 3.7,

𝐻1 ◦ 𝐾1 is defined in Example 3.11 and

𝐻2 ◦ 𝐾2 = q?react. h3!react. h4?pars. q!pars. 𝐻𝐾2

𝐻𝐾2 = h1?
{

rc. q!rc. q?img. h1!img. 𝐻2 ◦ 𝐾2
nc. q!nc. q?img. h1!img. 𝐻2 ◦ 𝐾2

𝐻3 ◦ 𝐾3 = r?start. h1!start. h2?react. r!react. 𝐻3 ◦ 𝐾3

𝐻4 ◦ 𝐾4 = h1?react. s!react. s?pars. h2!pars. 𝐻4 ◦ 𝐾4

As done for the example in the Introduction, by abstracting from

the way communications are performed, from branching and from

the logical order of the exchanged messages, the above composition

can be graphically described as in Figure 5. It is worth noticing

that getting rid of the gateways, so that, e.g, r sends message start

directly to p, would disrupt the conservativity of our composition

method. Participants other than the interfaces would in fact be

affected by the composition, since a number of input/output actions

should be modified. ⋄
Remark 3.14. The definitions of interfacing set and interfacing

policy have a set of participants as parameter. By using a set of

messages as extra parameter, we could turn the gateways from “for-

warders” to “message-rename-and-forward” processes, so adding

extra flexibility to our composition method. The extension is easy

and we did not make it explicit for the sake of readability. ⋄
The following lemma relates the global type of an interfacing

policy with the global types of two among the multicompatible

sessions. It says how the outermost communication in the global

type of the interface policy can be related to the outermost commu-

nications in the global types of the involved interfaces. This result

is crucial for the correctness of our PaI multicomposition. By hd(G)
we denote the two participants to the outermost communication in

G, i.e. if G = p → q : {𝜆 𝑗 .G𝑗 } 𝑗∈ 𝐽 , then we define hd(G) = {p, q}.
Lemma 3.15 (Relations between Types of Interfacing Poli-

cies and of Multicompatible Sessions). Let the multiparty ses-
sions {M𝑖 }𝑖∈𝐼 be multicompatible with respect to {h𝑖 }𝑖∈𝐼 and K.
Moreover, let G𝑖 ⊢ M𝑖 for 𝑖 ∈ 𝐼 and G ⊢ K.
If G = h𝑙 → h𝑙 ′ : {𝜆 𝑗 .Ĝ𝑗 } 𝑗∈ 𝐽 and h𝑙 ∈ hd(G𝑙) and h𝑙 ′ ∈ hd(G𝑙 ′),
then G𝑙 = p → h𝑙 : {𝜆 𝑗 .G′

𝑗
} 𝑗∈ 𝐽 ′ for some p with 𝐽 ′ ⊆ 𝐽 and

G𝑙 ′ = h𝑙 ′ → q : {𝜆 𝑗 .G′′
𝑗
} 𝑗∈ 𝐽 ′′ for some q with 𝐽 ⊆ 𝐽 ′′. Finally,

𝐻𝑙 = p?{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽 and 𝐻𝑙 ′ = q!{𝜆 𝑗 .𝐻 ′′

𝑗
} 𝑗∈ 𝐽 ′′ .

Proof. Let K = Π𝑖∈𝐼h𝑖 [𝐾𝑖] and G = h𝑙 → h𝑙 ′ : {𝜆 𝑗 .Ĝ𝑗 } 𝑗∈ 𝐽 ,
then Rule [Comm] must be applied to derive G ⊢ K and this implies

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko Yoshida

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

G(⟨G𝑖 ⟩𝑖∈𝐼 ,G) =

p → h𝑖𝑙 : {𝜆 𝑗 .h𝑖𝑙 → h𝑖𝑙 ′ : 𝜆 𝑗 .h𝑖𝑙 ′ → q : 𝜆 𝑗 .G★
𝑗
} 𝑗∈ 𝐽 ′

where G★
𝑗
= G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ } • G

′
𝑗
• G′′

𝑗
, Ĝ𝑗) if G𝑖𝑚 is locked for all 𝑖𝑚 s.t.𝑚 < 𝑚𝑖𝑛{𝑙, 𝑙 ′}

and G = h𝑖𝑙 → h𝑖𝑙 ′ : {𝜆 𝑗 .Ĝ𝑗 } 𝑗∈ 𝐽
and G𝑖𝑙 = p → h𝑖𝑙 : {𝜆 𝑗 .G′

𝑗
} 𝑗∈ 𝐽 ′

and G𝑖𝑙 ′ = h𝑖𝑙 ′ → q : {𝜆 𝑗 .G′′
𝑗
} 𝑗∈ 𝐽 ′′ with 𝐽 ′ ⊆ 𝐽 ⊆ 𝐽 ′′

p → q : {𝜆 𝑗 .G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 } • G
′
𝑗
,G)} 𝑗∈ 𝐽 if h𝑖𝑙 ∉ {p, q}

and G𝑖𝑚 is locked for all 𝑖𝑚 s.t.𝑚 < 𝑙

and G𝑖𝑙 = p → q : {𝜆 𝑗 .G′
𝑗
} 𝑗∈ 𝐽

End if 𝐼 = ∅ and G = End

Figure 6: The global type for multicomposition.

G′= r → h3:start. h3 → h1:start. h1 → p:start. q → h2:react. h2 → h3:react. h3 → r:react.
p → h1:react. h1 → h4:react. h4 → s:react. s → h4:pars. h4 → h2:pars. h2 → q:pars. r → r′:greet.

p → h1:
{

rc. h1 → h2:rc. h2 → q:rc. q → h2:img. h2 → h1:img. h1 → p:img.G′

nc. h1 → h2:nc. h2 → q:nc. q → h2:img. h2 → h1:img. h1 → p:img.G′

Figure 7: A type for multicomposition of Example 3.13.

𝐾𝑙 = h𝑙 ′ !{𝜆 𝑗 .𝐾 ′
𝑗
} 𝑗∈ 𝐽 and 𝐾𝑙 ′ = h𝑙?{𝜆 𝑗 .𝐾 ′′

𝑗
} 𝑗∈ 𝐽 ′′ with 𝐽 ⊆ 𝐽 ′′. By

Definition 3.6 we get 𝐻𝑙 = p?{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽 for some p and 𝐻𝑙 ′ =

q!{𝜆 𝑗 .𝐻 ′′
𝑗
} 𝑗∈ 𝐽 ′′ for some q. From h𝑙 ∈ hd(G𝑙) and G𝑙 ⊢ M𝑙 we get

G𝑙 = p → h𝑙 : {𝜆 𝑗 .G′
𝑗
} 𝑗∈ 𝐽 ′ with 𝐽 ′ ⊆ 𝐽 . From h𝑙 ′ ∈ hd(G𝑙 ′) and

G𝑙 ′ ⊢ M𝑙 ′ we get G𝑙 ′ = h𝑙 ′ → q : {𝜆 𝑗 .G′′
𝑗
} 𝑗∈ 𝐽 ′′ . □

We can now show that PaI multicomposition of multicompatible

sessions is safe, since it can be typed. This is done by defining a

function G with two arguments: a list of global types and a global

type. This function, applied to the list of the global types of the

sessions to be composed and to the global type of a valid interfacing

policy witnessing their multicompatibility, returns a global type for

the PaI multicomposition.

By ⟨G𝑖 ⟩𝑖∈𝐼 we denote the list ⟨G𝑖1 ,G𝑖2 , . . . ,G𝑖𝑛 ⟩ if 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑛}.
The addition of a global type at the end of a list of global types,

notation ⟨G𝑖1 , . . . ,G𝑖𝑛 ⟩ • G, does not add the End type. Formally

we define

⟨G𝑖1 , . . . ,G𝑖𝑛 ⟩ • G =

{
⟨G𝑖1 , . . . ,G𝑖𝑛 ,G⟩ if G ≠ End,

⟨G𝑖1 , . . . ,G𝑖𝑛 ⟩ otherwise.

A global type G𝑖𝑙 is locked for G in the list ⟨G𝑖 ⟩𝑖∈𝐼 if 𝑖𝑙 ∈ 𝐼 and
h𝑖𝑙 ∈ hd(G𝑖𝑙) and either h𝑖𝑙 ∉ hd(G) or hd(G) = {h𝑖𝑙 , h𝑖𝑙 ′ } and
h𝑖𝑙 ′ ∉ hd(G𝑖𝑙 ′). In words, a global type is locked if its first commu-

nication involves the interface but this communication cannot be

done since:

• either the interface is not involved in the first communication of

the global type for the interfacing policy;

• or the interface is involved in the first communication of the

global type for the interfacing policy, but the communicating inter-

face is not involved in the first communication of the global type

for the corresponding session.

The function G (defined in Figure 6) returns the “merge” of the

global types provided as first argument, inserting also the interac-

tions corresponding to the forwarding of the messages sent to the

interfaces, as described by the global type provided as second argu-

ment. The construction of such a “merge” proceeds coinductively

according to the three clauses of the definition.

The first clause applies when the first unlocked global type in the

list has an outermost communication involving an interface, and

this interface occurs in the outermost communication of G together

with an interface which occurs in the outermost communication

of the corresponding global type in the list. The global type of

the composition starts with the communication having as sender a

participant which is not an interface (as prescribed byG𝑖𝑙), followed

by the forwarding between the two involved interfaces as prescribed

by G and then by the communication of the message from the

interface which just received it to a participant which is not an

interface (as prescribed byG𝑖𝑙 ′). The protocol continues by applying

the function G to the global types obtained from G𝑖𝑙 , G𝑖𝑙 ′ and G
by erasing the communications done. The continuations of G𝑖𝑙 and

G𝑖𝑙 ′ are added at the end of the list (where G𝑖𝑙 and G𝑖𝑙 ′ have been

erased) which becomes the first arguments in the applications of

G, while the continuations of G become the second arguments in

the applications of G.

The second clause applies when the first unlocked global type in

the list has an outermost communication not involving interfaces.

The global type of the composition starts with this communication

and then continues applying the function G to the list obtained by

erasing G𝑖𝑙 and by adding the continuations of G𝑖𝑙 at the end (as

first argument) and to G (as second argument).

The third clause applies when the list is empty and G = End.

Example 3.16 (A type formulticomposition). The global type of the
PaI multicomposition of Example 3.13 can be obtained by applying

G as defined in Figure 6 to ⟨G1,G2,G3,G4⟩ and G, where G1 is

defined in Example 2.10, G2, G3, G4 are defined in Example 3.1 and

G is defined in Example 3.7. Figure 7 shows the resulting global

type. ⋄
8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Multicompatibility for Multiparty-Session Composition PPDP 2023, October 22–23, 2023, Lisboa, Portugal

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

G★
𝑗 ⊢ h𝑖𝑙 ′ [𝐻

′′
𝑗 ◦ 𝐾 ′′

𝑗] ∥ q[𝑄 𝑗] ∥ · · · ∀𝑗 ∈ 𝐽 ′

h𝑙 ′ → q : 𝜆 𝑗 .G★
𝑗 ⊢ h𝑖𝑙 [𝐻 ′

𝑗 ◦ 𝐾
′
𝑗] ∥ h𝑖𝑙 ′ [q!𝜆 𝑗 .𝐻

′′
𝑗 ◦ 𝐾 ′′

𝑗] ∥ q[h𝑖𝑙 ′ ?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ′′′] ∥ · · · ∀𝑗 ∈ 𝐽 ′

h𝑖𝑙 → h𝑖𝑙 ′ : 𝜆 𝑗 .h𝑖𝑙 ′ → q : 𝜆 𝑗 .G★
𝑗 ⊢ p[𝑃 𝑗] ∥ h𝑖𝑙 [h𝑖𝑙 ′ !𝜆 𝑗 .𝐻

′
𝑗 ◦ 𝐾

′
𝑗] ∥ h𝑖𝑙 ′ [h𝑖𝑙 ?{𝜆 𝑗 .q!𝜆 𝑗 .𝐻

′′
𝑗 ◦ 𝐾 ′′

𝑗 } 𝑗∈ 𝐽 ′′] ∥ · · · ∀𝑗 ∈ 𝐽 ′

p → h𝑖𝑙 : {𝜆 𝑗 .h𝑖𝑙 → h𝑖𝑙 ′ : 𝜆 𝑗 .h𝑖𝑙 ′ → q : 𝜆 𝑗 .G★
𝑗 } 𝑗∈ 𝐽 ′ ⊢ p[h𝑖𝑙 !{𝜆 𝑗 .𝑃 𝑗 } 𝑗∈ 𝐽 ′] ∥ h𝑖𝑙 [p?{𝜆 𝑗 .h𝑖𝑙 ′ !𝜆 𝑗 .𝐻

′
𝑗 ◦ 𝐾

′
𝑗 } 𝑗∈ 𝐽] ∥ · · ·

Figure 8: Derivation used in the proof of Theorem 3.17.

Note that the function G is well defined, since the equations in
clauses 1 and 2 are productive, i.e. they always unfold at least one

constructor.

We have now the necessary machinery to show the safety of our

session multicomposition.

Theorem 3.17 (Typability of PaI Multicomposition). If the
multiparty sessions {M𝑖 }𝑖∈𝐼 are multicompatible with respect to
{h𝑖 }𝑖∈𝐼 and K, then the PaI multicomposition of {M𝑖 }𝑖∈𝐼 with respect
to {h𝑖 }𝑖∈𝐼 and K is typable.

Proof. Let M𝑖 ≡ h𝑖 [𝐻𝑖] ∥ M′
𝑖
and G𝑖 ⊢ M𝑖 for all 𝑖 ∈ 𝐼 and

K = Π𝑖∈𝐼h𝑖 [𝐾𝑖] and G ⊢ K. We prove

G(⟨G𝑖 ⟩𝑖∈𝐼 ,G) ⊢ Π𝑖∈𝐼h𝑖 [𝐻𝑖 ◦ 𝐾𝑖] ∥ M′
𝑖

The choice of the order in making the list ⟨G𝑖1 ,G𝑖2 , . . . ,G𝑖𝑛 ⟩ is
arbitrary, but taking into account that prt(M𝑗) ∩ prt(M𝑙) = ∅
implies prt(G𝑗) ∩ prt(G𝑙) = ∅ for all 𝑗, 𝑙 ∈ 𝐼 , 𝑗 ≠ 𝑙 , typability of

sessions by the obtained global type is insensible to this order.

The obtained type G(⟨G𝑖 ⟩𝑖∈𝐼 ,G) is bounded, provided that G is

total. The proof is by coinduction on G𝑖 for 𝑖 ∈ 𝐼 and on G and

by cases on the three clauses. Note that all G𝑖 for 𝑖 ∈ 𝐼 and G are

bounded since they type multiparty sessions.

Clause 1. By coinduction G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ } •G
′
𝑗
•G′′

𝑗
, Ĝ𝑗) is

bounded for all 𝑗 ∈ 𝐽 ′;
Clause 2. By coinduction G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 } •G

′
𝑗
,G) is bounded

for all 𝑗 ∈ 𝐽 ;
Clause 3. Trivial.

We now show by coinduction that, in case G is total, we can

derive

G(⟨G𝑖 ⟩𝑖∈𝐼 ,G) ⊢ Π𝑖∈𝐼h𝑖 [𝐻𝑖 ◦ 𝐾𝑖] ∥ M′
𝑖

We proceed by cases according to which among the three clauses

defining G is applied.

Clause 1. Lemma 3.15 implies 𝐻𝑖𝑙 = p?{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽 .

From G𝑖𝑙 ⊢ M𝑖𝑙 we get

M𝑖𝑙 ≡ p[h𝑖𝑙 !{𝜆 𝑗 .𝑃 𝑗 } 𝑗∈ 𝐽 ′] ∥ h𝑖𝑙 [p?{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽] ∥ M′′

𝑖𝑙

with 𝐽 ′ ⊆ 𝐽 and

G′
𝑗 ⊢ p[𝑃 𝑗] ∥ h𝑖𝑙 [𝐻

′
𝑗] ∥ M

′′
𝑖𝑙
for all 𝑗 ∈ 𝐽 ′ (1)

Lemma 3.15 implies 𝐻𝑖𝑙 ′ = q!{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽 ′′ with 𝐽 ⊆ 𝐽 ′′. From

G𝑖𝑙 ′ ⊢ M𝑖𝑙 ′ we get

M𝑖𝑙 ′ ≡ h𝑖𝑙 ′ [q!{𝜆 𝑗 .𝐻 ′′
𝑗
} 𝑗∈ 𝐽 ′′] ∥ q[h𝑖𝑙 ′ ?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ′′′] ∥ M′′

𝑖𝑙 ′

with 𝐽 ′′ ⊆ 𝐽 ′′′ and

G′′
𝑗 ⊢ h𝑖𝑙 ′ [𝐻

′′
𝑗] ∥ q[𝑄 𝑗] ∥ M′′

𝑖𝑙 ′
for all 𝑗 ∈ 𝐽 ′′ (2)

From G ⊢ Π𝑖∈𝐼h𝑖 [𝐾𝑖] and 𝐾𝑖𝑙 ∈ IS(𝐻𝑖𝑙 , {h𝑖 }𝑖∈𝐼\{𝑖𝑙 }) and 𝐾𝑖𝑙 ′ ∈
IS(𝐻𝑖𝑙 ′ , {h𝑖 }𝑖∈𝐼\{𝑖𝑙 ′ }) we get

𝐾𝑖𝑙 = h𝑖𝑙 ′ !{𝜆 𝑗 .𝐾 ′
𝑗
} 𝑗∈ 𝐽 𝐾𝑖𝑙 ′ = h𝑖𝑙 ?{𝜆 𝑗 .𝐾 ′′

𝑗
} 𝑗∈ 𝐽 ′′

and

Ĝ𝑗 ⊢ h𝑖𝑙 [𝐾 ′
𝑗] ∥ h𝑖𝑙 ′ [𝐾

′′
𝑗] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐾𝑖] for all 𝑗 ∈ 𝐽 (3)

The definition of interfacing policy (Definition 3.6) implies that, for

all 𝑗 ∈ 𝐽 ′,
h𝑖𝑙 [𝐾 ′

𝑗
] ∥ h𝑖𝑙 ′ [𝐾 ′′

𝑗
] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐾𝑖]

is an interfacing policy for

h𝑖𝑙 [𝐻 ′
𝑗
] ∥ h𝑖𝑙 ′ [𝐻 ′′

𝑗
] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐻𝑖]

(4)

Then the PaI multicomposition is

h𝑖𝑙 [𝐻𝐾𝑖𝑙] ∥ h𝑖𝑙 ′ [𝐻𝐾𝑖𝑙 ′] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐻𝑖 ◦ 𝐾𝑖] ∥ Π𝑖∈𝐼M′
𝑖

where

𝐻𝐾𝑖𝑙 = p?{𝜆 𝑗 .h𝑖𝑙 ′ !𝜆 𝑗 .𝐻 ′
𝑗
◦ 𝐾 ′

𝑗
} 𝑗∈ 𝐽

𝐻𝐾𝑖𝑙 ′ = h𝑖𝑙 ?{𝜆 𝑗 .q!𝜆 𝑗 .𝐻 ′′
𝑗
◦ 𝐾 ′′

𝑗
} 𝑗∈ 𝐽 ′′

By coinduction the typings (1), (2), (3) and the statement (4) imply

that, for all 𝑗 ∈ 𝐽 ′,
G★
𝑗
⊢ p[𝑃 𝑗] ∥ h𝑖𝑙 [𝐻 ′

𝑗
◦ 𝐾 ′

𝑗
] ∥ h𝑖𝑙 ′ [𝐻 ′′

𝑗
◦ 𝐾 ′′

𝑗
] ∥ q[𝑄 𝑗] ∥ M′

whereM′ ≡ M′′
𝑖𝑙
∥ M′′

𝑖𝑙 ′
∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐻𝑖 ◦ 𝐾𝑖] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }M

′
𝑖
.

We have then the derivation given in Figure 8, where we only

show the processes which are modified from the premises to the

conclusion.

Clause 2. In this case from G𝑖𝑙 ⊢ M𝑖𝑙 we get

M𝑖𝑙 ≡ p[q!{𝜆 𝑗 .𝑃 𝑗 } 𝑗∈ 𝐽] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ′] ∥ h𝑖𝑙 [𝐻𝑖𝑙] ∥ M′′
𝑖𝑙

with 𝐽 ⊆ 𝐽 ′ and

G′
𝑗 ⊢ p[𝑃 𝑗] ∥ q[𝑄 𝑗] ∥ h𝑖𝑙 [𝐻𝑖𝑙] ∥ M′′

𝑖𝑙
for all 𝑗 ∈ 𝐽 (5)

By coinduction, the typing (5) implies for all 𝑗 ∈ 𝐽
Ĝ𝑗 ⊢ p[𝑃 𝑗] ∥ q[𝑄 𝑗] ∥ M′′

𝑖𝑙
∥ Π𝑖∈𝐼h𝑖 [𝐻𝑖 ◦ 𝐾𝑖] ∥ Π𝑖∈𝐼\{𝑖𝑙 }M

′
𝑖

where Ĝ𝑗 = G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 } • G
′
𝑗
,G). Then we can derive

Ĝ𝑗 ⊢ p[𝑃 𝑗] ∥ q[𝑄 𝑗] ∥ · · · ∀𝑗 ∈ 𝐽
p → q : 𝜆 𝑗 .Ĝ𝑗 ⊢ p[q!{𝜆 𝑗 .𝑃 𝑗 } 𝑗∈ 𝐽] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ′] ∥ · · ·

where we only show the processes which are modified from the

premises to the conclusion.

Clause 3. Trivial.
We conclude the proof by showing that the function G is total.

Note that, when clause 1 is applied, the typings (1), (2), (3) and the

statement (4) imply that the conditions required by Lemma 3.15

remain valid for the global types G′
𝑗
, G′′

𝑗
, Ĝ𝑗 and the corresponding

multiparty sessions for all 𝑗 ∈ 𝐽 ′. When clause 2 is applied the typ-

ing (5) implies that the conditions required by Lemma 3.15 remain

valid for the global types G′
𝑗
and the corresponding multiparty

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko Yoshida

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

sessions for all 𝑗 ∈ 𝐽 .
Let G𝑖𝑚 be locked for G in the list ⟨G𝑖 ⟩𝑖∈𝐼 for all𝑚 < 𝑙 and G𝑖𝑙 be

unlocked. If h𝑖𝑙 ∈ hd(G𝑖𝑙) and hd(G) = {𝑖𝑙 , 𝑖𝑙 ′ } for some 𝑖𝑙 ′ ∈ 𝐼 and
h𝑖𝑙 ′ ∈ hd(G𝑖𝑙 ′), then Lemma 3.15 ensures that G𝑖𝑙 , G𝑖𝑙 ′ and G have

the shapes required in clause 1, possibly exchanging inputs and

outputs. If h𝑖𝑙 ∉ hd(G𝑖𝑙), then clause 2 applies. Lastly 𝐼 = ∅ implies

G = End, so clause 3 applies. □

4 TYPE INFERENCE
The effectiveness of PaI multicomposition relies on the following

facts:

(1) the possible choices of participants to be replaced by gate-

ways are finite;

(2) there is a finite number of interfacing policies for a given

session;

(3) global types for sessions can be inferred, if any.

Facts (1) and (2) are clear from the previous sections. In this

section we describe an algorithm to infer global types for sessions,

by adapting to synchronous communication the algorithm of [16]

in order to handle matching of input and output processes.

Since global types are regular terms, we represent them as finite

systems of regular syntactic equations [1, 15]. We prove soundness

and completeness of the algorithm with respect to the typing sys-

tem: when applied to a sessionM, it finds all and only those global

types that can be derived forM, if any. Note that, since a session

may have more than one global type, to be complete, the algorithm

needs to be non-deterministic.

The algorithm follows the structure of coSLD resolution of coin-

ductive logic programming [2, 33–35], namely the extension of

SLD resolution capable to deal with regular infinite terms and coin-

ductive predicates. The key idea, borrowed from coinductive logic

programming, is to keep track of already encountered variables to

detect cycles and avoid non-termination.

A global-type pattern is a finite term generated by the following

grammar.

G ::= End | p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 | 𝑋

where𝑋 is a variable taken from a countably infinite set. We denote

by vars(G) the set of variables occurring in G. A substitution 𝜃 is

a finite partial map from variables to global types. We denote by

G𝜃 the application of 𝜃 to G. Note that, if vars(G) ⊆ dom(𝜃), then
G𝜃 is a global type. An equation has shape 𝑋 ≖ G and a (regular)
system of equations E is a finite set of equations such that 𝑋 ≖ G1
and 𝑋 ≖ G2 ∈ E imply G1 = G2. We denote by vars(E) the set
{𝑋 | 𝑋 ≖ G ∈ E}. A solution of a system E is a substitution 𝜃 such

that vars(E) ⊆ dom(𝜃) and, for all 𝑋 ≖ G ∈ E, 𝜃 (𝑋) = G𝜃 holds.

We denote by sol (E) the set of all solutions of E. Note that E1 ⊆ E2

implies sol (E2) ⊆ sol (E1).
The algorithm takes in input a goal (a pair (𝑋,M)) and either

fails or returns a set of equations E such that the solution for the

variable𝑋 in E is a global type for the sessionM. Rules defining the

inference algorithm are reported in Figure 9. Inference judgements

are of the shape S ⊢ (𝑋,M) ⇒ E, where S is a set of goals;

variables in S are pairwise distinct and different from 𝑋 .

For a terminated session the algorithm returns one equation

𝑋 ≖ End (Rule [A-End]). For other sessions (Rule [A-Comm]) the algo-

rithm selects one of the matching pairs: 𝑃 = q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 and 𝑄 =

p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 , with 𝐼 ⊆ 𝐽 . The algorithm continues analysing all

matching branches 𝑃𝑖 and 𝑄𝑖 . After having evaluated subsessions,

the algorithm collects all the resulting equations plus another one

for the current variable. The freshness condition on variables 𝑌𝑖
ensures that the resulting set E is a regular system of equations. The

side condition on participants ensures that the resulting global type

associated with 𝑋 satisfies the conditions on participants required

by Rule [Comm] in Definition 2.8. The set prt(S; E;G) is defined
as the set of participants of a global type, but with the following

additional clause to handle variables:

prt(S; E;𝑋) =

prt(S; E;G) if 𝑋 ≖ G ∈ E
prt(M) if 𝑋 ∉ dom(E) and (𝑋,M) ∈ S
∅ otherwise

Finally, Rule [A-Cycle] detects cycles: if the session in the current

goal appears also in S, the algorithm can stop and return just one

equation that unifies two variables.

Example 4.1 (Inference). Figure 10 shows the application of the

rules of Figure 9 to the session of Example 2.3, where

S1 = (𝑋, h1 [𝐻1] ∥ p[𝑃])
S2 = S1, (𝑌1, h1 [p?react. 𝐻 ′

1
] ∥ p[h1!react. 𝑃1])

S3 = S2, (𝑌2, h1 [𝐻 ′
1
] ∥ p[𝑃1])

S4 = S3, (𝑌3, h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃])
S5 = S3, (𝑌4, h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃])
E6 = {𝑌6 ≖ 𝑋 }
E5 = {𝑌5 ≖ 𝑋 }
E4 = {𝑌4 ≖ p → h1:img. 𝑌6} ∪ E6

E3 = {𝑌3 ≖ p → h1:img. 𝑌5} ∪ E5

E2 = {𝑌2 ≖ p → h1:{rc. 𝑌3, nc.𝑌4}} ∪ E3 ∪ E4

E1 = {𝑌1 ≖ p → h1:react. 𝑌2} ∪ E2

E = {𝑋 ≖ h1 → p:start. 𝑌1} ∪ E1

The sets of goals and equations above are listed according to the

order in which they are produced in a possible execution of the

algorithm implicitely described by the rules of Figure 9.

It is easy to verify that a solution is the global type given in Exam-

ple 2.10. It is then useful to compare Figure 10 with Figure 3. ⋄

Some definitions are handy. We denote by 𝜃 +𝜎 the union of two

substitutions such that 𝜃 (𝑋) = 𝜎 (𝑋), for all 𝑋 ∈ dom(𝜃) ∩dom(𝜎).
We denote by vars(E) the set

⋃{vars(G) ∪ {𝑋 } | 𝑋 ≖ G ∈ E}.
We define 𝜃 ⪯ 𝜎 if dom(𝜃) ⊆ dom(𝜎) and 𝜃 (𝑋) = 𝜎 (𝑋), for
all 𝑋 ∈ dom(𝜃). Let E be a system of equations and S a set of

goals. A solution 𝜃 ∈ sol (E) agrees with S if (𝑋,M) ∈ S implies

prt(𝜃 (𝑋)) = prt(M) for all 𝑋 ∈ vars(E). We denote by solS (E)
the set of all solutions of E agreeing with S. We say that a system

of equations E is guarded if 𝑋 ≖ 𝑌 and 𝑌 ≖ G in E imply that G is

not a variable. Finally, E is S-closed if it is guarded and dom(E) ∩
vars(S) = ∅ and vars(E) \ dom(E) ⊆ vars(S).

Toward proving properties of the inference algorithm, we check

a couple of auxiliary lemmas.

As usual S ⊢ (𝑋,M) ⇒ E means that this judgment belongs to

a derivation in the system of Figure 9 having a judgment with an

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Multicompatibility for Multiparty-Session Composition PPDP 2023, October 22–23, 2023, Lisboa, Portugal

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[A-Cycle]

S, (𝑌,M) ⊢ (𝑋,M) ⇒ {𝑋 ≖ 𝑌 }
[A-End]

S ⊢ (𝑋, p[0]) ⇒ {𝑋 ≖ End}

[A-Comm]

S′ ⊢ (𝑌𝑖 , p[𝑃𝑖] ∥ q[𝑄𝑖] ∥ M) ⇒ E𝑖 ∀𝑖 ∈ 𝐼
S ⊢ (𝑋, p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽] ∥ M) ⇒ E

S′ = S, (𝑋, p[𝑃] ∥ q[𝑄] ∥ M) 𝐼 ⊆ 𝐽

𝑌𝑖 fresh ∀𝑖 ∈ 𝐼 E = {𝑋 ≖ p → q : {𝜆𝑖 .𝑌𝑖 }𝑖∈𝐼 } ∪
⋃

𝑖∈𝐼 E𝑖

prt(S′
; E𝑖 ;𝑌𝑖) \ {p, q} = prt(M) ∀𝑖 ∈ 𝐼

Figure 9: Rules of the inference algorithm.

[A-Cycle]

S4 ⊢ (𝑌5, h1 [𝐻1] ∥ p[𝑃]) ⇒ E5

[A-Comm]

S3 ⊢ (𝑌3, h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃]) ⇒ E3

[A-Cycle]

S5 ⊢ (𝑌6, h1 [𝐻1] ∥ p[𝑃]) ⇒ E6

[A-Comm]

S3 ⊢ (𝑌4, h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃]) ⇒ E4

[A-Comm]

S2 ⊢ (𝑌2, h1 [𝐻 ′
1
] ∥ p[𝑃1]) ⇒ E2

[A-Comm]

S1 ⊢ (𝑌1, h1 [p?react. 𝐻 ′
1
] ∥ p[h1!react. 𝑃1]) ⇒ E1

[A-Comm]

⊢ (𝑋, h1 [𝐻1] ∥ p[𝑃]) ⇒ E

Figure 10: Type inference for the session of Example 2.3.

empty sets of goals as conclusion (namely it represents the result

of a recursive call during the execution of our algorithm).

Lemma 4.2. If S ⊢ (𝑋,M) ⇒ E, then E is S-closed.

Proof. By induction on the derivation of S ⊢ (𝑋,M) ⇒ E. □

Lemma 4.3. If E is anS-closed system of equations and vars(G) ⊆
vars(E), then prt(S; E;G) = prt(G𝜃) for all 𝜃 ∈ solS (E).

Proof. To prove the inclusion prt(G𝜃) ⊆ prt(S; E;G), let p ∈
prt(G𝜃). We show p ∈ prt(S; E;G) by induction on the least dis-

tance 𝑑 of a communication with player p from the root of G𝜃 . First
of all, it is easy to see that there is G′ such that prt(S; E;G) =

prt(S; E;G′) and G𝜃 = G′𝜃 and either G′ = r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
or G′ = 𝑋 and 𝑋 ∉ dom(E). Indeed, we have G ≠ End since

prt(End𝜃) = prt(End) = ∅. First we show that G = 𝑋 ∈ dom(E)
is impossible. In this case 𝑋 ≖ G1 ∈ E and we have G𝜃 = G1𝜃
and prt(S; E;G) = prt(S; E;G1), since 𝜃 is a solution of E. Hence,
again G1 ≠ End and if G1 = 𝑌 ∈ dom(E), namely, 𝑌 ≖ G2 ∈ E, we
have G1𝜃 = G2𝜃 and prt(S; E;G1) = prt(S;E;G2) and, since E is

S-closed and so guarded, we have that G2 is not a variable.
Case 𝑑 = 0. If G′ = 𝑋 ∉ dom(E), then (𝑋,M) ∈ S and

prt(S; E;G′) = prt(M). Since 𝜃 agrees with S, we have prt(G′𝜃) =
prt(𝜃 (𝑋)) = prt(M), hence p ∈ prt(S; E;G′).
If G′ = r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 , then G′𝜃 = r → s : {𝜆𝑖 .G𝑖𝜃 }𝑖∈𝐼 and
p ∈ prt(G′) = prt(G′𝜃). By definition we have prt(S; E;G′) =

prt(G′) ∪⋃
𝑖∈𝐼 prt(S, E,G𝑖), hence p ∈ prt(S; E;G′).

Case 𝑑 > 0. If G′ = 𝑋 ∉ dom(E), the proof is as above. If

G′ = r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 , then p ∉ hd(G′𝜃), hence p ∉ {r, s}.
We have G′𝜃 = r → s : {𝜆𝑖 .G𝑖𝜃 }𝑖∈𝐼 and there is 𝑙 ∈ 𝐼 such

that p ∈ prt(G𝑙𝜃) and the distance decreases. Then, by induction

hypothesis, we get p ∈ prt(S; E;G𝑙) ⊆ prt(S; E;G′), as needed.
To prove the other inclusion, prt(S; E;G) ⊆ prt(G𝜃), we just

have to check that the sets prt(G𝜃) respect the equations defining
prt(S; E;G). All cases are trivial except for G = 𝑋 . If 𝑋 ∈ dom(E),
that is, 𝑋 ≖ G′ ∈ E, then G𝜃 = 𝜃 (𝑋) = G′𝜃 , hence prt(G𝜃) =

prt(G′𝜃), as needed. Otherwise, 𝑋 ∈ vars(S), that is, (𝑋,M) ∈

S, hence prt(S; E;G) = prt(M). Since 𝜃 agrees with S, we have
prt(G𝜃) = prt(𝜃 (𝑋)) = prt(M), as needed. □

To show soundness and completeness of our inference algorithm,

it is handy to formulate an inductive version of our typing rules,

see Figure 11, where N ranges over sets of pairs (M,G). We can

give an inductive formulation since all infinite derivations using the

typing rules of Definition 2.8 are regular, i.e. the number of different

subtrees of a derivation for a judgement G ⊢ M is finite. In fact, it

is bounded by the product of the number of different subterms of

G and the number of different subnetworks ofM, which are both

finite as G and (processes in)M are regular. Applying the standard

transformation according to [31, Section 21.9] from a coinductive to

an inductive formulation we get the typing rules shown in Figure 11.

Example 4.4 (Inductive formulation). The inductive formulation

of the derivation in Figure 3 is shown in Figure 12, where

N ′ = (h1 [𝐻1] ∥ p[𝑃],G1),
(h1 [p?react. 𝐻 ′

1
] ∥ p[h1!react. 𝑃1], p → h1:react.G′

1
),

(h1 [𝐻 ′
1
] ∥ p[𝑃1],G′

1
)

N = N ′, (h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃], h1 → p:img.G1) ⋄

In the following two lemmas we relate inference and inductive

derivability.

Lemma 4.5. If S ⊢ (𝑋,M) ⇒ E and 𝜃 (𝑋) is bounded, then
S𝜃 ⊢i M : 𝜃 (𝑋)

for all 𝜃 ∈ solS (E) such that vars(S) ⊆ dom(𝜃).

Proof. By induction on the derivation of S ⊢ (𝑋,M) ⇒ E.
Rule [A-End]. We have E = {𝑋 ≖ End}, hence 𝜃 (𝑋) = End and

the thesis follows by Rule [I-End].

Rule [A-Cycle]. We have E = {𝑋 ≖ 𝑌 } and S = S′, (𝑌,M). Then,
𝜃 (𝑋) = 𝜃 (𝑌) and the thesis follows by Rule [I-Cycle].

Rule [A-Comm]. We have

M ≡ p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽] ∥ M′

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko Yoshida

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[I-Cycle]

N , (M,G) ⊢i M : G
[I-End]

N ⊢i p[0] : End

[I-Comm]

N , (M,G) ⊢i p[𝑃𝑖] ∥ q[𝑄𝑖] ∥ M′
: G𝑖

prt(G𝑖) \ {p, q} = prt(M′) ∀𝑖 ∈ 𝐼
N ⊢i M : G

G = p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
M = p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{𝜆𝑗 .𝑄 𝑗 } 𝑗 ∈ 𝐽] ∥ M′

Figure 11: Inductive typing rules for sessions.

N ⊢i h1 [𝐻1] ∥ p[𝑃] : G1

N ′ ⊢i h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃] : h1 → p:img.G1

N ⊢i h1 [𝐻1] ∥ p[𝑃] : G1

N ′ ⊢i h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃] : h1 → p:img.G1

(h1 [𝐻1] ∥ p[𝑃],G1), (h1 [p?react. 𝐻 ′
1
] ∥ p[h1!react. 𝑃1], p → h1:react.G′

1
) ⊢i h1 [𝐻 ′

1
] ∥ p[𝑃1]:G′

1

(h1 [𝐻1] ∥ p[𝑃],G1) ⊢i h1 [p?react. 𝐻 ′
1
] ∥ p[h1!react. 𝑃1] : p → h1:react.G′

1

⊢i h1 [𝐻1] ∥ p[𝑃] : G1

Figure 12: Inductive derivation for Example 2.10.

with 𝐼 ⊆ 𝐽 and S, (𝑋,M) ⊢ (𝑌𝑖 ,M𝑖) ⇒ E𝑖 with 𝑌𝑖 fresh andM𝑖 ≡
p[𝑃𝑖] ∥ q[𝑄𝑖] ∥ M′

and prt(S, (𝑋,M); E𝑖 ;𝑌𝑖)\{p, q} = prt(M′) for
all 𝑖 ∈ 𝐼 and E = {𝑋 ≖ p → q : {𝜆𝑖 .𝑌𝑖 }𝑖∈𝐼 } ∪

⋃
𝑖∈𝐼 E𝑖 . Since E𝑖 ⊆

E, we have 𝜃 ∈ sol (E𝑖). Being 𝜃 ∈ solS (E), Lemma 4.3 implies

prt(S; E;𝑋) = prt(M). So we get that 𝜃 agrees with S, (𝑋,M).
Then, by induction, we have S𝜃, (M, 𝜃 (𝑋)) ⊢i M𝑖 : 𝜃 (𝑌𝑖) for all
𝑖 ∈ 𝐼 . The thesis follows by Rule [I-Comm], since

𝜃 (𝑋) = p → q : {𝜆𝑖 .𝜃 (𝑌𝑖)}𝑖∈𝐼
and prt(S, (𝑋,M);E𝑖 ;𝑌𝑖) \ {p, q} = prt(M′) imply

prt(𝜃 (𝑌𝑖)) \ {p, q} = prt(M′)

for all 𝑖 ∈ 𝐼 by Lemma 4.3. □

Lemma 4.6. If N ⊢i M : G and prt(G′) = prt(M′) for all
(G′,M′) ∈ N , then, for all S, 𝑋 and 𝜎 such that 𝑋 ∉ vars(S),
dom(𝜎) = vars(S) and S𝜎 = N , there are E and 𝜃 such that
S ⊢ (𝑋,M) ⇒ E and𝜃 ∈ solS (E) and dom(𝜃) = vars(E)∪vars(S)
and 𝜎 ⪯ 𝜃 and 𝜃 (𝑋) = G.

Proof. By induction on the derivation of N ⊢i M : G.
Rule[I-End]. The thesis is immediate by Rule [A-End] taking 𝜃 =

𝜎 + {𝑋 ↦→ End}.
Rule [I-Cycle]. We have N = N ′, (M,G), then S = S′, (𝑌,M)

and 𝜎 (𝑌) = G. By Rule [A-Cycle], we get S ⊢ (𝑋,M) ⇒ {𝑋 ≖ 𝑌 },
hence 𝜃 = 𝜎 + {𝑋 ↦→ G} is a solution of {𝑋 ≖ 𝑌 }, which agrees

with S being prt(G) = prt(M), as needed.
Rule [I-Comm]. In this case we have

M ≡ p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽] ∥ M′

with 𝐼 ⊆ 𝐽 and G = p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 and N , (M,G) ⊢i M𝑖 : G𝑖

with M𝑖 ≡ p[𝑃𝑖] ∥ q[𝑄𝑖] ∥ M′
and prt(G𝑖) \ {p, q} = prt(M′),

for all 𝑖 ∈ 𝐼 . This last condition implies prt(G) = prt(M). Set 𝜎′ =
𝜎 + {𝑋 ↦→ G} and S′ = S, (𝑋,M), then, by induction hypothesis,

we get that there are E𝑖 and 𝜃𝑖 such that S′ ⊢ (𝑌𝑖 ,M𝑖) ⇒ E𝑖 and
𝜃𝑖 ∈ solS′ (E𝑖) and dom(𝜃𝑖) = vars(E𝑖) ∪ vars(S′) and 𝜎′ ⪯ 𝜃𝑖
and 𝜃𝑖 (𝑌𝑖) = G𝑖 , for all 𝑖 ∈ 𝐼 . We can assume that 𝑗 ≠ 𝑙 implies

𝑌𝑗 ≠ 𝑌𝑙 and dom(E 𝑗) ∩ dom(E𝑙) = ∅ for all 𝑗, 𝑙 ∈ 𝐼 , because the
algorithm always introduces fresh variables. This implies dom(𝜃 𝑗)∩

dom(𝜃𝑙) = vars(S′) for all 𝑗 ≠ 𝑙 , and so 𝜃 =
∑
𝑖∈𝐼 𝜃𝑖 is well defined.

Moreover, we have 𝜃 ∈ solS′ (E𝑖) and 𝜎 ⪯ 𝜃 and 𝜃 (𝑋) = G, as
𝜎 ⪯ 𝜎′ and 𝜎′ ⪯ 𝜃𝑖 ⪯ 𝜃 for all 𝑖 ∈ 𝐼 . From prt(G𝑖) \ {p} = prt(M′)
we get prt(S′

; E𝑖 ;𝑌𝑖) \ {p, q} = prt(M′) for all 𝑖 ∈ 𝐼 by Lemma 4.3.

By Rule [A-Comm] we get S ⊢ (𝑋,M) ⇒ E with

E = {𝑋 ≖ p → q : {𝜆𝑖 .𝑌𝑖 }𝑖∈𝐼 } ∪
⋃

𝑖∈𝐼 E𝑖

and 𝜃 ∈ solS (E), since
𝜃 (𝑋) = p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 = p → q : {𝜆𝑖 .𝜃𝑖 (𝑌𝑖)}𝑖∈𝐼

= (p → q : {𝜆𝑖 .𝑌𝑖 }𝑖∈𝐼)𝜃

and 𝜎 ⪯ 𝜃 . □

Soundness and completeness state that the inference algorithm

applied to a session finds all and only the global types which, if

bounded, can be assigned to the session.

Theorem 4.7 (Soundness and Completeness of Inference).

(1) If ⊢ (𝑋,M) ⇒ E, then 𝜃 (𝑋) ⊢ M for all 𝜃 ∈ sol (E) such
that 𝜃 (𝑋) is bounded.

(2) If G ⊢ M, then there are E and 𝜃 such that ⊢ (𝑋,M) ⇒ E
and 𝜃 ∈ sol (E) and 𝜃 (𝑋) = G.

Proof. (1). By Lemma 4.5 ⊢ (𝑋,M) ⇒ E implies ⊢i M : 𝜃 (𝑋) for
all 𝜃 ∈ sol (E). This is enough, since ⊢i M : 𝜃 (𝑋) gives 𝜃 (𝑋) ⊢ M.

(2). From G ⊢ M we get ⊢i M : G. By Lemma 4.6 this implies

that there are E and 𝜃 such that ⊢ (𝑋,M) ⇒ E and 𝜃 ∈ sol (E) and
𝜃 (𝑋) = G. □

Remark 4.8 (Termination). To avoid non-termination, the key

idea, borrowed from coinductive logic programming, is to keep

track of already encountered goals to detect cycles.

As it happens for (co)SLD-resolution in logic programming, the

termination of our inference algorithm depends on the choice

of a resolution strategy. Indeed, we have many sources of non-

determinism: we have to pick two participants of the session with

matching processes and expand them using Rule [A-Comm], or try to

close a cycle using the Rule [A-Cycle]. A standard way to obtain a

sound and complete resolution strategy is to build a tree where all

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Multicompatibility for Multiparty-Session Composition PPDP 2023, October 22–23, 2023, Lisboa, Portugal

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

such choices are performed in parallel and then visit the tree using

a breadth-first strategy. The tree is potentially infinite in depth, but

it is finitely branching, since at each point we have only finitely

many different choices, hence this strategy necessarily finds all

solutions. In case no rule can be applied, the algorithm fails. ⋄

5 CONCLUSION AND RELATEDWORK
In the present paper we have addressed the problem of multiple
protocol composition for MPSTs [14, 18, 21, 22, 32, 37] using the

calculus and the type system defined in [4]. We extended the PaI

approach devised in [3] and exploited in [5] for binary composition

of MPSTs. By binary composition, however, only tree-like struc-

tures can be obtained, leaving out many compositional possibilities.

In [4] the PaI approach for MPSTs was adapted to multiple compo-

sition in a client-server setting, where many server-sessions can

be “connected” to just one client-session. In the present paper, in-

stead, all the sessions to be composed are peers and their gateways

can freely interact. This was achieved by introducing the notion

of multicompatibility, which boils down to identifying a typable
“interfacing policy” (a session describing how gateways interact).

The gateways connecting the various sessions are hence defined

in terms of such interfacing policy. We proved that lock-freedom

(ensured by typability) is preserved by composition. It is worth

remarking that, as shown by a simple working example, one could

have many typable interfacing policies to choose among.

A different approach to composition for MPST is taken in [36],

where sessions with missing participants can be typed and com-

posed when types are compatible. A limit of that work is that only

finite processes are considered.

The formalism ofMPSTs used for our investigation can be dubbed

as bottom-up: no projection is used and sessions are checked against
global types by means of a type assignment system. Multicompo-

sition in a top-down MPST setting has instead been recentely ad-

dressed in [19]. In a top-down MPST, communication protocols are

explicity described as global types and, subsequently, by projecting

them, local types are obtained for implementation. The present

paper and [19] address then multicomposition from two orthogonal

perspectives. In a sense, however, they both exploit the general

idea of ensuring safe multicomposition by means of a safe inter-
facing policy. As a matter of fact, the “traditional” syntax of global

types is extended in [19] in order to explicitely describe an inter-

facing policy inside the global types themselves. Its projectability

enables hence to apply a composition operation at the global type

level. Unlike our approach, the interfacing policy that “drives” the

composition is rigid in the sense that it is univocally determined

by the global types to be composed. The main advantage of our

approach over [19] is hence the possibility of choosing among dif-

ferent interfacing policies for the same set of sessions. On the other

hand, however, [19] possesses the relevant and expressive feature

of enabling more than a single interface in a session.

In [23] the author devises a type assignement system in logical

form for sessions, where just one type is present, processes are

unnamed and communications are performed through an (implicit)

single channel. Deadlock-freedom is ensured by typability only in

case the session enjoys a race-freedom condition. In such a context

the composition of two sessions with single interfaces corresponds

to a particular form of Cut rule, where compatibility corresponds to

duality. Thanks to the presence of a single communication channel

and to the absence of process names, sessions can be composed by

simply removing the interfaces. It is not possible of course to get any

explicit global information about the behaviour of sessions because

just one type is present. The setting of the present paper, by using

global types, process names and multiple point-to-point channels

is however definitely more expressive and realistic. Our notion of

compatibility cannot reduce to duality and the use of interfacing

policies enables to finely control the operation of composition.

In [11], forwarders are introduced in a Linear Logic interpre-

tation of a MPST formalism. Such forwarders are in a proofs-as-

processes correspondence with coherence proofs, where coherence

is the multiparty counterpart of (binary) duality. Forwarders can be

safely composed through cut elimination, so allowing to “compose”

two concurrent sessions. The precise relationship between the for-

warders of [11] and our gateways is worth investigating. Besides,

our multiple composition through interfacing policies could have a

logical counterpart enabling to compose multiple forwarders.

By suitably combining the notions of multicompatibililty of the

present paper and the one in [19], one could avoid to extend the

syntax of global types as done in [19], retaining at the same time the

possibility of having several possible interfacing policies to choose

among, as in the present paper. Moreover, the result of the present

paper could be extended to the case of more than one interface in

the sessions to be composed.

In Remark 3.14 a simple (decidable) extension of the gateways,

so that they can perform also some “message renaming”, has been

discussed. This idea could actually be pushed further, investigating

the possibility of reordering messages, so implicitly introducing

a form of asynchronous subtyping between gateways. This should

be done with care, since in general asynchronous subtyping is

undecidable, as shown in [10, 28].

The idea underlying our multicomposition is likely to be appli-

cable in future to other frameworks. The works in [26] and [18]

explicitly give algorithms for the synthesis of global types from

communicating finite-state machines, while [27] proposes a simi-

lar method to build graphical choreographies, expressed as global

graphs. [32] develops instead a framework where global types are

not necessary, relying on model and type checking techniques for

verifying safety properties of collections of local types. Our notion

of interfacing policy could be adapted to such frameworks. Then

we could investigate whether the synthesis of global types/global

graphs or the verification of properties via type checking does

“lift” from the components to the composed session, proviso a type

synthesis or checking is provided for the chosen interfacing policy.

MPSTs are characterised by the implicit or explicit presence of

tools for checking/verifying session properties (type assignment,

projectability, type checking, etc.). The application of safe com-

positional methods can however be investigated independently

from such tools. This has been done for the formalism of CFSMs

in [3, 6, 7] using the PaI approach for binary composition. Suitable

adaptations of the notions of interfacing policy and multicompati-

bility could be hopefully devised in such setting. As future work

we also plan to consider composition of MPSTs with asynchronous

communications, taking advantage from the more liberal syntax of

global types introduced in [12].

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko Yoshida

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

ACKNOWLEDGMENTS
We wish to gratefully thank the anonymous reviewers for their

thoughtful and helpful comments. This research was partially

funded by EPSRCEP/T006544/2, EP/K011715/1, EP/K034413/1, EP/L00058X/1,

EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1,

NCSS/EPSRC VeTSS and EU Horizon TaRDIS, 101093006. The first

author was partially supported by the Project “National Center

for HPC, Big Data e Quantum Computing”, Programma M4C2 –

dalla ricerca all’impresa – Investimento 1.3: Creazione di “Parte-

nariati estesi alle università, ai centri di ricerca, alle aziende per

il finanziamento di progetti di ricerca di base” – Next Generation

EU; by the Piano Triennale Ricerca Pia.Ce.Ri UniCT; and by project

ATRASIoT.

REFERENCES
[1] Jirí Adámek, Stefan Milius, and Jiri Velebil. 2006. Iterative algebras at work.

Mathematical Structures in Computer Scienc 16, 6 (2006), 1085–1131. https:

//doi.org/10.1017/S0960129506005706

[2] Davide Ancona and Agostino Dovier. 2015. A theoretical perspective of coin-

ductive logic programming. Fundamenta Informaticae 140, 3-4 (2015), 221–246.
https://doi.org/10.3233/FI-2015-1252

[3] Franco Barbanera, Ugo de’Liguoro, and Rolf Hennicker. 2019. Connecting open

systems of communicating finite state machines. Journal of Logical and Algebraic
Methods in Programming 109 (2019), 100476. https://doi.org/10.1016/j.jlamp.2019.

07.004

[4] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro.

2022. Open compliance in multiparty sessions. In FACS (LNCS, Vol. 13712),
S. Lizeth Tapia Tarifa and José Proença (Eds.). Springer, Berlin, 222–243. https:

//doi.org/10.1007/978-3-031-20872-0_13 extended version at http://www.di.unito.

it/~dezani/papers/bd23b.pdf.

[5] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese, and Emilio

Tuosto. 2021. Composition and decomposition of multiparty sessions. Journal
of Logic and Algebraic Methods in Programming 119 (2021), 100620. https:

//doi.org/10.1016/j.jlamp.2020.100620

[6] Franco Barbanera, Ivan Lanese, and Emilio Tuosto. 2020. Composing communi-

cating systems, synchronously. In ISoLA (LNCS, Vol. 12476), Tiziana Margaria

and Bernhard Steffen (Eds.). Springer, Berlin, 39–59. https://doi.org/10.1007/978-

3-030-61362-4_3

[7] Franco Barbanera, Ivan Lanese, and Emilio Tuosto. 2022. Formal choreographic

languages. In COORDINATION (LNCS, Vol. 13271), Maurice H. ter Beek and

Marjan Sirjani (Eds.). Springer, Berlin, 121–139. https://doi.org/10.1007/978-3-

031-08143-9_8

[8] Franco Barbanera, Ivan Lanese, and Emilio Tuosto. 2022. On composing com-

municating systems. In ICE (EPTCS, Vol. 365), Clément Aubert, Cinzia Di Giusto,

Larisa Safina, and Alceste Scalas (Eds.). Open Publishing Association, Waterloo,

53–68. https://doi.org/10.4204/EPTCS.365.4

[9] Daniel Brand and Pitro Zafiropulo. 1983. On communicating finite-state ma-

chines. Journal of ACM 30, 2 (1983), 323–342. https://doi.org/10.1145/322374.

322380

[10] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2017. Undecidability

of asynchronous session subtyping. Information and Computation 256 (2017),

300–320. https://doi.org/10.1016/j.ic.2017.07.010

[11] Marco Carbone, Sonia Marin, and Carsten Schürmann. 2021. Synchronous

forwarders. CoRR abs/2102.04731 (2021), 44 pages. arXiv:2102.04731 https:

//arxiv.org/abs/2102.04731

[12] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2021.

Global types and event structure semantics for asynchronous multiparty sessions.

https://doi.org/10.48550/ARXIV.2102.00865

[13] David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. 2021.

Zooid: a DSL for certified multiparty computation: from mechanised metatheory

to certified multiparty processes. In PLDI, Stephen N. Freund and Eran Yahav

(Eds.). ACM, New York, NY, 237–251. https://doi.org/10.1145/3453483.3454041

[14] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko

Yoshida. 2015. A gentle introduction to multiparty asynchronous session types. In

SFM (LNCS, Vol. 9104), Marco Bernardo and Einar Broch Johnsen (Eds.). Springer,

Berlin, 146–178. https://doi.org/10.1007/978-3-319-18941-3_4

[15] Bruno Courcelle. 1983. Fundamental properties of infinite trees. Theoretical
Computer Science 25 (1983), 95–169. https://doi.org/10.1016/0304-3975(83)90059-

2

[16] Francesco Dagnino, Paola Giannini, and Mariangiola Dezani-Ciancaglini. 2023.

Deconfined global types for asynchronous sessions. Logical Methods in Computer
Science Volume 19, Issue 1 (2023), 1–41. https://doi.org/10.46298/lmcs-19(1:3)2023

[17] Romain Demangeon and Kohei Honda. 2012. Nested protocols in session types.

In CONCUR (LNCS, Vol. 7454), Maciej Koutny and Irek Ulidowski (Eds.). Springer,

Berlin, 272–286. https://doi.org/10.1007/978-3-642-32940-1_20

[18] Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty compatibility in

communicating automata: characterisation and synthesis of global session types.

In ICALP, Fedor V. Fomin, Rūsin, š Freivalds, Marta Kwiatkowska, and David Peleg

(Eds.). Springer, Berlin, 174–186. https://doi.org/10.1007/978-3-642-39212-2_18

[19] Lorenzo Gheri and Nobuko Yoshida. 2023. Hybrid Multiparty Session Types:

Compositionality for Protocol Specification through Endpoint Projection. Proc.
ACM Program. Lang. 7, OOPSLA1, Article 79 (2023), 31 pages. https://doi.org/10.

1145/3586031

[20] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko

Yoshida. 2011. Scribbling interactions with a formal foundation. In ICDCIT (LNCS,
Vol. 6536), Raja Natarajan and Adegboyega Ojo (Eds.). Springer, Berlin, 55–75.

https://doi.org/10.1007/978-3-642-19056-8_4

[21] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchro-

nous session types. In POPL, George C. Necula and Philip Wadler (Eds.). ACM

Press, New York, NY, 273–284. https://doi.org/10.1145/1328897.1328472

[22] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty asyn-

chronous session types. Journal of the ACM 63, 1 (2016), 9:1–9:67. https:

//doi.org/10.1145/2827695

[23] Ross Horne. 2020. Session subtyping and multiparty compatibility using circular

sequents. In CONCUR (LIPIcs, Vol. 171), Igor Konnov and Laura Kovács (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, 12:1–12:22. https:

//doi.org/10.4230/LIPIcs.CONCUR.2020.12

[24] Naoki Kobayashi. 2002. A type system for lock-free processes. Information and
Computation 177, 2 (2002), 122–159. https://doi.org/10.1006/inco.2002.3171

[25] Dexter Kozen and Alexandra Silva. 2017. Practical Coinduction. Mathematical
Structures in Computer Science 27, 7 (2017), 1132–1152. https://doi.org/10.1017/

S0960129515000493

[26] Julien Lange and Emilio Tuosto. 2012. Synthesising choreographies from local

session types. In CONCUR (LNCS, Vol. 7454), Maciej Koutny and Irek Ulidowski

(Eds.). Springer, Berlin, 225–239. https://doi.org/10.1007/978-3-642-32940-1_17

[27] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. 2015. From communicating

machines to graphical choreographies. In POPL, Sriram K. Rajamani and David

Walker (Eds.). ACM Press, New York, NY, 221–232. https://doi.org/10.1145/

2676726.2676964

[28] Julien Lange and Nobuko Yoshida. 2017. On the undecidability of asynchronous

session subtyping. In FOSSACS (LNCS, Vol. 10203), Javier Esparza and Andrzej S.

Murawski (Eds.). Springer, Berlin, 441–457. https://doi.org/10.1007/978-3-662-

54458-7_26

[29] Rumyana Neykova and Nobuko Yoshida. 2019. Featherweight Scribble. InModels,
Languages, and Tools for Concurrent and Distributed Programming: Essays Dedi-
cated to Rocco De Nicola on the Occasion of His 65th Birthday (LNCS, Vol. 11665),
Michele Boreale, Flavio Corradini, Michele Loreti, and Rosario Pugliese (Eds.).

Springer, Berlin, 236–259. https://doi.org/10.1007/978-3-030-21485-2_14

[30] Luca Padovani. 2014. Deadlock and lock freedom in the linear 𝜋 -calculus. In

CSL-LICS, Thomas A. Henzinger and Dale Miller (Eds.). ACM Press, New York,

NY, 72:1–72:10. https://doi.org/10.1007/978-3-662-43376-8_10

[31] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cam-

bridge,MA. I–XXI, 1–623 pages.

[32] Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types

revisited. Proceedings of the ACM on Programming Languages 3, POPL (2019),

30:1–30:29. https://doi.org/10.1145/3290343

[33] Luke Simon. 2006. Extending logic programming with coinduction. Ph. D. Disser-
tation. University of Texas at Dallas.

[34] Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. 2007. Co-Logic pro-

gramming: extending logic programming with coinduction. In ICALP (LNCS,
Vol. 4596), Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki

(Eds.). Springer, Berlin, 472–483. https://doi.org/10.1007/978-3-540-73420-8_42

[35] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. 2006. Coinductive logic

programming. In ICLP (LNCS, Vol. 4079), Sandro Etalle and Miroslaw Truszczyn-

ski (Eds.). Springer, Berlin, 330–345. https://doi.org/10.1007/11799573_25

[36] Claude Stolze, Marino Miculan, and Pietro Di Gianantonio. 2023. Composable

partial multiparty session types for open systems. Software and Systems Modeling
22, 2 (2023), 473–494. https://doi.org/10.1007/s10270-022-01040-x

[37] Nobuko Yoshida and Lorenzo Gheri. 2020. A very gentle introduction to multi-

party session types. In ICDCIT (LNCS, Vol. 11969), Dang VanHung andMeenakshi

D´Souza (Eds.). Springer, Berlin, 73–93. https://doi.org/10.1007/978-3-030-

36987-3_5

[38] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. 2013. The

Scribble protocol language. In TGC (LNCS, Vol. 8358), Martín Abadi and Alberto

Lluch-Lafuente (Eds.). Springer, Berlin, 22–41. https://doi.org/10.1007/978-3-

319-05119-2_3

[39] Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira. 2021. Communicating

finite state machines and an extensible toolchain for multiparty session types. In

FCT (LNCS, Vol. 12867), Evripidis Bampis and Aris Pagourtzis (Eds.). Springer,

Berlin, 18–35. https://doi.org/10.1007/978-3-030-86593-1_2

14

https://doi.org/10.1017/S0960129506005706
https://doi.org/10.1017/S0960129506005706
https://doi.org/10.3233/FI-2015-1252
https://doi.org/10.1016/j.jlamp.2019.07.004
https://doi.org/10.1016/j.jlamp.2019.07.004
https://doi.org/10.1007/978-3-031-20872-0_13
https://doi.org/10.1007/978-3-031-20872-0_13
http://www.di.unito.it/~dezani/papers/bd23b.pdf
http://www.di.unito.it/~dezani/papers/bd23b.pdf
https://doi.org/10.1016/j.jlamp.2020.100620
https://doi.org/10.1016/j.jlamp.2020.100620
https://doi.org/10.1007/978-3-030-61362-4_3
https://doi.org/10.1007/978-3-030-61362-4_3
https://doi.org/10.1007/978-3-031-08143-9_8
https://doi.org/10.1007/978-3-031-08143-9_8
https://doi.org/10.4204/EPTCS.365.4
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/j.ic.2017.07.010
https://arxiv.org/abs/2102.04731
https://arxiv.org/abs/2102.04731
https://arxiv.org/abs/2102.04731
https://doi.org/10.48550/ARXIV.2102.00865
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.46298/lmcs-19(1:3)2023
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1145/3586031
https://doi.org/10.1145/3586031
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1007/978-3-642-32940-1_17
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-21485-2_14
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1145/3290343
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/11799573_25
https://doi.org/10.1007/s10270-022-01040-x
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-030-86593-1_2

	Abstract
	1 Introduction
	2 The Calculus of Multiparty Sessions and its Type System
	3 Multicomposition and Multicompatibility
	4 Type Inference
	5 Conclusion and Related Work
	Acknowledgments
	References

