
To appear in EPTCS.
© A. Scalas and N. Yoshida
This work is licensed under the
Creative Commons Attribution License.

Multiparty Session Types, Beyond Duality
(Abstract)

Alceste Scalas
Imperial College London

alceste.scalas@imperial.ac.uk

Nobuko Yoshida
Imperial College London

n.yoshida@imperial.ac.uk

Multiparty Session Types (MPST) are a well-established typing discipline for message-passing pro-
cesses interacting on sessions involving two or more participants. Session typing can ensure desirable
properties: absence of communication errors and deadlocks, and protocol conformance. However, ex-
isting MPST works provide a subject reduction result that is arguably (and sometimes, surprisingly)
restrictive: it only holds for typing contexts with strong duality constraints on the interactions between
pairs of participants. Consequently, many “intuitively correct” examples cannot be typed and/or cannot
be proved type-safe. We illustrate some of these examples, and discuss the reason for these limitations.
Then, we outline a novel MPST typing system that removes these restrictions.

MPST in a Nutshell In the MPST framework [4], global types (describing interactions among roles)
are projected to local types used to type-check processes. E.g., the global type G involves roles p, q, r:

G = p→q∶{m1(Int) .q→r∶m2(Str) .r→p∶m3(Bool) .end ,
stop .q→r∶quit .end }

G says that p sends to q either a message m1 (carrying an Int) or stop; in the first case, q sends m2 to r

(carrying a Str), then r sends m3 to p (carrying a Bool), and the session ends; otherwise, in the second
case, q sends quit to r, and the session ends. The projections of G are the I/O actions of each role in G:

Sp = q⊕{m1(Int) .r&m3(Bool) ,
stop

} Sq = p
¯

{m1(Int) .r⊕m2(Str) ,
stop .r⊕quit } Sr = q

¯
{m2(Str) .p⊕m3(Bool) ,
quit

}

Here, Sp, Sq, Sr are the projections of G resp. onto p, q, r. E.g., Sp is a session type that represents the
behaviour of p in G: it must send (⊕) to q either m1(Int) or stop; in the first case, the channel is then
used to receive (&) message m3(Bool) from r, and the session ends; otherwise, in the second case, the
session ends. Now, a typing context Γ can assign types Sp, Sq and Sr to multiparty channels s[p], s[q]
and s[r], used to play roles p, q and r on session s. Then, if e.g. some parallel processes Pp, Pq and Pr
type-check w.r.t. Γ, then we know that such processes use the channels abiding by their types.

Subject Reduction, or Lack Thereof We would expect that typed processes reduce type-safely, e.g.:

⊢ P▷Γ and P→∗ P′ implies ∃Γ
′ ∶ ⊢ P′▷Γ

′ (where P = Pp ∣Pq ∣Pr and Γ = s[p]∶Sp,s[q]∶Sq,s[r]∶Sr) (1)

But surprisingly, this is not the case! In MPST works (e.g., [1]), the subject reduction statement reads:

⊢ P▷Γ with Γ consistent and P→∗ P′ implies ∃Γ
′ consistent such that ⊢ P′▷Γ

′ (2)

Intuitively, Γ is consistent if all its potential interactions between pairs of roles are dual: e.g., all
potential outputs of Sp towards r are matched by compatible input capabilities of Sr from p. Consistency

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Multiparty Session Types, Beyond Duality (Abstract)

is quite restrictive, due to its (rather intricate) syntactic nature—and does not hold in our example. This
is due to inter-role dependencies: Sp allows to decide what to send to q — and depending on such a
choice, whether to input m3 from r, or not. This breaks the definition of consistency between Sp and Sr;
hence, Γ in (1) is not consistent, and we cannot apply (2) to ensure that Pp, Pq, Pr reduce type-safely.

Our Proposal In “standard” MPST works, consistency cannot be lifted without breaking subject reduc-
tion [1, p.163]. Hence, to prove that our example is type-safe, we need to revise the MPST foundations.
We propose a novel MPST typing system that safely lifts the consistency requirement, by introducing:

1. a new MPST typing judgement with the form Θ ⊢ P▷Γg◁Γr —where Γg and Γr are respectively
the guarantee and rely typing contexts. Intuitively, Γg describes how P uses its channels, while Γr

describes how other processes (possibly interacting with P) are expected to use their channels;

2. a semantic notion of typing context safety, called liveness, based on MPST context reductions [1].
In our typing judgement, the pair Γg,Γr must be live: this ensures that each output can synchronise
with a compatible input (and vice versa). Unlike consistency, liveness supports complex inter-role
dependencies, and ensures that the typing context cannot deadlock.

Related Work A technical report with more examples and discussion is available in [6]. Our novel
typing system allows to prove type safety of processes implementing global types with complex inter-
role dependencies and delegations. To the best of our knowledge, the only work with a similar capability
is [3]; however, its process calculus only supports one session, and this restriction is crucially exploited to
type parallel compositions without “splitting” them (cf. Table 8, rule [T-SESS]). Hence, unlike our work,
[3] does not support multiple sessions and delegation—and extending it seems challenging. Further,
unlike [3], our typing rules do not depend on global types and projections: by removing this orthogonal
concern, we simplify the theory. If needed, a set of local types can be related to a global type via
“top-down” projection or “bottom-up” synthesis [5]. Similarly to most MPST papers, our work ensures
that a typed process (νs)(∣

p∈IPp), with each Pp only interacting on s[p], is deadlock-free—but does not
guarantee deadlock freedom for multiple interleaved sessions [2]: we leave this topic as future work.
Thanks to the reviewers for their suggestions, and to R. Hu, J. Lange, B. Toninho for the fruitful discussion. Work
supported by: EPSRC (EP/K011715/1, EP/K034413/1, EP/L00058X/1), EU (COST Action IC1201, FP7-612985).

References
[1] M. Coppo, M. Dezani-Ciancaglini, L. Padovani & N. Yoshida (2015): A Gentle Introduction to Multiparty

Asynchronous Session Types. doi:10.1007/978-3-319-18941-3 4.
[2] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida & L. Padovani (2016): Global Progress for Dynamically Inter-

leaved Multiparty Sessions. MSCS 26(2), doi:10.1017/S0960129514000188.
[3] M. Dezani-Ciancaglini, S. Ghilezan, S. Jakšić, J. Pantović & N. Yoshida (2016): Precise subtyping for syn-

chronous multiparty sessions. In: PLACES 2015, doi:10.4204/EPTCS.203.3.
[4] K. Honda, N. Yoshida & M. Carbone (2008): Multiparty asynchronous session types. In: POPL,

doi:10.1145/1328438.1328472. Full version: Volume 63, Issue 1, March 2016 (9), pages 1-67, JACM.
[5] J. Lange, E. Tuosto & N. Yoshida (2015): From Communicating Machines to Graphical Choreographies. In:

POPL, doi:10.1145/2676726.2676964.
[6] A. Scalas & N. Yoshida (2017): Multiparty Session Types, Beyond Duality. Technical Report, Imperial College

London. Available at https://www.doc.ic.ac.uk/research/technicalreports/2017/.

http://dx.doi.org/10.1007/978-3-319-18941-3_4
http://dx.doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.4204/EPTCS.203.3
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2676726.2676964
https://www.doc.ic.ac.uk/research/technicalreports/2017/

