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Abstract
Multiparty Session Types (MPST) is a typing discipline for communication protocols. It ensures
the absence of communication errors and deadlocks for well-typed communicating processes. The
state-of-the-art implementations of the MPST theory rely on (1) runtime linearity checks to ensure
correct usage of communication channels and (2) external domain-specific languages for specifying
and verifying multiparty protocols.

To overcome these limitations, we propose a library for programming with global combinators
– a set of functions for writing and verifying multiparty protocols in OCaml. Local behaviours
for all processes in a protocol are inferred at once from a global combinator. We formalise global
combinators and prove a sound realisability of global combinators – a well-typed global combinator
derives a set of local types, by which typed endpoint programs can ensure type and communication
safety. Our approach enables fully-static verification and implementation of the whole protocol, from
the protocol specification to the process implementations, to happen in the same language.

We compare our implementation to untyped and continuation-passing style implementations,
and demonstrate its expressiveness by implementing a plethora of protocols. We show our library
can interoperate with existing libraries and services, implementing DNS (Domain Name Service)
protocol and the OAuth (Open Authentication) protocol.
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1 Introduction

Multiparty Session Types. Multiparty Session Types (MPST) [20, 11, 21] is a theor-
etical framework that stipulates how to write, verify and ensure correct implementations
of communication protocols. The methodology of programming with MPST (depicted in
Fig. 1(a)) starts from a communication protocol (a global type) which specifies the behaviour
of a system of interacting processes. The local behaviour (a local type) for each endpoint
process is then algorithmically projected from the protocol. Finally, each endpoint process is
implemented in an endpoint host language and type-checked against its respective local type
by a session typing system. The guarantee of session types is that a system of well-typed
endpoint processes does not go wrong, i.e it does not exhibit communication errors such as
reception errors, orphan messages or deadlocks, and satisfies session fidelity, i.e. the local
behaviour of each process follows the global specification.

The theoretical MPST framework ensures desirable safety properties. In practice, session
types implementations that enforce these properties statically, i.e at compile-time, are
limited to binary (two party protocols) [43, 39, 31, 41]. Extending binary session types
implementations to multiparty interactions, which support static linearity checks (i.e., linear
usage of channels), is non-trivial, and poses two implementation challenges.

(C1) How global types can be specified and verified in a general-purpose
programming language? Checking compatibility of two communicating processes relies
on duality, i.e., when one process performs an action, the other performs a complementary
(dual) action. Checking the compatibility of multiple processes is more complicated, and
relies on the existence of a well-formed global protocol and the syntax-directed procedure
of projection, which derives local types from a global specification. A global protocol is
considered well-formed, if local types can be derived via projection. Since global types
are far from the types of a “mainstream” programming language, state-of-the-art MPST
implementations [22, 36, 47, 9] use external domain-specific protocol description languages
and tools (e.g. the Scribble toolchain [50]) to specify global types and to implement the
verification procedure of projection. The usage of external tools for protocol description and
verification widens the gap between the specification and its implementations and makes it
more difficult to locate protocol violations in the program, i.e. the correspondence between
an error in the program and the protocol is less apparent.

(C2) How to implement safe multiparty communication over binary channels?
The theory of MPST requires processes to communicate over multiparty channels – channels
that carry messages between two or more parties; their types stipulate the precise sequencing
of the communication between multiple processes. Additionally, multiparty channels has
to be used linearly, i.e exactly once. In practice, however, (1) communication channels are
binary, i.e a TCP socket for example connects only two parties, and hence its type can
describe interactions between two entities only; (2) most languages do not support typing
of linear resources. Existing MPST implementations [22, 36, 47, 9] apply two workarounds.
To preserve the order of interactions when implementing a multiparty protocol over binary
channels, existing works use code generation (e.g. [50]) and generate local types (APIs)
for several (nominal) programming languages. Note that although the interactions order is
preserved, most of these implementations [22, 36, 9] still require type-casts on the underlying
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Figure 1 (a) State-of-the-art MPST implementations and (b) ocaml-mpst methodology

channels, compromising type safety of the host type system. To ensure linear usage of
multiparty channels, runtime checks are inserted to detect if a channel has been used more
than once. This is because the type systems of their respective host languages do not provide
static linearity checking mechanism.

Our approach. This paper presents a library for programming MPST protocols in
OCaml that solves the above challenges. Our library, ocaml-mpst, allows to specify, verify
and implement MPST protocols in a single language, OCaml. Specifically, we address (C1)
by developing global combinators, an embedded DSL (EDSL) for writing global types in
OCaml. We address (C2) by encoding multiparty channels into channel vectors – a data
structure, storing a nested sequence of binary channels. Moreover, ocaml-mpst verifies
statically the linear usage of communication channels, using OCaml’s strong typing system
and supports session delegation.

The key device in our approach is the discovery that in a system with variant and record
types, checking compatibility of local types coincides with existence of least upper bound
w.r.t. subtyping relation. This realisation enables a fully static MPST implementation,
i.e., static checking not only on local but also on global types in a general purpose language.

Programming with ocaml-mpst (Fig. 1(b)) closely follows the “top-down” methodology
of MPST, but differs from the traditional MPST framework in Fig. 1(a). To use our library,
a programmer specifies the global protocol with a set of global combinators. The OCaml
typechecker verifies correctness of the global protocol and infers local types from global
combinators. A developer implements the endpoint processes using our ocaml-mpst API.
Finally, the OCaml type checker verifies that the API is used according to the inferred type.

The benefits of ocaml-mpst are that it is (1) lightweight – it does not depend on any
external code-generation mechanism, verification of global protocols is reduced to typability
of global combinators; (2) fully-static – our embedding integrates with recent techniques for
static checking of binary session types and linearly-typed lists [27, 24], which we adopt to
implement multiparty session channels and session delegation; (3) usable – we can auto-detect
and correct protocol violations in the program, guided by OCaml programming environments
like Merlin [4]; (4) extensible – while most MPST implementations rely on a nominal typing,
we embed session types in OCaml’s structural types, and preserve session subtyping [17]; and
(5) expressive – we can type strictly more processes than [48] (see § 7).
Contributions. Contributions and the outline of the paper are as follows:
§ 2 gives an overview of programming with ocaml-mpst, a library in OCaml for specification,

verification and implementations of communication protocols.
§ 3 formalises global combinators, presents their typing system, and proves a sound realisab-
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1 let oAuth = (s -->c) login @@ (c -->a) pwd @@ (a -->s) auth @@ finish (* global protocol*)

2 (* The client process *)
3 let cliThread () =
4 let ch = get_ch c oAuth in
5 let `login(x, ch) = recv ch#role_S in
6 let ch = send ch#role_A#pwd "pass" in
7 close ch
8

9 (* The service process *)
10 let srvThread () =
11 let ch = get_ch s oAuth in
12 let ch = send ch#role_C#login "Hi" in
13 let `auth(_,ch) = recv ch#role_A in
14 close ch
15

16 (* The authenticator process *)
17 let authThread () =
18 let ch = get_ch a oAuth in
19 let `pwd(code,ch) = recv ch#role_C in
20 let ch = send ch#role_S#auth true in
21 close ch
22

23 (* start all processes *)
24 let () =
25 List.iter Thread.join [
26 Thread.create cliThread ();
27 Thread.create srvThread ();
28 Thread.create authThread ()]

Figure 2 Global protocol and local implementations for OAuth protocol 2

ility of global combinator, i.e. a set of local types inferred from a global combinator can
type a channel which embeds a set of endpoint behaviours as OCaml data structures.

§ 4 discusses the design and implementation of global combinators.
§ 5 summarises the ocaml-mpst communication library and explains how we utilise advanced

features/libraries in OCaml to enable dynamic/static linearity checking on channels.
§ 6 evaluates ocaml-mpst. We compare ocaml-mpst with several different implementations

and demonstrate the expressiveness of ocaml-mpst by showing implementations of MPST
examples, as well as a variety of real-world protocols. We demonstrate our library can
interoperate with existing libraries and services, namely we implement DNS (Domain
Name Service) and the OAuth (Open Authentication) protocols on top of existing libraries.

We discuss related work in § 7 and conclude with future work in § 8. Full proofs, omitted
definitions and examples can be found in [25]. Our implementation, ocaml-mpst is available
at https://github.com/keigoi/ocaml-mpst including benchmark programs and results.

2 Overview of OCaml Programming with Global Combinators

This section gives an overview of multiparty session programming in ocaml-mpst by examples.
It starts from declaration of global combinators, followed by endpoint implementations. We
also demonstrate how errors can be reported by an OCaml programming environment like
Merlin [4]. In the end of this section, we show the syntax of global combinators and the
constructs of ocaml-mpst API in Fig. 5. The detailed explanation of the implementations of
the constructs is deferred to § 4.
From global combinators to communication programs. We illustrate global combin-
ators starting from a simple authentication protocol (based on OAuth 2.0 [18]). A full version
of the protocol is implemented and discussed in § 6. Fig. 2 shows the complete OCaml
implementation of the protocol, from the protocol specification (using global combinators) to
the endpoint implementations (using ocaml-mpst API).

The protocol consists of three parties, a service s, a client c, and an authenticator a.
The interactions between the parties (hereafter also called roles) proceed as follows: (1) the
service s sends to the client c a login message containing a greeting (of type string); (2)

2 We use a simplified syntax that support the in-built communication transport of Ocaml. For the full
syntax of the library that is parametric on the transport, see the repository.

https://github.com/keigoi/ocaml-mpst
https://github.com/keigoi/ocaml-mpst/blob/master/instructions.md#&note-on-syntax-discrepancies
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the client then continues by sending its password (pwd) (of type string) to the authenticator
a; and (3) finally the authenticator a notifies s, by sending an auth message (of type bool),
whether the client access is authorised.

The global protocol oAuth in Line 1 is specified using two global combinators, --> and
finish. The former represents a point-to-point communication between two roles, while
the latter signals the end of a protocol. The operator @@ is a right-associative function
application operator to eliminate parentheses, i.e., (c --> a) pwd @@ exp is equivalent to (c -->
a) pwd (exp), where --> works as a four-ary function which takes roles c and a and label pwd
and continuation exp. We assume that login, pwd and auth are predefined by the user as
label objects with their payload types of string, string and bool, respectively3. Similarly, s,
c and a are predefined role objects. We elaborate on how to define these custom labels and
roles in § 4.

The execution of the oAuth expression returns a tuple of three channel vectors – one for
each role in the global combinator. Each element of the tuple can be extracted using an
index, encoded in role objects (c, s, and a). Intuitively, the role object c stores a functional
pointer that points to the first element of the tuple, s points to the second, and a to the
third element. The types of the extracted channel vectors reflect the local behaviour that
each role, specified in the protocol, should implement. Channel vectors are objects that hide
the actual bare communication channels shared between every two communicating processes.

Lines 3–21 present the implementations for all three processes specified in the global
protocol. We explain the implementation for the client – cliThread (Lines 3–7). Other
processes are similarly implemented. Line 4 extracts the channel vector that encapsulates
the behaviour of the client, i.e the first element of oAuth. This is done by using the function
get_ch (provided by our library) applied to the role object c and the expression oAuth.

Our library provides two main communication primitives, namely send and recv. To
statically check communication structures using types, we exploit OCaml’s structural types
of objects and polymorphic variants (rather than their nominal counterparts of records and
ordinary variants). In Line 5, ch#role_S is an invocation of method role_S on an object ch.
The recv primitive waits on a bare channel returned by the method invocation. The returned
value is matched against a variant tag indicating the input label `login with the pair of the
payload value x and a continuation ch (shadowing the previous usage of ch). Then, on Line 6,
two method calls on ch are performed, e.g ch#role_A#pwd, which extract a communication
channel for sending a password (pwd) to the authenticator. This channel is passed to the
send primitive, along with the payload value "pass". Then, let rebinds the name ch to
the continuation returned by send and on Line 7 the channel is closed. Each operation is
guided by the host OCaml type system, via channel vector type. For example, the client
channel ch extracted in Line 4 has a channel vector type (inferred by OCaml type checker)
<role_S: [`login of string * t] inp> which denote reception (suffixed by inp) from server of
a login label, then continuing to t, where t is <role_A:<pwd:(string,close) out>> denoting
sending (out) to authenticator of a pwd label, followed by closing. Note that the type <f: t>
denotes an OCaml object with a field f of type t; [`m of t] is a (polymorphic) variant type
having a tag m of type t. Finally, in Lines 25–28 all processes are started in new threads.
On the expressiveness of well-typed global protocols. Fig. 3 shows two global
protocols that extend oAuth with new behaviours. In Fig. 3a, the global combinator choice_at
specifies a branching behaviour at role s. In the first case (Line 3), the protocol proceeds

3 To be precise, the labels are polymorphic on their payload types which are instantiated at the point
where they are used.

ECOOP 2020
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1 let oAuth2 () =
2 (choice_at s (to_s login_cancel)
3 (s, oAuth ())
4 (s, (s -->c) cancel @@
5 (c -->a) quit @@
6 finish))

(a) Protocol With Branching

1 let oAuth3 () =
2 fix (fun repeat ->
3 (choice_at s (to_s oauth2_retry)
4 (s, oAuth2 ()
5 (s, (s -->c) retry @@
6 repeat))

(b) Protocol With Branching & Recursion

Figure 3 Extended oAuth protocols

with protocol oAuth. In the second case (Line 5) the service sends cancel, to the client, and
the client sends a quit message to the authenticator. The deciding role, s, is explicit in
each branch. The choice combinator requires a user-defined (to_s login_cancel) (Line 2)
that specifies concatenation of two objects for sending in branches. Its implementation is
straightforward (see § 4). The protocol oAuth3 in Fig. 3b reuses oAuth2 and further elaborates
its behaviour by offering a retry option. It demonstrates a recursive specification where the
fix combinator binds the protocol itself to variable repeat.

The implementation of the corresponding client code for Fig. 3a is shown on Fig. 4a.
The code is similar as before, but uses a pattern matching against multiple tags `login and
`cancel to specify an external choice on the client, i.e the client can receive messages of
different types and exhibit different behaviour according to received labels. The behaviour
that a role can send messages of different types, which is often referred to as an internal
choice, is represented as an object with multiple methods.

Our implementation also preserves the subtyping relation in session types [17], i.e the safe
replacement of a channel of more capabilities in a context where a channel of less capabilities
is expected. Session subtyping is important in practice since it ensures backward compatibility
for protocols: a new version of a protocol does not break existing implementations. For
example, the client function in Fig. 4a is typable under both protocols oAuth2 and oAuth3
since the type of the channel stipulating the behaviour for role c in oAuth2 (receiving either
message `login or `cancel) is a subtype of the channel for c in oAuth3 (receiving `login,
`cancel, or `retry).

Static linearity and session delegation. The implementations presented in Fig. 2, as
well as Fig. 4a detect linearity violations at runtime, as common in MPST implementations
[22, 47] in a non-substructural type system. We overcome this dynamic checking issue by
an alternative approach, listed in Fig. 4b. We utilise an extension (let%lin) for linear types
in OCaml [24] that statically enforces linear usage of resources by combining the usage of
parameterised monads [29, 2, 40] and lenses [16]. Our library is parameterised on the chosen
approach, static or dynamic. A few changes are made to avoid explicit handling of linear
resources: (1) ch in Fig. 4b refers to a linear resource and has to be matched against a linear
pattern prefixed by #. (2) Roles and labels are now specified as a selector function of the
form (fun x->x#role#label).

Our implementation is also the first to support static multiparty sessions delegation (the
capability to pass a channel to another endpoint): our encoding yields it for free, via existing
mechanisms for binary delegation (see § 4).

Errors in global protocol and ocaml-mpst endpoint programs. Our framework
ensures that a well-typed ocaml-mpst program precisely implements the behaviour of its
defined global protocol. Hence, if a program does not conform to its protocol, a compilation
error is reported. Fig. 6 shows the error reported when swapping the order of send and
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1 match recv ch#role_S with
2 |`login(pass, ch) ->
3 let ch = send ch#role_A#pwd pass
4 in close ch
5 |`cancel(_,ch) ->
6 let ch = send ch#role_A#quit ()
7 in close ch

(a) Dynamic Linearity Checking

match%lin recv ch (fun x->x#role_S) with
|`login(pass, #ch) ->

let%lin #ch = send ch (fun x->x#role_A#pwd) pass
in close ch

|`cancel(_, #ch) ->
let%lin #ch = send ch (fun x->x#role_A#quit) ()
in close ch

(b) Static Linearity Checking

Figure 4 Two Modes on Linearity Checking

Global Combinators to Local Types where ti is a local type at ri in g (1 ≤ i ≤ n)
Global Combinator Synopsis
(ri --> rj) m g Transmission from ri to rj of label m (with a payload).

choice_at ra mrg (ra, g1) (ra, g2) Branch to g1 or g2 guided by ra.

finish Finished session.
fix (fun x -> g) Recursion. Free occurrences of x is equivalent to g itself.
Local Types and Communication Primitives
Communication Primitive Synopsis
send s#role_r#mk e Send to role r label mk with payload e, returning continuation.
let `m(x, s) = receive s#role_r
in e

Receive from r label m with payload x : v and continue
to e with endpoint s : t

match receive s#role_r with
| `m1(x1, s) -> e1 | · · ·
| `mn(xn, s) -> en

Receive from r one of labels {mi} (1 ≤ i ≤ n) where
payload is vi and continue with ti in ei

close s Closes a session

Figure 5 (a) Global Combinators (top) and (b) Communication APIs of ocaml-mpst (bottom)

receive actions (Lines 6 and 5) in the client implementation in Fig. 2. Similarly, errors will
also be reported if we misspell any of the methods pwd, role_A, or role_C.

Similarly, an error is reported if the global protocol is not safe (which corresponds to an
ill-formed MPST protocols [14]) since this may lead to unsafe implementations. Consider
Fig. 6 (b), where we modify oAuth2 such that s sends a cancel message to a. This protocol
(oAuth4) exhibits a race condition: even if all parties adhere to the specified behaviour, c
can send a quit before s sends login, which will lead to a deadlock on s. Our definition of
global combinators prevents such ill-formed protocols, and the OCaml compiler will report
an error. The actual error message reported in OCaml detects the mismatch between a and
c, indicating violation of the active role property in the MPST literature [14] – the sender
must send to the same role.

3 Formalisms and Typing for Global Combinators

This section formalises global combinators and their typing system, along a formal corres-
pondence between a global combinator and channel vectors. The aim of this section is to
provide a guidance towards descriptions of the implementations presented in § 4,5.

We first give the syntax of global combinators and channel vectors in § 3.1. We then
propose a typing system of global combinators in § 3.2, illustrating that the rules check their

ECOOP 2020



9:8 MPST Programming with Global Protocol Combinators

well-formedness. We define derivation of channel vectors from global combinators in § 3.3.
The main theorem (Theorem 3.11) states that a well-typed global combinator always derives
a channel vector which is typable by a corresponding set of local types, i.e. any well-typed
global combinator is soundly realisable by a tuple of well-typed channel vectors.

3.1 Global Combinators and Channel Vector Types

Global combinators denote a communication protocol which describes the whole conver-
sation scenario of a multiparty session.

I Definition 3.1 (Global combinators and channel vector types). The syntax of global combin-
ators, written g, g′, .., are given as:

g ::= (p → q) m:T g | choice p {gi}i∈I | fixx -> g | x | finish

where the syntax of payload types S, T , . . . (also called channel vector types) is given below:
T , S ::= !T | ?T | ]T | T1×···×Tn | 〈li :Ti〉i∈I | [li Ti]i∈I | µt.T | t | •

The formal syntax of global combinators comes from Scribble [50] and corresponds to the
standard global types in MPSTs [37]. We assume a set of participants (R = {p, q, r, · · · }), and
that of alphabets (A = {ok, cancel, · · · }). Communication combinator (p → q) m:T g
states that participant p can send a message of type T with label m to participant q and that
the interaction described in g follows. We require p 6= q to prevent self-sent messages. We
omit the payload type when unit type •, and assume T is closed, i.e. it does not contain free
recursive variables. Choice combinator choice p {gi}i∈I is a branching in a protocol where
p makes a decision (i.e. an output) on which branch the participants will take. Recursion
fixx -> g is for recursive protocols, assuming that variables (x, x′, . . . ) are guarded in the
standard way, i.e. they only occur under the communication combinator. Termination
finish represents session termination. We write p ∈ roles(g) (or simply p∈g) iff, for some
q, either p→q or q→p occurs in g.

I Example 3.2. The global combinator gAuth below specifies a variant of an authentication
protocol in Fig. 3 where T = string and client sends auth to server, then server replies
with either ok or cancel.
gAuth = (c → s) auth:T

(
choice s {(s → c) ok:T finish, (s → c) cancel:T finish}

)
Channel vector types abstract behaviours of each participant using standard data
structure and channels. We assume labels l, l′, . . . range over R∪A. Types !T and ?T denote

Figure 6 Type Errors Reported by Visual Studio Code (Powered by Merlin), in (a) Local Type
(left) and (b) Global Combinator (right)
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output and input channel types, with a value or channel of type T (note that the syntax
includes session delegation). ]T is an io-type which is a subtype of both input or output
types [46]. T1×···×Tn is an n-ary tuple type. 〈li :Ti〉i∈I is a record type where each field
li has type Ti for i ∈ I. [li Ti]i∈I is a variant type [46] where each li is a possible tag
(or constructor) of that type and Ti is the argument type of the tag. In both record and
variant types, we assume the fields and tags are distinct (i.e. in 〈li :Ti〉i∈I and [li Ti]i∈I ,
we assume li 6= lj for all i 6= j). The symbol • denotes a unit type. Type t is a variable
for recursion. A recursive type takes an equi-recursive viewpoint, i.e. µt.T is viewed as
T{µt.T/t}. Recursion variables are guarded and payload types are closed.

Channel vectors: Session types as record and variant types. The execution model
of MPST assumes that processes communicate by exchanging messages over input/output
(I/O) channels. Each channel has the capability to communicate with multiple other processes.
A local session type prescribes the local behaviour for a role in a global protocol by assigning
a type to the communication channel utilised by the role. More precisely, a local session
type specifies the exact order and payload types for the communication actions performed on
each channel (see Fig. 1(a)). In practice, processes communicate on a low-level bi-directional
I/O channels (bare channels), which are used for synchronisation of two (but not multiple)
processes. Therefore, to implement local session types in practice, a process should utilise
multiple bare channels, preserving the order, in which such channels should be used. We
encode local session types as channel vector types, which wrap bare channels (represented
in our setting by ?T , !T , ]T types) in record and variant types. This is illustrated in the
following table, with the corresponding local session types for reference.

Behaviour Channel vector type Local session type [49]
Selection (Output choice) 〈q:〈mi:!Si×Ti〉i∈I〉 q⊕i∈Imi(Si).Ti
Branching (Input choice) 〈q:?[mi Si×Ti]i∈I〉 q&i∈Imi(Si).Ti
Recursion µt.T , t µt.T , t
Closing • end

Intuitively, the behaviour of sending a message is represented as a record type, which stores
inside its fields a bare output channel and a continuation; the input channel required when
receiving a message is stored in a variant type. Type 〈q:〈mi:!Si×Ti〉i∈I〉 is read as: to send
label mi to q, (1) the channel vector should be ‘peeled off’ from the nested record by extracting
the field q then mi; then (2) it returns a pair !Si×Ti of an output channel and a continuation.
Type 〈q:?[mi Si×Ti]i∈I〉 says that (1) the process extracts the value stored in the field q,
then reads on the resulting input channel (?) to receive a variant of type [mi Si×Ti]i∈I ; then,
(2) the tag (constructor) mi of the received variant indicates the label which q has sent, and
the former’s argument Si is the payload, and the latter Ti is the continuation.

The anti-symmetric structures between output types 〈q:〈mi:!Si×Ti〉i∈I〉 and input types
〈q:?[mi Si×Ti]i∈I〉 (notice the placements of ! and ? symbol in these types) come from the
fact that an output is an internal choice where output labels are proactively chosen via
projection on a record field, while an input is an external choice where input labels are
reactively chosen via pattern-matching among variant constructors.

3.2 Typing Global Combinators
A key finding of our work is that compatibility of local types can be checked using a type
system with record and variant subtyping. Before explaining how each combinator ensures
compatibility of types, we give an intuition of well-formed global protocols following [14].
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Well-formedness and choice combinator. A well-formed global protocol ensures that
a protocol can be correctly and safely realised by a system of endpoint processes. Moreover,
a set of processes that follow the prescribed behaviour is deadlock-free. Well-formedness
imposes several restrictions on the protocol structure, notably on choices. This is necessary
because some protocols, such as oAuth4 in Fig. 6(b) (§ 2), are unsafe or inconsistent. More
precisely, a protocol is well-formed if local types can be generated for all of its roles, i.e the
endpoint projection function [14, Def. 3.1][25] is defined for all roles. Our encoding allows the
well-formedness restrictions to be checked statically, by the OCaml typechecker. Below, we
explain the main syntactic restrictions of endpoint projection, which are imposed on choices
and checked statically:
R1 (active role) in each branch of a choice, the first interaction is from the same sender

role (active role) to the same receiver role (directed output).
R2 (deterministic choice) output labels from an active role are pairwise distinct (i.e.,

protocols are deterministic)
R3 (mergeable) the behaviour of a role from all branches should be mergeable, which is

ensured by the following restrictions:
M1 two input choices are merged only if (1) their sender roles are the same (directed

input), and (2) their continuations are recursively mergeable if labels are the same.
M2 two output choices can be merged only if they are the same.

Intuitively, the conditions in R3 ensure that a process is able to determine unambiguously
which branch of the choice has been taken by the active role, otherwise the process should
be choice-agnostic, i.e it should preform the same actions in all branches. Requirement R3 is
known in the MPST literature as recursive full merging [14].
Typing system for global combinators. Deriving channel vector types from a global
combinator corresponds to the end point projection in multiparty session types [21]. Projection
of global protocols relies on the notion of merging (R3). As a result of the encoding of local
types as channel vectors with record and variants, the merging relation coincides with the
least upper bound (join) in the subtyping relation. This key observation allows us to embed
well-formed global protocols in OCaml, and check them using the OCaml type system.

Next we give the typing system of global combinators, explaining how each of the typing
rules ensures the verification conditions R1-R3. The typing system uses the following
subtyping rules.

I Definition 3.3. The subtyping relation 6 is coinductively defined by the following rules.
[Osub-•]

• 6 •
[Osub-OutCh]

]T 6 !T
[Osub-Out] S 6 T

!T 6 !S
[Osub-RcdDepth] Si 6 Ti i ∈ I
〈li :Si〉i∈I 6 〈li :Ti〉i∈I

[Osub-Var] Si 6 Ti i ∈ I
[li Si]i∈I 6 [li T i]i∈I∪J

[Osub-InpCh]

]T 6 ?T
[Osub-Inp] S 6 T

?S 6 ?T
[Osub-Tup] Si 6 Ti i ∈ I
S1×···×Sn 6 T1×···×Tn

[Osub-µL] S{µt.S/t} 6 T

µt.S 6 T

[Osub-µR] S 6 T{µt.T/t}
S 6 µt.T

Among those, the rules [Osub-µL] and [Osub-µR] realise equi-recursive view of types. The
only non-standard rule is [Osub-RcdDepth] which does not allow fields to be removed in the
super type. This simulates OCaml’s lack of row polymorphism where positive occurrences
of objects are not allowed to drop fields. Note that the negative occurrences of objects in
OCaml, which we use in process implementations, for example, do have row polymorphism,
which correspond to standard record subtyping:

Si 6 Ti i ∈ I
〈li :Si〉i∈I∪J 6 〈li :Ti〉i∈I

. We use standard
record subtyping, when typing processes. Since it permits removal of fields, it precisely
simulates session subtyping on outputs. Typing rules for processes are left to [25].

The typing rules for global combinators (Fig. 7) are defined by the typing judgement of
the form Γ `R g : T where Γ is a type environment for recursion variables (definition follows),
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[Otg-Comm] Γ `R g :
(
T1 × ··· × Ti × ··· × Tj × ··· × Tn

)
pi, pj ∈ R

Γ `R (pi → pj) m:S g :
(
T1 × ··· × 〈pj :〈m:!S×Ti〉〉 × ··· × 〈pi:?[m S×Tj ]〉 × ··· × Tn

)
[Otg-Choice]

Γ `R gi : T1×···×Ta−1×〈q:〈mk:!Sk×T ′k〉k∈Ki
〉×Ta+1×···×Tn

Kj ∩Kj′ = ∅ for all j 6= j′ ∀i ∈ I pa ∈ R

Γ `R choice pa {gi}i∈I :
(
T1×···×Ta−1×〈q:〈mk:!Sk×T ′k〉k∈

⋃
i∈I

Ki
〉×Ta+1×···×Tn

) [Otg-x]

Γ, x:T `R x : T

[Otg-finish]

Γ `R finish : •×· · ·×•
[Otg-Sub] Γ `R g : S S 6 T

Γ `R g : T
[Otg-fix] Γ, x:tx1×· · ·×txn `R g : T1×· · ·×Tn

Γ `R fixx -> g : tfix(tx1, T1)×· · ·×tfix(txn, Tn)

where R = p1, . . . , pn and, tfix
(
t, t′

)
=• and tfix(t, T )=µt.T otherwise.

Figure 7 The typing rules for global combinators Γ `R g : T

R = p1, . . . , pn is the sequence of roles which participate in g, and T = T1 × · · · × Tn is a
product of channel vector types where each Ti indicates a protocol which the role pi must
obey. We use the product-based encoding to closely model our our implementation and to
avoid fixing the number of roles n of finish combinator by using variable-length tuples (see
[25]).

I Definition 3.4 (Global combinator typing rules). A typing context Γ is defined by the
following grammar: Γ::=∅ | Γ, x:T . The judgement Γ `R g :T is defined by the rules in Fig. 7.
We say g is typable with R if Γ `R g : T for some Γ and T . If Γ is empty, we write `R g : T .

The rule [Otg-Comm] states that pi has an output type 〈pj :〈m:!S×Ti〉〉 to pj with label m, a
payload typed by S and continuation typed by Ti; a dual input type 〈pi:?[m S×Tj ]〉 from
pj and continuation typed by Tj ; and the rest of the roles are unchanged.

Rule [Otg-Sub] is the key to obtain full merging using the subtyping relation, and along with
the rule [Otg-Choice], is a key to ensure the protocol is realisable, and free of communication
errors. The rule [Otg-Choice] requires (1) role pa to have an output type to the same destination
role q, which satisfies R1. The output labels {mk}k∈Ki

are mutually disjoint at each branch gi,
and are merged into a single record, which ensures that the choice is deterministic (R2). All
other types stay the same, up to subtyping. Following requirement M1 of R3, a non-directed
external choices are prohibited. This is ensured by encoding the sender role of an input
type as a record field, As the two different destination role labels would result in two record
types with no join, following subtyping rule [Osub-RcdDepth], a non-directed external choices
are safely reported as a type error. Non-directed internal choices are similarly prohibited
(M2). On the other hand, directed external choices are allowed, as stipulated by M1, and
ensured by the subtyping relation on variant types [Osub-Var]. For example, the two input
types 〈q:?[m1 S1×T1]〉 and 〈q:?[m2 S2×T2]〉 can be unified as 〈q:?[mi Si×Ti]i∈1,2〉.

The rest of the rules are standard. Rule [Otg-fix] is for recursion; it assigns the recursion
variable x a sequence of distinct fresh type variables in the continuation which is later looked
up by [Otg-x]. In tfix(t, T ), we assign a unit type if the role does not contribute to the
recursion (i.e., T = t′ for any t′), or forms a recursive type µt.T otherwise.

I Example 3.5 (Typing a global combinator). We show that the global combinator gAuth =
(c → s) auth (choice s {(s → c) ok finish, (s → c) cancel finish}) has the following
type under s, c:
〈c:?[auth T×〈c:〈ok:!T×•, cancel:!T×•〉〉]〉×〈c:〈auth:!T×〈s:?[ok T×•, cancel T×•]〉〉〉
First, see that g1 = ((s → c) ok finish) has a typing derivation as follows (note that we
omit the payload type T in global combinators):
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`s,c finish : • × •
`s,c (s → c) ok finish : 〈c:〈ok:!T×•〉〉 × 〈s:?[ok T×•]〉

For g2 = ((s → c) cancel finish) we have similar derivation. Then, type of role c (the
second of the tuple) is adjusted by [Otg-Sub], 〈s:?[ok T×•]〉 6 〈s:?[ok T×•, cancel T×•]〉 and
〈s:?[cancel T×•]〉 6 〈s:?[ok T×•, cancel T×•]〉, thus we have:

`s,c g1 : 〈c:〈ok:!T×•〉〉×〈s:?[ok T×•, cancel T×•]〉
`s,c g2 : 〈c:〈cancel:!T×•〉〉×〈s:?[ok T×•, cancel T×•]〉

Then, by [Otg-Choice], we have the following derivation:

`s,c g1 : 〈c:〈ok:!T×•〉〉 ×
〈

s:?
[
ok T×•,
cancel T×•

]〉
`s,c g2 : 〈c:〈cancel:!T×•〉〉 ×

〈
s:?
[
ok T×•,
cancel T×•

]〉
`s,c choice s {g1, g2} : 〈c:〈ok:!T×•, cancel:!T×•〉〉 × 〈s:?[ok T×•, cancel T×•]〉

Note that, in the above premises, the first element of the tuple specifying the behaviour of
choosing role s, namely 〈c:〈ok:!T×•〉〉 and 〈c:〈cancel:!T×•〉〉, are disjointly combined into
〈c:〈ok:!T×•, cancel:!T×•〉〉 in the conclusion. Then, by applying [Otg-Comm] again, we get
the type for gAuth presented above.

3.3 Evaluating Global Combinators to Channel Vectors
Channel vectors are data structures which are created from a global combinator at initialisa-
tion, and used for sending/receiving values from/to participants. Channel vectors implement
multiparty communications as nested binary io-typed channels.

I Definition 3.6 (Channel vectors). Channel vectors (c, c′, ...) and wrappers (h, h′, ...) are
defined as:

c, c′::= v, ... | s, s′, ... | (c1, ... , cn) | [l=c] | 〈li=ci〉i∈I | µx.c | [si@hi]i∈I
h, h′::= [ ] | [l=h] | (c1, ... , hk, ... , cn) | 〈l1=c1, ... , lk=h, ... , ln=cn〉 l::= p | m

Channel vectors c are either base values v or runtime values generated from global
combinators which include names (simply-typed binary channels) s, s′, ..., tuples (c1, ... , cn),
variants [l=c], records 〈li=ci〉i∈I , and recursive values µx.c where x is a bound variable.

We introduce an extra runtime value, wrapped names [si@hi]i∈I , inspired by Concurrent
ML’s wrap and choose functions [45], which are a sequence [...]i∈I of pairs of input name
si and a wrapper hi. A wrapper h contains a single hole [ ]. An input on wrapped names
[si@hi]i∈I is multiplexed over the set of names {si}i∈I . When a sender outputs value c′ on
name sj (j ∈ I), the corresponding input waiting on [si@hi]i∈I yields a value hj [c′] where
the construct h[c] denotes a value obtained by replacing the hole [ ] in h with c (i.e. applying
function h to c). We write [li=(si,ci)]i∈I for [si@[li=([ ],ci)]]i∈I .

I Definition 3.7 (Typing rules for channel vectors). Fig. 8 gives the typing rules for channel
vectors and wrappers. The typing judgement for (1) channel vectors has the form Γ ` c : T ;
(2) wrappers has the form Γ ` h :H where the type for wrappers is defined as H::=T [S]; We
assume that all types in Γ are closed.

The rules for channel vectors are standard where the subtyping relation in rule [Otc-Sub]

is defined at Definition 3.3. For wrappers, rule [Otc-WrapInp] types wrapped names where the
payload type S′ of input channel s is the same as the hole’s type, and all wrappers have the
same result type T . Rule [Otc-Wrapper] checks type of a channel vector c = h[x] and replaces
x with the hole [ ].

Evaluation of global combinators is the key to implement a multiparty protocol to a series
of binary, simply-typed communications based on channel vectors. We define JgKsR where R
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[Otc-s]

Γ, s:]T ` s : ]T
[Otc-x]

Γ, x:T ` x : T
[Otc-()]

Γ ` () : •
[Otc-Sub] Γ`c:S S6T

Γ ` c : T
[Otc-Tup] Γ ` ci : Ti ∀i, 1≤i≤n

Γ ` (c1, ..., cn) : T1×···×Tn
[Otc-Variant] Γ ` c : T

Γ ` [l=c] : [l T ]
[Otc-Record] Γ ` ci : Ti ∀i ∈ I

Γ ` 〈li=ci〉i∈I : 〈li :Ti〉i∈I
[Otc-µ] Γ, x:µt.T ` c : T{µt.T/t}

Γ ` µx.c : µt.T
[Otc-WrapInp] Γ ` si : ?Si Γ ` hi : T [Si] ∀i∈I

Γ ` [si@hi]i∈I : ?T
[Otc-Wrapper] Γ, x:T ′ ` c : T c=h[x] x/∈ fv(h)

Γ ` h : T [T ′]

Figure 8 The typing rules for channel vectors and wrappers Γ ` c : T Γ ` h :H

J(pj → pk) m:S gKsR =(
JgKsR(1), ... , JgKsR(j−1),

〈
pk=

〈
m=(s{pj ,pk,m,i},JgKsR(j))

〉〉
, JgKsR(j+1),

... , JgKsR(k−1),
〈

pj=
[
m=(s{pj ,pk,m,i},JgKsR(k))

]〉
, JgKsR(k+1), ... , JgKsR(n)

)
where i is fresh.

Jchoice pa {gi}i∈IK
s
R =(⊔

i∈I

(
JgiK

s
R(1)

)
, ... ,

⊔
i∈I

(
JgiK

s
R(a−1)

)
, 〈q=〈mk=ck〉k∈K〉,

⊔
i∈I

(
JgiK

s
R(a+1)

)
, ... ,

⊔
i∈I

(
JgiK

s
R(n)

))
where unfold∗

(
JgiK

s
R(a)

)
= 〈q=〈mk=ck〉k∈Ki

〉 and K =
⋃
i∈I Ki

Jfixx -> gKsR =
(
fix(x1, JgKsR(1)), ... ,fix(xn, JgKsR(n))

)
JxKsR =

(
x1, ... , xn

)
JfinishKsR =

(
(), ... , ()

)
Figure 9 Evaluation of global combinators JgKs

R

is a sequence of roles in g and s is a base name freshly assigned to an initiation expression at
runtime. The generated channels are interconnected to each other and the created channel
vectors are distributed and shared among expressions running in parallel, enabling them to
interact via binary names.

The followings are basic operations on records, tuples and recursive values which are used
to define evaluations of global combinators.

I Definition 3.8 (Operations). (1) The unfolding unfold∗(c) of a recursive value is defined
by the smallest n such that unfoldn(c) = unfoldn+1(c), and unfold(·) is defined as:

unfold(µx.c) = c{µx.c/x} unfold(c) = c otherwise
where fn+1(x) = f(fn(x)) for n ≥ 2 and f1(x) = f(x). (2) c#l denotes the record
projection, which projects on field l of record value c, defined as: 〈li=ci〉i∈I#lk =
unfold∗(ck), where # is left-associative, i.e. c#l1#...#ln = ((...(c#l1)#...)#ln). (3) The
i-th projection on a tuple, c(i) is defined as (c1, ... , cn)(i)=ci for 1 ≤ i ≤ n. (4) fix

(
x, x′

)
=();

otherwise fix(x, c)=µx.c.

I Definition 3.9 (Evaluation of a global combinator). Given R and fresh s, the evaluation
JgKsR of global combinator g is defined in Fig. 9. We write JgKs if R = roles(g).

The evaluation for communication (pj → pk) m:S g connects between pj and pk by the
name s{pj ,pk,m,i} by wrapping j-th and k-th channel vector with an output and an input
structure, respectively. The name s{pj ,pk,m,i} is indexed by two role names pj , pk, label m
and an index i so that (1) it is only shared between two roles pj and pk, (2) communication
only occurs when it tries to communicate a specific label m, and (3) both the sender and
the receiver agree on the payload type. Here, the index i is used to distinguish between
names generated from the same label m′ but different payload type m:T and m:T ′, ensuring
consistent typing of generated channel vectors. The choice combinator choice pa {gi}i∈I
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extracts the output channel vector (i.e. the nested records of the form 〈q=〈mk=ck〉k∈Ki
〉) at

pa from each branch gi, and merges them into a single output. Channel vectors for the other
roles are merged by c1 t c2 where merging for the outputs is an intersection of branchings
from c1 and c2, while merging of the inputs is their union. We explain merging by example
(Example 3.10) and leave the full definition in [25].

For the recursion combinator, function fix(xi, ci) forms a recursive value for repetitive
session, or voids it as () if it does not contain any names.

I Example 3.10 (Global combinator evaluation). Let s1 = s{c,s,ok,0}, s2 = s{c,s,cancel,0} and
s3 = s{s,c,auth,0}. Then:
JgAuthKs

= J(c → s) auth (choice s {(s → c) ok finish, (s → c) cancel finish})Ks
Here, we have


gL = (c → s) ok finish, gR = (c → s) cancel finish,
JgLKs = 〈〈s=[ok=(s1,())]〉, 〈c=〈ok=(s1,())〉〉〉,
JgRKs = 〈〈s=[cancel=(s2,())]〉, 〈c=〈cancel=(s2,())〉〉〉,

 ,

concatenating
{

unfold∗(JgLKs(2)) = JgLKs(2) = 〈s=〈ok=cL2〉〉, cL2=(s1,()),
unfold∗(JgRKs(2)) = JgRKs(2) = 〈s=〈cancel=cR2〉〉, cR2=(s2,())

}


=
(
〈s=〈auth=(s3,JgLKs(1) t JgRKs(1))〉〉, 〈c=[auth=(s3,〈c=〈ok=cL2,cancel=cR2〉〉)]〉

)
=
(
〈s=〈auth=(s3,〈s=[ok=(s1,()), cancel=(s2,())]〉)〉〉,
〈c=[auth=(s3,〈c=〈ok=(s1,()), cancel=(s2,())〉〉)]〉

)
The following main theorem states that if a global combinator is typable, the generated

channel vectors are well-typed under the corresponding local types.

I Theorem 3.11 (Realisability of global combinators). If `R g : T , then JgKsR = c is defined
and {si :Si}si∈fn(c) ` c : T for some {S̃i}.

This property offers the type soundness and communication safety for ocaml-mpst
endpoint programs: a statically well-typed ocaml-mpst program will satisfy subject reduction
theorem and never performs a non-compliant I/O action w.r.t. the underlying binary channels.
We leave the formal definition of ocaml-mpst endpoint programs, operational semantics,
typing system, and the subject reduction theorem in [25].

4 Implementing Global Combinators

We give a brief overview on the type manipulation techniques that enable type checking of
global combinators in native OCaml. § 4.1 gives a high-level intuition of our approach, § 4.2
illustrates evaluation of global combinators to channel vectors in pseudo OCaml code, and
§ 4.3 presents the typing of global combinators in OCaml. Furthermore, in [25], we develop
variable-length tuples using state-of-art functional programming techniques, e.g., GADT and
polymorphic variants, to improve usability of ocaml-mpst.

4.1 Typing Global Combinators in OCaml: A Summary
In Fig. 10 we illustrate the type signature of each global combinator, which is a translit-

eration of the typing rules (Fig. 7) into OCaml. In the figure, OCaml type (tr1 * ··· * trn )
corresponds to a n-tuple of channel vector types tr1 × · · · × trn . The implementation makes
use of variable-length tuples to represent tuples of channel vectors, and therefore the developer
does not have to explicitly specify the number of roles n (see [25]). A few type-manipulation
techniques are expanded later in § 4.3. Henceforth, we only make a few remarks, regarding
some discrepancies with the implementation.
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Global Combinator Type

finish (close * ··· * close)

(ri --> rj) m g
Given g : (tr1 * ··· * trn ),
Return (tr1 * ··· * <rj: <m: ('v * tri ) out>> * ··· * <ri: [> `m of 'v * trj ] inp> * ··· * trn )

choice_at ra mrg
(ra, g1)
(ra, g2)

Given 1 ≤ a ≤ n,
g1 : (tr1 * ··· * tra−1 * <rb: <mi: (vi, si) out>i∈I> * tra+1 * ··· * trn ),
g2 : (tr1 * ··· * tra−1 * <rb: <mj: (vj, sj) out>j∈J > * tra+1 * ··· * trn ), and
mrg : a concatenator ensuring the two label sets are mutually disjoint (I ∩ J = ∅),
Return (tr1 * ··· * tra−1 * <rb: <mk: (vk, sk) out>k∈I∪J > * tra+1 * ··· * trn )

fix (fun x -> g)
Given g : (tr1 * ··· * trn under assumption that x : (tr1 * ··· * trn ),
x is guarded in g

Return (tr1 * ··· * trn )

closed_at ra g
Given g : (tr1 * ··· * tra−1 * close * tra+1 * ··· * trn ) and 1 ≤ a ≤ n,
Return (tr1 * ··· * tra−1 * close * tra+1 * ··· * trn )

Figure 10 Type of Global Combinators in OCaml

OCaml types Types in § 3
<r:[>`mi of vi*ti]i∈I inp> 〈r:?[mi Si×Ti]i∈I〉
<r:<mi:(vi,ti) out>i∈I> 〈r:〈mi:!Si×Ti〉i∈I〉
close (=unit) •
t as 'x µx.T

Channel vector types in OCaml.
The OCaml syntax of channel vector
types is given on the right. The difference
with its formal counterparts are minimal.
In particular, records are implemented us-
ing OCaml object types, and record fields
correspond to object methods, i.e. role_q is a method. In type [>`mi of ti]i∈I , the symbol >
marks an open polymorphic variant type which can have more tags. The types inp and out
stand for an input and output types with a payload type vi and a continuation ti. Recursive
channel vector types are implemented using OCaml equi-recursive types.
On branching and compatibility checking. As we explained in § 3.2, branching is the
key to ensure the protocol is realisable, and free of communication errors. To ensure that the
choice is deterministic, it must be verified that the set of labels in each branch are disjoint.
Since OCaml objects do not support concatenation (combining of multiple methods e.g.,
[57, 19]), and cannot automatically verify that the set of labels (encoded as object methods)
are disjoint, the user has to manually write a disjoint merge function mrg that concatenates
two objects with different methods into one (see [25] for examples). This part can be
completely automated by PPX syntactic extension in OCaml. On compatibility checking of
non-choosing roles, external choice <r: [>`m1 of ··· ] inp> and <r: [>`m2 of ··· ] inp>, the types
can be recursively merged by OCaml type inference to <r: [>`m1 of ··· |`m2 of ··· ] inp> thanks
to the row polymorphism on polymorphic variant types (>), while non-directed external
choices and other incompatible combination of types (e.g., input and output, input and
closing, and output and closing) are statically excluded.
On unguarded recursion. The encoding of recursion fix (fun x -> g) has two caveats
w.r.t the typing system: (1) OCaml does not check if a recursion is guarded, thus for
example fix (fun x -> x) is allowed. We cannot use OCaml value recursion, because global
combinators generate channels at run-time. (2) Even if a loop is guarded, Hindley-Milner
type inference may introduce arbitrary local type at some roles. For example, consider the
global protocol fix (fun x -> (ra --> rb) msg x) which specifies an infinite loop for roles
/∈ {ra, rb}, and does not specify any behaviour for any other roles. To prevent undefined
behaviour, the typing rule marks the types of the roles that are not used as closed tfix(t, T ).
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1 let (-->) ri rj m g =
2 (* extract the continuations *)
3 let (cr1 , cr2 , ... , crn ) = g in
4 let s = Event.new_channel () in
5 (* create an output channel vector *)
6 let cri = (<rj = <m = (s,cri )> >) in
7 (* create an input channel vector *)
8 let crj = (<ri =
9 Event.wrap s (fun x -> `m(x,crj )) >) in

10 (cr1 , cr2 , ... , crn )

let choice_at ra mrg g1 g2 =
let (c1r1 , c1r2 , ... , c1rn ) = g1 in
let (c2r1 , c2r2 , ... , c2rn ) = g2 in
let cra =
(concatenate c1ra and c2ra using mrg) in

let cr1 = merge c1r1 c2r1 in
let cr2 = merge c1r2 c2r2 in
(* .. repeatedly merge each ri 6= ra .. *)
let crn = merge c1rn c2rn in
(cr1 , cr2 , ... , crn )

Figure 11 Implementation of communication combinator and (a) branching combinator (b)

Unfortunately, in type inference, we do not have such control, and the above protocol will
introduce a polymorphic type 'tri for role ri /∈ {ra, rb}, which can be instantiated by any
local type.

Fail-fast policy. We regard the above intricacies on recursion as a fact of life in any
programming language, and provide a few workarounds. For (1), we adopt a “fail-fast” policy:
Our library throws an exception if there is an unguarded occurrence of a recursion variable.
This check is performed when evaluating a global combinator before any communication
is started. As for (2), we require the programmer to adhere to a coding convention when
specifying an infinite protocol. They have to insert additional combinator closed_at ra g,
which consistently instantiates type variable 'tra with close, leaving other roles intact. If the
programmer forgets this insertion, fail-fast approach applies, and our library throws a runtime
exception before the protocol has started. In addition, self-sent messages (r -->r)msg for
any r are reported as an error at runtime.

4.2 Implementing Global Combinator Evaluation

Following § 3.3, in Fig. 11, we illustrate the implementation of the global combinators,
by assuming that method names and variant tags are first class in this pseudo-OCaml.
Communication combinator (-->) is presented in Fig. 11 (a) where the communication
combinator ((ri --> rj)mg) yields two reciprocal channel vectors of type <rj:<m: (v,tri ) out>
> and <ri:[>`m of v*trj ] inp>.

The implementation starts by extracting the continuations (the channel vectors) at each
role (Line 3). Line 4 creates a fresh new channel s of a polymorphic type 'v channel shared
among two roles, which is a source of type safety regarding payload types. Line 6 creates
an output channel vector. We use a shorthand <m = e> to represent an OCaml object
object method m = e end. Thus, it is bound to cri , by nesting the pair (s,cri ) inside two
objects, one with a method role, and another with a method label, forming type <rj:<m: ('v
,tri ) out>>. Similarly, Line 8 creates an input channel vector crj , by wrapping channel s in a
polymorphic variant using Event.wrap from Concurrent ML and nesting it in an object type,
forming type <ri:[>`m of 'v*trj ] inp>. This wrapping relates tag m and continuation tj to
the input side, enabling external choice when merged. Finally, the newly updated tuple of
channel vectors is returned (Line 10).

Fig. 11 (b) illustrates the choice combinator choice_at. Line 6–9 specifies that the channel
vectors at non-choosing roles are merged, using a merge function. Intuitively, merge does
a type-case analysis on the type of channel vectors, as follows: (1) for an input channel
vector, it makes an external choice among (wrapped) input channels, using the Event.choose
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function from Concurrent ML; (2) for an output channel vector, the bare channel is unified
label-wise, in the sense that an output on the unified channel can be observed on both input
sides, which is achieved by having channel type around a reference cell; and (3) handling of
channel vector of type close is trivial.
First-class methods. Method names ri, rj and m and the variant tag m occurring in
((ri --> rj)mg) are assumed in § 4.1 to be first-class values. Since such behaviour is not
readily available in vanilla OCaml, we simulate it by introducing the type method_ (Line 2 in
Fig. 12), which creates values that behave like method objects. The type is a record with a
constructor function make_obj and a destructor function call_obj (see example in Lines 3–6).
We use that idea to implement labels and roles as object methods. The encoding of local
types stipulates that labels are object methods (in case of internal choice) and as variant
tags (in case of external choice). Hence, the label type (Line 9 in Fig. 12), is defined as a
pair of a first-class method, i.e using method_, and a variant constructor function. While
object and variant constructor functions are needed to compose a channel vector in (-->),
object destructor functions are used in merge in choice_at, to extract bare channels inside
an object. Variant destructors are not needed, as they are destructed via pattern-matching
and merging is done by Event.choose of Concurrent ML. Roles are defined similarly to labels.
See example in Line 15 (the full definition of role type is available in [25]).

4.3 Typing Global Combinators via Polymorphic Lenses
This section shows one of our main implementation techniques – the use of polymorphic
lenses [16, 42] for index-based updates on tuple types. This is essential to the implementation
of the typing of Fig. 10 in OCaml. To demonstrate our technique, we sketch the type of
the branching combinator, in a simplified form. The types of all combinators, incorporating
first-class methods and variable-length tuples, can be found in [25]. The branching combinator
demonstrates our key observation that merging of local types can be implemented using row
polymorphism in OCaml, which simulates the least upper bound on channel vector types.

Intuitively, a lens is a functional pointer, often utilised to access and modify elements of
a nested data structure. In our implementation, lenses provide a way to update a channel
vector in a tuple (tr1 * ··· * trn ). The type of the lens ('g0, 't0, 'g1, 't1) idx itself points to
an element in a specific position in a tuple, by denoting that “an element 't0 is in a tuple
'g0” in a type-parametric way. Furthermore, this polymorphic lens is capable to express

1 (* the definition of the type method_*)
2 type ('obj, 'mt) method_ = {make_obj: 'mt -> 'obj; call_obj: 'obj -> 'mt}
3 (* example usage of method_: *)
4 val login_method : (<login : 'mt>, 'mt) method_ (* the type of login_method *)
5 let login_method =
6 {make_obj=(fun v -> object method login = v end); call_obj=(fun obj -> obj#login)}
7

8 (* the definition of the type label*)
9 type ('obj, 'ot, 'var, 'vt) label = {obj: ('obj, 'ot) method_; var: 'vt -> 'var}

10 (* example usage of label *)
11 val login : (<login : 'mt>, 'mt, [> `login of 'vt], 'vt) label
12 let login = {obj=login_method; var=(fun v -> `login(v))}
13

14 (* example usage of role: *)
15 let s = {index=Zero;
16 label={make_obj=(fun v -> object method role_S=v end); call_obj=(fun o -> o#role_S)}}

Figure 12 Implementation of first-class methods and labels
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Dynamic Static

<role_q: <m: ('v,'t) out>>
<role_p: <m: ('v data,'t) out>> lin (base value)
<role_p: <m: ('s lin,'t) out>> lin (delegation)

<role_p:[`m of 'v * 't] inp>
<role_p:[`m of 'v data *'t lin] inp lin> lin (base value)
<role_p:[`m of 's lin *'t lin] inp lin> lin (delegation)

close close lin
Figure 13 Channel Vector Types with (a) Dynamic and (b) Static Linearity Checks

updating the type of an element, from 't0 in tuple 'g0 to 't1, which will update 'g0 itself to
'g1. More precisely, the idx type has two operations:

get: ('g0,'t0,_,_) idx -> 'g0 -> 't0 and put: ('g0,_,'g1,'t1) idx -> 'g0 -> 't1 -> 'g1.
For example, a lens pointing to the first element of a 3-tuple has the type (('x*'a*'b), 'x, (
'y*'a*'b), 'y) idx.

The branching combinator choice_at ra mrg (ra,g1) (ra,g2) is declared in following way:
1 val choice_at : ('g0, close, 'g, 'tlr) idx -> (* the index of the selecting role *)
2 ('tlr, 'tl, 'tr) disj -> (* the type of disjoint merge function *)
3 ('gl, 'tl, 'g0, close) idx * 'gl -> (* the type of the first tuple *)
4 ('gr, 'tr, 'g0, close) idx * 'gr -> (* the type of the second tuple *)
5 'g (* the type of the result tuple *)

The type variables in the above is resolved a la logic programs in Prolog, where several
type variables are unified to compose a tuple type of channel vectors. It requires that both
continuation tuples 'gl and 'gr should be of the same type, except for the position of active
role ra. The two idx types paired with continuations force this unification, by putting close
at ra in 'gl and 'gr. Thus, the result type 'g0 is shared among both lenses, so that it
contains only types of non-choosing roles and close. Each element in 'g0 is then pairwise
merged4. The result type of the combinator 'g is obtained by modifying the merged tuple of
channel vectors 'g0 by updating the type of the active role ra from close to 'tlr, which is
the result type of the object concatenation function mrg. Function mrg takes the channel
vector types for the role ra in g1 and g2, namely 'tl and 'tr, and returns the result type
'tlr. The signature of the combinator also explains the extra occurrence roles paired with
each branch. Since we need lens ra within three different instantiations for different element
types 'tl, 'tr and 'tlr at the position ra, we need three occurrences of the same lens.

5 Dynamic and Static Linearity Checks in the Communication API

To ensure that an implementation faithfully implements a well-formed, safe global protocol,
MPST theory requires that all communication channels are used linearly. Similarly, the safety
of our library depends on the linear usage of channels. Our library offers two mechanisms for
checking that a channel is used linearly: static and dynamic. Here, we briefly explain each of
these mechanisms, by comparing their API usages in Fig. 14 and types in Fig. 13, where the
dynamic version stays on the left while the static one is on the right.
Dynamic Linearity Checking. Dynamic checking, where linearity violations are detected
at runtime, is proposed by [55] and [22], and later adopted by [41, 47]. In ocaml-mpst,
dynamic linearity checking is implemented by wrapping the input and output channels, with
a boolean flag that is set to true once the channel has been used. If linearity is violated,

4 We have implemented the type-case analysis for merge mentioned in § 4.2 via a wrapper called mergeable
around each channel vector, which bundles a channel vector and its merging strategy.



K. Imai, R. Neykova, N. Yoshida and S. Yuen 9:19

i.e a channel is accessed after the linearity flag has been set to true, then an exception
InvalidEndpoint will be raised. Note that our library correctly handles output channels
between several alternatives being used only once; for example, from a channel vector c
of type <r: <ok: (string,close) out; cancel: (string,close) out>>, the user can extract two
channels c#r#ok and c#r#cancel where an output must take place on either of the two bare
channels, but not both. In addition, our library wraps each bare channel with a fresh linearity
flag on each method invocation, since in recursive protocols, a bare channel is often reused,
as the formalism (§ 3) implies.

Static Linearity Checking with Monads and Lenses. The static checking is built on
top of linocaml [24]: a library implementation of linear types in OCaml which combines
the usage of parameterised monads [2] and polymorphic lenses (see § 4.3), to enable static
type-checking on the linear usage of channels. In particular, we reuse several techniques
from [24, 27]. A parameterised monad, which we model by the type ((pre,post,v) monad),
denotes a computation of type v with a pre- and a post-condition, and they are utilised to
track the creation and consumption of resources at the type level. A well-known restriction
of parameterised monads in the context of session types, is that they support communication
on a single channel only, and hence are incapable of expressing session delegation and/or
interleaving of multiple session channels. To overcome this limitation, the slot monad
proposed in [24, 27] extends the parameterised monad to denote multiple linear resources in
the pre- and post-conditions. The resources are represented as a sequence, and each element
is modified using polymorphic lenses [42].

We incorporate the above-mentioned techniques of linocaml so that, instead of having
a single channel vector in the pre and post conditions, we can have a sequence of channel
vectors, and we use lenses to focus on a channel vector at a particular slot. If we do not
require delegation or interleaving, then the length of the sequence is one and the monadic
operations always update the first element of the sequence. In particular, as in [27], if a
channel is delegated i.e sent through another channel, that slot (index) of the sequence is
updated to unit, marking it as consumed.

The ocaml-mpst API, for static linearity checking, is given in Fig. 14(b), where si, and sj

in delegation, denote lenses pointing at i-th and j-th slot in the monad. The binary channels
in the channel vector, used within the monadic primitives send and receive, are of the types
given in Fig. 13(b). Functions send and receive both take (1) a lens si pointing to a channel
vector; and (2) a selector function which extracts, from the channel vector at index si, a
channel (('v data, 't1) out for output and 'a inp for input. Type data denotes unrestricted
(non-linear) payload types, whose values are matched against ordinary variables. The result
of the monadic primitives is returned as a value of either type 't lin for output or 'a lin
for input, which is matched by match%lin or let%lin, ensuring the channels (and payloads,
in case of delegation) are used linearly. A lin type must be matched against lens-pattern
prefixed by #. Note that, linocaml overrides the let syntax and # pattern, in the way that
let%lin #si=exp updates the index si, in the sequence of channel vectors, with the value
returned from exp.

To realise session delegation, we have implemented a separate monadic primitive, deleg_send
si (fun x->x#p#l) sj, presented in Fig. 14(b). The primitive extracts the channel vector at
position si and then updates the channel vector at position sj . As a result, the slot for sj is
returned and used in further communication, the slot si is updated to unit. An example
program that uses ocaml-mpst static API is given in Fig. 4(b).
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Dynamic Static (monadic)
let s = send s#role_q#m v in e
let s = send s#role_q#m s' in e

let%lin #si = send si (fun x -> x#role_q#m) v in e
let%lin #si = deleg_send si (fun x -> x#role_q#m) sj in e

match receive s#role_p with
|`m1(x,s) -> e1
|`m2(s',s) -> e2

match%lin receive si (fun x->#role_p) with
|`m1(x,#si) -> e1
|`m2(#sj,#si) -> e2 (delegation)

close s close si

Figure 14 OCaml API for MPST with Dynamic (a) and Static (b) linearity checks

6 Evaluation

We evaluate our framework in terms of run-time performance (§ 6.1) and applications
(§ 6.2, § 6.3). We compare the performance of ocaml-mpst with programs written in a
continuation-passing-style (following the encoding presented in [53]) and untyped implement-
ations (Bare-OCaml) that utilise popular communication libraries. In summary, ocaml-mpst
has negligible overhead in comparison with unsafe implementations (Bare-OCaml), and CPS-
style implementations. We demonstrate the applicability of ocaml-mpst by implementing a
lot of use cases. In § 6.3, we show the implementation of the OAuth protocol, which is the
first application of session types over http.

6.1 Performance
The runtime overhead of ocaml-mpst stems from the implementation of channel vectors,
more specifically: (1) extracting a channel from an OCaml object when performing a
communication action, and (2) either (2.1) dynamic linearity checks or (2.2) more closures
introduced by the usage of a slot monad for static checking.

Our library is parameterised on the underlying communication transport. We evaluate its
performance in case of synchronous, asynchronous and distributed transports. Specifically,
we use the following communication libraries:
(1) ev: OCaml’s standard Event channels which implements channels shared among POSIX-

threads;
(2) lwt: Streams between lightweight-threads [56], which are more efficient for I/O-intensive

application in general, and broadly-accepted by the OCaml communities, and
(3) ipc: UNIX pipes distributed over UNIX processes.
Note that ev is synchronous, while the other two are asynchronous. Also, due to current
OCaml limitation, POSIX-threads in a process cannot run simultaneously in parallel, which
particularly affects the overall performance of (1). As OCaml garbage collector is not a
concurrent GC, only a single OCaml thread is allowed to manipulate the heap, which in
general limits the overall performance of multi-threaded programs written in OCaml. For (3),
we generate a single pipe for each pair of processes, and maintain a mapping between a local
channel and its respective dedicated UNIX pipe. In addition, we also implement an optimised
variant of ocaml-mpst in the case of lwt, denoted as lwt-single in Fig. 15; it reuses a
single stream among different payload types, instead of using different channels for types. In
particular, we cast a payload to its required payload type utilising Obj.magic, as proposed
and examined by [40, 26]. Our benchmarks are generalisable because each microbenchmark
exhibits the worst-case scenario for its potential source of overhead.

We compare implementations, written using (1) ocaml-mpst static API, (2) ocaml-mpst
dynamic API, (3) a Bare-OCaml implementation using untyped channels as provided by the
corresponding transport library, and (4) a CPS implementation, following the encoding in



K. Imai, R. Neykova, N. Yoshida and S. Yuen 9:21

1 10 100 1000
Size of payloads

0

2

4

6

8
 se

c

a1) Ping-pong (ipc)

Static
Dynamic
Bare
CPS

ev

a2) ev

lwt0.00

0.25

0.50

0.75

µ 
se

cs

a3) lwt

0 200 400 600
Number of states (~Size of channel vectors)

b) N-Ping (lwt & lwt-single)

Static
Dynamic
Sta-single
Dyn-single
Bare

0.00

0.25

0.50

0.75

 se
c

ev lwt0.00

0.05

0.10

0.15

0.20

m
aj

or
 G

C 
wo

rd
s

c) Ping-Pong (GC)

0

200

400

m
in

or
 G

C 
wo

rd
s

major GC
minor GC

101 102 103
Number of threads

d) Chameleons (ipc & lwt)

10 2

10 1

100

101

m
illi

 se
cs

Sta-ipc
Dyn-ipc
Sta-lwt
Dyn-lwt

Figure 15 Runtime performance vs GC time performance

[47]. We have implemented the encoding manually such that a channel is created at each
communication step, and passed as a continuation. Fig. 15 reports the results on three
microbenchmarks.
Setup. We use the native ocamlopt compiler of OCaml 4.08.0 with Flambda optimiser5.
Our machine configurations are Intel Core i7-7700K CPU (4.20GHz, 4 cores), Ubuntu 17.10,
Linux 4.13.0-46-generic, 16GB. We use Core_bench6, a popular benchmark framework in
OCaml, which uses its built-in linear regression for estimating the reported costs. We repeat
each microbenchmark for 10 seconds of quota where Core_bench takes hundreds of samples,
each consists of up to 246705 runs of the targeted OCaml function, we obtain the average of
execution time with fairly narrow 95% confidence interval.
Ping-pong benchmark measures the execution time for completing a recursive protocol
between two roles, which are repeatedly exchanging request-response messages of increasing
size (measured in 16 bit integers). The example is communication intensive and exhibits no
other cost apart from the (de)serialisation of values that happens in the ipc case, hence it
demonstrates the pure overhead of channel extraction, dynamic checks and parameterised
monads. In the case of a shared memory transports (ev and lwt), we report the results of a
payload of one integer since the size of the message does not affect the running time.

The slowdown of ocaml-mpst is negligible (approx. 5% for Dynamic vs Bare-OCaml,
and 13% for Static vs Bare-OCaml) when using either ev, Fig. 15 (a1), or ipc, Fig. 15(a2),
as a transport, since the overhead cost is overshadowed by latency. The shared memory case
using lwt, Fig. 15(a3), represents the worse case scenario for ocaml-mpst since it measures
the pure overhead of the implementation of many interactions purely done on memory with
minimal latency. The slowdown in the static version is expected [27] and reflects the cost
of monadic closures, as the current implementation does not optimise them away. The

5 https://caml.inria.fr/pub/docs/manual-ocaml/flambda.html
6 https://blog.janestreet.com/core_bench-micro-benchmarking-for-ocaml/
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linearity monad is implemented via a state monad [24], which incurs considerable overhead.
The OCaml Flambda optimiser could remove more closures if we annotate the program
with inlining specifications. The slowdown (although negligible) in comparison with CPS is
surprising since we pre-generate all channels up-front, while the CPS-style implementation
creates a channel at each interaction step. Our observation is that the compiler is optimised
for handling large amounts of immutable values, while OCaml objects (utilised by the channel
vector abstraction) are less efficient than normal records and variants.

Fig. 15 (c) reports on the memory consumption (in terms of words in the major and minor
heap) for executing the protocol. Channel vectors with dynamic checking have approximately
the same memory footprint as Bare-OCaml, and significantly less footprint when compared
with a CPS implementation.

n-Ping is a protocol of increasing size, nping global combinator forming repeated composition
of the communication combinators defined by gi = (a-->b) ping @@(b-->a) pong @@gi−1, g0

= t and nping = fix (fun t ->gn), where n corresponds to the number of ping and pong
states. In contrast to Ping-Pong, this example generates a large number of channels and large
channel vector objects, evaluating how well ocaml-mpst scales w.r.t the size of the channel
vector structure. We show the results for transports lwt and lwt-single in Fig. 15 (b).
The static version of lwt-single has a constant overhead from Bare-OCaml. Although the
static checking implementation is in general slower, the relative overhead, in comparison
with dynamic checking, decreases as the protocol length increases.

Chameleons protocol specifies that n roles ("chameleons") connect to a central broker, who
picks pairs and sends them their respective reference, so they can interact peer-to-peer. The
example tests delegation (central broker sends a reference) and creation of many concurrent
sessions (peer-to-peer interaction of chameleons). The results reported in Fig. 15 (d) show
that the implementation of delegation with static linearity checking scales as well as its
dynamic counterpart. The cost of linearity (monadic closures) is less than the cost of dynamic
checks for many concurrent sessions over lwt transport.

6.2 Use Cases

We demonstrate the expressiveness and applicability of ocaml-mpst by specifying and
implementing protocols for a range of applications, listed in Fig. 16. We draw the examples
from three categories of benchmarks: (1) session benchmarks (examples 1-9), which are
gathered from the session types literature; (2) concurrent algorithms from the Savina
benchmark suit [28] (examples 10-13); and (3) application protocols (examples 14-16), which
focus on well-established protocols that demonstrate interoperability between ocaml-mpst
implemented programs and existing client/servers. For each use case we report on Lines of
Code (LoC) of global combinators and the compilation time (CT reported in milliseconds).
We also report if the example requires full-merge [13] (FM) – a well-formedness condition on
global protocols that is not supported in [47], but supported in ocaml-mpst.

Examples 1-9 are gathered from the official Scribble test suite7 [52], and we have converted
Scribble protocols to global protocol combinators. Examples 10-13 are concurrent algorithms
and are parametric on the number of roles (n). To realise the scatter-gather pattern required
in the examples, we have added two new constructs, scatter and gather, which correspond
to a subset of the parameterised role extension for MPST protocols [9].

7 https://github.com/scribble/scribble-java
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Example (role) LoC CT(ms) FM
1. 2-Buyer [22] 15 45 X
2. 3-Buyer [22] 21 47 X
3. Fibonacci [22] 8 38 x
4. SAP-Negotiation [22] 17 46 x
5. Supplier Info [22] 50 85 X
6. SH [43, 22] 27 58 X
7. Distributed Calc [22] 12 41 x
8. Travel Agency [22] 16 66 X

Example (role) LoC CT(ms) FM
9. Game [47] 17 49 x
10. MapReduce [28] 5 33 x
11. Nqueen [28] 12 55 x
12. Santa [38, 24] 14 42 x
13. Sleeping Barber [22] 15 43 X
14. SMTP [22] 54 124 x
15. OAuth 26 60 X
16. DNS 11 57 x

Figure 16 Implemented Use cases (LoC: Lines of code, CT: Compiling Time, FM: Full merge.)

To test the applicability of ocaml-mpst to real-world protocols we have specified, using
global combinators, a core subset of three Internet protocols (examples 14-16), namely the
Simple Mail Transfer Protocol (SMTP), the Domain Network System (DNS) protocol and the
OAuth protocol. Using the ocaml-mpst APIs, it was straightforward to implement compliant
clients in OCaml that interoperate with popular servers. In particular, we have implemented
an SMTP client that interoperates with the Microsoft exchange server and sends an e-mail,
an OAuth authorisation service that connects to a Facebook server and authenticates a client,
and a DNS client and a server, which are implemented on top of a popular DNS library in
OCaml (ocaml-dns). Note that DNS has sessions, as the DNS protocol has an ID field to
discriminate sessions; and a request forwarding in the DNS protocol involves more than two
participants (i.e. servers).

6.3 Session Types over HTTP: Implementing OAuth
In this section, we discuss more details about ocaml-mpst implementation of OAuth8, which
is an Internet standard for authentication. OAuth is commonly used as a way for Internet
users to grant websites or applications access to their information on other websites but
without giving them the passwords by providing a specific authorisation flow. Fig. 17 shows
the specification of the global combinator, along with an implementation for the authorisation
server. We have specified a subset of the protocol, which includes establishing a secure
connection and conducting the main authentication transaction. Using OAuth as an example,
we also discuss practically motivated extensions, explicit connection handling akin to the one
in [23], to the core global combinators. We present that a common pattern when HTTP is
used as an underlying transport.
Extension for handling stateless protocols. The protocol has a very similar structure
to the oAuth protocol, presented in § 2. However, the original OAuth protocol is realised over
a RESTful API, which means that every session interaction is either an HTTP request or an
HTTP response. To handle HTTP connections, we have implemented a thin wrapper around
an HTTP library, Cohttp9, and we make HTTP actions explicit in the protocol by proposing
two new global combinators, connection establishing combinator (-!->) and disconnection
combinator (-?->). Session types represent the types of the communication channel after a
session (a TCP connection in the general case) has been established. Since RESTful protocols,
realised over HTTP transport, are stateless, a connection is “established” at every HTTP
Request. We explicitly encode this behaviour by replacing the –> combinator that denotes

8 https://oauth.net/2/
9 https://github.com/mirage/ocaml-cohttp
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1 let fb_oauth =
2 (c -!-> s) (get "/start_oauth") @@
3 (s -?-> c) _302 @@ (* 302: HTTP redirect *)
4 (c -!-> a) (get "/login_form") @@
5 (a -?-> c) _200 @@
6 (c -!-> a) (post "/auth") @@
7 choice_at a (to_c success_or_fail)
8 (a,(a -?-> c) (_200_success ...) @@
9 (c -!-> s) (success is_ok "/callback") @@

10 (s -!-> a) (get "/access_token") @@
11 (a -?-> s) _200 @@
12 (s -?-> c) _200 @@
13 finish)
14 (a,(a -?-> c) (_200_fail ...) @@
15 (c -!-> s) (fail is_fail "/callback") @@
16 (s -?-> c) _200 @@
17 finish)

18 let fb_acceptor = H.start_server 8080 "/mpst-oauth"
19 let rec facebook_oauth_consumer () =
20 let ch = get_ch s fb_oauth in
21 let sid = string_of_int (Random.int ()) in
22 let conn = fb_acceptor sid in
23 let `get(_, ch) = receive (ch conn)#role_C in
24 let redir_url = fb_redirect_url sid "/callback" in
25 let ch = send ch#role_C#_302 redir_url in
26 let conn = fb_acceptor sid in
27 let ch = match receive (ch conn)#role_C with
28 | `success(_,ch) ->
29 let conn_p = H.http_connector
30 "https://graph.facebook.com/v2.11/oauth" in
31 let ch = send (ch conn_p)#role_A#get [] in
32 let `_200(auinfo,ch) = receive ch#role_A in
33 send ch#role_C#_200 "auth succeeded"
34 | `fail(_,ch) -> send ch#role_C#_200 "auth failed"
35 in close ch; facebook_oauth_consumer ()

Figure 17 Global Combinators and Local Implementations for OAuth (excerpt)

that one role is sending to another, with two new combinators. The combinator -!-> means
establishing a connection and piggybacking a message, while -?-> denotes piggybacking a
message and disconnect. This simple extension allows us to faithfully encode HTTP Request
and HTTP Response. For example, a-!->b requires that role a connects on an HTTP port
to b and then a sends a message to b, hence implementing HTTP Response; on the other
hand a-?->b specifies an HTTP Response.

Implementation. The global combinator fb_oauth is given in Fig. 17 (a). As before,
the protocol consists of three parties, a service s, a client c, and an authorisation server
a. First, c connects to s via a relative path "/start_oauth" (Line 2). Then s redirects
c to a using HTTP redirect code _302 (Line 3). As a result the client sees a login form
at "/login_form" (Lines 4-5), where they enter their credentials (Line 6). Based on the
validity of the credentials received by c, a sends _200_success (Line 8) or _200_fail. If the
credentials are valid, c proceeds and connects to s on path "/callback" (Line 9), requesting
to get access to a secure page. The service s then retrieves an access token from a on URL
"/access_token" (Lines 10-11), and navigates the client to an authorised page, finishing the
session (Lines 12-13). If the credentials are not valid, the client reports the failure to s
(Lines 15-16), and the session ends (Line 17).

The server role of fb_oauth is faithfully implemented in Lines 18-35 which provides an
OAuth application utilising Facebook’s authentication service. Line 18 starts a thread which
listens on a port 8080 for connections. Essentially it starts a web service at an absolute
URL "/mpst-oauth" (i.e. relative URLs like "/callback" are mapped to "https://.../mpst
-oauth/callback"). The recursive function facebook_oauth_consumer starting from Line 19
is the main event loop for s. Line 20 extracts a channel vector from the global combinator
fb_oauth, of which type is propagated to the rest of the code. Then it generates a session id
via a random number generator (Random.int ()) (Line 21), and waits for an HTTP request
from a client on fb_acceptor (Line 22). When a client connects, the connection is bound
to the variable conn associated with the pre-generated session id. Note that the channel
vector expects a connection since no connection has been set for the client yet. Here, the
connection is supplied to the channel vector via function application (ch conn). On Line 24,
expression (fb_redirect_url sid "/callback") prepares a redirect URL to an authentication
page of a Facebook Provider (https://www.facebook.com/dialog/oauth) After sending
back (HTTP Response) the redirect url to the client with _302 label (Line 25), the connection
is implicitly closed by the library. Note that we do not need to supply a connection to the
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channel vector on Line 25; because a connection already exists, we have already received
an HTTP request from the user and Line 25 simply performs HTTP response. The next
lines proceed as expected following the protocol, with the only subtlety that we thread the
connection object in subsequent send/receive calls.

The full source code of the benchmark protocols and applications and the raw data are
available from the project repository.

7 Related Work

We summarise the most closely related works on session-based languages or multiparty
protocol implementations. See [52] for recent surveys on theory and implementations.

The work most closely related to ours is [47], which implements multiparty session
interactions over binary channels in Scala built on an encoding of a multiparty session
calculus to the π-calculus. The encoding relies on linear decomposition of channels, which is
defined in terms of partial projection. Partial projection is restrictive, and rules out many
protocols presented in this paper. For example, it gives an undefined behaviour for role
c and s for protocols oAuth2 and oAuth3 in Fig. 3. Programs in [47] have to be written in
a continuation passing style where a fresh channel is created at each communication step.
In addition, the ordering of communications across separate channels is not preserved in
the implementation, e.g. sending a login and receiving a password in the protocol oAuth
is decomposed to two separate elements which are not causally related. This problem is
mitigated by providing an external protocol description language, Scribble [50], and its API
generation tool, that links each protocol state using a call-chaining API [22]. The linear
usage of channels is checked at runtime.

An alternative way to realise multiparty session communications over binary channels is
using an orchestrator – an intermediary process that forwards the communication between
interacting parties. The work [6] suggests addition of a medium process to relay the
communication and recover the ordering of communication actions, while the work [7] adds
annotations that permit processes to communicate directly without centralised control,
resembling a proxy process on each side. Both of the above works are purely theoretical.

Among multiparty session types implementations, several works exploit the equivalence
between local session types and communicating automata to generate session types APIs
for mainstream programming languages (e.g., Java [22, 30], Go [9], F# [47]). Each state
from state automata is implemented as a class, or in the case of [30], as a type state. To
ensure safety, state automata have to be derived from the same global specification. All of
the works in this category use the Scribble toolchain to generate the state classes from a
global specification. Unlike our framework, a local type is not inferred automatically and the
subtyping relation is limited since typing is nominal and is constrained by the fixed subclassing
relation between the classes that represent the states. All of these implementations also
detect linearity violations at runtime, and offer no static alternative.

In the setting of binary session types, [27] propose an OCaml library, which uses a
slot monad to manipulate binary session channels. Our encoding of global combinators to
simply-typed binary channels enable the reuse of the techniques presented in [27], e.g. for
delegations and enforcement of linearity of channels.

FuSe [41] is another library for session programming in OCaml. It supports a runtime
mechanism for linearity violations, as well as a monadic API for a single session without
delegation. The implementation of FuSe is based on the encoding of binary session-typed
process into the linear π-calculus, proposed by [12]. The work [48] also implements this
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encoding in Scala, and the work [47] extends the encoding and implementations to the
multiparty session types (as discussed in the first paragraph).

Several Haskell-based works [43, 39, 31] exploit its richer typing system to statically
enforce linearity with various expressiveness/usability trade-offs based on their session types
embedding strategy. These works depend on type-level features in Haskell, and are not
directly applicable to OCaml. A detailed overview of the different trade-off between these
implementations in functional languages is given in Orchard and Yoshida’s chapter in [52].
Based on logically-inspired representation of session types, embedding higher-order binary
session processes using contextual monads is studied in [54]. This work is purely theoretical.

Outside the area of session-based programming languages, various works study protocol-
aware verification. Brady et al. [5] describe a discipline of protocol-aware programming
in Idris, in which adherence of an implementation to a protocol is ensured by the host
language dependent type system. Similarly, [51] proposes a programming logic, implemented
in the theorem prover Coq, for reasoning on protocol states. A more lightweight verification
approach is developed in [1] for a set of protocol combinators, capturing patterns for
distributed communication. However, the verification is done only at runtime. The work
[8] presents a global language for describing choreographies and a global execution model
where the program is written in a global language, and then automatically projected using
code generation to executable processes (in the style of BPMN). All of the above works
either develop a new language or are built upon powerful dependently-typed host languages
(Coq, Idris). Our aim is to utilise the MPST framework for specification and verification of
distributed protocols, proposing a type-level treatment of protocols which relies solely on
existing language features.

8 Conclusion and Future Work

In this work, we present a library for programming multiparty protocols in OCaml, which
ensures safe multiparty communication over binary I/O channels. The key ingredient of
our work is the notion of global combinators – a term-level representation of global types,
that automatically derive channel vectors – a data structure of nested binary channels. We
present two APIs for programming with channel vectors, a monadic API that enables static
verification of linearity of channel usage, and one that checks channel usage at runtime.
OCaml is intensively used for system programming among several groups and companies in
both industry and academia [35, 3, 32, 33, 34, 15, 10, 44]. We plan to apply ocaml-mpst to
such real-world applications.

We formalise a type-checking algorithm for global protocols, and a sound derivation of
channel vectors, which, we believe, are applicable beyond OCaml. In particular, TypeScript
is a promising candidate as it is equipped with a structural type system akin to the one
presented in our paper.

To our best knowledge, this is the first work to enable MPST protocols to be written,
verified, and implemented in a single (general-purpose) programming language and the first
implementation framework of statically verified MPST programs. By combining protocol-
based specifications, static linearity checks and structural typing, we allow one to implement
communication programs that are extensible and type safe by design.
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