
Multiparty Session Programming with Global
Protocol Combinators (Artifact)

Keigo Imai1

Gifu University, Japan
keigoi@gifu-u.ac.jp

Rumyana Neykova
Brunel University London, UK
Rumyana.Neykova@brunel.ac.uk

Nobuko Yoshida
Imperial College London, UK
n.yoshida@imperial.ac.uk

Shoji Yuen
Nagoya University, Japan
yuen@i.nagoya-u.ac.jp

Abstract
In the paper “Multiparty Session Programming
with Global Protocol Combinators ”, we introduce
a library, ocaml-mpst for programming with global
combinators – a set of functions for writing and
verifying multiparty protocols in OCaml. Local
behaviours for all processes in a protocol are in-
ferred at once from a global combinator. Our ap-

proach enables fully-static verification and imple-
mentation of the whole protocol, from the protocol
specification to the process implementations, to
happen in the same language. This artifact is the
source code of ocaml-mpst, with all the examples
and benchmarks discussed in the paper.

2012 ACM Subject Classification Software and its engineering → Concurrent programming structures;
Theory of computation → Type structures; Software and its engineering → Functional languages;
Software and its engineering → Polymorphism
Keywords and phrases Multiparty Session Types, Communication Protocol, Concurrent and Distrib-
uted Programming, OCaml
Digital Object Identifier 10.4230/DARTS.6.2.0
Acknowledgements We thank David Castro-Perez, Nicolas Lagaillardie, Julien Lange, and anonym-
ous reviewers for their comments on an early version of this artifact. Our work is partially suppor-
ted by the first author’s visitor funding to Imperial College London and Brunel University London
supported by Gifu University, VeTSS, JSPS KAKENHI Grant Numbers JP17H01722, JP17K19969
and JP17K12662, JSPS Short-term Visiting Fellowship S19068, EPSRC Doctoral Prize Fellow-
ship, and EPSRC EP/K011715/1, EP/K034413/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1,
EP/T006544/1 and EP/T014709/1.

Related Article Keigo Imai, Rumyana Neykova, Nobuko Yoshida and Shoji Yuen, “Multiparty Session
Programming with Global Protocol Combinators”, in Proceedings of the 34th European Conference on
Object-Oriented Programming (ECOOP 2020), LIPIcs, Vol. 166, pp. 0:1–0:1, 2020.
https://doi.org/10.4230/LIPIcs.xxx.xxx.xxx
Related Conference 34th European Conference on Object-Oriented Programming (ECOOP 2020), July
13–17, 2020, Berlin, Germany

1 Corresponding author

© Keigo Imai, Rumyana Neykova, Nobuko Yoshida and Shoji Yuen;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 6, Issue 2, Artifact No. 0, pp. 0:1–0:2
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1602-8473
mailto:keigoi@gifu-u.ac.jp
https://orcid.org/0000-0000-0000-0000
mailto:Rumyana.Neykova@brunel.ac.uk
https://orcid.org/0000-0000-0000-0000
mailto:n.yoshida@imperial.ac.uk
https://orcid.org/0000-0003-2642-0647
mailto:yuen@i.nagoya-u.ac.jp
https://doi.org/10.4230/DARTS.6.2.0
https://doi.org/10.4230/LIPIcs.xxx.xxx.xxx
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


0:2 Multiparty Session Programming with Global Protocol Combinators (Artifact)

1 Scope1

This artifact allows to reproduce all examples and benchmarks presented in the companion paper.2

Moreover, it can be used to implement new applications.3

2 Content4

The artifact package includes:5

1. the ocaml-mpst source code, including the examples and benchmarks discussed in the com-6

panion paper;7

2. detailed instructions (provided as instructions.md) for building ocaml-mpst, running the8

examples and benchmarks, and navigate their source code;9

3 Getting the artifact10

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the11

Dagstuhl Research Online Publication Server (DROPS).12

4 Tested platforms13

We have prepared a VM containing all needed dependencies for our library and the use cases14

reported in our paper. Due to the nature of some of our examples (OAuth), some dependencies15

(GUI, web browsers, Apache web server, etc) put extra requirements on RAM and disk space. In16

particular, the VM requires a host machine with at least 16GB RAM, 25 GB of free storage, at17

least 4 cores CPU, and no other applications should be running in the host machine.18

Running the artifact19

1. Download the ocaml-mpst artifact VM (OCamlMPST.ova) from DROPS server, and launch20

it using VirtualBox. Notes on VM configuration:21

Larger amount of VM’s Memory (>4 GB) is preferable.22

Screen resolution can be changed by the toolbar in the bottom of VM’s window.23

2. Log in to Ubuntu with username osboxes. The password is “osboxes.org” (same as the24

user’s full name).25

3. Open the github repository of the paper and follow the instructions in the instructions.md26

file (https://github.com/keigoi/ocaml-mpst/blob/master/instructions.md)27

5 License28

The artifact is available under BSD 2-clause license (https://opensource.org/licenses/BSD-29

2-Clause).30

6 MD5 sum of the artifact31

36647830f1d645fb424aa9661bec792032

7 Size of the artifact33

5.2 GiB34

https://github.com/keigoi/ocaml-mpst/blob/master/instructions.md
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

