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ABSTRACT
Modular methodologies for the development and verification of

concurrent/distributed systems are increasingly relevant nowadays.

We investigate the simultaneous composition of multiple systems

in a multiparty-session-type setting, working on suitable notions

of interfacing policy and multicompatibility. The resulting method

is conservative (it makes only the strictly needed changes), flexible

(any system can be looked at as potentially open) and safe (relevant

communication properties, e.g. lock-freedom, are preserved by com-

position). We obtain safety by proving preservation of typability.

We also provide a sound and complete type inference algorithm.
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1 INTRODUCTION
Verification of communication patterns is of central importance

for concurrent/distributed implementations of multiple commu-

nicating participants, as well as the possibility of ensuring good

behavioural properties (e.g., lock-freedom). The shortcoming of

many approaches to such an issue, both structured, – e.g., Mul-

tiParty Session Types (MPSTs) [21, 22] – and unstructured – e.g.

Communicating Finite State Machines (CFSMs) [9] – is to design

and analyse communicating systems as stand-alone closed enti-
ties: the designer/analyser has full knowledge of every and each

interaction between any two participants. This hinders modularity

features, which are crucial for the specification and development

of large-scale, complex, distributed communicating systems.
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Realistically, systems should be open, i.e. liable to interact with

an external environment (typically other systems). In [3] an ap-

proach to (binary) composition – dubbed Participants-as-Interfaces
(PaI) composition – was devised enabling to look at any system,

even closed ones, as virtually open. In a nutshell, given two sys-

tems, one first selects two participants – one per system – which

exhibit “compatible behaviours”; then transforms them into coupled

gateways connecting the two systems. Such gateways work simply

as “forwarders”: a message intended for the interface-participant

in one system is instead received by the gateway and immediately

forwarded to the coupled gateway in the other system which, in

turn, sends it to appropriate participants. For example, if one inter-

face is ready to receive a message and another interface is ready to

send the same message, then the gateway replacing the first inter-

face will forward the received message to the gateway replacing

the second interface. Essentially the gateways are obtained from

the interfaces by adding forwarding of messages between them.

Graphically

h

𝑎
|
|
|
|

k 𝑎

become

h

𝑎

k 𝑎

This composition mechanism is “conservative”, i.e. it makes only

the strictly needed changes; and “flexible”, i.e., it allows to look at

any system as potentially open. The PaI approach was exploited

in a number of papers for both MPTSs [4, 5] and CFSMs [3, 6, 8],

where another essential feature of this approach was proved: safety.
Safe composition mechanisms being those that do not “break” any

relevant property of the single systems. A drawback of the above

mentioned investigations on PaI is that they have been carried out

for binary composition only; or for a restricted notion of multiple

connection in a client-server setting [4].

In the present paper, we push forward the PaI composition, ex-

ploring the setting of multiple simultaneous composition of several

sessions.
1
Note that if we compose, two by two, several sessions

using binary composition, we get to tree-like structures only. In

fact, by looking at sessions as vertices and gateway connections

as undirected edges, the only way to get a cycle using binary com-

position is by connecting two interfaces belonging to the same

composed session.

1
A (multiparty) session, i.e. a set of named processes in parallel, formalises in this

paper the general notion of “system”.

1
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In order to illustrate the idea underlying PaI multicomposition
and its related issues, let us assume to have four sessions,M1,M2,

M3 andM4, containing respectively four participants, h, k, v and w,
that we decide to transform into gateways (if possible) enabling to

connect the four sessions into a single one. For the sake of simplicity

we abstract here from the way communications are performed and

from the logical order of the exchanged messages. The drawing

above represents the messages the participants do exchange inside

their respective sessions. The composition of the four sessions

then consists in replacing the participants h, k, v and w, chosen as

interfaces, by gateways. Note that a message, say the 𝑎 that inM1

is sent to h, could be forwarded (unlike the binary case) to different

other gateways. This means that an interfacing policy has to be set

up in order to appropriately define the gateways. An interfacing

policy for the present example could be for instance the one that

forwards to w the 𝑎 received by h; to k the 𝑎 received by v; to v
the 𝑏’s received by w and k; to h the 𝑐 received by w. According to

such an interfacing policy, the interface participants are replaced

by gateways as described below.

h
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𝑐 k

𝑏

𝑎

v

𝑎

𝑏 w 𝑐

𝑎
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We notice that such a composition cannot be done using the

mechanisms currently available in the literature [3–6, 8].

The key issue when implementing such a simple idea into a

particular formalism is to ensure the above construction to be safe.
In the binary case safety can be ensured by the duality of the in-

terfaces [3, 5, 6, 8]. For client-server composition, the compliace of

server interfaces with the client interface allows to obtain safe com-

positions [4]. Here the sitation is more tricky; we shall preserve the

system properties by identifying a correct notion of compatibility

for PaI multicomposition (which we dub multicompatibility) in the

setting of MPSTs.

In MPST approaches to session specification and verification,

two phases are distinguished: implementation (where code is inde-

pendently and distributively written for each single participant)

and verification. The former can happen after the latter, as an

analysis of existing code; or before, with a sound design of the

communicating systems (and, e.g., the generation of APIs that

will guide the programmers). MPSTs have spawned a variety of

tools for the sound modular implementation of a communicating

system [13, 20, 27, 29, 32, 38, 39]: the code is safe, as long as it

is well typed. However, in the vast majority of the MPST litera-

ture [14, 18, 21, 22, 32, 37], the verification of the whole session

is treated as a single, centralised operation. More precisely the

behaviours of sessions are described by global types prescribing
the order and the type of the communications between session

participants. The MPST literature dealing with modular verifica-

tion and composition of open sessions is however still at its early

stages [4, 5, 19, 36]. In particular the present paper is the first one

dealing with the safe PaI composition of an arbitrary number of

sessions.

Contributions and Structure of the Paper. This paper intro-
duces a conservative, flexible and safe PaI multicomposition method

based on the notions of interfacing policy and multicompatibility,

thus improving on the state of the art [4, 5, 19, 36]. In Section 2

we recall the MPST calculus of multiparty sessions with its type

system, as defined in [4]: we note that well-typed sessions are lock-

free. Section 3 contains our main contributions. In particular, a

precise notion of interfacing policy (Definition 3.6) is identified for

an arbitrary number of multiparty sessions; building on that, multi-

compatibility (Definition 3.8) is defined in terms of typability of any

of the possible interfacing policies. PaI multicomposition for ses-

sions is then given in terms of interfacing policies (Definition 3.12).

It is safe since we prove that multicomposition of multicompatible

sessions is typable (Theorem 3.17), and hence lock-free. In Section 4

we define an inference algorithm for the global types of an arbitrary

session, if any. We prove the soundness and completeness of this
algorithm (Theorem 4.7). Section 5 discusses related works and

concludes the paper.

2 THE CALCULUS OF MULTIPARTY SESSIONS
AND ITS TYPE SYSTEM

In the present section we recall the calculus of multiparty sessions

and its type system as defined in [4], to which we refer for more

detailed explanations and for proofs.

We assume to have the following denumerable base sets: mes-
sages (ranged over by 𝜆, 𝜆′, . . . ); session participants (ranged over

by h, p, q, r, . . .); indexes (ranged over by 𝑖, 𝑗, 𝑙, 𝑛, . . . ); sets of indexes
(ranged over by 𝐼 , 𝐽 , . . . ).

Processes, ranged over by 𝑃,𝑄, 𝑅, 𝑆, 𝐻, 𝐾, . . . , implement the be-

haviour of participants. In the following and in later definitions

the symbol ::=𝑐𝑜𝑖𝑛𝑑 will indicate that the productions have to be

interpreted coinductively and that only regular terms are allowed.

Then we can adopt in proofs the coinduction style advocated in

[25] which, without any loss of formal rigour, promotes readability

and conciseness.

Multiparty sessions are parallel compositions of pairs partici-

pant/process of the form p[𝑃].

Definition 2.1 (Processes and Multiparty Sessions). Processes are
defined by:

𝑃 ::=𝑐𝑜𝑖𝑛𝑑 0 | p!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 | p?{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼
2
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[Comm-T]

𝑙 ∈ 𝐼 ⊆ 𝐽

p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 ] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ] ∥ M
p𝜆𝑙q−−−−→ p[𝑃𝑙 ] ∥ q[𝑄𝑙 ] ∥ M

Figure 1: LTS for multiparty sessions.

where 𝐼 ≠ ∅ and 𝜆 𝑗 ≠ 𝜆𝑙 for 𝑗, 𝑙 ∈ 𝐼 and 𝑗 ≠ 𝑙 .
Multiparty sessions (sessions, for short) are expressions of the

shape:

p1 [𝑃1] ∥ · · · ∥ p𝑛 [𝑃𝑛]

where p𝑗 ≠ p𝑙 for 1 ≤ 𝑗, 𝑙 ≤ 𝑛 and 𝑗 ≠ 𝑙 . We useM to range over

multiparty sessions.

In the above definition, the output process p!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 non-

deterministically chooses one message 𝜆𝑖 for some 𝑖 ∈ 𝐼 , and sends

it to the participant p, thereafter continuing as 𝑃𝑖 . Symmetrically,

the input process p?{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 waits for one of the messages 𝜆𝑖
from the participant p, then continues as 𝑃𝑖 after receiving it. When

there is only one output we write p!𝜆.𝑃 and similarly for one input.

We use 0 to denote the terminated process.

We assume the standard structural congruence ≡ on multiparty

sessions, stating that parallel composition is associative and com-

mutative and has neutral elements p[0] for any p. If 𝑃 ≠ 0 we write
p[𝑃] ∈ M as short forM ≡ p[𝑃] ∥ M′

for someM′
. We shall also

write Π𝑛
𝑖=1

p𝑖 [𝑃𝑖 ] as short for p1 [𝑃1] ∥ · · · ∥ p𝑛 [𝑃𝑛].
The set of participants of a session M, notation prt(M), is as

expected:

prt(M) = {p | p[𝑃] ∈ M}

To define the synchronous operational semantics of sessions we
use an LTS, whose transitions are decorated by communications.

Definition 2.2 (LTS for Multiparty Sessions). The labelled transi-
tion system (LTS) for multiparty sessions is the closure under ≡ of

the reduction specified by the unique rule shown in Figure 1.

Rule [Comm-T] makes the communication possible: participant p
sends message 𝜆𝑙 to participant q. This rule is non-deterministic in

the choice of messages. The condition 𝐼 ⊆ 𝐽 ensures that the sender

can freely choose the message, since the receiver must offer all

sender messages and possibly more. This allows us to distinguish

in the operational semantics between internal (output) and external

(input) choices. Note that this condition will always be true in

well-typed sessions.

Communications are triples of the form p𝜆q ranged over by

Λ,Λ′, . . .. We define traces as (possibly infinite) sequences of com-

munications by:

𝜎 ::=𝑐𝑜𝑖𝑛𝑑 𝜖 | Λ ·𝜎

where 𝜖 is the empty sequence. We use |𝜎 | to denote the length of

the trace 𝜎 , where |𝜎 | = ∞ when 𝜎 is an infinite trace. We define

the participants of communications and traces:

prt(p𝜆q) = {p, q} prt(𝜖) = ∅ prt(Λ ·𝜎) = prt(Λ) ∪ prt(𝜎)

When 𝜎 = Λ1 · . . . ·Λ𝑛 (𝑛 ≥ 0) we writeM 𝜎−→ M′
as short for

M
Λ1−−→ M1 · · ·

Λ𝑛−−→ M𝑛 = M′

We give now a very simple example, that shall be used through-

out the paper in order to clarify the notions we introduce.

Example 2.3 (Working example). Let us consider a session with

two participants
2
:

M1 = h1 [𝐻1] ∥ p[𝑃]

Process 𝐻1 controls the entrance of customers in a mall (via some

sensor). As soon as a customer enters, 𝐻1 sends a message start to

the process 𝑃 which controls a display for advertisements. After

the start message, 𝑃 displays a general advertising image. Process

𝑃 does control also a sensor detecting emotional reactions as well

as a card reader distinguishing regular from new customers. Such

information, through the messages react, rc and nc is sent to𝐻1. Us-

ing that information 𝐻1 sends to 𝑃 a customised image, depending

on the kind of the customer, through message img. The processes of

such a session can then be defined as follows

𝐻1 = p!start. p?react. p?
{

rc. p!img. 𝐻1

nc. p!img. 𝐻1

𝑃 = h1?start. h1!react. h1!
{

rc.h1?img. 𝑃
nc.h1?img. 𝑃

where sets of alternatives are denoted by branchings. ⋄
Lock-freedom for multiparty sessions is defined as in [24, 30]. In

words, each participant ready to communicate is never prevented

from finding a partner exposing a dual communication action. Lock-

freedom ensures progress for each participant, and hence deadlock-

freedom.

Definition 2.4 (Lock-freedom). A multiparty sessionM is a lock-

free session if M
𝜎−→ M′

and p[𝑃] ∈ M′
imply M′ 𝜎 ′ · Λ−−−−→ M′′

for

some 𝜎′ and Λ such that p ∈ prt(Λ).

Notice that we need to considerM′
in the above definition, since

otherwise the multiparty session p[q!𝜆.0] ∥ q[p?𝜆.p?𝜆.0] would
be lock-free.

We recall now the type system of [4], in which sessions are

directly typed by global types without using projections [21, 22].

If the global type respects a well-formedness condition (namely

boundedness, see Definition 2.7), the typed session does evolve in

agreement with what the global type prescribes (subject reduction

and session fidelity) and lock-freedom is ensured.

Definition 2.5 (Global Types). Global types are defined by:

G ::=𝑐𝑜𝑖𝑛𝑑 End | p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
where 𝐼 ≠ ∅ and 𝜆 𝑗 ≠ 𝜆𝑙 for 𝑗, 𝑙 ∈ 𝐼 and 𝑗 ≠ 𝑙 .

The type p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 formalises a protocol where partic-

ipant p must send to q a message 𝜆 𝑗 for some 𝑗 ∈ 𝐼 , (and q must

2
For the sake of simplicity, in our examples we consider only sessions with two or three

participants. Our definitions and results are however independent from the number of

participants in the single sessions.

3
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[End]
End ⊢ p[0]
================ [Comm]

G𝑖 ⊢ p[𝑃𝑖 ] ∥ q[𝑄𝑖 ] ∥ M prt(G𝑖 ) \ {p, q} = prt(M) ∀𝑖 ∈ 𝐼

p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 ⊢ p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 ] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ] ∥ M
=============================================================================================== 𝐼 ⊆ 𝐽

Figure 2: Typing rules.

D =

D
==================================================
h1 → p:img.G1 ⊢ h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃]

D
==================================================
h1 → p:img.G1 ⊢ h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃]

============================================================================================================
G′
1
⊢ h1 [𝐻 ′

1
] ∥ p[𝑃1]

=========================================================
p → h1:react.G′

1
⊢ h1 [p?react. 𝐻 ′

1
] ∥ p[h1!react. 𝑃1]

=========================================================
G1 ⊢ h1 [𝐻1] ∥ p[𝑃]

Figure 3: Derivation of Example 2.10.

receive it) and then, depending on which 𝜆 𝑗 was chosen by p, the
protocol continues as G𝑗 . The notation p → q : 𝜆.G is used when

there is only one message. The terminal symbol End denotes the

terminated protocol.

The set of paths of a global type G, notation paths(G), is defined
as the greatest set such that:

paths(End) = {𝜖}
paths(p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 ) =

⋃
𝑖∈𝐼 {p𝜆𝑖q ·𝜎 | 𝜎 ∈ paths(G𝑖 )}

Clearly, paths of global types are traces as defined after Defini-

tion 2.2. The set of participants of a global type is the set of partici-
pants of its paths:

prt(G) = ⋃
𝜎∈paths(G) prt(𝜎)

For any G, regularity of global types ensures prt(G) to be finite.

In order to ensure lock-freedom by typing, each participant is

required to occur in all the paths from the root. Technically, this

is obtained by means of the notions of depth and of bounded type
below. The 𝑛-th communication in a path 𝜎 , where 𝑛 ∈ N and

1 ≤ 𝑛 ≤ |𝜎 |, is denoted by 𝜎 [𝑛].

Definition 2.6 (Depth). Let G be a global type. For 𝜎 ∈ paths(G)
we define

depth(𝜎, p) = inf{𝑛 | p ∈ prt(𝜎 [𝑛])}

and define depth(G, p), the depth of p in G, as follows:

depth(G, p) =
{
sup{depth(𝜎, p) | 𝜎 ∈ paths(G)} if p ∈ prt(G)
0 otherwise

Definition 2.7 (Boundedness). A global type G is bounded if

depth(G′, p) is finite for all participants p ∈ prt(G′) and all types

G′
which occur in G.

Intuitively, this means that if p ∈ prt(G′) for a subexpression of

G which is a type, then the search for an interaction of the shape

p𝜆q or q𝜆p along a path 𝜎 ∈ paths(G′) terminates (and recall that

G′
can be infinite, in which caseG is such). As shown in [4, Example

2], it is necessary to consider all types occurring in a global type

when defining boundedness.

Since global types are regular, the boundedness condition is

decidable. Only bounded global types will be allowed in typing

sessions.

The simplicity of the multiparty session calculus allows to for-

mulate a type system deriving directly global types for multiparty

sessions, i.e. judgments of the form G ⊢ M (where G is bounded).

Here and in the following, the double line indicates that the rules

are interpreted coinductively [31, Chapter 21].

Definition 2.8 (Type System). The type system is defined by the

axiom and rule in Figure 2, where sessions are considered modulo

structural equivalence.

Rule [Comm] just adds simultaneous communications to global types

and to corresponding processes inside sessions. Note that this rule

allows more inputs than corresponding outputs, in agreement with

the condition in Rule [Comm-T] (Definition 2.2). It also allows more

branches in the input process than in the global type, just mim-

icking the subtyping for session types [17]. Instead, the number

of branches in the output process and the global type must be the

same. This does not restrict typability as shown in [5], while it

improves session fidelity as discussed after Theorem 2.13. The con-

dition prt(G𝑖 ) \ {p, q} = prt(M) for all 𝑖 ∈ 𝐼 ensures that the global
type and the session have exactly the same set of participants. In

this way we forbid for example to derive

p → q : 𝜆.End ⊢ p[q!𝜆.0] ∥ q[p?𝜆.0] ∥ r[𝑅] with 𝑅 ≠ 0

arbitrary.

The regularity of processes and global types ensures the decid-

ability of type checking. Besides, it is worth also remarking that

typability alone does not ensure boundedness of types as shown in

the following example.

Example 2.9 (Typability does not ensure boundedness). The fol-
lowing global type is unbounded, since depth(G′, r) = ∞:

G = r → q : 𝜆.G′
where G′ = p → q : {𝜆1 .q → r : 𝜆′ .End, 𝜆2 .G′}

Without the boundedness condition we can assign G to the session

p[𝑃] ∥ q[r?𝜆.𝑄] ∥ r[q!𝜆.q?𝜆′ .0], where 𝑃 = q!{𝜆1 .0, 𝜆2 .𝑃} and
𝑄 = p?{𝜆1 .r!𝜆′ .0, 𝜆2 .𝑄}. ⋄

Example 2.10 (Typing the multiparty session of Example 2.3). It is
easy to check that, for the multiparty sessionM1 of Example 2.3,

we can derive G1 ⊢ M1 with the derivation D of Figure 3, where

G1 = h1 → p:start. p → h1:react.G′
1

4
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[Ecomm]

𝑗 ∈ 𝐼

p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
p𝜆 𝑗q−−−−→ G𝑗

[Icomm]

G𝑖

p𝜆q
−−−→ G′

𝑖 ∀𝑖 ∈ 𝐼 {p, q} ∩ {r, s} = ∅

r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
p𝜆q
−−−→ r → s : {𝜆𝑖 .G′

𝑖 }𝑖∈𝐼

Figure 4: LTS for global types.

G′
1
= p → h1:

{
rc. h1 → p:img.G1

nc. h1 → p:img.G1

𝐻 ′
1
= p?

{
rc. p!img. 𝐻1

nc. p!img. 𝐻1

𝑃1 = h1!
{

rc.h1?img. 𝑃
nc.h1?img. 𝑃 ⋄

To formalise the properties of subject reduction and session

fidelity [21, 22], the standard LTS for global types can be used.

Definition 2.11 (LTS for Global Types). The labelled transition
system (LTS) for global types is specified by the rules in Figure 4.

Rule [Icomm]makes sense since, in a global type r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 ,
behaviours involving participants p and q, ready to interact with

each other uniformly in all branches, can do so if neither of them

is involved in a previous interaction between r and s. In this case,

the interaction between p and q is independent of the choice of r,
and may be executed before it. For example (omitting final End) we
have

r → s : {𝜆1 .p → q : 𝜆, 𝜆2 .p → q : 𝜆}
p𝜆q
−−−→ r → s : {𝜆1, 𝜆2}

Subject reduction ensures that the transitions of well-typed ses-

sions are mimicked by those of global types.

Theorem 2.12 (Subject Reduction [4]). If

G ⊢ M and M
p𝜆q
−−−→ M′

then G
p𝜆q
−−−→ G′ and G′ ⊢ M′.

This theorem requires boundedness of global types: for example,

if 𝑃 = q!{𝜆1 .0, 𝜆2 .𝑃} and 𝑄 = p?{𝜆1 .0, 𝜆2 .𝑄}, then
p[𝑃] ∥ q[𝑄] ∥ r[s!𝜆.0] ∥ s[r?𝜆.0] r𝜆s−−→ p[𝑃] ∥ q[𝑄]

but the type G = p → q:{𝜆1 .r → s:𝜆.End, 𝜆2 .G} does not have the
same reduction. Clearly this session can be typed by the bounded

type r → s:𝜆.G′
where G′ = p → q:{𝜆1 .End, 𝜆2 .G′}.

Session fidelity ensures that the communications in a session

typed by a global type proceed as prescribed by the global type.

Theorem 2.13 (Session Fidelity [4]). If G ⊢ M and G
p𝜆q
−−−→ G′,

thenM
p𝜆q
−−−→ M′ and G′ ⊢ M′.

Note that, if Rule [Comm] had allowed more branches in the global

type than in the output process as the subtyping of [17] does, then

Theorem 2.13 would have failed. An example is

p → q : {𝜆.End, 𝜆′ .End} ⊢ p[q!𝜆.0] ∥ q[p?{𝜆.0, 𝜆′ .0}]

since p → q : {𝜆.End, 𝜆′ .End}
p𝜆′q
−−−−→ End, but there is no transition

labelled p𝜆′q from p[q!𝜆.0] ∥ q[p?{𝜆.0, 𝜆′ .0}].

Typability does ensure lock-freedom.

Theorem 2.14 (Lock-freedom [4]). If M is typable, then M is
lock-free.

We notice that global types, as presented in this section, en-

sure properties of closed multiparty sessions, where all participant

behaviours are fully described,

3 MULTICOMPOSITION AND
MULTICOMPATIBILITY

As discussed in the Introduction, in the present paper we extend

the PaI approach to the PaI multicomposition of closed sessions.

In order to exemplify the notions we introduce and their related

formal definitions, we shall recur to the following example where

we consider four sessions we wish to compose.

Example 3.1 (Four multiparty sessions). Let M1 be as in Exam-

ple 2.3, and let us consider also the following multiparty sessions

M2,M3 andM4.

Session M2 = h2 [𝐻2] ∥ q[𝑄]. Process 𝐻2 controls an image

display. Images are provided by process 𝑄 according to some pa-

rameters with sender 𝐻2 depending on the reaction acquired by a

sensor driven by q and distinguishing the kind of customers on the

basis of their cards. Process𝑄 is also able to receive a reset message

even if 𝐻2 cannot ever send it. 𝐻2 and𝑄 can hence be implemented

as follows.

𝐻2 = q?react.q!pars. q!
{
rc. q?img. 𝐻2

nc. q?img. 𝐻2

𝑄 = h2!react.h2?pars. h2?


rc. h2!img. 𝑄
nc. h2!img. 𝑄
reset.𝑄

SessionM3 = h3 [𝐻3] ∥ r[𝑅] ∥ r′ [𝑅′]. Process 𝑅 controls a sensor

detecting the entrance of people from a door. Once someone enters,

a message start is sent by 𝑅 to process 𝐻3 which turns on a light.

The reaction of who enters, detected by a sensor driven by 𝐻3 is

sent back to 𝑅, which, according to the reaction, communicates to

𝑅′ the greeting to be broadcasted from the speakers.

𝐻3 = r?start. r!react. 𝐻3

𝑅 = h3!start. h3?react. r′!greet. 𝑅 𝑅′ = r?greet. 𝑅′

SessionM4 = h4 [𝐻4] ∥ s[𝑆]. Some sensors managed by process

𝐻4 do acquire the first reactions of people getting into a hall with

several Christmas lights. This reactions enable process 𝑆 to send to

𝐻4 a set of parameters allowing to adjust the lights of the hall.

𝐻4 = s!react. s?pars. 𝐻4 𝑆 = h4?react. h4!pars. 𝑆 ⋄

We shall prove that lock-freedom, ensured by typing on single

sessions, is preserved by composition. The sessions of the above

example are lock-free.

Example 3.2. The multiparty sessionM1 of Example 2.3 can be

typed by the global type G1 of Example 2.10, and the multiparty

5
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sessionsM2,M3 andM4 can be typed by the following global types.

G2 = q → h2:react. h2 → q:pars. h2 → q:
{

rc. q → h2:img.G2

nc. q → h2:img.G2

G3 = r → h3:start. h3 → r:react. r → r′:greet.G3

G4 = h4 → s:react. s → h4:pars.G4 ⋄

The PaI multicomposition consists in replacing one participant

per session identified as “interface” by a “gateway” (sort of for-

warder). Any participant in a session, say h, can be considered as

an interface. In particular, we can look at the behaviour (a process

in our formalism) of h as what the session would expect from a

number of outer sessions (through their respective interfaces). By

looking at h as an interface then, whenever h receives (resp. sends)

a message 𝜆, this has to be interpreted as a message to be sent to

(resp. to be received from) some other interface among the available

ones.

Example 3.3 (Interfaces). For the sessions of Example 3.1 we

shall consider the participants h1, h2, h3 and h4 as interfaces for,
respectively, the sessionsM1,M1,M1 andM4. ⋄

By having several sessions, the gateways are not uniquely deter-

mined. In order to produce gateways out of interfaces we need to

decide how the interfaces do interact. We hence call “interfacing

policy” a description of a possible way interfaces could communi-

cate with each other. To formalise such a notion we first associate

to each process a set of processes doing dual communications with

participants taken from a fixed set. We call “interfacing set” this set

of processes.

Definition 3.4 (Interfacing Set). The interfacing set of a process
𝐻 w.r.t. a finite set P of participants, notation IS(𝐻,P), is the
minimal set of processes such that:

• 0 ∈ IS(0,P);
• if 𝐾𝑖 ∈ IS(𝐻𝑖 ,P) for all 𝑖 ∈ 𝐼 and p ∈ P, then

p!{𝜆𝑖 .𝐾𝑖 }𝑖∈𝐼 ∈ IS(q?{𝜆𝑖 .𝐻𝑖 }𝑖∈𝐼 ,P)

• if 𝐾𝑖 ∈ IS(𝐻𝑖 ,P) for all 𝑖 ∈ 𝐼 and p ∈ P, then

p?{𝜆𝑖 .𝐾𝑖 }𝑖∈𝐼 ∈ IS(q!{𝜆𝑖 .𝐻𝑖 }𝑖∈𝐼 ,P)

Example 3.5 (Interfacing set of 𝐻1). Let 𝐻1 be as in Example 2.3

and P = {h2, h3, h4}, then the interfacing set of 𝐻1 contains all and

only the processes

𝐾 = k1?start. k2!react.k3!
{

rc. k4?img. 𝐾
nc. k5?img. 𝐾

where k1, k2, k3, k4, k5 ∈ {h2, h3, h4}. ⋄
Interfacing sets are finite, since they contain processes which

only differ for the names of participants and these names belong to

a finite set.

An interfacing policy is then obtained by choosing, for each

interface, an element of its interfacing set having as participants

the other interfaces. Of course one cannot expect an arbitrary in-

terfacing policy to lead to a sound composition. Let us consider,

for example, the sessions of Example 3.1 and an interfacing policy

where we choose the following element of IS(𝐻1, {h2, h3, h4}):

𝐾 = h2?start. h3!react.h4!
{

rc. h2?img. 𝐾
nc. h2?img. 𝐾

This would lead to a composition where the gateway we substitute

for h1 would first expect from h2 the message start to be forwarded

to p. Such a composition would immediately get stuck, since no

message start is ever handled by 𝐻2 and hence by the gateway we

would substitute for it. Sound compositions will actually be the one

induced by typable interfacing policies, which we dub as “valid”.

Definition 3.6 (Interfacing Policy). An interfacing policy K for a

multiparty session Π𝑖∈𝐼h𝑖 [𝐻𝑖 ] is a multiparty session Π𝑖∈𝐼h𝑖 [𝐾𝑖 ]
such that𝐾𝑖 ∈ IS(𝐻𝑖 ,P\{h𝑖 }) for all 𝑖 ∈ 𝐼 , where P = {h𝑖 | 𝑖 ∈ 𝐼 }.
An interfacing policy is valid if K is typable.

Example 3.7 (Interfacing policies). Let us consider the four ses-
sions of Example 3.1. Then an interfacing policy for the multiparty

session Π4

𝑖=1
h𝑖 [𝐻𝑖 ] is the multiparty session Π4

𝑖=1
h𝑖 [𝐾𝑖 ] where

𝐾1 = h3?start. h4!react.h2!
{

rc. h2?img. 𝐾1
nc. h2?img. 𝐾1

𝐾2 = h3!react. h4?pars. h1?
{

rc. h1!img. 𝐾2
nc. h1!img. 𝐾2

𝐾3 = h1!start. h2?react. 𝐾3 𝐾4 = h1?react. h2!pars. 𝐾4

This policy is valid, since the multiparty session Π4

𝑖=1
h𝑖 [𝐾𝑖 ] can be

typed by the following global type

G = h3 → h1:start. h2 → h3:react. h1 → h4:react. Ĝ

where

Ĝ = h4 → h2:pars. h1 → h2:
{

rc. h2 → h1:img.G
nc. h2 → h1:img.G

Note that, according to the above interfacing policy, the greeting

depends on the reactions sent by the sensor driven by q. It is not
difficult to check that there exists another valid interfacing pol-

icy for Π4

𝑖=1
h𝑖 [𝐻𝑖 ], namely the one according to which the greet-

ing depends on the reactions sent by the sensor driven by p. I.e.
also Π4

𝑖=1
h𝑖 [𝐾 ′

𝑖
] is an interfacing policy for the multiparty session

Π4

𝑖=1
h𝑖 [𝐻𝑖 ] where

𝐾 ′
1
= h3?start. h3!react. h2!

{
rc. h2?img. 𝐾 ′

1

nc. h2?img. 𝐾 ′
1

𝐾 ′
2
= h4!react. h4?pars. h1?

{
rc. h1!img. 𝐾 ′

2

nc. h1!img. 𝐾 ′
2

𝐾 ′
3
= h1!start. h1?react. 𝐾 ′

3
𝐾 ′
4
= h2?react. h2!pars. 𝐾 ′

4

This policy is valid, since the multiparty session Π4

𝑖=1
h𝑖 [𝐾 ′

𝑖
] can be

typed by the following global type

G′ = h3 → h1:start. h1 → h3:react. h2 → h4:react. ˆG′

where

ˆG′ = h4 → h2:pars. h1 → h2:
{

rc. h2 → h1:img.G′

nc. h2 → h1:img.G′ ⋄
For a given multiparty session the number of interfacing policies

is finite, since interfacing sets are finite.

Our PaI multicomposition requires that the sessions to be com-

posed be multicompatible. We say that multiparty sessions are mul-

ticompatible if they are typable and their participants are disjoint

and we identify an interface for each of them and a corresponding

valid interfacing policy.

6
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Figure 5: Representation of the composed session in Example 3.13.

Definition 3.8 (Multicompatibility). The multiparty sessions

{M𝑖 }𝑖∈𝐼 are multicompatible with respect to {h𝑖 }𝑖∈𝐼 and K
if they are typable and prt(M𝑗 ) ∩ prt(M𝑙 ) = ∅ for all 𝑗, 𝑙 ∈ 𝐼 , 𝑗 ≠ 𝑙 ,
and h𝑖 [𝐻𝑖 ] ∈ M𝑖 for all 𝑖 ∈ 𝐼 and K is a valid interfacing policy for

Π𝑖∈𝐼h𝑖 [𝐻𝑖 ].

Example 3.9 (Multicompatible sessions). Example 3.7 shows that

Π4

𝑖=1
h𝑖 [𝐾𝑖 ] is an interfacing policy for Π4

𝑖=1
h𝑖 [𝐻𝑖 ]. Such a policy

is valid, therefore the multiparty sessions {M𝑖 }𝑖∈{1,2,3,4} are multi-

compatible with respect to {h𝑖 }𝑖∈{1,2,3,4} and Π4

𝑖=1
h𝑖 [𝐾𝑖 ]. ⋄

We have almost all the required notions to define the multicom-

position of multicompatible multiparty sessions. The only missing

piece is that of building the gateways, using the operation of pro-

cess composition. Two processes can be composed only if they offer

exactly matching outputs and inputs: in the composition the inputs

always precede the outputs.

Definition 3.10 (Process Composition). The partial composition of
two processes 𝑃 and 𝑄 , notation 𝑃 ◦𝑄 , is the commutative operator

defined by

0 ◦ 0 = 0 p!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 ◦ q?{𝜆𝑖 .𝑄𝑖 }𝑖∈𝐼 = q?{𝜆𝑖 .p!𝜆𝑖 .𝑃𝑖 ◦𝑄𝑖 }𝑖∈𝐼

Example 3.11 (Composition of 𝐻1 and 𝐾1). Let 𝐻1 be as in Exam-

ple 2.3 and 𝐾1 be as in Example 3.7, then

𝐻1 ◦ 𝐾1 = h3?start. p!start. p?react. h4!react. 𝐻𝐾1

𝐻𝐾1 = p?
{

rc. h2!rc. h2?img. p!img. 𝐻1 ◦ 𝐾1
nc. h2!nc. h2?img. p!img.𝐻1 ◦ 𝐾1 ⋄

Definition 3.12 (PaI Multicomposition). Let the multiparty ses-

sions {M𝑖 }𝑖∈𝐼 bemulticompatible with respect to {h𝑖 }𝑖∈𝐼 andK. We

define the PaI multicomposition of {M𝑖 }𝑖∈𝐼 with respect to {h𝑖 }𝑖∈𝐼
and K by

Π𝑖∈𝐼h𝑖 [𝐻𝑖 ◦ 𝐾𝑖 ] ∥ M′
𝑖

whereM𝑖 ≡ h𝑖 [𝐻𝑖 ] ∥ M′
𝑖
for all 𝑖 ∈ 𝐼 and K = Π𝑖∈𝐼h𝑖 [𝐾𝑖 ].

In the above definition, h𝑖 [𝐻𝑖 ◦𝐾𝑖 ] are the gateways connecting
the multicompatible sessions.

Example 3.13 (A multicomposition of sessions). LetM1,M2,M3

andM4 be as in Example 3.1. In Example 3.9 it is shown that these

multiparty sessions are multicompatible. A PaI multicomposition

of the multiparty sessions {M𝑖 }𝑖∈{1,2,3,4} is
Π4

𝑖=1
h𝑖 [𝐻𝑖 ◦ 𝐾𝑖 ] ∥ p[𝑃] ∥ q[𝑄] ∥ r[𝑅] ∥ r′ [𝑅′] ∥ s[𝑆]

where 𝐻1, 𝑃 are defined in Example 2.3, 𝐻2, 𝐻3, 𝐻4, 𝑄 , 𝑅, 𝑅
′
, 𝑆 are

defined in Example 3.1, 𝐾1, 𝐾2, 𝐾3, 𝐾4 are defined in Example 3.7,

𝐻1 ◦ 𝐾1 is defined in Example 3.11 and

𝐻2 ◦ 𝐾2 = q?react. h3!react. h4?pars. q!pars. 𝐻𝐾2

𝐻𝐾2 = h1?
{

rc. q!rc. q?img. h1!img. 𝐻2 ◦ 𝐾2
nc. q!nc. q?img. h1!img. 𝐻2 ◦ 𝐾2

𝐻3 ◦ 𝐾3 = r?start. h1!start. h2?react. r!react. 𝐻3 ◦ 𝐾3

𝐻4 ◦ 𝐾4 = h1?react. s!react. s?pars. h2!pars. 𝐻4 ◦ 𝐾4

As done for the example in the Introduction, by abstracting from

the way communications are performed, from branching and from

the logical order of the exchanged messages, the above composition

can be graphically described as in Figure 5. It is worth noticing

that getting rid of the gateways, so that, e.g, r sends message start

directly to p, would disrupt the conservativity of our composition

method. Participants other than the interfaces would in fact be

affected by the composition, since a number of input/output actions

should be modified. ⋄
Remark 3.14. The definitions of interfacing set and interfacing

policy have a set of participants as parameter. By using a set of

messages as extra parameter, we could turn the gateways from “for-

warders” to “message-rename-and-forward” processes, so adding

extra flexibility to our composition method. The extension is easy

and we did not make it explicit for the sake of readability. ⋄
The following lemma relates the global type of an interfacing

policy with the global types of two among the multicompatible

sessions. It says how the outermost communication in the global

type of the interface policy can be related to the outermost commu-

nications in the global types of the involved interfaces. This result

is crucial for the correctness of our PaI multicomposition. By hd(G)
we denote the two participants to the outermost communication in

G, i.e. if G = p → q : {𝜆 𝑗 .G𝑗 } 𝑗∈ 𝐽 , then we define hd(G) = {p, q}.
Lemma 3.15 (Relations between Types of Interfacing Poli-

cies and of Multicompatible Sessions). Let the multiparty ses-
sions {M𝑖 }𝑖∈𝐼 be multicompatible with respect to {h𝑖 }𝑖∈𝐼 and K.
Moreover, let G𝑖 ⊢ M𝑖 for 𝑖 ∈ 𝐼 and G ⊢ K.
If G = h𝑙 → h𝑙 ′ : {𝜆 𝑗 .Ĝ𝑗 } 𝑗∈ 𝐽 and h𝑙 ∈ hd(G𝑙 ) and h𝑙 ′ ∈ hd(G𝑙 ′ ),
then G𝑙 = p → h𝑙 : {𝜆 𝑗 .G′

𝑗
} 𝑗∈ 𝐽 ′ for some p with 𝐽 ′ ⊆ 𝐽 and

G𝑙 ′ = h𝑙 ′ → q : {𝜆 𝑗 .G′′
𝑗
} 𝑗∈ 𝐽 ′′ for some q with 𝐽 ⊆ 𝐽 ′′. Finally,

𝐻𝑙 = p?{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽 and 𝐻𝑙 ′ = q!{𝜆 𝑗 .𝐻 ′′

𝑗
} 𝑗∈ 𝐽 ′′ .

Proof. Let K = Π𝑖∈𝐼h𝑖 [𝐾𝑖 ] and G = h𝑙 → h𝑙 ′ : {𝜆 𝑗 .Ĝ𝑗 } 𝑗∈ 𝐽 ,
then Rule [Comm] must be applied to derive G ⊢ K and this implies
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G(⟨G𝑖 ⟩𝑖∈𝐼 ,G) =



p → h𝑖𝑙 : {𝜆 𝑗 .h𝑖𝑙 → h𝑖𝑙 ′ : 𝜆 𝑗 .h𝑖𝑙 ′ → q : 𝜆 𝑗 .G★
𝑗
} 𝑗∈ 𝐽 ′

where G★
𝑗
= G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ } • G

′
𝑗
• G′′

𝑗
, Ĝ𝑗 ) if G𝑖𝑚 is locked for all 𝑖𝑚 s.t.𝑚 < 𝑚𝑖𝑛{𝑙, 𝑙 ′}

and G = h𝑖𝑙 → h𝑖𝑙 ′ : {𝜆 𝑗 .Ĝ𝑗 } 𝑗∈ 𝐽
and G𝑖𝑙 = p → h𝑖𝑙 : {𝜆 𝑗 .G′

𝑗
} 𝑗∈ 𝐽 ′

and G𝑖𝑙 ′ = h𝑖𝑙 ′ → q : {𝜆 𝑗 .G′′
𝑗
} 𝑗∈ 𝐽 ′′ with 𝐽 ′ ⊆ 𝐽 ⊆ 𝐽 ′′

p → q : {𝜆 𝑗 .G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 } • G
′
𝑗
,G)} 𝑗∈ 𝐽 if h𝑖𝑙 ∉ {p, q}

and G𝑖𝑚 is locked for all 𝑖𝑚 s.t.𝑚 < 𝑙

and G𝑖𝑙 = p → q : {𝜆 𝑗 .G′
𝑗
} 𝑗∈ 𝐽

End if 𝐼 = ∅ and G = End

Figure 6: The global type for multicomposition.

G′= r → h3:start. h3 → h1:start. h1 → p:start. q → h2:react. h2 → h3:react. h3 → r:react.
p → h1:react. h1 → h4:react. h4 → s:react. s → h4:pars. h4 → h2:pars. h2 → q:pars. r → r′:greet.

p → h1:
{

rc. h1 → h2:rc. h2 → q:rc. q → h2:img. h2 → h1:img. h1 → p:img.G′

nc. h1 → h2:nc. h2 → q:nc. q → h2:img. h2 → h1:img. h1 → p:img.G′

Figure 7: A type for multicomposition of Example 3.13.

𝐾𝑙 = h𝑙 ′ !{𝜆 𝑗 .𝐾 ′
𝑗
} 𝑗∈ 𝐽 and 𝐾𝑙 ′ = h𝑙?{𝜆 𝑗 .𝐾 ′′

𝑗
} 𝑗∈ 𝐽 ′′ with 𝐽 ⊆ 𝐽 ′′. By

Definition 3.6 we get 𝐻𝑙 = p?{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽 for some p and 𝐻𝑙 ′ =

q!{𝜆 𝑗 .𝐻 ′′
𝑗
} 𝑗∈ 𝐽 ′′ for some q. From h𝑙 ∈ hd(G𝑙 ) and G𝑙 ⊢ M𝑙 we get

G𝑙 = p → h𝑙 : {𝜆 𝑗 .G′
𝑗
} 𝑗∈ 𝐽 ′ with 𝐽 ′ ⊆ 𝐽 . From h𝑙 ′ ∈ hd(G𝑙 ′ ) and

G𝑙 ′ ⊢ M𝑙 ′ we get G𝑙 ′ = h𝑙 ′ → q : {𝜆 𝑗 .G′′
𝑗
} 𝑗∈ 𝐽 ′′ . □

We can now show that PaI multicomposition of multicompatible

sessions is safe, since it can be typed. This is done by defining a

function G with two arguments: a list of global types and a global

type. This function, applied to the list of the global types of the

sessions to be composed and to the global type of a valid interfacing

policy witnessing their multicompatibility, returns a global type for

the PaI multicomposition.

By ⟨G𝑖 ⟩𝑖∈𝐼 we denote the list ⟨G𝑖1 ,G𝑖2 , . . . ,G𝑖𝑛 ⟩ if 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑛}.
The addition of a global type at the end of a list of global types,

notation ⟨G𝑖1 , . . . ,G𝑖𝑛 ⟩ • G, does not add the End type. Formally

we define

⟨G𝑖1 , . . . ,G𝑖𝑛 ⟩ • G =

{
⟨G𝑖1 , . . . ,G𝑖𝑛 ,G⟩ if G ≠ End,

⟨G𝑖1 , . . . ,G𝑖𝑛 ⟩ otherwise.

A global type G𝑖𝑙 is locked for G in the list ⟨G𝑖 ⟩𝑖∈𝐼 if 𝑖𝑙 ∈ 𝐼 and
h𝑖𝑙 ∈ hd(G𝑖𝑙 ) and either h𝑖𝑙 ∉ hd(G) or hd(G) = {h𝑖𝑙 , h𝑖𝑙 ′ } and
h𝑖𝑙 ′ ∉ hd(G𝑖𝑙 ′ ). In words, a global type is locked if its first commu-

nication involves the interface but this communication cannot be

done since:

• either the interface is not involved in the first communication of

the global type for the interfacing policy;

• or the interface is involved in the first communication of the

global type for the interfacing policy, but the communicating inter-

face is not involved in the first communication of the global type

for the corresponding session.

The function G (defined in Figure 6) returns the “merge” of the

global types provided as first argument, inserting also the interac-

tions corresponding to the forwarding of the messages sent to the

interfaces, as described by the global type provided as second argu-

ment. The construction of such a “merge” proceeds coinductively

according to the three clauses of the definition.

The first clause applies when the first unlocked global type in the

list has an outermost communication involving an interface, and

this interface occurs in the outermost communication of G together

with an interface which occurs in the outermost communication

of the corresponding global type in the list. The global type of

the composition starts with the communication having as sender a

participant which is not an interface (as prescribed byG𝑖𝑙 ), followed

by the forwarding between the two involved interfaces as prescribed

by G and then by the communication of the message from the

interface which just received it to a participant which is not an

interface (as prescribed byG𝑖𝑙 ′ ). The protocol continues by applying

the function G to the global types obtained from G𝑖𝑙 , G𝑖𝑙 ′ and G
by erasing the communications done. The continuations of G𝑖𝑙 and

G𝑖𝑙 ′ are added at the end of the list (where G𝑖𝑙 and G𝑖𝑙 ′ have been

erased) which becomes the first arguments in the applications of

G, while the continuations of G become the second arguments in

the applications of G.

The second clause applies when the first unlocked global type in

the list has an outermost communication not involving interfaces.

The global type of the composition starts with this communication

and then continues applying the function G to the list obtained by

erasing G𝑖𝑙 and by adding the continuations of G𝑖𝑙 at the end (as

first argument) and to G (as second argument).

The third clause applies when the list is empty and G = End.

Example 3.16 (A type formulticomposition). The global type of the
PaI multicomposition of Example 3.13 can be obtained by applying

G as defined in Figure 6 to ⟨G1,G2,G3,G4⟩ and G, where G1 is

defined in Example 2.10, G2, G3, G4 are defined in Example 3.1 and

G is defined in Example 3.7. Figure 7 shows the resulting global

type. ⋄
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G★
𝑗 ⊢ h𝑖𝑙 ′ [𝐻

′′
𝑗 ◦ 𝐾 ′′

𝑗 ] ∥ q[𝑄 𝑗 ] ∥ · · · ∀𝑗 ∈ 𝐽 ′

h𝑙 ′ → q : 𝜆 𝑗 .G★
𝑗 ⊢ h𝑖𝑙 [𝐻 ′

𝑗 ◦ 𝐾
′
𝑗 ] ∥ h𝑖𝑙 ′ [q!𝜆 𝑗 .𝐻

′′
𝑗 ◦ 𝐾 ′′

𝑗 ] ∥ q[h𝑖𝑙 ′ ?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ′′′ ] ∥ · · · ∀𝑗 ∈ 𝐽 ′

h𝑖𝑙 → h𝑖𝑙 ′ : 𝜆 𝑗 .h𝑖𝑙 ′ → q : 𝜆 𝑗 .G★
𝑗 ⊢ p[𝑃 𝑗 ] ∥ h𝑖𝑙 [h𝑖𝑙 ′ !𝜆 𝑗 .𝐻

′
𝑗 ◦ 𝐾

′
𝑗 ] ∥ h𝑖𝑙 ′ [h𝑖𝑙 ?{𝜆 𝑗 .q!𝜆 𝑗 .𝐻

′′
𝑗 ◦ 𝐾 ′′

𝑗 } 𝑗∈ 𝐽 ′′ ] ∥ · · · ∀𝑗 ∈ 𝐽 ′

p → h𝑖𝑙 : {𝜆 𝑗 .h𝑖𝑙 → h𝑖𝑙 ′ : 𝜆 𝑗 .h𝑖𝑙 ′ → q : 𝜆 𝑗 .G★
𝑗 } 𝑗∈ 𝐽 ′ ⊢ p[h𝑖𝑙 !{𝜆 𝑗 .𝑃 𝑗 } 𝑗∈ 𝐽 ′ ] ∥ h𝑖𝑙 [p?{𝜆 𝑗 .h𝑖𝑙 ′ !𝜆 𝑗 .𝐻

′
𝑗 ◦ 𝐾

′
𝑗 } 𝑗∈ 𝐽 ] ∥ · · ·

Figure 8: Derivation used in the proof of Theorem 3.17.

Note that the function G is well defined, since the equations in
clauses 1 and 2 are productive, i.e. they always unfold at least one

constructor.

We have now the necessary machinery to show the safety of our

session multicomposition.

Theorem 3.17 (Typability of PaI Multicomposition). If the
multiparty sessions {M𝑖 }𝑖∈𝐼 are multicompatible with respect to
{h𝑖 }𝑖∈𝐼 and K, then the PaI multicomposition of {M𝑖 }𝑖∈𝐼 with respect
to {h𝑖 }𝑖∈𝐼 and K is typable.

Proof. Let M𝑖 ≡ h𝑖 [𝐻𝑖 ] ∥ M′
𝑖
and G𝑖 ⊢ M𝑖 for all 𝑖 ∈ 𝐼 and

K = Π𝑖∈𝐼h𝑖 [𝐾𝑖 ] and G ⊢ K. We prove

G(⟨G𝑖 ⟩𝑖∈𝐼 ,G) ⊢ Π𝑖∈𝐼h𝑖 [𝐻𝑖 ◦ 𝐾𝑖 ] ∥ M′
𝑖

The choice of the order in making the list ⟨G𝑖1 ,G𝑖2 , . . . ,G𝑖𝑛 ⟩ is
arbitrary, but taking into account that prt(M𝑗 ) ∩ prt(M𝑙 ) = ∅
implies prt(G𝑗 ) ∩ prt(G𝑙 ) = ∅ for all 𝑗, 𝑙 ∈ 𝐼 , 𝑗 ≠ 𝑙 , typability of

sessions by the obtained global type is insensible to this order.

The obtained type G(⟨G𝑖 ⟩𝑖∈𝐼 ,G) is bounded, provided that G is

total. The proof is by coinduction on G𝑖 for 𝑖 ∈ 𝐼 and on G and

by cases on the three clauses. Note that all G𝑖 for 𝑖 ∈ 𝐼 and G are

bounded since they type multiparty sessions.

Clause 1. By coinduction G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ } •G
′
𝑗
•G′′

𝑗
, Ĝ𝑗 ) is

bounded for all 𝑗 ∈ 𝐽 ′;
Clause 2. By coinduction G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 } •G

′
𝑗
,G) is bounded

for all 𝑗 ∈ 𝐽 ;
Clause 3. Trivial.

We now show by coinduction that, in case G is total, we can

derive

G(⟨G𝑖 ⟩𝑖∈𝐼 ,G) ⊢ Π𝑖∈𝐼h𝑖 [𝐻𝑖 ◦ 𝐾𝑖 ] ∥ M′
𝑖

We proceed by cases according to which among the three clauses

defining G is applied.

Clause 1. Lemma 3.15 implies 𝐻𝑖𝑙 = p?{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽 .

From G𝑖𝑙 ⊢ M𝑖𝑙 we get

M𝑖𝑙 ≡ p[h𝑖𝑙 !{𝜆 𝑗 .𝑃 𝑗 } 𝑗∈ 𝐽 ′ ] ∥ h𝑖𝑙 [p?{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽 ] ∥ M′′

𝑖𝑙

with 𝐽 ′ ⊆ 𝐽 and

G′
𝑗 ⊢ p[𝑃 𝑗 ] ∥ h𝑖𝑙 [𝐻

′
𝑗 ] ∥ M

′′
𝑖𝑙
for all 𝑗 ∈ 𝐽 ′ (1)

Lemma 3.15 implies 𝐻𝑖𝑙 ′ = q!{𝜆 𝑗 .𝐻 ′
𝑗
} 𝑗∈ 𝐽 ′′ with 𝐽 ⊆ 𝐽 ′′. From

G𝑖𝑙 ′ ⊢ M𝑖𝑙 ′ we get

M𝑖𝑙 ′ ≡ h𝑖𝑙 ′ [q!{𝜆 𝑗 .𝐻 ′′
𝑗
} 𝑗∈ 𝐽 ′′ ] ∥ q[h𝑖𝑙 ′ ?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ′′′ ] ∥ M′′

𝑖𝑙 ′

with 𝐽 ′′ ⊆ 𝐽 ′′′ and

G′′
𝑗 ⊢ h𝑖𝑙 ′ [𝐻

′′
𝑗 ] ∥ q[𝑄 𝑗 ] ∥ M′′

𝑖𝑙 ′
for all 𝑗 ∈ 𝐽 ′′ (2)

From G ⊢ Π𝑖∈𝐼h𝑖 [𝐾𝑖 ] and 𝐾𝑖𝑙 ∈ IS(𝐻𝑖𝑙 , {h𝑖 }𝑖∈𝐼\{𝑖𝑙 } ) and 𝐾𝑖𝑙 ′ ∈
IS(𝐻𝑖𝑙 ′ , {h𝑖 }𝑖∈𝐼\{𝑖𝑙 ′ } ) we get

𝐾𝑖𝑙 = h𝑖𝑙 ′ !{𝜆 𝑗 .𝐾 ′
𝑗
} 𝑗∈ 𝐽 𝐾𝑖𝑙 ′ = h𝑖𝑙 ?{𝜆 𝑗 .𝐾 ′′

𝑗
} 𝑗∈ 𝐽 ′′

and

Ĝ𝑗 ⊢ h𝑖𝑙 [𝐾 ′
𝑗 ] ∥ h𝑖𝑙 ′ [𝐾

′′
𝑗 ] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐾𝑖 ] for all 𝑗 ∈ 𝐽 (3)

The definition of interfacing policy (Definition 3.6) implies that, for

all 𝑗 ∈ 𝐽 ′,
h𝑖𝑙 [𝐾 ′

𝑗
] ∥ h𝑖𝑙 ′ [𝐾 ′′

𝑗
] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐾𝑖 ]

is an interfacing policy for

h𝑖𝑙 [𝐻 ′
𝑗
] ∥ h𝑖𝑙 ′ [𝐻 ′′

𝑗
] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐻𝑖 ]

(4)

Then the PaI multicomposition is

h𝑖𝑙 [𝐻𝐾𝑖𝑙 ] ∥ h𝑖𝑙 ′ [𝐻𝐾𝑖𝑙 ′ ] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐻𝑖 ◦ 𝐾𝑖 ] ∥ Π𝑖∈𝐼M′
𝑖

where

𝐻𝐾𝑖𝑙 = p?{𝜆 𝑗 .h𝑖𝑙 ′ !𝜆 𝑗 .𝐻 ′
𝑗
◦ 𝐾 ′

𝑗
} 𝑗∈ 𝐽

𝐻𝐾𝑖𝑙 ′ = h𝑖𝑙 ?{𝜆 𝑗 .q!𝜆 𝑗 .𝐻 ′′
𝑗
◦ 𝐾 ′′

𝑗
} 𝑗∈ 𝐽 ′′

By coinduction the typings (1), (2), (3) and the statement (4) imply

that, for all 𝑗 ∈ 𝐽 ′,
G★
𝑗
⊢ p[𝑃 𝑗 ] ∥ h𝑖𝑙 [𝐻 ′

𝑗
◦ 𝐾 ′

𝑗
] ∥ h𝑖𝑙 ′ [𝐻 ′′

𝑗
◦ 𝐾 ′′

𝑗
] ∥ q[𝑄 𝑗 ] ∥ M′

whereM′ ≡ M′′
𝑖𝑙
∥ M′′

𝑖𝑙 ′
∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }h𝑖 [𝐻𝑖 ◦ 𝐾𝑖 ] ∥ Π𝑖∈𝐼\{𝑖𝑙 ,𝑖𝑙 ′ }M

′
𝑖
.

We have then the derivation given in Figure 8, where we only

show the processes which are modified from the premises to the

conclusion.

Clause 2. In this case from G𝑖𝑙 ⊢ M𝑖𝑙 we get

M𝑖𝑙 ≡ p[q!{𝜆 𝑗 .𝑃 𝑗 } 𝑗∈ 𝐽 ] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ′ ] ∥ h𝑖𝑙 [𝐻𝑖𝑙 ] ∥ M′′
𝑖𝑙

with 𝐽 ⊆ 𝐽 ′ and

G′
𝑗 ⊢ p[𝑃 𝑗 ] ∥ q[𝑄 𝑗 ] ∥ h𝑖𝑙 [𝐻𝑖𝑙 ] ∥ M′′

𝑖𝑙
for all 𝑗 ∈ 𝐽 (5)

By coinduction, the typing (5) implies for all 𝑗 ∈ 𝐽
Ĝ𝑗 ⊢ p[𝑃 𝑗 ] ∥ q[𝑄 𝑗 ] ∥ M′′

𝑖𝑙
∥ Π𝑖∈𝐼h𝑖 [𝐻𝑖 ◦ 𝐾𝑖 ] ∥ Π𝑖∈𝐼\{𝑖𝑙 }M

′
𝑖

where Ĝ𝑗 = G(⟨G𝑖 ⟩𝑖∈𝐼\{𝑖𝑙 } • G
′
𝑗
,G). Then we can derive

Ĝ𝑗 ⊢ p[𝑃 𝑗 ] ∥ q[𝑄 𝑗 ] ∥ · · · ∀𝑗 ∈ 𝐽
p → q : 𝜆 𝑗 .Ĝ𝑗 ⊢ p[q!{𝜆 𝑗 .𝑃 𝑗 } 𝑗∈ 𝐽 ] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ′ ] ∥ · · ·

where we only show the processes which are modified from the

premises to the conclusion.

Clause 3. Trivial.
We conclude the proof by showing that the function G is total.

Note that, when clause 1 is applied, the typings (1), (2), (3) and the

statement (4) imply that the conditions required by Lemma 3.15

remain valid for the global types G′
𝑗
, G′′

𝑗
, Ĝ𝑗 and the corresponding

multiparty sessions for all 𝑗 ∈ 𝐽 ′. When clause 2 is applied the typ-

ing (5) implies that the conditions required by Lemma 3.15 remain

valid for the global types G′
𝑗
and the corresponding multiparty

9
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sessions for all 𝑗 ∈ 𝐽 .
Let G𝑖𝑚 be locked for G in the list ⟨G𝑖 ⟩𝑖∈𝐼 for all𝑚 < 𝑙 and G𝑖𝑙 be

unlocked. If h𝑖𝑙 ∈ hd(G𝑖𝑙 ) and hd(G) = {𝑖𝑙 , 𝑖𝑙 ′ } for some 𝑖𝑙 ′ ∈ 𝐼 and
h𝑖𝑙 ′ ∈ hd(G𝑖𝑙 ′ ), then Lemma 3.15 ensures that G𝑖𝑙 , G𝑖𝑙 ′ and G have

the shapes required in clause 1, possibly exchanging inputs and

outputs. If h𝑖𝑙 ∉ hd(G𝑖𝑙 ), then clause 2 applies. Lastly 𝐼 = ∅ implies

G = End, so clause 3 applies. □

4 TYPE INFERENCE
The effectiveness of PaI multicomposition relies on the following

facts:

(1) the possible choices of participants to be replaced by gate-

ways are finite;

(2) there is a finite number of interfacing policies for a given

session;

(3) global types for sessions can be inferred, if any.

Facts (1) and (2) are clear from the previous sections. In this

section we describe an algorithm to infer global types for sessions,

by adapting to synchronous communication the algorithm of [16]

in order to handle matching of input and output processes.

Since global types are regular terms, we represent them as finite

systems of regular syntactic equations [1, 15]. We prove soundness

and completeness of the algorithm with respect to the typing sys-

tem: when applied to a sessionM, it finds all and only those global

types that can be derived forM, if any. Note that, since a session

may have more than one global type, to be complete, the algorithm

needs to be non-deterministic.

The algorithm follows the structure of coSLD resolution of coin-

ductive logic programming [2, 33–35], namely the extension of

SLD resolution capable to deal with regular infinite terms and coin-

ductive predicates. The key idea, borrowed from coinductive logic

programming, is to keep track of already encountered variables to

detect cycles and avoid non-termination.

A global-type pattern is a finite term generated by the following

grammar.

G ::= End | p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 | 𝑋

where𝑋 is a variable taken from a countably infinite set. We denote

by vars(G) the set of variables occurring in G. A substitution 𝜃 is

a finite partial map from variables to global types. We denote by

G𝜃 the application of 𝜃 to G. Note that, if vars(G) ⊆ dom(𝜃 ), then
G𝜃 is a global type. An equation has shape 𝑋 ≖ G and a (regular)
system of equations E is a finite set of equations such that 𝑋 ≖ G1
and 𝑋 ≖ G2 ∈ E imply G1 = G2. We denote by vars(E) the set
{𝑋 | 𝑋 ≖ G ∈ E}. A solution of a system E is a substitution 𝜃 such

that vars(E) ⊆ dom(𝜃 ) and, for all 𝑋 ≖ G ∈ E, 𝜃 (𝑋 ) = G𝜃 holds.

We denote by sol (E) the set of all solutions of E. Note that E1 ⊆ E2

implies sol (E2) ⊆ sol (E1).
The algorithm takes in input a goal (a pair (𝑋,M)) and either

fails or returns a set of equations E such that the solution for the

variable𝑋 in E is a global type for the sessionM. Rules defining the

inference algorithm are reported in Figure 9. Inference judgements

are of the shape S ⊢ (𝑋,M) ⇒ E, where S is a set of goals;

variables in S are pairwise distinct and different from 𝑋 .

For a terminated session the algorithm returns one equation

𝑋 ≖ End (Rule [A-End]). For other sessions (Rule [A-Comm]) the algo-

rithm selects one of the matching pairs: 𝑃 = q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 and 𝑄 =

p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 , with 𝐼 ⊆ 𝐽 . The algorithm continues analysing all

matching branches 𝑃𝑖 and 𝑄𝑖 . After having evaluated subsessions,

the algorithm collects all the resulting equations plus another one

for the current variable. The freshness condition on variables 𝑌𝑖
ensures that the resulting set E is a regular system of equations. The

side condition on participants ensures that the resulting global type

associated with 𝑋 satisfies the conditions on participants required

by Rule [Comm] in Definition 2.8. The set prt(S; E;G) is defined
as the set of participants of a global type, but with the following

additional clause to handle variables:

prt(S; E;𝑋 ) =


prt(S; E;G) if 𝑋 ≖ G ∈ E
prt(M) if 𝑋 ∉ dom(E) and (𝑋,M) ∈ S
∅ otherwise

Finally, Rule [A-Cycle] detects cycles: if the session in the current

goal appears also in S, the algorithm can stop and return just one

equation that unifies two variables.

Example 4.1 (Inference). Figure 10 shows the application of the

rules of Figure 9 to the session of Example 2.3, where

S1 = (𝑋, h1 [𝐻1] ∥ p[𝑃])
S2 = S1, (𝑌1, h1 [p?react. 𝐻 ′

1
] ∥ p[h1!react. 𝑃1])

S3 = S2, (𝑌2, h1 [𝐻 ′
1
] ∥ p[𝑃1])

S4 = S3, (𝑌3, h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃])
S5 = S3, (𝑌4, h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃])
E6 = {𝑌6 ≖ 𝑋 }
E5 = {𝑌5 ≖ 𝑋 }
E4 = {𝑌4 ≖ p → h1:img. 𝑌6} ∪ E6

E3 = {𝑌3 ≖ p → h1:img. 𝑌5} ∪ E5

E2 = {𝑌2 ≖ p → h1:{rc. 𝑌3, nc.𝑌4}} ∪ E3 ∪ E4

E1 = {𝑌1 ≖ p → h1:react. 𝑌2} ∪ E2

E = {𝑋 ≖ h1 → p:start. 𝑌1} ∪ E1

The sets of goals and equations above are listed according to the

order in which they are produced in a possible execution of the

algorithm implicitely described by the rules of Figure 9.

It is easy to verify that a solution is the global type given in Exam-

ple 2.10. It is then useful to compare Figure 10 with Figure 3. ⋄

Some definitions are handy. We denote by 𝜃 +𝜎 the union of two

substitutions such that 𝜃 (𝑋 ) = 𝜎 (𝑋 ), for all 𝑋 ∈ dom(𝜃 ) ∩dom(𝜎).
We denote by vars(E) the set

⋃{vars(G) ∪ {𝑋 } | 𝑋 ≖ G ∈ E}.
We define 𝜃 ⪯ 𝜎 if dom(𝜃 ) ⊆ dom(𝜎) and 𝜃 (𝑋 ) = 𝜎 (𝑋 ), for
all 𝑋 ∈ dom(𝜃 ). Let E be a system of equations and S a set of

goals. A solution 𝜃 ∈ sol (E) agrees with S if (𝑋,M) ∈ S implies

prt(𝜃 (𝑋 )) = prt(M) for all 𝑋 ∈ vars(E). We denote by solS (E)
the set of all solutions of E agreeing with S. We say that a system

of equations E is guarded if 𝑋 ≖ 𝑌 and 𝑌 ≖ G in E imply that G is

not a variable. Finally, E is S-closed if it is guarded and dom(E) ∩
vars(S) = ∅ and vars(E) \ dom(E) ⊆ vars(S).

Toward proving properties of the inference algorithm, we check

a couple of auxiliary lemmas.

As usual S ⊢ (𝑋,M) ⇒ E means that this judgment belongs to

a derivation in the system of Figure 9 having a judgment with an

10
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[A-Cycle]

S, (𝑌,M) ⊢ (𝑋,M) ⇒ {𝑋 ≖ 𝑌 }
[A-End]

S ⊢ (𝑋, p[0]) ⇒ {𝑋 ≖ End}

[A-Comm]

S′ ⊢ (𝑌𝑖 , p[𝑃𝑖 ] ∥ q[𝑄𝑖 ] ∥ M) ⇒ E𝑖 ∀𝑖 ∈ 𝐼
S ⊢ (𝑋, p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 ] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ] ∥ M) ⇒ E

S′ = S, (𝑋, p[𝑃 ] ∥ q[𝑄 ] ∥ M) 𝐼 ⊆ 𝐽

𝑌𝑖 fresh ∀𝑖 ∈ 𝐼 E = {𝑋 ≖ p → q : {𝜆𝑖 .𝑌𝑖 }𝑖∈𝐼 } ∪
⋃

𝑖∈𝐼 E𝑖

prt(S′
; E𝑖 ;𝑌𝑖 ) \ {p, q} = prt(M) ∀𝑖 ∈ 𝐼

Figure 9: Rules of the inference algorithm.

[A-Cycle]

S4 ⊢ (𝑌5, h1 [𝐻1] ∥ p[𝑃]) ⇒ E5

[A-Comm]

S3 ⊢ (𝑌3, h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃]) ⇒ E3

[A-Cycle]

S5 ⊢ (𝑌6, h1 [𝐻1] ∥ p[𝑃]) ⇒ E6

[A-Comm]

S3 ⊢ (𝑌4, h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃]) ⇒ E4

[A-Comm]

S2 ⊢ (𝑌2, h1 [𝐻 ′
1
] ∥ p[𝑃1]) ⇒ E2

[A-Comm]

S1 ⊢ (𝑌1, h1 [p?react. 𝐻 ′
1
] ∥ p[h1!react. 𝑃1]) ⇒ E1

[A-Comm]

⊢ (𝑋, h1 [𝐻1] ∥ p[𝑃]) ⇒ E

Figure 10: Type inference for the session of Example 2.3.

empty sets of goals as conclusion (namely it represents the result

of a recursive call during the execution of our algorithm).

Lemma 4.2. If S ⊢ (𝑋,M) ⇒ E, then E is S-closed.

Proof. By induction on the derivation of S ⊢ (𝑋,M) ⇒ E. □

Lemma 4.3. If E is anS-closed system of equations and vars(G) ⊆
vars(E), then prt(S; E;G) = prt(G𝜃 ) for all 𝜃 ∈ solS (E).

Proof. To prove the inclusion prt(G𝜃 ) ⊆ prt(S; E;G), let p ∈
prt(G𝜃 ). We show p ∈ prt(S; E;G) by induction on the least dis-

tance 𝑑 of a communication with player p from the root of G𝜃 . First
of all, it is easy to see that there is G′ such that prt(S; E;G) =

prt(S; E;G′) and G𝜃 = G′𝜃 and either G′ = r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
or G′ = 𝑋 and 𝑋 ∉ dom(E). Indeed, we have G ≠ End since

prt(End𝜃 ) = prt(End) = ∅. First we show that G = 𝑋 ∈ dom(E)
is impossible. In this case 𝑋 ≖ G1 ∈ E and we have G𝜃 = G1𝜃
and prt(S; E;G) = prt(S; E;G1), since 𝜃 is a solution of E. Hence,
again G1 ≠ End and if G1 = 𝑌 ∈ dom(E), namely, 𝑌 ≖ G2 ∈ E, we
have G1𝜃 = G2𝜃 and prt(S; E;G1) = prt(S;E;G2) and, since E is

S-closed and so guarded, we have that G2 is not a variable.
Case 𝑑 = 0. If G′ = 𝑋 ∉ dom(E), then (𝑋,M) ∈ S and

prt(S; E;G′) = prt(M). Since 𝜃 agrees with S, we have prt(G′𝜃 ) =
prt(𝜃 (𝑋 )) = prt(M), hence p ∈ prt(S; E;G′).
If G′ = r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 , then G′𝜃 = r → s : {𝜆𝑖 .G𝑖𝜃 }𝑖∈𝐼 and
p ∈ prt(G′) = prt(G′𝜃 ). By definition we have prt(S; E;G′) =

prt(G′) ∪⋃
𝑖∈𝐼 prt(S, E,G𝑖 ), hence p ∈ prt(S; E;G′).

Case 𝑑 > 0. If G′ = 𝑋 ∉ dom(E), the proof is as above. If

G′ = r → s : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 , then p ∉ hd(G′𝜃 ), hence p ∉ {r, s}.
We have G′𝜃 = r → s : {𝜆𝑖 .G𝑖𝜃 }𝑖∈𝐼 and there is 𝑙 ∈ 𝐼 such

that p ∈ prt(G𝑙𝜃 ) and the distance decreases. Then, by induction

hypothesis, we get p ∈ prt(S; E;G𝑙 ) ⊆ prt(S; E;G′), as needed.
To prove the other inclusion, prt(S; E;G) ⊆ prt(G𝜃 ), we just

have to check that the sets prt(G𝜃 ) respect the equations defining
prt(S; E;G). All cases are trivial except for G = 𝑋 . If 𝑋 ∈ dom(E),
that is, 𝑋 ≖ G′ ∈ E, then G𝜃 = 𝜃 (𝑋 ) = G′𝜃 , hence prt(G𝜃 ) =

prt(G′𝜃 ), as needed. Otherwise, 𝑋 ∈ vars(S), that is, (𝑋,M) ∈

S, hence prt(S; E;G) = prt(M). Since 𝜃 agrees with S, we have
prt(G𝜃 ) = prt(𝜃 (𝑋 )) = prt(M), as needed. □

To show soundness and completeness of our inference algorithm,

it is handy to formulate an inductive version of our typing rules,

see Figure 11, where N ranges over sets of pairs (M,G). We can

give an inductive formulation since all infinite derivations using the

typing rules of Definition 2.8 are regular, i.e. the number of different

subtrees of a derivation for a judgement G ⊢ M is finite. In fact, it

is bounded by the product of the number of different subterms of

G and the number of different subnetworks ofM, which are both

finite as G and (processes in)M are regular. Applying the standard

transformation according to [31, Section 21.9] from a coinductive to

an inductive formulation we get the typing rules shown in Figure 11.

Example 4.4 (Inductive formulation). The inductive formulation

of the derivation in Figure 3 is shown in Figure 12, where

N ′ = (h1 [𝐻1] ∥ p[𝑃],G1),
(h1 [p?react. 𝐻 ′

1
] ∥ p[h1!react. 𝑃1], p → h1:react.G′

1
),

(h1 [𝐻 ′
1
] ∥ p[𝑃1],G′

1
)

N = N ′, (h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃], h1 → p:img.G1) ⋄

In the following two lemmas we relate inference and inductive

derivability.

Lemma 4.5. If S ⊢ (𝑋,M) ⇒ E and 𝜃 (𝑋 ) is bounded, then
S𝜃 ⊢i M : 𝜃 (𝑋 )

for all 𝜃 ∈ solS (E) such that vars(S) ⊆ dom(𝜃 ).

Proof. By induction on the derivation of S ⊢ (𝑋,M) ⇒ E.
Rule [A-End]. We have E = {𝑋 ≖ End}, hence 𝜃 (𝑋 ) = End and

the thesis follows by Rule [I-End].

Rule [A-Cycle]. We have E = {𝑋 ≖ 𝑌 } and S = S′, (𝑌,M). Then,
𝜃 (𝑋 ) = 𝜃 (𝑌 ) and the thesis follows by Rule [I-Cycle].

Rule [A-Comm]. We have

M ≡ p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 ] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ] ∥ M′
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[I-Cycle]

N , (M,G) ⊢i M : G
[I-End]

N ⊢i p[0] : End

[I-Comm]

N , (M,G) ⊢i p[𝑃𝑖 ] ∥ q[𝑄𝑖 ] ∥ M′
: G𝑖

prt(G𝑖 ) \ {p, q} = prt(M′) ∀𝑖 ∈ 𝐼
N ⊢i M : G

G = p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼
M = p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 ] ∥ q[p?{𝜆𝑗 .𝑄 𝑗 } 𝑗 ∈ 𝐽 ] ∥ M′

Figure 11: Inductive typing rules for sessions.

N ⊢i h1 [𝐻1] ∥ p[𝑃] : G1

N ′ ⊢i h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃] : h1 → p:img.G1

N ⊢i h1 [𝐻1] ∥ p[𝑃] : G1

N ′ ⊢i h1 [p!img. 𝐻1] ∥ p[h1?img. 𝑃] : h1 → p:img.G1

(h1 [𝐻1] ∥ p[𝑃],G1), (h1 [p?react. 𝐻 ′
1
] ∥ p[h1!react. 𝑃1], p → h1:react.G′

1
) ⊢i h1 [𝐻 ′

1
] ∥ p[𝑃1]:G′

1

(h1 [𝐻1] ∥ p[𝑃],G1) ⊢i h1 [p?react. 𝐻 ′
1
] ∥ p[h1!react. 𝑃1] : p → h1:react.G′

1

⊢i h1 [𝐻1] ∥ p[𝑃] : G1

Figure 12: Inductive derivation for Example 2.10.

with 𝐼 ⊆ 𝐽 and S, (𝑋,M) ⊢ (𝑌𝑖 ,M𝑖 ) ⇒ E𝑖 with 𝑌𝑖 fresh andM𝑖 ≡
p[𝑃𝑖 ] ∥ q[𝑄𝑖 ] ∥ M′

and prt(S, (𝑋,M); E𝑖 ;𝑌𝑖 )\{p, q} = prt(M′) for
all 𝑖 ∈ 𝐼 and E = {𝑋 ≖ p → q : {𝜆𝑖 .𝑌𝑖 }𝑖∈𝐼 } ∪

⋃
𝑖∈𝐼 E𝑖 . Since E𝑖 ⊆

E, we have 𝜃 ∈ sol (E𝑖 ). Being 𝜃 ∈ solS (E), Lemma 4.3 implies

prt(S; E;𝑋 ) = prt(M). So we get that 𝜃 agrees with S, (𝑋,M).
Then, by induction, we have S𝜃, (M, 𝜃 (𝑋 )) ⊢i M𝑖 : 𝜃 (𝑌𝑖 ) for all
𝑖 ∈ 𝐼 . The thesis follows by Rule [I-Comm], since

𝜃 (𝑋 ) = p → q : {𝜆𝑖 .𝜃 (𝑌𝑖 )}𝑖∈𝐼
and prt(S, (𝑋,M);E𝑖 ;𝑌𝑖 ) \ {p, q} = prt(M′) imply

prt(𝜃 (𝑌𝑖 )) \ {p, q} = prt(M′)

for all 𝑖 ∈ 𝐼 by Lemma 4.3. □

Lemma 4.6. If N ⊢i M : G and prt(G′) = prt(M′) for all
(G′,M′) ∈ N , then, for all S, 𝑋 and 𝜎 such that 𝑋 ∉ vars(S),
dom(𝜎) = vars(S) and S𝜎 = N , there are E and 𝜃 such that
S ⊢ (𝑋,M) ⇒ E and𝜃 ∈ solS (E) and dom(𝜃 ) = vars(E)∪vars(S)
and 𝜎 ⪯ 𝜃 and 𝜃 (𝑋 ) = G.

Proof. By induction on the derivation of N ⊢i M : G.
Rule[I-End]. The thesis is immediate by Rule [A-End] taking 𝜃 =

𝜎 + {𝑋 ↦→ End}.
Rule [I-Cycle]. We have N = N ′, (M,G), then S = S′, (𝑌,M)

and 𝜎 (𝑌 ) = G. By Rule [A-Cycle], we get S ⊢ (𝑋,M) ⇒ {𝑋 ≖ 𝑌 },
hence 𝜃 = 𝜎 + {𝑋 ↦→ G} is a solution of {𝑋 ≖ 𝑌 }, which agrees

with S being prt(G) = prt(M), as needed.
Rule [I-Comm]. In this case we have

M ≡ p[q!{𝜆𝑖 .𝑃𝑖 }𝑖∈𝐼 ] ∥ q[p?{𝜆 𝑗 .𝑄 𝑗 } 𝑗∈ 𝐽 ] ∥ M′

with 𝐼 ⊆ 𝐽 and G = p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 and N , (M,G) ⊢i M𝑖 : G𝑖

with M𝑖 ≡ p[𝑃𝑖 ] ∥ q[𝑄𝑖 ] ∥ M′
and prt(G𝑖 ) \ {p, q} = prt(M′),

for all 𝑖 ∈ 𝐼 . This last condition implies prt(G) = prt(M). Set 𝜎′ =
𝜎 + {𝑋 ↦→ G} and S′ = S, (𝑋,M), then, by induction hypothesis,

we get that there are E𝑖 and 𝜃𝑖 such that S′ ⊢ (𝑌𝑖 ,M𝑖 ) ⇒ E𝑖 and
𝜃𝑖 ∈ solS′ (E𝑖 ) and dom(𝜃𝑖 ) = vars(E𝑖 ) ∪ vars(S′) and 𝜎′ ⪯ 𝜃𝑖
and 𝜃𝑖 (𝑌𝑖 ) = G𝑖 , for all 𝑖 ∈ 𝐼 . We can assume that 𝑗 ≠ 𝑙 implies

𝑌𝑗 ≠ 𝑌𝑙 and dom(E 𝑗 ) ∩ dom(E𝑙 ) = ∅ for all 𝑗, 𝑙 ∈ 𝐼 , because the
algorithm always introduces fresh variables. This implies dom(𝜃 𝑗 )∩

dom(𝜃𝑙 ) = vars(S′) for all 𝑗 ≠ 𝑙 , and so 𝜃 =
∑
𝑖∈𝐼 𝜃𝑖 is well defined.

Moreover, we have 𝜃 ∈ solS′ (E𝑖 ) and 𝜎 ⪯ 𝜃 and 𝜃 (𝑋 ) = G, as
𝜎 ⪯ 𝜎′ and 𝜎′ ⪯ 𝜃𝑖 ⪯ 𝜃 for all 𝑖 ∈ 𝐼 . From prt(G𝑖 ) \ {p} = prt(M′)
we get prt(S′

; E𝑖 ;𝑌𝑖 ) \ {p, q} = prt(M′) for all 𝑖 ∈ 𝐼 by Lemma 4.3.

By Rule [A-Comm] we get S ⊢ (𝑋,M) ⇒ E with

E = {𝑋 ≖ p → q : {𝜆𝑖 .𝑌𝑖 }𝑖∈𝐼 } ∪
⋃

𝑖∈𝐼 E𝑖

and 𝜃 ∈ solS (E), since
𝜃 (𝑋 ) = p → q : {𝜆𝑖 .G𝑖 }𝑖∈𝐼 = p → q : {𝜆𝑖 .𝜃𝑖 (𝑌𝑖 )}𝑖∈𝐼

= (p → q : {𝜆𝑖 .𝑌𝑖 }𝑖∈𝐼 )𝜃

and 𝜎 ⪯ 𝜃 . □

Soundness and completeness state that the inference algorithm

applied to a session finds all and only the global types which, if

bounded, can be assigned to the session.

Theorem 4.7 (Soundness and Completeness of Inference).

(1) If ⊢ (𝑋,M) ⇒ E, then 𝜃 (𝑋 ) ⊢ M for all 𝜃 ∈ sol (E) such
that 𝜃 (𝑋 ) is bounded.

(2) If G ⊢ M, then there are E and 𝜃 such that ⊢ (𝑋,M) ⇒ E
and 𝜃 ∈ sol (E) and 𝜃 (𝑋 ) = G.

Proof. (1). By Lemma 4.5 ⊢ (𝑋,M) ⇒ E implies ⊢i M : 𝜃 (𝑋 ) for
all 𝜃 ∈ sol (E). This is enough, since ⊢i M : 𝜃 (𝑋 ) gives 𝜃 (𝑋 ) ⊢ M.

(2). From G ⊢ M we get ⊢i M : G. By Lemma 4.6 this implies

that there are E and 𝜃 such that ⊢ (𝑋,M) ⇒ E and 𝜃 ∈ sol (E) and
𝜃 (𝑋 ) = G. □

Remark 4.8 (Termination). To avoid non-termination, the key

idea, borrowed from coinductive logic programming, is to keep

track of already encountered goals to detect cycles.

As it happens for (co)SLD-resolution in logic programming, the

termination of our inference algorithm depends on the choice

of a resolution strategy. Indeed, we have many sources of non-

determinism: we have to pick two participants of the session with

matching processes and expand them using Rule [A-Comm], or try to

close a cycle using the Rule [A-Cycle]. A standard way to obtain a

sound and complete resolution strategy is to build a tree where all

12
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such choices are performed in parallel and then visit the tree using

a breadth-first strategy. The tree is potentially infinite in depth, but

it is finitely branching, since at each point we have only finitely

many different choices, hence this strategy necessarily finds all

solutions. In case no rule can be applied, the algorithm fails. ⋄

5 CONCLUSION AND RELATEDWORK
In the present paper we have addressed the problem of multiple
protocol composition for MPSTs [14, 18, 21, 22, 32, 37] using the

calculus and the type system defined in [4]. We extended the PaI

approach devised in [3] and exploited in [5] for binary composition

of MPSTs. By binary composition, however, only tree-like struc-

tures can be obtained, leaving out many compositional possibilities.

In [4] the PaI approach for MPSTs was adapted to multiple compo-

sition in a client-server setting, where many server-sessions can

be “connected” to just one client-session. In the present paper, in-

stead, all the sessions to be composed are peers and their gateways

can freely interact. This was achieved by introducing the notion

of multicompatibility, which boils down to identifying a typable
“interfacing policy” (a session describing how gateways interact).

The gateways connecting the various sessions are hence defined

in terms of such interfacing policy. We proved that lock-freedom

(ensured by typability) is preserved by composition. It is worth

remarking that, as shown by a simple working example, one could

have many typable interfacing policies to choose among.

A different approach to composition for MPST is taken in [36],

where sessions with missing participants can be typed and com-

posed when types are compatible. A limit of that work is that only

finite processes are considered.

The formalism ofMPSTs used for our investigation can be dubbed

as bottom-up: no projection is used and sessions are checked against
global types by means of a type assignment system. Multicompo-

sition in a top-down MPST setting has instead been recentely ad-

dressed in [19]. In a top-down MPST, communication protocols are

explicity described as global types and, subsequently, by projecting

them, local types are obtained for implementation. The present

paper and [19] address then multicomposition from two orthogonal

perspectives. In a sense, however, they both exploit the general

idea of ensuring safe multicomposition by means of a safe inter-
facing policy. As a matter of fact, the “traditional” syntax of global

types is extended in [19] in order to explicitely describe an inter-

facing policy inside the global types themselves. Its projectability

enables hence to apply a composition operation at the global type

level. Unlike our approach, the interfacing policy that “drives” the

composition is rigid in the sense that it is univocally determined

by the global types to be composed. The main advantage of our

approach over [19] is hence the possibility of choosing among dif-

ferent interfacing policies for the same set of sessions. On the other

hand, however, [19] possesses the relevant and expressive feature

of enabling more than a single interface in a session.

In [23] the author devises a type assignement system in logical

form for sessions, where just one type is present, processes are

unnamed and communications are performed through an (implicit)

single channel. Deadlock-freedom is ensured by typability only in

case the session enjoys a race-freedom condition. In such a context

the composition of two sessions with single interfaces corresponds

to a particular form of Cut rule, where compatibility corresponds to

duality. Thanks to the presence of a single communication channel

and to the absence of process names, sessions can be composed by

simply removing the interfaces. It is not possible of course to get any

explicit global information about the behaviour of sessions because

just one type is present. The setting of the present paper, by using

global types, process names and multiple point-to-point channels

is however definitely more expressive and realistic. Our notion of

compatibility cannot reduce to duality and the use of interfacing

policies enables to finely control the operation of composition.

In [11], forwarders are introduced in a Linear Logic interpre-

tation of a MPST formalism. Such forwarders are in a proofs-as-

processes correspondence with coherence proofs, where coherence

is the multiparty counterpart of (binary) duality. Forwarders can be

safely composed through cut elimination, so allowing to “compose”

two concurrent sessions. The precise relationship between the for-

warders of [11] and our gateways is worth investigating. Besides,

our multiple composition through interfacing policies could have a

logical counterpart enabling to compose multiple forwarders.

By suitably combining the notions of multicompatibililty of the

present paper and the one in [19], one could avoid to extend the

syntax of global types as done in [19], retaining at the same time the

possibility of having several possible interfacing policies to choose

among, as in the present paper. Moreover, the result of the present

paper could be extended to the case of more than one interface in

the sessions to be composed.

In Remark 3.14 a simple (decidable) extension of the gateways,

so that they can perform also some “message renaming”, has been

discussed. This idea could actually be pushed further, investigating

the possibility of reordering messages, so implicitly introducing

a form of asynchronous subtyping between gateways. This should

be done with care, since in general asynchronous subtyping is

undecidable, as shown in [10, 28].

The idea underlying our multicomposition is likely to be appli-

cable in future to other frameworks. The works in [26] and [18]

explicitly give algorithms for the synthesis of global types from

communicating finite-state machines, while [27] proposes a simi-

lar method to build graphical choreographies, expressed as global

graphs. [32] develops instead a framework where global types are

not necessary, relying on model and type checking techniques for

verifying safety properties of collections of local types. Our notion

of interfacing policy could be adapted to such frameworks. Then

we could investigate whether the synthesis of global types/global

graphs or the verification of properties via type checking does

“lift” from the components to the composed session, proviso a type

synthesis or checking is provided for the chosen interfacing policy.

MPSTs are characterised by the implicit or explicit presence of

tools for checking/verifying session properties (type assignment,

projectability, type checking, etc.). The application of safe com-

positional methods can however be investigated independently

from such tools. This has been done for the formalism of CFSMs

in [3, 6, 7] using the PaI approach for binary composition. Suitable

adaptations of the notions of interfacing policy and multicompati-

bility could be hopefully devised in such setting. As future work

we also plan to consider composition of MPSTs with asynchronous

communications, taking advantage from the more liberal syntax of

global types introduced in [12].
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