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Abstract. This paper presents a new efficient programming toolchain
for message-passing parallel algorithms which can fully ensure, for any
typable programs and for any execution path, deadlock-freedom, com-
munication safety and global progress through a static checking. The
methodology is embodied as a multiparty session-based programming
environment for C and its runtime libraries, which we call Session C.
Programming starts from specifying a global protocol for a target par-
allel algorithm, using a protocol description language. From this global
protocol, the projection algorithm generates endpoint protocols, based
on which each endpoint C program is designed and implemented with a
small number of concise session primitives. The endpoint protocol can
further be refined to a more optimised protocol through subtyping for
asynchronous communication, preserving original safety guarantees. The
underlying theory can ensure that the complexity of the toolchain stays
in polynomial time against the size of programs. We apply this frame-
work to representative parallel algorithms with complex communication
topologies. The benchmark results show that Session C performs com-
petitively against MPI.

1 Introduction

High-performance computing based on message-passing is one of the highly scal-
able frameworks for executing parallel algorithms with a wide range of hardware
configurations starting from a small LAN to a large cluster to supercomputers.
It is, however, hard to implement message-passing applications correctly, partly
because they rely on not only local calculation at each endpoint, but also on
global message exchange among all endpoints: if the message-passing part of
a program is wrongly implemented, then the result of the calculation is either
unavailable (e.g. by deadlock) or wrong (e.g. by receiving some values at wrong
timings or as wrong types), even if all local calculations are correct.

One of the root causes of errors in communications programming is the lack
of conformance to an assumed protocol among endpoint programs. Typical ex-
amples (written as MPI commands [27]) are a circular wait such as MPI_Send(to2)

from process 1, MPI_Recv(from3) from process 2 and MPI_Send(to1) from process 3;
and a communication mismatch such as MPI_Recv(from2) followed by MPI_Send(to3)

from process 1, MPI_Recv(from3) followed by MPI_Send(to1) from process 2 and
MPI_Recv(from1) followed by MPI_Send(to2) from process 3. To avoid such deadlocks,



one might permute the order of messages using asynchronous sending such as
Isend followed by Recv, but it is often forgotten to write a required synchronisa-
tion (Wait). These are simple errors often illustrated in the textbooks [14, 15], but
still appeared in many programs including large scale MPI applications, e.g [24].
Such communication errors are often hard to detect except by runtime analysis.
Even if detected, hard to locate and fix the bug because the issue comes from
distributed processes. Testing in general does not offer full safety assurance as
it relies on executing a particular sequence of events and actions.

This paper proposes a new programming framework for message-passing
parallel algorithms centring on explicit, formal description of global protocols,
and examines its effectiveness through an implementation of a toolchain for
C. All validations in the toolchain are done statically and are efficient, with a
polynomial-time bound with respect to the size of the program and global proto-
col. The framework is based on theory of multiparty session types [3, 10, 18], and
it supports a full guarantee of deadlock-freedom, type-safety, communication-
safety and global progress for any well-typed programs. Global protocols serve
as a guidance for a programmer to write safe programs, representing a type
abstraction of expressive communication structures (such as sequencing, choice,
broadcast, synchronisation and recursion). The toolchain uses a language Scrib-
ble [16, 31] for describing the multiparty session types in a Java-like syntax.

protocol Simple(role P1, role P2, role P3) {

int from P1 to P2;

char from P3 to P1;

float from P2 to P3;

}

A simple example of a protocol
in Scribble which corrects the first
erroneous MPI program (a wait
cycle) is given on the left. For end-

point code development, the programmer uses the endpoint protocol generated by
the projection algorithm in the toolchain. For example, the above global protocol
is projected to P2 to obtain int from P1; float to P3;, which gives a template for
developing a safe code for P2 as well as a basis of static verification. Since we start
from a correct protocol, if endpoint programs conform to the induced endpoint
protocols, it automatically ensures deadlock-free, well-matched interactions.

Overview of the toolchain. A Session C program is developed in a top-down
approach. Fig. 1 (l.h.s.) shows the relationships between the four layers (i–iv)
that make up a complete Session C program. A Session C programmer first de-
signs a global protocol (i) using Scribble (explained in § 2.1). A Session C program
is a collection of individual programs (iv) in which each of the programs imple-
ments a participant (called endpoint) of the communication. We first extract
the endpoint protocol from the global protocol by projection (ii). The projec-
tion takes the global protocol G and an endpoint (say Alice), and extracts only
the interaction that involves Alice (TAlice). Step (iii) describes a key element
of our toolchain, the protocol refinement. T ′Alice is an endpoint protocol refined
from the original TAlice. This allows the programmer to write a more refined
program PAlice (which conforms to T ′Alice) than a program following the original
TAlice. Session C supports the asynchronous message optimisation [25, 26], the
reordering of messages for minimising a waiting time as a refinement, through its
subtyping checker (§ 3.2). Once PAlice conforms T ′Alice such that T ′Alice < TAlice
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Fig. 1. Session C programming framework (l.h.s.) and architecture (r.h.s.).

(T ′Alice is more refined), then PAlice automatically enjoys safety and progress in
its interactions with PBob and PCarol.

Programming environment. The programming environment of Session C is
made up of two main components, the session type checker and the runtime
library (§ 2.2). Fig. 1 (r.h.s.) shows the architecture. The session type checker
takes an endpoint protocol (TAlice) and a source code PAlice as an input from the
user. The endpoint protocol is generated from the global protocol G through the
projection algorithm. The session type checker validates the source code against
its endpoint protocol. When the program is optimised, it generates T ′Alice from
PAlice and checks if T ′Alice < TAlice (§ 3.2). The API provides a simple but ex-
pressive interface for session-based communications programming.

Contributions.
1. A toolchain for developing and executing message-passing parallel algorithms

based on a formal and explicit description of interaction protocols (§ 2.1),
with an automatic safety guarantee. All algorithms used in the toolchain are
polynomial-time bounded (§ 3.2).

2. The first multiparty session-based programming environment for a low-level
language, Session C, built from expressive session constructs supporting col-
lective operations (§ 2), together with the associated runtime library.

3. A session type checker for Session C, which is the first to offer automatic, full
formal assurance of communication deadlock-freedom (i.e. for any possible
control path and interleaving) for a large class of message-passing parallel
programs (§ 3.1), supporting messaging optimisations through the incorpo-
ration of the asynchronous subtyping [25, 26] (§ 3.2).

4. The practical validation of our methodology through the implementations
of typical message-passing parallel algorithms, leading to concise and clear
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programs (§ 4). The benchmark results show that representative parallel
algorithms in Session C are executed competitively against their counterparts
in MPI (the overhead is on average 1%) (§ 5).

All code and details of benchmark results are available from [13].

Acknowledgements. We thank Gary Brown for his fantastic work under the
Scribble project and the members of Mobility Reading Group and Custom Com-
puting Group for their discussions. The work is partially supported by EPSRC
EP/F003757/01 and EP/G015635/01.

2 Protocols and Programming in Session C

2.1 Scribble, a protocol description language

Our toolchain uses Scribble [16, 31], a developer-friendly notation for specify-
ing application-level communication protocols based on the theory of multiparty
session types [3, 10, 18]. Scribble’s development tool [31] supports parsing, well-
formedness checking and endpoint projection, with bindings to multiple pro-
gramming languages. We briefly introduce its syntax.

1 /* Protocol: Monte Carlo Pi estimation. */

2 import int;

3 protocol MonteCarloPi(role Master, role Worker0, role Worker1) {

4 // number of simulations to do in each worker

5 int from Master to Others; // broadcast

6 rec LOOP {

7 from Others to Master { Yes: No: }; // gather

8 LOOP; }

9 }

Above listing shows a simple Scribble global protocol for Monte Carlo π
estimation. The algorithm uses random sampling to estimate the value of π.
A Scribble protocol begins with the preamble, in Line 1, consisting of a message
type declaration after the keyword import. Then the protocol definition is given
starting from, in Line 2, the keyword protocol, followed by the protocol name,
MonteCarloPi, and its parameters which are the roles to be played by participants.
Then the description of a conversation structure follows. Line 4 says that the
Master should send an integer (which specifies the number of tries) to Others, i.e.
to all other roles than Master, i.e. to the workers. Line 5 declares a recursion
named loop. In Line 6, (after each worker locally generates a random point on
a square and tests if the point is in the quarter of a circle, i.e. the shaded area
in the right figure above. Master is informed by Others (workers) whether the test
was a hit, by choosing Yes or No. Regardless, Line 7 recurs.

The description of interaction in Lines 4-8 is generic, catering for any number
of workers. Here we use collective roles in Scribble, where a single role can denote
multiple participants. We introduce two collectives roles, All (for “every role”)
and Others (for “all other roles”). Using them, we can accurately represent the
protocols for MPI collective operations as:

– MPI_Bcast (broadcast) from A: from A to Others.
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– MPI_Reduce to A, a gather operation: from Others to A.
– MPI_Barrier with A as a gather point, for which we use consecutive interac-

tions: from Others to A; from A to Others.
– MPI_Alltoall, a scatter-gather operation: from All to Others.

These collective roles can be used as a source and/or a target as far as it is not
ambiguous (e.g. from Others to Others) and it does not induce a self-circular com-
munication (e.g. from All to All). Each All is macro-expanded for each endpoint
when projecting a global protocol, whereas Others is preserved after projection
and is linked to programming constructs, as we shall discuss later.

Global protocol Endpoint protocol

U from myrole to role1,.., rolen/Others U to role1,.., rolen/Others

U from role1,.., myrole,.., rolen/Others to role U to role

U from role1,.., rolen/Others to myrole U from role1,..,rolen/Others

U from role to role1,.., myrole,.., rolen/Others U from role

U from All to Others U to Others; U from Others

from myrole to role { l1 : T1 · · · ln : Tn } to role { l1 : T ′1 · · · ln : T ′n }

from role to myrole { l1 : T1 · · · ln : Tn } from role { l1 : T ′1 · · · ln : T ′n }

from All to Others { l1 : T1 · · · ln : Tn } to Others { l1 : T ′1 · · · ln : T ′n };
from Others { l1 : T ′1 · · · ln : T ′n }

repeat from myrole to role { T } repeat to role { T ′ }
repeat from role to myrole { T } repeat from role { T ′ }
rec X { T } rec X { T ′ }

We present a summary of the Scribble syntax for global and local proto-
cols in above table, which also shows how the former is projected to the latter.
In each line, the left-hand side gives a syntax of a global protocol, while the
right-hand side gives its projection onto participant myrole. U is a payload
type; T and T ′ are global and endpoint types; and l is a label for branching. T
and T ′ can be empty, denoting termination. Line 1 indicates two cases, one “U
from myrole to role1,.., rolen”, which is a multicast from myrole to n other roles;
and “U from myrole to Others”, which is a multicast from myrole to all others.
Similarly for Lines 2-4. The right-hand side views the left-hand global interac-
tion from the viewpoint of myrole. In Line 5, “from All to Others” means “every
role sends to the remaining roles”. Hence, for myrole, it means (1) it is sending
to all others, i.e. broadcast; and then (2) receiving from all others, i.e. reduce.

/* Endpoint Scribble for Master */

import int;

protocol MonteCarloPi at Master

(role Worker0, role Worker1){

int to Others;

rec LOOP {

from Worker0, Worker1 { Yes: No: }

LOOP; }

}

/* Endpoint Scribble for Worker0 */

import int;

protocol MonteCarloPi at Worker0

(role Master, role Worker1) {

int from Master;

rec LOOP {

to Master { Yes: No: }

LOOP; }

}

As a concrete example of projection acting on the whole protocol, the endpoint
protocols resulting from the projection of the Monte Carlo simulation example
onto Master and Worker0, respectively, are given in the above listings.
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2.2 Session C: programming and runtime

Session C offers a high-level interface for safe communications programming
based on a small collection of primitives from the session type theory. These
primitives are supported by a runtime whose implementation currently uses the
ØMQ (ZeroMQ) [37] socket library, which provides efficient messaging over mul-
tiple transports including local in/inter-process communication, TCP and PGM
(Pragmatic General Multicast).

A Session C program is a C program that calls the session runtime library.
The following code implements Master whose endpoint protocol is given in the pre-
vious subsection. In the main function, join_session (Line 7) indicates the start
of a session, whose arguments (from the command line arguments argc and argv)
are a session handle of type session * and the location of the endpoint Scribble
file. join_session establishes connections to other participating processes in the

1 /* Session C implementation for Master */

2 #include <libsess.h>

3 ...

4 int main(int argc, char *argv[])

5 { // variable declaration ...

6 session *s;

7 join_session(&argc, &argv, &s, "MCPi_Master.spr");

8 const role *Worker0 = s->get_role(s, "Worker0");

9 const role *Worker1 = s->get_role(s, "Worker1");

10
11 int count = 100;

12 msend_int(100, _Others(s));

13
14 while (count-- > 0) {

15 switch(inbranch(Worker0, &rcvd))

16 { case Yes: hits++; break; case No: break; }

17 switch(inbranch(Worker1, &rcvd))

18 { case Yes: hits++; break; case No: break; }

19 }

20 printf("Pi: %.5f\n", (4*hits)/(2*100.0));

21 end_session(s);

22 }

session, according to a con-
nection configuration infor-
mation such as the host/-
port for each participant,
automatically generated from
the global protocol. Next,
the lookup function get_role

returns the participant iden-
tifier of type role *. Then
we have a series of ses-
sion operations such as
send_type or recv_type (dis-
cussed below). Lines 15-
18 expand the choice from
Others in the protocol into
individual choices. Finally
an end_session cleans up
the session. Any session op-
eration before join_session

or after end_session is invalid because they do not belong to any session.

Programming Communications in Session C. We now outline communica-
tion primitives of Session C. In addition to the standard send/receive primitives,
our library includes a primitive for multicast sending and its reverse. msend sends
the same value to all receivers, and mrecv receives values (not necessarily identical
but of the same type) from multiple senders, as we illustrate below.

The table above lists these primitives as well as control primitives we illus-
trate next, in correspondence with the Scribble protocol construct introduced in
the § 2.1. The first six lines are for message passing. Each function name mentions
a type explicitly, as in send_datatype, following MPI and to ensure type-safety
under the lack of strong typing in C. We support char, int, float, double, string

(C-string, contiguous NULL-terminated array of char), int_array (contiguous ar-

6



Scribble endpoint Session C runtime interface

int to Bob send_int(role *r, int val);

string from Bob recv_string(role *r, char *str);

int to role1,..,rolen msend_int(int val, int roles_count,...);

string from role1,..,rolen mrecv_string(char *str, int roles_count,...);

int to Others msend_int(int val, _Others(sess));

string from Others/role1,..,rolen mrecv_string(char *str, _Others(sess));

repeat to Bob { ... } while(outwhile(int cond,int roles_cnt,...)){..}

repeat from Bob { ... } while(inwhile(int roles_cnt, ...)){..}

rec { ... } ordinary while loop or for loop
to Bob { LABEL0: ... } outbranch(role *r, const int label);

from Bob { LABEL0: ... } inbranch(role *r, int *label);

ray of int), float_array (contiguous array of float), and double_array (contiguous
array of double). These types are sufficient for implementing most parallel algo-
rithms; for composite types that are not in the runtime library, the programmer
can choose to combine existing primitives, or augment the library with mar-
shalling and unmarshalling of the composite type, to allow type checking.

In Lines 3/4 of the table, msend and mrecv specify the number of roles (a roles
count) of the targets/sources, respectively. Lines 5/6 show how the programmer
can specify Others in msend and mrecv: the roles count and roles list are replaced
by a macro _Others(s) with the session handle as the argument.

Structuring message flows: branching and iteration. Branching (choice)
in Session C is declared explicitly by the use of outbranch and inbranch. Differ-
ent branches may have different communication behaviours, and the deciding
participant needs to inform the other participant which branch is chosen. The
passive participant will then react accordingly.

if (i>3) {

outbranch(Bob, BR_LABEL0);

send_int(Bob, 42);

} else {

outbranch(Bob, BR_LABEL1);

recv_int(Bob, &val);

}

switch (inbranch(Alice, &rcvd_label)) {

case BR_LABEL0:

recv_int(Alice, &val);

break;

case BR_LABEL1:

send_int(Alice, 42);

break;}

Above, the branching is initiated by a call to outbranch in the then-block or else-
block of an if-statement. On the receiving side of the branch, the program first
calls inbranch to receive the branch label. A switch-case statement should then
be used to run the segment of code which corresponds to the branching label.

For iteration, two methods are provided: local and communicating iterations.
Local iteration is a standard statement such as while-statements, with session
operations occurring inside.Communicating iteration is a distributed version of
loop, where, at each iteration, the loop condition is computed by the process call-
ing outwhile and is communicated to processes calling inwhile. This while loop
is designed to support multicast, so that a single outwhile can control multiple
processes. This is useful in a number of parallel iterative parallel algorithms,
which the loop continues until certain conditions (e.g. convergence) are reached
and cannot be determined statically.
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// Master process (Alice)

while (outwhile(i++<3, 1, Bob))

recv_int(Bob, &value);

// Slave process (Bob)

while (inwhile(1, Alice))

send_int(Alice, 42);

Above, Alice issues an outwhile with condition i++<3 which will be evaluated in
each iteration. outwhile then sends the result of the evaluation (i.e. 1 or 0) to
Bob and also uses that as the local while loop condition. Then Bob receives the
result of the condition evaluation from Alice by the inwhile call, and uses as the
local while loop condition. Both processes execute the body of the loop, where
Bob sends an integer to Alice. This repeats until i++<3 evaluates to 0, then both
processes exit the while loop.

3 Type checking and message optimisation

3.1 Session type checker

The session type checker for an endpoint program is implemented as a clang C
compiler plugin. The clang compiler is the full-featured C/C++/Objective-C
compiler frontend of the LLVM (Low-Level Virtual Machine) project [22]. LLVM
is a collection of modular and reusable individual libraries for building compiler
toolchains. The modular approach of the project allows easy mix-and-match of
individual components of a compiler to build source code analysis and transfor-
mation tools. Our session type checker is built as such a tool, utilising the parser
and various AST-related frontend modules from the clang compiler.

Endpoint type checking verifies that the source code conforms to the cor-
responding endpoint protocol in Scribble. The type checker operates by ensur-
ing that the linear usage of the communication primitives conforms to a given
Scribble protocol, based on the correspondence between Scribble and Session C
constructs given in the table in § 2.2. The following example shows how Scribble
statements are matched against Session C communication primitives.

We quickly outline how the type checker works, which also gives the back-
ground for §3.2 later. First, the Scribble endpoint protocol is parsed into an
internal tree representation. For brevity, hereafter we refer to it as session tree.
Except for recursion (which itself is not a communication), each node of a session
tree consists of (1) the target role, (2) the type of the node (e.g. send, receive,
choice, etc.) and (3) the datatype, if relevant (e.g. int, string, etc.). For exam-
ple, a Scribble endpoint type statement “int to Worker;” becomes a node {role:
Worker, type: send, datatype: int}.

The type checking is done by inferring the session typing of each program
and matching the resulting session tree against the one from the endpoint pro-
tocol. The type inference is efficiently done by extracting session communication
operations from the source code.1 A session tree is then constructed from this

1 Because C allows unrestricted type conversion by casting, we use the datatype explicitly
mentioned in communication functions as the type of an argument rather than the type
of its expression. For example, send_int(Bob, 3.14) says that sending 3.14 as int is the
intention of the programmer, which is safe if the receiver is intended to receive an integer.
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session typing. For example, a runtime function call, send_int(Worker, result) will
be represented by a node {role: Worker, type: send, datatype: int}.

We can now move to the final process of session type checking in Session C.
After their construction, the session trees from both Scribble endpoint protocol
and the program are normalised, removing unused dummy nodes, branches with-
out session operations and iteration nodes without children, thus compacting the
trees to a canonical form. We then compare these two normalised session trees,
and verify that they are in the asynchronous subtyping relation (illustrated in
§ 3.2) up to minimisation.

3.2 Asynchronous message optimisation

This subsection illustrates one of the key contributions of our toolchain, the
type checking in the presence of asynchronous message optimisation. Parallel
programs often make use of parallel pipelines to overlap computation and com-
munication. The overlapping can reduce stall time due to blocking wait in the
asynchronous communication model, as far as the overlapping does not interfere
with data dependencies.

Stage I Stage II Stage III
send

recv

recv

send recv

send

Stage I Stage II Stage III

send
recv

send
recv

send
recv

Above (left) shows a native but immediately safe ring pipeline and (right) an
efficient parallel pipeline, which needs only two steps to complete instead of
three, since Stage I does not need to wait for data from Stage III. However, this
parallel pipeline is hard to type check against a naturally specified global type
(which would be based on the left figure where interactions take place one by
one), because of the permuted communication operations – we cannot match
the send against the recv, because they criss-cross. But these two figures are
equivalent under the asynchronous communication model with non-blocking send
and blocking receive.

while (i++ < N) { /* StageII */

recv_int(StageI, &rcvd);

send_int(StageIII, result);

compute(result);

result = rcvd;

}

while (i++ < N) { /* Optimised StageII */

send_int(StageIII, result);

compute(result);

recv_int(StageI, &rcvd);

result = rcvd;

}

To see this point concretely, the above listing juxtaposes an unoptimised and
optimised implementation of the Stage II. Both programs communicate values
correctly despite the different order of communication statements. Note compute

is positioned after a send, so that compute can be carried out while the data is
being sent in the background, taking advantage of non-blocking sends.

The use of parallel pipelines is omnipresent in message-passing parallel algo-
rithms. To type-check them, we apply the asynchronous subtyping theory [25,
26], which allows the following deadlock-free permutations:

1. Permuting Receive-Send to Send-Receive in the same or different channels;
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2. Permuting order of Send-Send if they are in difference channels;
3. Permuting order of Receive-Receive if they are in different channels

Note that if we permute in the different direction from (1) (i.e. Send-Receive
to Receive-Send), it causes a deadlock. E.g. in the efficient pipeline described
above, if send-recv is permuted to recv-send in the Stage I, it causes a deadlock
between the Stage I and II.

We give the subtyping rules against Scribble endpoint protocols below, taking
the iso-recursive approach [25], where T is an endpoint type: where use the type

−
T < T

bIdc ∀i. Ti < T ′i
from/to role {l1 : T1 · · · ln : Tn} < from/to role {l1 : T ′1 · · · ln : T ′n}

bBrac

T1 < C[T2] U ′ to role /∈ C ∀role′. U ′ from role′ /∈ C

U from role;T1 < C[U from role;T2]
bRecvc

T1 < C[T2] U ′ from/to role /∈ C

U to role;T1 < C[U to role;T2]
bSendc T1 < T2

rec X {T1} < rec X {T2}
bRecc

context C defined as:

C ::= [] | U from role;C | U to role;C

The subtyping algorithm in Session C conforms to the rules listed above (which
come from [25]) and is their practical refinement, which we describe below:

1. (bRecvc) For each receive statement, search for a matching receive for the
same channel in the source code until a receive statement is found or search
failed. Send and other statements in different channels can be skipped over.

2. (bSendc) For each send statement, search for a matching send for the same
channel in the source code until a receive statement is found or search failed.
Sends can only be permuted between statements in different channels, so
overtaking a receive operation is disallowed.

3. We apply the permutation described above on consecutive statements within
rec and repeat blocks following the iso-recursive approach [25], which is more
suitable for languages such as C and Java.

Finally, we check that all nodes in the source code and protocol session type
trees have been visited.

We end this section by identifying the time-complexity of the present toolchain.
It uses well-formedness checking of a global protocol and its projection, which
are both polynomial-time bound w.r.t. the size of the global type [8, 10]. The
asynchronous subtype-checker as given above is polynomial against the size of
a local type based on the arguments from [8, 25, 26]. Type inferences for session
typed processes are polynomial [10, 18, 26]. We conclude:

Remark 1. The complexity of the whole toolchain is polynomial time-bounded
against the size of a global type and a program.

Thus the toolchain is in principle efficient. Further, a careful examination of each
algorithm suggests they tend to perform linearly with a small factor in normal
cases (e.g. unless deeply nested permutations are carried out for optimisations).
Our usage experience confirms this observation.
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4 Parallel algorithms

In this section we demonstrate the effectiveness of Session C for clear, struc-
tured and safe message-passing parallel programming, through two algorithms
which exemplify complex optimisations and communication topologies. For other
implementations of representative parallel algorithms [11, 15, 23], see [13].

4.1 N-body simulation: asynchronous optimisation for pipelines

The parallel N-body algorithm forms a circular pipeline. Such a ring topology
[2] is used in many parallel algorithms such as LU matrix decomposition [6].
The N-body problem involves finding the motion, according to classical me-
chanics, of a system of particles given their masses, initial positions and veloc-
ities. Parallelisation is achieved by partitioning the particle set among a set of
m worker processes. Each worker is responsible for a partition of all particles.

protocol Nbody /* Global protocol */

(role Head, role Body, role Tail) {

rec NrOfSteps {

rec SubCompute {

particles from Head to Body;

particles from Body to Tail;

particles from Tail to Head;

SubCompute; }

NrOfSteps; }

}

Body 1

Body nBody 0

Head Tail

Above shows the global protocol with 3 workers, Head, Body and Tail. The
simulation is repeated for a number of steps (rec NrOfSteps). In each step, the
resultant forces of particles held by a worker are computed against all particles
held by others. We arrange our workers in a ring pipeline and perform a series of
sub-computations (rec SubCompute) to propagate the particles to all workers, each
involving receiving particles from a neighbouring worker and sending particles
received in the previous sub-computation to the next worker.
protocol Nbody at Body /*endpoint*/

(role Head, role Tail) {

rec NrOfIters {

rec SubCompute {

particles from Head;

particles to Tail;

SubCompute;}

NrOfIters;}

}

/* Implementation of Body worker */

while (iterations++ < NR_OF_ITERATIONS) {

while (rounds++ < NR_OF_NODES) {

send_particles(Tail, tmp_parts);//permuted

// Update veclocities

compute_forces(particles, tmp_parts,...);

recv_particles(Head, &tmp_parts);

} // Update positions by reeceived velocities

compute_positions(particles, pvs, ... );

}

All of the endpoint protocols inherit the two nested rec blocks from the global
protocol. In the body block of rec SubCompute, the order of send and receive are
different in Head and Body. As discussed in §3.2, Session C allows permuting the
order of send and receive for optimisations under the asynchronous subtyping,
so that we can type-check this program. Using the endpoint protocols as spec-
ification, we can implement the workers. The code on the right implements the
Body worker which is typable by our session type checker, despite the difference
in order of send and receive from its endpoint Scribble.

11



4.2 Linear equation solver: a wraparound mesh topology

The aim of the linear equation algorithm is finding a x such that Ax = b, where
A is an n × n matrix and x and b are vectors of length n. We use the parallel
Jacobi algorithm [1], which decomposes A into a diagonal component D and a
remainder R, A = D+R. The algorithm iterates until the normalised difference
between successive iterations is less than a predefined error.

/* Global protocol */

protocol Solver (role Master, ...) {

rec Iter {

rec Pipe {

double_array from Master to Last;

double_array from Last to East;

double_array from East ro Master;

// Other communication in pipeline

Pipe;}

// Distribute X vector from diagonal

double_array from Master to SouthWest;

double_array from Master to West;

// Distribution of other columns

Iter;}

}

Master Last East

West Diagonal EastLast

SouthWest Worker EastDiagonal

Pipeline data

Propagation of vector X after iteration

Our parallel implementation of
this algorithm uses p2 processors in
a p × p wraparound mesh topology
to solve an n×n system matrix. The
matrix is partitioned into submatrix
blocks of size n2/p2, assigned to each
of the processors. Above shows the
global protocol and the dataflow of
the linear equation solver implemen-
tation with 9 workers.

An endpoint protocol is listed be-
low on the left. The overall itera-
tion of the algorithm is controlled
by a rec Iter block. In each itera-
tion, the computed values are put
into a horizontal pipeline, as shown
on the right to compute the sums.
The resultant X vector is then calcu-
lated by the diagonal node to other
workers in the mesh for the next
iteration. The corresponding code
is given on the right. The asyn-

chronous message optimisation is again applied to the horizontal pipeline in
order to overlap communications and computations.

protocol Solver at Diagonal

(role West, role EastLast,

role Last, role Worker) {

rec Iter {

rec Pipe {

double_array from West;

double_array to EastLast;

Pipe;

}

double_array to Last, Worker;

Iter;

}

}

while (!iter_completed)) {

computeProducts(partsum, blkA, newXVec, ...);

computeSums(sum, partsum, ...);

pipe = 0;

while (pipe++ < columns) {

send_double_array(EastLast, partsum, blkDim);

computeSums(sum, partsum, blkDim);

recv_double_array(West, partsum, &length);

}

// calculate X vector

copyXVector(newXVec, oldXVec, ...);

computeDivisions(newXVector, sum, ...);

msend_double_array(newXVec, Last, Worker, ...);

}
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Fig. 2. Benchmark results.

5 Performance evaluation

This section presents performance results for several implementations of the
four algorithms which feature different topologies and communication structures.
The first three benchmarks were taken on workstations with Intel Core i7-2600
processors with 8GB RAM running Ubuntu Linux 11.04; the Jacobi solution
benchmarks were taken on a high performance cluster with nodes containing
AMD PhenomX49650 processor with 8GB RAM running CentOS 5.6, connected
by a dedicated Gigabit Ethernet switch. Each benchmark was run 5 times and
the reported runtime is the average of all 5 runs. For the MPI versions, OpenMPI
1.4.3 were used. Both use gcc 4.4.3 to compile with the optimisation level -O3.
N-body simulation. Our results are compared against MPI. Both versions use
a ring pipeline to propagate the particles, and the two implementations share the
same computational component by linking the same compiled object code for the
compute functions. Our implementations were benchmarked with 3 workers and
1000 iterations which we perform a simulation on a set of input particles in the
two-dimensional space. The results in Fig. 2(a) show that Session C’s execution
time is within 3% of the MPI implementation.

Linear equation solver. Fig. 2(b) shows that the MPI linear equation solver is
faster than Session C implementation by 1–3%, with the ratio decreasing as the
matrix size increases, suggesting the communication overhead is low, if any. The
MPI implementation uses MPI_Bcast to broadcast the results of each iteration to
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all nodes in the column, while Session C explicitly distributes the results.

FFT (Fast Fourier Transform) butterfly algorithm. We use a 8 node
FFT butterfly. As seen from Fig. 2(c), Session C demonstrates a competitive
performance compared to MPI implementation, again with the difference in ra-
tio decreasing as the array size gets larger. The algorithm takes advantage of
asynchronous optimisation for the butterfly message exchanges.

Jacobi solution for the discrete Poisson equation. Fig. 2(d) shows the
benchmark results of the implementation of Jacobi solution. We benchmarked
an optimised Jacobi solution implemented in Session C against a version without
asynchronous message optimisation and found that the optimisation improved
the performance by up to 8%. The result of this optimisation is very close (within
1%) to that of our reference implementation in MPI, demonstrating the effec-
tiveness of the asynchronous optimisation.

6 Related works and further topics

Due to space limitations, we omit related works with session-based languages
(such as Java, Haskell and OCaml) and HPC and PGAS languages, which are
discussed in [29].

Deadlock detection in MPI. ISP [34] is a dynamic verifier which applies
model-checking techniques to identify potential communication deadlocks in
MPI (by “communication deadlock” we mean deadlocks due to communication
mismatch/circularity, rather than local computation, e.g. divergent loop). Their
tool uses a fixed test harness. In order to reduce the state space of possible thread
interleavings of an execution, the tool exploits an independence between thread
actions. Later in [35], they improved its scheduling policy to gain efficiency of
the verification. TASS [32] is another model checking-based tool for a deadlock
analysis in MPI. It constructs an abstract model of a given MPI program and
uses symbolic execution to evaluate the model for finding deadlocks.

Our session type-based approach differs from these approaches in that it of-
fers a full deadlock-free guarantee for communications by type-checked programs,
without being restricted to external test sets or extracted models from program
code, as well as offering a low-cost static checking. We believe a communica-
tion protocol is an abstraction which a developer of a message-passing parallel
algorithm is anyway aware of. Session C encourages programmers to make this
abstraction explicit, and offers primitives and a type checker for well-structured
and formally safe message-passing parallel programs.

Formally-founded communication-based HPC languages. Pilot [5] is a
parallel programming layer on top of standard MPI, aiming to simplify complex
MPI primitives based on CSP. The communication is synchronous and channels
are untyped to allow a reuse for different types. They have a runtime analysis
for some deadlock patterns. Occam-pi [30] is a system-level efficient concurrent
language with channel-based communication based on CSP and the π-calculus.
It offers various locking and barrier abstractions, but do not support deadlock-
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free analysis. Heap-Hop [33] is a verification tool for C based on dual contracts
and Separation Logic. It can detect a deadlock based on contract specifications,
but treats only binary (two parties) communications. Our work differs in that we
centre on multiparty session-based abstractions for structured communications
programming combined with a full formal assurance for communication safety.

Our previous work [29] applied Session Java (SJ) [19, 20], Java enhanced with
session types, to parallel algorithms. SJ treats only binary session types [17] and
cannot guarantee deadlock freedom and global progress between more than two
processes. To ensure these properties, the tool in [29] has to run an additional
topology verification on the top of the session type-checking. Session C offers a
significant speed-up (60%) compared to SJ as well as MPI for Java [28].

Optimisation in MPI. Techniques for improving performance of MPI include
building libraries for efficient transmission of data, e.g. [7] or MPI-aware opti-
mising compilers, e.g. [12]. Most optimisations share a common theme to utilise
computation and communication overlap to reduce the negative impact of the
communication overhead. Our asynchronous message optimisation is one such
instance to facilitate communication-computation overlap. Unlike Session C, ex-
isting works do not offer a similar framework, where a type-theoretic basis gives
a formal safety assurance for optimised code.

Further topics include extending Scribble and the Session C programming
framework to support parametrised [36] and multirole multiparty session types [9]
to allow a fully generic protocol description and programming (e.g. with respect
to the number of workers in the examples in §2); synthesis of global proto-
cols for better development lifecycle; and add design-by-contracts [4] for more
fine-grained logical verification. This work is limited to ensuring safety of com-
munication. We intend to combine some features of Cyclone [21] to extend our
framework to ensure some functional safety in addition to communication safety.
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