
On Asynchronous Session Semantics

Dimitrios Kouzapas∗, Nobuko Yoshida∗, and Kohei Honda†

∗Imperial College London †Queen Mary, University of London

Abstract. This paper studies a behavioural theory of the π-calculus with session types
under the fundamental principles of the practice of distributed computing — asyn-
chronous communication which is order-preserving inside each connection (session),
augmented with asynchronous inspection of events (message arrivals). A new theory of
bisimulations is introduced, distinct from either standard asynchronous or synchronous
bisimilarity, accurately capturing the semantic nature of session-based asynchronously
communicating processes augmented with event primitives. The bisimilarity coincides
with the reduction-closed barbed congruence. We examine its properties and compare
them with existing semantics. Using the behavioural theory, we verify that the pro-
gram transformation of multithreaded into event-driven session based processes, using
Lauer-Needham duality, is type and semantic preserving. Our benchmark results in
Session-based Java demonstrate the potential of the session-type based translation as
semantically transparent optimisation techniques.

1 Introduction
Modern transports such as TCP in distributed networks provide reliable, ordered delivery
of messages from a program on one computer to another, once a connection is established.
In practical communications programming, two parties start a conversation by establishing
a connection over such a transport and exchange semantically meaningful, formatted mes-
sages through this connection. The distinction between possibly non order-preserving com-
munications outside of connection and order-preserving ones inside each connection is a
key feature of this practice: order preservation allows proper handling of a sequence of mes-
sages following an agreed-upon conversation structure, while unordered deliveries across
connections enhance asynchronous, efficient bandwidth usage. Further, asynchronous event
processing [17] using locally buffered messages, the receiver can asynchronously inspect
and consume events/messages.

This paper investigates semantic foundations of asynchronously communicating pro-
cesses, capturing these key elements of modern communications programming – distinc-
tion between non order-preserving communications outside connections and the order-
preserving ones inside each connection, as well as the incorporation of asynchronous in-
spection of message arrivals. We use the π-calculus augmented with session primitives,
buffers and a simple event inspection primitive. Typed sessions capture structured conver-
sations in connections with type safety; while a buffer represents an intermediary between
a process and its environment, capturing non-blocking nature of communications, and en-
abling asynchronous event processing. The formalism is intended to be an idealised, core
but expressive communications programming language, offering a basis for a tractable se-
mantic study. Our study shows that the combination of these basic elements for modern
communications programming leads to a rich behavioural theory which differs from both
the standard synchronous communications semantics and the fully asynchronous one [7],
captured through novel equational laws for asynchrony. These laws can then be used as a
semantic justification of a well-known program transformation based on Lauer and Need-
ham’s duality principle [14], which translates multi-threaded programs to their equiva-
lent single-threaded, asynchronous, event-based programs. This transformation is regularly

used in practice, albeit in an ad-hoc manner, playing a key role in e.g. high-performance
servers. Our translation is given formally, is type-preserving and is backed up by a rig-
orous semantic justification. While we do not detail in the main sections, the transform
is implemented in the session-extension of Java [12, 13], resulting in highly competitive
performance in comparison with more ad-hoc transformations.

Let us outline some of the key technical ideas informally. In the present theory, the
asynchronous order-preserving communications over a connection are modelled as asyn-
chronous session communication, extending the synchronous session calculus [8, 23] with
message queues [4, 5, 11]. A message queue, written s [i :~h,o :~h′], encapsulates input buffer
(i) with elements~h and output buffer (o) with~h′. Fig. 1 represents the two end points of a
session. A message v is first enqueued by a sender s!〈v〉;P at its output queue at s, which
intuitively represents a communication pipe extending from the sender’s locality to the re-
ceiver’s. The message will eventually reach the receiver’s locality, formalised as its transfer
from the sender’s output buffer (at s) to the receiver’s input buffer (at s). For a receiver, only
when this transfer takes place a visible (and asynchronous) message reception takes place,
since only then the receiver can inspect and consume the message (as shown in Remote
in Figure 1). Note that dequeuing and enqueing actions inside a location are local to each
process and is therefore invisible (τ-actions) (Local in Figure 1).

Local (the dashed arrows)
s!〈v〉;Q | s [o :~h] τ−→ Q | s [o :~h·v]

s?(x).P | s [i :w·~h] τ−→ P{w/x} | s [i :~h]
Remote (the solid arrows)

s [i :~h]
s?〈v〉−→ s [i :~h·v] s [o :v·~h] s!〈v〉−→ s [o :~h]

Fig. 1. The transitions in the two locations.

The induced semantics captures the nature of asynchronous observables not studied before.
For example, in weak asynchronous bisimilarity (≈a in [7, 9]), the message order is not
observable (s!〈v1〉 | s!〈v2〉 ≈a s!〈v2〉 | s!〈v1〉) but in our semantics, messages for the same
destination do not commute (s!〈v1〉;s!〈v2〉 6≈ s!〈v2〉;s!〈v1〉) as in the synchronous semantics
[19] (≈s in [7, 9]); whereas two inputs for different targets commute (s1?(x);s2?(y);P ≈
s2?(x);s1?(y);P) since the dequeue action is un-observable, differing from the synchronous
semantics, s1?(x);s2?(y);P 6≈s s2?(x);s1?(y);P.

Asynchronous event-handling [12] introduces further subtleties in observational laws.
Asynchronous event-based programming is characterised by reactive flows driven by the
detection of events, that is message arrivals at local buffers. In our formalism, this facility is
distilled as a simple arrived predicate: for example, Q = if arrived s then P1 else P2
reduces to P1 if the s input buffer contains one or more message; otherwise Q reduces
to P2. By arrived, we can observe the movement of messages between two locations.
For example, Q | s[i : /0] | s[o : v] is not equivalent with Q | s[i : v] | s[o : /0] because the
former can reduce to P2 (since v has not arrived at the local buffer at s yet) while the latter
cannot. To capture arrived, we need the IO-buffers at each session, with which one has,
for example, s1!〈v1〉;s2!〈v2〉 ≈ s2!〈v2〉;s1!〈v1〉 in the presence of the arrived (we cannot
observe the remote process performing the output), while one would have s1!〈v1〉;s2!〈v2〉 6≈
s2!〈v2〉;s1!〈v1〉 with the arrived, if we were without local queues.

By capturing the major elements of practical communications programming, i.e. asyn-
chrony, ordered and unordered communications and event handling, the induced asyn-
chronous behavioural equivalence can justify various syntactic transformations, including
a widely used but hitherto unjustified program transformation for large-scale servers.

2

(Identifiers) u ::= a,b | x,y k ::= s,s | x,y n ::= a,b | s,s (Values) v ::= tt,ff | a,b | s,s
(Expressions) e ::= v | x,y,z | arrived u | arrived k | arrived k h

(Processes) P,Q ::= u(x).P | u(x);P | k!〈e〉;P | k?(x).P | k / l;P | k .{li :Pi}i∈I

| if e then P else Q | (ν a)P | P | Q | 0 | µX .P | X
| a [~s] | a〈s〉 | (ν s)P | s [i :~h,o :~h′] (Messages) h ::= v | l

Fig. 2. The syntax of processes.

Contributions Section 3 defines a bisimulation for the asynchronous eventful session cal-
culus, examines its properties against the standard bisimulations and proves that it coin-
cides with the barbed reduction-based congruence [9]. Section 4 provides the semantics-
preserving Lauer-Needham transformation of multithreaded into event-driven processes
and proves its correctness. The paper concludes with the related work with the detailed
comparisons with the existing semantics. Appendix lists the full definition of Lauer-Needham
transformation, the detailed definitions and full proofs. Appendix H also gives the perfor-
mance results with extensive benchmarks for justifying the transformation in Session-based
Java implementation [12]. Appendix and [22] are provided only for the reviewers’ conve-
nience: the paper is self-contained and can be read without them.

2 Asynchronous Network Communications in Sessions
2.1 Syntax
We use a sub-calculus of the eventful session π-calculus [12]. In Figure 2, values v,v′, ...
include constants, shared channels a,b,c, and session channels s,s′. A session channel de-
notes one endpoint of a session: s and s denote two ends of a single session, with s = s.
Labels for branching and selection range over l, l′, ..., variables over x,y,z, and process
variables over X ,Y,Z. Shared channel identifiers u,u′ denote shared channels/variables;
session identifiers k,k′ are session endpoints and variables. n denotes either a or s. Expres-
sions e are values, variables and the message arrival predicates (arrived u, arrived k and
arrived k h: the last one checks for the arrival of the specific message h at k).~s and~h stand
for vectors of session channels and messages respectively. ε denotes the empty vector.

We distinguish two kinds of asynchronous communications, asynchronous session ini-
tiation and asynchronous session communication (over an established session). The former
involves the unordered delivery of a session request message a〈s〉, where a〈s〉 represents an
asynchronous message in transit towards an acceptor at a, carrying a fresh session channel
s. As in actual network, a request message will first move through the network and even-
tually get buffered at a receiver’s end. Only then a message arrival can be detected. This
aspect is formalised by the introduction of a shared channel input queue a [~s], often called
shared input queue for brevity, which denotes an acceptor’s local buffer at a with pending
session requests for~s. The intuitive meaning of the end-point configuration s [i :~h,o :~h′] is
explained in Introduction.

Requester u(x);P requests a session initiation, while acceptor u(x).P accepts one. Through
an established session, output k!〈e〉;P sends e through channel k asynchronously, input
k?(x).P receives through k, selection k/ l;P chooses the branch with label l, and branching
k . {li : Pi}i∈I offers branches. The (ν a)P binds a channel a, while (ν s)P binds the two
endpoints, s and s, making them private within P. The conditional, parallel composition,
recursions and inaction are standard. 0 is often omitted. For brevity, one or more compo-
nents may be omitted from a configuration when they are irrelevant, writing e.g. s [i :~h]

3

[Request1]

[Request2]

[Accept]

[Send,Recv]

[Sel,Bra]

[Comm]

[Areq]

[Ases]

[Amsg]

a(x);P −→ (ν s)(P{s/x} | s [i :ε,o :ε] | a〈s〉) (s /∈ fn(P))
a [~s] | a〈s〉 −→ a [~s·s]

a(x).P | a [s·~s] −→ P{s/x} | s [i :ε,o :ε] | a [~s]
s!〈v〉;P | s [o :~h] −→ P | s [o :~h·v] s?(x).P | s [i :v·~h] −→ P{v/x} | s [i :~h]
s/ li;P | s [o :~h] −→ P | s [o :~h·li] s.{l j :Pj} j∈J | s [i : li ·~h] −→ Pi | s [i :~h] (i ∈ J)

s [o :v·~h] | s [i :~h′] −→ s [o :~h] | s [i :~h′·v]
E[arrived a] | a [~s] −→ E[b] | a [~s] (|~s| ≥ 1)↘ b

E[arrived s] | s [i :~h] −→ E[b] | s [i :~h] (|~h| ≥ 1)↘ b

E[arrived s h] | s [i :~h] −→ E[b] | s [i :~h] (~h = h·~h′)↘ b

Fig. 3. Selected reduction rules.

which denotes the input part of s [i :~h,o :~h′]. The notions of free variables and channels are
standard [20]; we write fn(P) for the set of free channels in P. The syntax a〈s〉, (ν s)P and
s [i :~h,o :~h′] only appear at runtime. A process without free variables is called closed and a
closed process without runtime syntax is called program.

2.2 Operational Semantics

Reduction is defined over closed terms. The key rules are given in Figure 3. We use the
standard evaluation contexts E[] defined as E ::= − | s!〈E〉;P | if E then P else Q. The
structural congruence ≡ and the rest of the reduction rules are standard.

The first three rules define the initialisation. In [Request1], a client requests a server for
a fresh session via shared channel a. A fresh session channel, with two ends s (server-side)
and s (client-side) as well as the empty configuration at the client side, are generated and
the session request message a〈s〉 is dispatched. Rule [Request2] enqueues the request in the
shared input queue at a. A server accepts a session request from the queue using [Accept],
instantiating its variable with s in the request message; the new session is now established.

Asynchronous order-preserving session communications are modelled by the next four
rules. Rule [Send] enqueues a value in the o-buffer at the local configuration; rule [Receive]

dequeues the first value from the i-buffer at the local configuration; rules [Sel] and [Bra]

similarly enqueue and dequeue a label. The arrival of a message at a remote site is embodied
by [Comm], which removes the first message from the o-buffer of the sender configuration
and enqueues it in the i-buffer at the receiving configuration. Note the first four rules
manipulate only the local configurations.

Output actions are always non-blocking. An input action can block if no message is
available at the corresponding local input buffer. The use of the message arrivals can avoid
this blocking: [Areq] evaluates arrived a to tt iff the queue is non-empty; similarly for
arrived k in [Areq]. [Amsg] evaluates arrived s h to tt iff the buffer is nonempty and its
next message matches h. The notation e↘ b means e evaluates to b; and→→= (−→∪≡)∗.

2.3 Types and Typing

The type syntax follows the standard session types from [8].
(Shared) U ::= bool | i〈S〉 | o〈S〉 | X | µ X.U (Value) T ::= U | S
(Session) S ::= !(T);S | ?(T);S | ⊕{li : Si}i∈I | &{li : Si}i∈I | µ X.S | X | end

The shared types U include booleans bool (and, in examples, naturals nat); shared channel
types i〈S〉 (input) and o〈S〉 (output) for shared channels through which a session of type
S is established; type variables (X,Y,Z, ..); and recursive types. The IO-types (often called

4

server/client types) ensure a unique server and many clients [10]. In the present work they
are used for controlling locality (queues are placed only at the server sides) and associated
typed transitions, playing a central role in our behavioural theory. In session types, output
type !(T);S represents outputting values of type T , then performing as S. Dually for input
type ?(T);S. Selection type⊕{li : Si}i∈I describes a selection of one of the labels say li then
behaves as Ti. Branching type &{li : Si}i∈I waits with I options, and behaves as type Ti if
i-th label is chosen. End type end represents the session completion and is often omitted.
In recursive type µ X.S, type variables are guarded in the standard sense.

The judgements of processes and expressions are defined as:

Γ ` P.∆ and Γ ,∆ ` e :T with Γ ::= /0 | Γ ·u :U | Γ ·X :∆ and ∆ ::= /0 | ∆ ·a | ∆ ·k :T | ∆ ·s

where session type is extended to T ::= M;S |M with M ::= /0 | ⊕ l |&l | !(T) | ?(T) |M;M
which represents types for values stored in queues (note /0;S = S). Γ is called shared envi-
ronment, which maps shared channels and process variables to, respectively, constant types
and value types; ∆ is called linear environment maps session channels to session types and
recording shared channels for acceptor’s input queues and session channels for end-point
queues. The judgement is read: program P is typed under shared environment Γ , uses chan-
nels as linear environment ∆ . In the expression judgement, expression e has type T under Γ ,
and uses channels as linear environment ∆ . We often omit ∆ if it is clear from the context.
The typing system is similar with [2, 12], thus we leave them to Appendix B. We say that ∆

well configured if s :S ∈ ∆ , then s :S ∈ ∆ . We define: {s :!(T);S ·s :?(T);S′} −→ {s :S ·s :S′},
{s :⊕{li : Si}i∈I · s : &{li : S′i}i∈I} −→ {s : Sk · s : S′k} (k ∈ I), and ∆ ∪∆ ′′ −→ ∆ ′ ∪∆ ′′ if
∆ −→ ∆ ′. We set→→=−→∗.

Proposition 2.1 (Subject Reduction). if Γ ` P.∆ and P→→Q and ∆ is well-configured,
then we have Γ ` P.∆ ′ such that ∆ →→ ∆ ′ and ∆ ′ is well-configured.

In the following we study semantic properties of typed processes: however these develop-
ments can be understood without knowing the details of the typing rules.1

3 Asynchronous Session Bisimulations and its Properties
3.1 Labelled Transitions and Bisimilarity

〈Acc〉 a[~s]
a〈s〉−→ a[~s·s] 〈Req〉 a〈s〉 a〈s〉−→ 0 〈In〉 s [i :~h]

s?〈v〉−→ s [i :~h·v]

〈Out〉 s [o :v·~h] s!〈v〉−→ s [o :~h] 〈Bra〉 s [i :~h] s&l−→ s [i :~h·l] 〈Sel〉 s [o : l·~h] s⊕l−→ s [o :h]

〈Local〉P −→ Q

P τ−→ Q
〈Par〉P

`−→ P′ bn(`)∩ fn(Q) = /0

P|Q `−→ P′|Q
〈Tau〉 P `−→ P′ Q `′−→ Q′ `� `′

P|Q τ−→ (ν bn(`,`′))(P′|Q′)

〈Res〉 P `−→ P′ n 6∈ fn(`)

(ν n)P `−→ (ν n)P′
〈OpenS〉 P

a〈s〉−→ P′

(ν s)P
a(s)−→ P′

〈OpenN〉 P
s!〈a〉−→ P′

(ν a)P
s!(a)−→ P′

〈Alpha〉P≡α P′ P′ `−→ Q

P `−→ Q

Fig. 4. Labelled transition system (we omit the symmetric rule of Par).

1 This is because the properties of the typing system are captured by the typed LTS defined in Figure 5 later.

5

Untyped and Typed LTS. This section studies the basic properties of behavioural equiva-
lences. We use the following labels (`,`′, ...):

` ::= a〈s〉 | a〈s〉 | a(s) | s?〈v〉 | s!〈v〉 | s!(a) | s&l | s⊕ l | τ

where the labels denote the session accept, request and bound request, input, output, bound
output, branching, selection and the τ-action. sbj(`) denotes the set of free subjects in `;
and fn(`) (resp. bn(`)) denotes the set of free (resp. bound) names in `. The symmetric
operator `� `′ on labels that denotes that ` is a dual of `′, is defined as: a〈s〉 � a〈s〉, a〈s〉 �
a(s), s?〈v〉 � s!〈v〉, s?〈a〉 � s!(a), and s&l � s⊕ l.

Figure 4 gives the untyped labelled transition system (LTS). 〈Acc〉/〈Req〉 are for the ses-
sion initialisation. The next four rules 〈In〉/〈Out〉/〈Bra〉/〈Sel〉 say the action is observable when
it moves from its local queue to its remote queue. When the process accesses its local
queue, the action is invisible from the outside, as formalised by 〈Local〉. Other composi-
tional rules are standard. Based on the LTS, we use the standard notations [18] such as

P `
=⇒ Q, P

~̀
=⇒ Q and P

ˆ̀
=⇒ Q.

We define the typed LTS on the basis of the untyped one. The basic idea is to use the type
information to control the enabling of actions. This is realised by introducing the definition
of the environment transition, defined in Figure 5. A transition (Γ ,∆)

`−→ (Γ ′,∆ ′) means
that an environment (Γ ,∆) allows an action ` to take place, and the resulting environment
is (Γ ′,∆ ′), constraining process transitions through the linear and shared environments.
This constraint is at the heart of our typed LTS, accurately capturing interactions in the
presence of sessions and local buffers. We write Γ1 ` P1 .∆1

`−→ Γ2 ` P2 .∆2 if P1
`−→ P2

and (Γ1,∆1)
`−→ (Γ2,∆2) with Γi ` Pi .∆i. Similarly for other transition relations.

Γ (a) = i〈S〉,a ∈ ∆ ,s fresh implies (Γ ,∆)
a〈s〉−→ (Γ ,∆ · s :S)

Γ (a) = o〈S〉,a 6∈ ∆ implies (Γ ,∆)
a〈s〉−→ (Γ ,∆)

Γ (a) = o〈S〉,a 6∈ ∆ ,s fresh implies (Γ ,∆)
a(s)−→ (Γ ,∆ · s :S)

Γ ` v :U and U 6= i〈S′〉 and s /∈ dom(∆) implies (Γ ,∆ · s :!(U);S)
s!〈v〉−→ (Γ ,∆ · s :S)

s /∈ dom(∆) implies (Γ ,∆ · s :!(o〈S′〉);S)
s!(a)−→ (Γ ·a :o〈S′〉,∆ · s :S)

Γ ` v :U and U 6= i〈S′〉 and s /∈ dom(∆) implies (Γ ,∆ · s :?(U);S)
s?〈v〉−→ (Γ ,∆ · s :S)

s /∈ dom(∆) implies (Γ ,∆ · s :⊕{li : Si}i∈I)
s⊕lk−→ (Γ ,∆ · s :Sk)

s /∈ dom(∆) implies (Γ ,∆ · s :&{li : Si}i∈I)
s&lk−→ (Γ ,∆ · s :Sk)

∆ −→ ∆ ′ implies (Γ ,∆)
τ−→ (Γ ,∆ ′)

Fig. 5. Labelled transition rules for environments.

The first rule says that reception of a message via a is possible only when a is input-
typed (i-mode) and its queue is present (a ∈ ∆). The second is dual, saying that an output
at a is possible only when a has o-mode and no queue exists. Similarly for a bound output
action. The two session output rules (` = s!〈v〉 and s!(a)) are the standard value output
and a scope opening rule. The next is for value input. Label input and output are defined
similarly. Note that we send and receive only a shared channel which has o-mode. This
is because a new accept should not be created without its queue in the same location.
The final rule (` = τ) follows the reduction rules defined before Proposition 2.1. The LTS

6

omits delegations since it is not necessary in the present inquiry (due to the definition of
localisation, see the following paragraph).

Write ./ for a symmetric and transitive closure of−→ over linear environments. We say
a relation on typed processes is a typed relation if, whenever it relates two typed processes,
we have Γ ` P1 .∆1 and Γ ` P2 .∆2 and ∆1 ./ ∆2 under Γ . We write Γ ` P1 .∆1RP2 .∆2 if
(Γ `P1.∆1,Γ `P2.∆2) are in a typed relation R. Further we often leave the environments
implicit, writing simply P1RP2.
Localisation and Bisimulation. Our bisimulation is a typed relation over processes which
are localised, in the sense that they are equipped with all necessary local queues. We say
an environment ∆ is delegation-free if it contains types which are generated by deleting
S from value type T in the syntax of types defined in § 2.3 (i.e. either !(S);S′ or ?(S);S′

does not appear in ∆). Similarly for Γ . Now let P be closed and Γ ` P .∆ where Γ and
∆ are delegation-free (note that P can perform delegations at hidden channels by 〈Local〉).
Then we say P is localised w.r.t. Γ ,∆ if (1) For each s : S ∈ dom(∆), s ∈ ∆ ; and (2) if
Γ (a) = i〈S〉, then a ∈ ∆ . Being localised means that a process owns all necessary queues
as specified in environments. We further say P is localised if it is so for a suitable pair of
environments.

For example, s?(x);s!〈x+1〉;0 is not localised, while s?(x);s!〈x+1〉;0 | s [i :~h1,o :~h2]
is localised. Similarly, a(x).P is not localised, but a(x).P | a [~s] is. By composing buffers
at appropriate channels, any typable closed process can become localised. If P is localised
w.r.t. (Γ ,∆) then P −→ Q implies Q is localised w.r.t. (Γ ,∆), since queues always stay.
We can now introduce the reduction congruence and the asynchronous bisimilarity.

Definition 3.1 (Reduction Congruence). We write P ↓ a if P≡ (ν~n)(a〈s〉 | R) with a 6∈~n.
Similarly we write P ↓ s if P≡ (ν~n)(s [o :h·~h] | R) with s 6∈~n. P ⇓ n means ∃P′.P→→ P′ ↓ n.
A typed relation R is reduction congruence if it is a congruent and satisfies the following
conditions for each P1RP2 whenever they are localised w.r.t. their given environments.

1. P1 ⇓ n iff P2 ⇓ n.
2. Whenever Γ ` P1 .∆1RP2 .∆2 holds, P1 →→ P′1 implies P2 →→ P′2 such that Γ ` P′1 .

∆ ′1RP′2 .∆ ′2 holds with ∆ ′1 ./ ∆ ′2 and the symmetric case.

The maximum reduction congruence which is not a universal relation exists [9] which we
call reduction congruency, denoted by ∼=.

Definition 3.2 (Asynchronous Session Bisimulation). A typed relation R over localised
processes is a weak asynchronous session bisimulation or often a bisimulation if, whenever
Γ ` P1 .∆1RP2 .∆2, the following two conditions holds: (1) Γ ` P1 .∆1

`−→ Γ ′ ` P′1 .∆ ′1

implies Γ ` P2 .∆2
ˆ̀

=⇒Γ ′ ` P′2 .∆ ′2 such that Γ ′ ` P′1 .∆ ′1RP′2 .∆ ′2 with ∆ ′1 ./ ∆ ′2 holds and
(2) the symmetric case of (1). The maximum bisimulation exists which we call bisimilarity,
denoted by ≈. We sometimes leave environments implicit, writing e.g. P≈ Q.

We extend ≈ to possibly non-localised closed terms by relating them when their minimal
localisations are related by≈ (given Γ ` P.∆ , its minimal localisation adds empty queues
to P for the input shared channels in Γ and session channels in ∆ that are missing their
queues). Further ≈ is extended to open terms in the standard way [9].

3.2 Properties of Asynchronous Session Bisimilarity
Characterisation of Reduction Congruence. This subsection studies central properties
of asynchronous session semantics. We first show that the bisimilarity coincides with the
naturally defined reduction-closed congruence [9], given below.

7

Theorem 3.3 (Soundness and Completeness). ≈ = ∼=.

The soundness (≈⊂∼=) is by showing ≈ is congruent. The most difficult case is a closure
under parallel composition, which requires to check the side condition ∆ ′1 ./ ∆ ′2 for each
case. The completeness (∼=⊂≈) follows [6, § 2.6] where we prove that every external action
is definable by a testing process, see Appendix C.1.

Asynchrony and Session Determinacy. Let us call ` an output action if ` is one of
a〈s〉,a(s),s!〈v〉,s!(a),s⊕ l; and an input action if ` is one of a〈s〉,s?〈v〉,s&l. In the fol-
lowing, the first property says that we can delay an output arbitrarily, while the second says
that we can always immediately perform a (well-typed) input.

Lemma 3.4 (Input and Output Asynchrony). Suppose Γ ` P.∆
`

=⇒ P′ .∆ ′.

– (input advance) If ` is an input action, then Γ ` P.∆
`−→=⇒ P′ .∆ ′.

– (output delay) If ` is an output action, then Γ ` P.∆ =⇒ `−→ P′ .∆ ′.

The asynchronous environment interaction on the session buffers enables input actions to
happen before multi-internal steps and output actions to happen after multi-internal steps.

Following [21], we define determinacy and confluence. Below and henceforth we often
omit the environments in typed transitions.

Definition 3.5 (Determinacy). We say Γ ′ `Q.∆ ′ is derivative of Γ ` P.∆ if there exists
~̀ such that Γ ` P.∆

~̀
=⇒Γ ′ `Q.∆ ′. We say Γ ` P.∆ is determinate if for each derivative

Q of P and action `, if Q `−→ Q′ and Q
ˆ̀

=⇒ Q′′ then Q′ ≈ Q′′.

We then extend the above notions to session communications.

Definition 3.6 (Session Determinacy). Let us write P `−→s Q if P `−→ Q where if ` = τ

then it is generated without using [Request1], [Request2], [Accept], [Areq] nor [Amsg] in Figure 3
(i.e. a communication is performed without arrival predicates or accept actions). We extend

the definition to
~̀

=⇒s and
ˆ̀

=⇒s etc. We say P is session determinate if P is typable and

localised and if Γ ` P.∆
~̀

=⇒ Q.∆ ′ then Γ ` P.∆
~̀

=⇒s Q.∆ ′. We call such Q a session
derivative of P.

We define `1b`2 as (1) a〈s〉 if `1 = a(s′) and s′ ∈ bn(`2); (2) s!〈s′〉 if `1 = s!(s′) and
s′ ∈ bn(`2); (3) s!〈a〉 if `1 = s!(a) and a ∈ bn(`2); and otherwise `1. We write that l1 ./ l2
when l1 6= l2 and if l1, l2 are input actions then sbj(l1) 6= sbj(l2).

Definition 3.7 (Confluence). We say Γ ` P .∆ is confluent if for each derivative Q of P
and actions `1, `2 such that `1 ./ `2, (i) if Q `−→ Q1 and Q `

=⇒ Q2, then Q1 =⇒ Q′1 and

Q2 =⇒Q′2 ≈Q′1; and (ii) if Q
`1−→Q1 and Q

`2=⇒Q2, then Q1
`̂2b`1
=⇒Q′1 and Q2

`̂1b`2
=⇒Q′2 ≈Q′1.

Lemma 3.8. Let P be session determinate and Γ ` P =⇒ Q.∆ . Then P≈ Q.

Theorem 3.9 (Session Determinacy). Let P be session determinate. Then P is determinate
and confluent.

The following relation is used to prove the event-based optimisation.

8

Definition 3.10 (Determinate Upto-expansion Relation). Let R be a symmetric, typed
relation such that if Γ ` P .∆ R Q .∆ and (1) P,Q are determinate; (2) If Γ ` P .∆

l−→
Γ ′ ` P′′ . ∆ ′′ then Γ ` Q . ∆

l
=⇒ Γ ′ ` Q′ . ∆ ′ and Γ ′ ` P′′ . ∆ ′′ =⇒ Γ ′ ` P′ . ∆ ′ with

Γ ′ ` P′ .∆ ′R Q′ .∆ ′; and (3) the symmetric case. Then we call R a determinate upto-
expansion relation, or often simply upto-expansion relation.

Lemma 3.11. Let R be an upto-expansion relation. Then R ⊂≈.

The proof is by showing =⇒R⇐= with =⇒ determinate is a bisimulation.

3.3 Examples of Induced Equations: Permutation and Asynchronous Events
This subsection shows example equations (algebra of processes) pertaining to properties of
permutations of actions studied in § 3.2 and the semantic effects of arrival predicates.
Significant equations induced by a behavioural equivalence offer insights on the nature of
process behaviours we are concerned with, and play a key role in reasoning about processes.

We use the examples from § 1. Let Ri = si [i:~hi,o:~h′i] for some~hi,~h′i and assume s1 6= s2.
(1) Input and Output Permutations. The two actions at different channels are permutable
up to≈, i.e. s1?(x);s2?(y);P |R1 |R2 ≈ s2?(y);s1?(x);P |R1 |R2. Similarly for two outputs:
s1!〈v1〉;s2!〈v2〉;P | R1 | R2 ≈ s2!〈v2〉;s1!〈v1〉;P | R1 | R2. However, an input and an output
are not permutable: s1?(x);s2!〈v2〉;P | R1 | R2 6≈ s2!〈v2〉;s1?(x);P | R1 | R2.
(2) Input and Output Ordering. Two actions at the same session have the ordering,
hence: s1?(x);s1?(y);P | R1 6≈ s1?(y);s1?(x);P | R1 for inputs, s1!〈v1〉;s1!〈v2〉;P | R1 6≈
s1!〈v2〉;s1!〈v1〉;P | R1 for outputs and s1!〈v1〉;s2?(x2);P 6≈ s2?(x2);s1!〈v1〉;P.
(3) Non-Local Semantics. In the literature [4, 5, 20], the asynchronous session types are
modelled by the two end-point queues without distinction between input and output entries
in queues. We call this semantics non-local since the output process directly puts the value
into the input queue. The transition relation for non-local semantics is defined by replacing
the output and selection rules in Figure 4 (see Appendix D.3 for full details) to:

〈Outn〉 s!〈v〉;P
s!〈v〉−→ P 〈Seln〉 s⊕ l;P s⊕l−→ P

We write the induced bisimilarity ≈2. The same (in)equalities hold except permutation of
outputs, e.g. s1!〈v1〉;s2!〈v2〉;P | R1 | R2 6≈2 s2!〈v2〉;s1!〈v1〉;P | R1 | R2.
(4) Arrival Predicates. Let Q = if e then P1 else P2 with P1 6≈ P2. If the syntax does
not include arrival predicates, we have Q | s[i : /0] | s[o : v] ≈ Q | s[i : v] | s[o : /0]. In the
presence of the arrival predicate, we have Q | s[i : /0] | s[o : v] 6≈ Q | s[i : v] | s[o : /0] with
e = arrived s. However we have: if arrived s then P else P≈ P.
(5) Arrive Inspection Ordering. We give a basic equation for (a simplified form of) the
standard event loop, handling events by non-blocking handlers. We use recursive equations
of agents for legibility, which can be easily encoded into recursions.

P1 = if arrived s1 then (s1?(x).R1);P2 else if arrived s2 then (s2?(x).R2);P1 else P1

P2 = if arrived s2 then (s2?(x).R2);P1 else if arrived s1 then (s1?(x).R1);P2 else P2

where we assume well-typedness and each of R1,2, under any closing substitution and local-
isation, is determinate and reaches 0 after a series of outputs and τ-actions. The sequencing
(s1?(x).R1);P2 denotes the process obtained by replacing each 0 in R1 with P2. Process P1
tries to process messages at s1 and s2 repeatedly in this order without blocking, while P2
does the same in the reverse order (in practice, each of R1,2 would use the typecase, cf. §4
later, to process different segments of a single session). We can then show P1 ≈ P2. The
proof is by the up-to-expansion relation consisting of arbitrary localisations of such pairs.
Later we use a generalised form of this equation for the Lauer-Needham transform.

9

4 Lauer-Needham Transform
In an early work [14], Lauer and Needham observed that a concurrent program may be
written equivalently either in a thread-based programming style (with shared memory prim-
itives) or in an event-based style (with a single-threaded event loop processing messages
sequentially with non-blocking handlers). Following this framework and using high-level
asynchronous event primitives such as selectors [17] for the event-based style, many stud-
ies compare these two programming styles, often focusing on performance of server ar-
chitectures (see [12, § 6] for recent studies on event programming). These implementations
implicitly or explicitly assume a transformation from a program written in the thread-based
style, especially those which generate a new thread for each service request (as in thread-
based web servers), to its equivalent event-based program, which treats concurrent services
using a single threaded event-loop (as in event-based web servers). However the precise
semantic effects of such a transformation nor the exact meaning of the associated “equiva-
lence” has not been clarified.

We study the semantic effects of such a transformation using the asynchronous session
bisimulation. We first introduce a formal mapping from a thread-based process to their
event-based one [14]. Assuming a server process whose code creates fresh threads at each
service invocation, the key idea is to decompose this whole code into distinct smaller code
segments each handling the part of the original code starting from a blocking action. Such a
blocking action is represented as reception of a message (input or branching). Then a single
global event-loop can treat each message arrival by processing the corresponding code
segment combined with an environment, returning to inspect the content of event/message
buffers. We first stipulate a class of processes which we consider for our translation. Below
∗a(x);P denotes an input replication abbreviating µX .a(x).(P|X).

Definition 4.1 (Server). A simple server at a is a closed process ∗a(x).P with a typing of
form a :i〈S〉,b1 :o〈S1〉, ..,bn :o〈Sn〉 where P is sequential (i.e. contains no parallel compo-
sition |) and is determinate under any closing substitution and any localisation. A simple
server is often considered with its localisation with an empty queue a[ε].

A server spawns an unbounded number of threads as it receives session requests repeat-
edly. Each thread may initiate other sessions with outside, and its interactions may involve
delegations and name passing. But a server does not involve accesses to local state among
threads. A practical example is a web-server which only serves static web pages. Given a
server ∗a(w : S);P | a[ε], its translation, which we call Lauer-Needham transform or LN-
transform for short, is written LN [[∗a(w : S);P | a[ε]]].

We outline the key ideas through examples (the full mapping is non-trivial and given in
Appendix F). First, LN [[∗a(w : S);P]] consists of the following key elements:

1. An event loop Loop〈o,q〉 repeats the standard event-loop, inspecting its selector queue
named q (see below), selects a message from a message arrived and processes it by
sending it to the corresponding code block (see below).

2. A selector queue q〈a,c0〉 whose initial element is 〈a,c0〉. This data says: “if a message
comes at a, jump to the code block (CPS procedure) whose subject is c0”.

3. A collection of code blocks CodeBlocks〈a,o,q,~c〉, CPS procedures handling in-coming
messages. A code block originates from a blocking subterm, i.e. a subterm starting from
an input or a branching.

The process uses a standard “select” primitive represented as a process, called selector
[12]. It stores a collection of session channels, with each channel associated with an en-
vironment, binding variables to values. It then picks up one of them at which a message

10

arrives, receives that message via that channel and has it be processed by the correspond-
ing code block (which may alter the environment). Finally it stores the session and the
associated environment back in the collection, and moves to the next iteration. Since a se-
lector should handle channels of different types, it uses the typecase construct from [12].
typecase k of {(xi : Ti)Pi}i∈I takes a session endpoint k and a list of cases (xi : Ti), each
binding the free variable xi of type pattern Ti in Pi. Its reduction is defined as:

typecase s of {(xi :Ti)Pi}i∈I | s [S,i :~h,o :~h′]−→ Pi{s/xi} | s [S,i :~h,o :~h′]

where there exists i ∈ I such that (∀ j < i.Tj 6≤ S∧ Ti ≤ S) where ≤ denotes a subtyping
relation. The typecase constructs matches the session type of the tested channel to a ses-
sion type in its defined list and proceeds with the corresponding process. For the matching
to take place, session endpoint configuration syntax is extended with the runtime session
typing [12]. The selector operations are defined by the following reduction semantics.

new selector r in P−→ (ν r)(P | sel〈r, ε〉) register〈s′,r〉;P | sel〈r,~s〉 −→ P | sel〈r,~s · s′〉
let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r, s′ ·~s〉 | s′ [S,i :~h]

−→ Pi{s′/xi} | sel〈r,~s〉 | s′ [S,i :~h] (~h 6= ε)
let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r, s′ ·~s〉 | s′ [i :ε]

−→ let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r,~s · s′〉 | s′ [i :ε]

where in the third line S and Ti satisfy the condition for typecase in the reduction rule.
Operator new selector r in P (binding r in P) creates a new selector sel〈r, ε〉, named r
and with the empty queue ε . Operator register〈s′,r〉;P registers a session channel s to r,
adding s′ to the original queue~s. The next let retrieves a registered session and checks the
availability to test if an event has been triggered. If so, find the match of the type of s′ among
{Ti} and select Pi; if not, the next session is tested. As proved in [12], these primitives are
encodable in the original calculus augmented with typecase. The bisimulations and their
properties (such as congruency of ≈) remain unchanged.

Example 4.1 (Lauer-Needham Transform). As an example of a server, consider:

P = ∗a(x);x?(y).x!〈y+1〉;x?(z).x!〈y+ z〉;0 | a[ε]

This process has the session type ?(nat); !(nat)?(nat); !(nat) at a which can be read: a
process should first expect to receive ? a message of type nat and send ! it, then to receive
(again ?) a nat, and finish by sending ! a result. We extract the blocking subterms from this
process as follows.

Blocking Process Type at Blocking Prefix

a(x).x?(y).x!〈y+1〉x?(z).x!〈y+ z〉;0 i〈?(nat); !(nat); ?(nat); !(nat)〉
x?(y).x!〈y+1〉x?(z).x!〈y+ z〉;0 ?(nat); !(nat); ?(nat); !(nat)
x?(z).x!〈y+ z〉;0 ?(nat); !(nat)

These blocking processes are translated into code blocks, denoted CodeBlocks, given as:

∗c0(y);a(x).update(y,x,x); register 〈sel,x,y,c1〉;o |
∗c1(x,y);x?(z);update(y,z,z); x!〈[[z]]y +1〉;register 〈sel,x,y,c2〉;o |
∗c2(x,y);x?(z′);update(y,z′,z′);x!〈[[z]]y +[[z′]]y〉;o

which is used for processing each message. Above, the operation update(y,x,x); updates
an environment, while register stores the blocking session channel, the associated con-
tinuation ci and the current environment y in a selector queue sel.

11

Finally, using these code blocks, the main event-loop denoted Loop, is given as:

Loop = ∗o.let (x,y,z) = select from sel in typecase x of {
i〈?(nat); !(nat); ?(nat); !(nat)〉 : new y : env in z(y)
?(nat); !(nat); ?(nat); !(nat) : z(x,y)
?(nat); !(nat) : z(x,y)}

Above select from sel in selects a message from the selector queue sel, and treats it in
P. The new construct creates a new environment y. The typecase construct then branches
into different processes depending on the session of the received message, and dispatch the
task to each code block.

Because a server does not allow, by construction, its internal shares state to be accessed by
the threads it spawns, it is currently stateless.2 Hence we have:

Lemma 4.2. ∗a(w : S);R | a [ε] is confluent.

Lemma 4.3. Let P
def
= µX .let x = select(r) in typecase x of {(xi :Ti) : Ri;X}i∈I

where each Ri is determinate and reaches 0 after a sequence of outputs and τ-actions as
well as a single input/branching action at xi. The sequencing Ri;X is defined as in Example
3.3(5). Then, assuming typability, we have P | sel〈r,~s1 ·s′1 ·s′2 ·~s2〉 ≈ P | sel〈r,~s1 ·s′2 ·s′1 ·~s2〉.

The above lemma substantiates a generalisation of the observations behind Example 3.3(5),
distilling the nature of event-driven programming. With this lemma, we can permute the
session channels in a selector queue, while keeping the same behaviours, which is possible
w.r.t. bisimilarity because of the stateless nature of a server. As we shall see below, this se-
lector’s behaviour ties together threaded and event programs because there is no difference
between which event (resp. thread) is selected to be executed first.

Theorem 4.4 (Semantic Preservation). Let ∗a(w : S);R | a [ε] be a simple server. Then
∗a(w : S);P | a [ε]≈LN [[a(w : S);P | a [ε]]].

The proof of the above theorem constructs a determinate upto-expansion relation, cf. Def-
inition 3.10 and Lemma 3.11, which contains each process pair that has all the parallel
processes on a blocking prefix for the threaded server and starts from the Loop process for
the thread eliminated process, with arbitrary localisations. We show the conditions needed
Definition 3.10 by using Lemmas G.5. We conclude the proof through Lemma 3.11. For
details of the proof, see Appendix F.

5 Discussions
Comparisons with Asynchronous/Synchronous Calculi. We briefly compared the present
asynchronous bisimulation to related ones in Example 3.3 in § 3. Below we report more
comprehensive comparisons, clarifying the relationship between (1) the session-typed asyn-
chronous π-calculus [7] without queues (≈a, the asynchronous version of the labelled
transition relation for the asynchronous π-calculus), (2) the session-typed synchronous π-
calculus [8, 23] without queues (≈s), (3) the asynchronous session π-calculus with two
end-point queues without IO queues [4, 5, 20] (≈2), see Example 3.3; and (4) the asyn-
chronous session π-calculus with two end-point IO-queues (≈), i.e. the one developed in
this paper. See Appendix D for the full definitions and proofs.

2 The transform easily extends to the situation where threads share state, though its behavioural justification
takes a different form.

12

The following figure summarises distinguishing examples. Non-Blocking Input/Out-
put means inputs/outputs on different channels, while the Input/Output Order-Preserving
means that the messages will be received/delivered preserving the order. The final table
explains whether Lemma 3.4 (1) (input advance) or (2) (output delay) is satisfied or not. If
not, we place a counterexample.

Non-Blocking Input Non-Blocking Output
(1) s1?(x);s2?(y);P≈a s2?(y);s1?(x);P s1〈v〉 | s2〈w〉 | P≈a s1〈w〉 | s2〈v〉 | P
(2) s1?(x);s2?(y);P 6≈s s2?(y);s1?(x);P s1!〈v〉;s2!〈w〉;P 6≈s s2!〈w〉;s1!〈v〉;P
(3) s1?(x);s2?(y);P | s1 [ε] | s2 [ε]≈2 s1!〈v〉;s2!〈w〉;P | s1 [ε] | s2 [ε] 6≈2

s2?(y);s1?(x);P | s1 [ε] | s2 [ε] s2!〈w〉;s1!〈v〉;P | s1 [ε] | s2 [ε]
(4) s1?(x);s2?(y);P | [s1,i :ε,o :ε] | [s2,i :ε,o :ε]≈ s1!〈v〉;s2!〈w〉;P | [s1,i :ε,o :ε] | [s2,i :ε,o :ε]≈

s2?(y);s1?(x);P | [s1,i :ε,o :ε] | [s2,i :ε,o :ε] s2!〈w〉;s1!〈v〉;P | [s1,i :ε,o :ε] | [s2,i :ε,o :ε]

Input Order-Preserving Output Order-Preserving
(1) s?(x);s?(y);P≈a s?(y);s?(x);P s〈v〉 | s〈w〉 | P≈a s〈w〉 | s〈v〉 | P
(2) s?(x);s?(y);P 6≈s s?(y);s?(x);P s!〈v〉;s!〈w〉;P 6≈s s!〈w〉;s!〈v〉;P
(3) s?(x);s?(y);P | s [ε] 6≈2 s!〈v〉;s!〈w〉;P | s [ε] 6≈b

s?(x);s?(y);s?(x);P | s [ε] s!〈w〉;s!〈v〉;P | s [ε]
(4) s?(x);s?(y);P | [s1,i :ε,o :ε] | [s2,i :ε,o :ε] 6≈ s!〈v〉;s!〈w〉;P | [s1,i :ε,o :ε] | [s2,i :ε,o :ε] 6≈

s?(x);s?(y);P | [s1,i :ε,o :ε] | [s2,i :ε,o :ε] s!〈w〉;s!〈v〉;P | [s1,i :ε,o :ε] | [s2,i :ε,o :ε]

Lemma 3.4 (1) Lemma 3.4 (2)
(1) yes yes
(2) (ν s)(s!〈v〉;s′?(x);0 | s?(x);0) (ν s)(s!〈v〉;s′!〈v′〉;0 | s′?(x);0)
(3) yes s!〈v〉; s′?(x);0 | s′[v′]
(4) yes yes

Another technical interest is the effects of the arrived predicate on these combina-
tions. We define the synchronous and asynchronous π-calculi augmented with the arrived
predicate and local buffers. For the asynchronous π-calculus, we add a[~h] and arrived a
in the syntax, and define the following rules for input and outputs.

a〈v〉 a〈v〉−→ 0 a[~h]
a〈h〉−→ a[~h ·h] if arrived a then P else Q|a[ε] τ−→ Q | a[ε]

a?(x).P | a[~h1 ·hi · ~h2]−→ P{hi/x} | a[~h1 · ~h2] if arrived a then P else Q|a[h ·~h] τ−→ P | a[h ·~h]

The above definition precludes the order preservation as the property of transport, but still
keeps the non-blocking property as in the asynchronous π-calculus. The synchronous ver-
sion is similarly defined by setting the buffer size to be one. The non-local version is defined
just by adding arrived predicate.

With arrived Without arrived
(1) if arrived s then P else Q | s [i :ε] | s〈v〉 if e then P else Q | s [i :ε] | s〈v〉

6≈ if arrived s then P else Q | s [i :v] ≈ if e then P else Q | s [i :v]
(2) if arrived s then P else Q | s[ε] | s〈v〉;0 if e then P else Q | s[ε] | s〈v〉;0

6≈ if arrived s then P else Q | s[v] ≈ if e then P else Q | s[v]
(3) if arrived s then P else Q | s [i :ε] | s〈v〉;0 if e then P else Q | s [i :ε] | s〈v〉;0

6≈ if arrived s then P else Q | s [i :v] ≈ if e then P else Q | s [i :v]
(4) if arrived s then P else Q | s [i :ε] | s [o :v] if e then P else Q | s [i :ε] | s [o :v]
6≈ if arrived s then P else Q | s [i :v] | s [o :ε] ≈ if e then P else Q | s [i :v] | s [o :ε]

Fig. 6. Arrive inspection behaviour in synchronous/asynchronous calculi.

Figure 6 summarises the results which incorporate the arrived predicate. Interest-
ingly in all of the calculi (1–4), the same examples as in Example 3.3(4), which separate
semantics with/without the arrived, are effective. The IO queues provide non-blocking

13

inputs and outputs, while preserving the input/output ordering, which distinguishes the
present framework from other known semantics. As a whole, we observe that the present
semantic framework is closer to the asynchronous bisimulation (1) ≈a augmented with
order-preserving nature per session. Its key properties arise from local, buffered session se-
mantics and typing. We have also seen the semantic significance of the arrived predicates,
which enables processes to observe the effects of fine-grained synchronisations.

Related Work. Some of the key proof methods of our work draw their ideas from [21],
which study an extension of the confluence theory on the π-calculus. They apply the theory
to reason about the correctness of the distributed protocol which can be represented by
constructing a collection of confluent processes. Our work differs in that we investigate the
effect of asynchronous IO queues and its relationship to confluence.

The work [1] examines expressiveness of various messaging mediums by adding mes-
sage bags (no ordering), stacks (LIFO policy) and message queues (FIFO policy) in the
asynchronous π-calculus [7]. They show that the calculus with the message bags is encod-
able into the asynchronous π-calculus, but it is impossible to encode the message queues
and stacks. Neither the effects of locality, queues, and typed transitions are studied. Fur-
ther neither of [1, 21] treats event-based programming, including such examples as thread
elimination nor performance analysis.

Programming constructs that can test the presence of actions or events are studied in
the context of the Linda language [3] and CSP [15, 16]. The work [3] measures expressive
powers between three variants of asynchronous Linda-like calculi, with a construct for in-
specting the output in the tuple space, which is reminiscent of the inp predicate of Linda.
The first calculus (called instantaneous) corresponds to (1) [7], the second one (called
ordered) formalises emissions of messages to the tuple spaces, and the third one (called
unordered) models unordered outputs in the tuple space by decomposing one messaging
into two stages — emission from an output process and rendering from the tuple space. It
shows that the instantaneous and ordered calculi are Turing powerful, while the unordered
is not. The work [15] studies CSP with a construct that checks if a parallel process is able
to perform an output action on a given channel. It studies operational and denotational se-
mantics, demonstrating a significance to investigate event primitives using process calculi.
A subsequent work [16] studies the expressiveness of its variants focussing on the full ab-
straction theorem of the trace equivalence. Due to the difference of the base calculi and the
aims of the primitives, direct comparisons are difficult: for example, our calculi (1,2,3,4)
are Turing powerful and we aim to examine properties and applications of the typed bisimi-
larity characterised by buffered sessions: on the other hand, the focus of [3] is a tuple space
where our input/output order preserving examples (which treat different objects with the
same session channel) cannot be naturally (and efficiently) defined. The same point applies
for [15, 16]. As another difference, the nature of localities has not been considered either in
[3, 15, 16] since no notion of a local or remote tuple or environment is defined. Further, nei-
ther large applications which include these constructs (§ 4), the equivalences as we treated,
nor the performance analysis of the proposed primitives had been discussed in [3, 15, 16].

Using the confluence and determinacy guaranteed by session types, and through ob-
servations on the semantics of the arrive predicate, we have demonstrated that the theory
is applicable, through the verification of the correctness of the Lauer-Needham transform.
This well-known transform claims that threads and events are dual to each other. Our LN-
transform and the asynchronous, buffered bisimulation provide a formal framework and
reasoning mechanisms for the conversion from the former to latter and for establishing
their equivalence. The asynchronous nature realised through IO message queues provides
a precise analysis of local and eventful behaviours, found in major distributed transports

14

such as TCP. The benchmark results from high-performance clusters in Appendix H show
that the throughput for the thread-eliminated Server implementations in Session Java (SJ)
[12] exhibits higher throughput than the multithreaded Server implementations, justifying
the effect of the type and semantic preserving LN-transformation.

References
1. R. Beauxis, C. Palamidessi, and F. D. Valencia. On the asynchronous nature of the asynchronous

pi-calculus. In Concurrency, Graphs and Models, volume 5065 of LNCS, pages 473–492.
Springer, 2008.

2. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,
volume 5201 of LNCS, pages 418–433. Springer, 2008.

3. N. Busi, R. Gorrieri, and G. Zavattaro. Comparing three semantics for linda-like languages.
Theor. Comput. Sci., 240(1):49–90, 2000.

4. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asynchronous Session Types and Progress
for Object-Oriented Languages. In FMOODS’07, volume 4468 of LNCS, pages 1–31, 2007.

5. S. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. JFP, 2009.
6. M. Hennessy. A Distributed Pi-Calculus. CUP, 2007.
7. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In ECOOP’91,

volume 512 of LNCS, pages 133–147, 1991.
8. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for struc-

tured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages 22–138.
Springer, 1998.

9. K. Honda and N. Yoshida. On reduction-based process semantics. TCS, 151(2):437–486, 1995.
10. K. Honda and N. Yoshida. A uniform type structure for secure information flow. TOPLAS, 29(6),

2007.
11. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL’08,

pages 273–284. ACM, 2008.
12. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful sessions in Java.

In ECOOP, volume 6183 of LNCS, pages 329–353. Springer-Verlag, 2010.
13. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java. In

ECOOP’08, volume 5142 of LNCS, pages 516–541. Springer, 2008.
14. H. C. Lauer and R. M. Needham. On the duality of operating system structures. SIGOPS Oper.

Syst. Rev., 13(2):3–19, 1979.
15. G. Lowe. Extending csp with tests for availability. Procedings of Communicating Process

Architectures (CPA 2009), 2009.
16. G. Lowe. Models for CSP with availability information. Pre-proceeding for Express’10, 2010.
17. S. Microsystems Inc. New IO APIs. http://java.sun.com/j2se/1.4.2/docs/guide/

nio/index.html.
18. R. Milner. Communication and Concurrency. Prentics Hall, 1989.
19. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I and II. Info.&

Comp., 100(1), 1992.
20. D. Mostrous and N. Yoshida. Session-based communication optimisation for higher-order mo-

bile processes. In TLCA’09, volume 5608 of LNCS, pages 203–218. Springer, 2009.
21. A. Philippou and D. Walker. On confluence in the pi-calculus. In ICALP’97, volume 1256 of

Lecture Notes in Computer Science, pages 314–324. Springer, 1997.
22. On-line Appendix of this paper. http://www.doc.ic.ac.uk/~dk208/semantics.html.
23. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing System.

In PARLE’94, volume 817 of LNCS, pages 398–413, 1994.

15

Table of Contents

On Asynchronous Session Semantics . 1
Dimitrios Kouzapas∗, Nobuko Yoshida∗, Kohei Honda†

1 Introduction . 1
2 Asynchronous Network Communications in Sessions . 3

2.1 Syntax . 3
2.2 Operational Semantics . 4
2.3 Types and Typing . 4

3 Asynchronous Session Bisimulations and its Properties . 5
3.1 Labelled Transitions and Bisimilarity . 5
3.2 Properties of Asynchronous Session Bisimilarity . 7
3.3 Examples of Induced Equations: Permutation and Asynchronous Events . . 9

4 Lauer-Needham Transform . 10
5 Discussions . 12
A Appendix for Section 2 . 16

A.1 Structural Congruence . 17
A.2 Reduction . 17

Reduction Relation . 17
B Appendix to Section 2.3 . 17

B.1 Subtyping . 17
B.2 Types and Typing . 18
B.3 Typing System . 19
B.4 Proof of Subject Reduction Theorem (Proposition 2.1) 19

C Appendix for Section 3 . 21
C.1 Proof for Theorem 3.3 . 21
C.2 Bisimulation Properties . 25

Proof for Lemma 3.4 . 25
Proof for Lemma 3.8 . 26
Proof for Lemma 3.9 . 26
Proof for Lemma 3.11 . 28

D Comparison with Asynchronous/Synchronous Calculi . 28
D.1 Behavioural Theory for Session Type System with Input Buffer Endpoints . 28
D.2 Proofs for Section 5 . 28
D.3 Arrived Operators in the π-Calculi . 29

E Appendix for Selectors . 31
E.1 Mapping . 31
E.2 Typing . 31

F Appendix: Lauer-Needham Transform . 32
G LN Transform Properties . 33

G.1 Selector Properties . 33
G.2 LN-transform properties . 37

H Performance Evaluation of the LN-Transform. 39

A Appendix for Section 2
We give the definitions that were omitted from § 2 including the type case construct.

P ≡ Q if P =α Q (α-renaming)

P | 0 ≡ P (Idempotence)

P | Q ≡ Q | P (Commutativity)

(P | P′) | P′′ ≡ P | (P′ | P′′) (Associativity)

(ν a :〈S〉)a[ε] ≡ 0 (Shared channels)

(ν a :〈S〉)P | Q ≡ (ν a :〈S〉)(P | Q) (a 6∈ fn(Q))
(ν s)0 ≡ 0 (Session channels)

(ν s)(s : [ε] | s : [ε]) ≡ 0 (Session queues)

(ν s)P | Q ≡ (ν s)(P | Q) (s 6∈ fn(Q))
µX .P ≡ P{µX .P/X}

Fig. 7. Structural congruence.

A.1 Structural Congruence
The notion of bound and free identifiers is extended to cover the subject and objects of
arrived u, arrived k, arrived k h, typecase k of {(xi :Ti)Pi}i∈I , a〈s〉, a [~s], and s [S,i :
~h,o:~h′] in the expected way. We write fn(P) for the set of names that have a free occurrence
in P. Then structural congruence is the smallest congruence on processes generated by the
following rules in Figure 7.3

A.2 Reduction
Reduction Relation The binary single-step reduction relation,−→ is the smallest relation
on closed terms generated by the rules in Figure 3 together with those in Figure 8.

B Appendix to Section 2.3
B.1 Subtyping
If P has a session channel s typed by S, P can interact at s at most as S (e.g. if S has shape
⊕{l1 : S1, l2 : S2, l3 : S3} then P may send l1 or l3, but not a label different from {l1, l2, l3}).
Hence, S ≤ S′ means that a process with a session typed by S is more composable with
a peer process than one by S′. Composability also characterises the subtyping on shared
channel types. Formally the subtyping relation is defined for the set T of all closed and
contractive types as follows: T is a subtype of T ′, written T ≤ T ′, if (T,T ′) is in the largest
fixed point of the monotone function F :P(T ×T)→P(T ×T), such that F (R) for
each R ⊂T ×T is given as follows.

{(bool,bool),(nat,nat)}∪{(o〈S〉,o〈S′〉) | (S,S′),(S′,S) ∈R}
∪ {(i〈S〉,i〈S′〉) | (S,S′),(S′,S) ∈R}
∪ {(µ X.U,U ′) | (U{µ X.U/X},U ′) ∈R}∪{(U,µ X.U ′) | (U,U ′{µ X.U ′/X}) ∈R}
∪ {(!(T1);S′1, !(T2);S′2) | (T2,T1),(S′1,S

′
2) ∈R} ∪ {(?(T1);S′1,?(T2);S′2) | (T1,T2),(S′1,S

′
2) ∈R}

∪ {(⊕{li :Si}i∈I ,⊕{l j :S′j} j∈J) | ∀i ∈ I ⊆ J.(Si,S′i) ∈R}
∪ {(&{li :Si}i∈I ,&{l j :S′j} j∈J) | ∀ j ∈ J ⊆ I.(S j,S′j) ∈R}
∪ {(µ X.S,S′) | (S{µ X.S/X},S′) ∈R}∪{(S,µ X.S′) | (S,S′{µ X.S′/X}) ∈R}
∪ {({Si}i∈I ,{S′j} j∈J) | ¬(|I|= |J|= 1),∀ j ∈ J,∃i ∈ I.(Si,S′j) ∈R}

Line 1 is standard (〈S〉 is invariant at S since it logically contains both S and S). Line 2/6
are the standard rule for recursion. In Line 3, the linear output (resp. input) is contravariant

3 For the recursion, it would be more natural to use a demand-driven input-guarded reduction for the LN-
transformation. The choice does not affect the developments of this paper.

17

[Request1] a(x :S);P −→ (ν s)(P{s/x} | s [S,i :ε,o :ε] | a〈s〉) (s /∈ fn(P))
[Request2] a [~s] | a〈s〉 −→ a [~s·s]
[Accept] a(x :S).P | a [s·~s] −→ P{s/x} | s [S,i :ε,o :ε] | a [~s]
[Send] s!〈v〉;P | s [!(T);S,o :~h] −→ P | s [S,o :~h·v]
[Receive] s?(x).P | s [?(T);S,i :v·~h] −→ P{v/x} | s [S,i :~h]
[Sel], [Bra] s/ li;P | s [⊕{li :Si}i∈I ,o :~h] −→ P | s [Si,o :~h·li] (i ∈ I)

s.{l j :Pj} j∈J | s [&{li :Si}i∈I ,i : li ·~h] −→ Pi | s [Si,i :~h] (i ∈ I ⊆ J)
[Comm] s [o :v·~h] | s [i :~h′] −→ s [o :~h] | s [i :~h′·v]
[Arriv-req] E[arrived a] | a [~s] −→ E[b] | a [~s] (|~s| ≥ 1)↘ b

[Arriv-ses] E[arrived s] | s [i :~h] −→ E[b] | s [i :~h] (|~h| ≥ 1)↘ b

[Arriv-msg] E[arrived s h] | s [i :~h] −→ E[b] | s [i :~h] (~h = h·~h′)↘ b

[Typecase]

typecase s of {(xi :Ti)Pi}i∈I | s [S] −→ Pi{s/xi} | s [S] ∃i ∈ I.(∀ j < i.Tj 6≤ S∧Ti ≤ S)

[Unfold] P | s [S{µ X.S/X},i :~h1,o :~h′1]−→ P′ | s [S′,i :~h2,o :~h′2]
=⇒ P | s [µ X.S,i :~h1,o :~h′1]−→ P′ | s [S′,i :~h2,o :~h′2]

[Eval] e −→ e′ =⇒ E[e] −→ E[e′]
[Chan] P −→ P′ =⇒ (ν a :〈S〉)P −→ (ν a :〈S〉)P′

[Sess] P −→ P′ =⇒ (ν s)P −→ (ν s)P′

[If-true] if tt then P else Q −→ P
[If-false] if ff then P else Q −→ Q

[Par] P −→ P′ =⇒ P | Q −→ P′ | Q
[Struct] P≡ P′ −→ Q′ ≡ Q =⇒ P −→ Q

Fig. 8. The reduction rules § 2.2.

(resp. covariant) on its carried types following [20]. In Line 4, the selection is co-variant
since if a process may send more labels, it is less composable with its peer. Dually for
branching in Line 5. Finally, the ordering of the set types says that if each element of the
set type {S′j} j∈J has its subtype in {Si}i∈I , the former is less composable by the latter.
The condition ¬(|I|= |J|= 1) avoids the case {Si}i∈I = S,{S′j} j∈J = S′, which makes the
relation universal.

We now clarify the semantics of≤ using duality. The dual of S, denoted S, is defined in
the standard way: !(T);S =?(T);S, ?(T);S =!(T);S, µ X.S = µ X.S, X= X, ⊕{li :Si}i∈I =

&{li :Si}i∈I &{li :Si}i∈I =⊕{li :Si}i∈I and end= end.

B.2 Types and Typing

The type syntax is defined in the main section. We use following extended types for typing
queues:

(Message) M ::= I | O (General) T ::= M | M;S

(OMsg) O ::= /0 | !(T) | ⊕ l | O;O′ (IMsg) I ::= /0 | ?(T) | &l | I; I′

Message types M represent either input I or output O in the input and output queues,
respectively. Input messages ?(T) and &l type values and labels in the input queue re-
spectively. Similarly for output messages !(T) and ⊕l for the output queue. /0 is used to
type empty buffers. A general type can be a session type a message type or a session type
prefixed be a session type.

18

B.3 Typing System
We first define the ∗ commutative operator for typing parallel processes.

S∗!(T);O =!(T);S∗O Sk ∗⊕lk;O =⊕{li : Si}i∈I ∗O (lk ∈ I)

?(T);S∗?(T); I = S∗ I &{li : Si}i∈I ∗&lk; I = Sk ∗ I (lk ∈ I) /0∗T= T

∆ ∗∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{s : T∗T′ | T ∈ ∆ ,T′ ∈ ∆ ′}

Figure 9 introduces the typing system for queues, which are with message types M. Note
that (1) s is recorded to avoid a parallel composition of two queues in the same session
name: and (2) OMsg is used to type the output queue, while IMsg is so to type the input
queue.

Figure 10 gives the typing system for processes. The system is an extension of [2] with
the two input and output entries.

Γ ` s[i : ε]. s : /0,s (InQ) Γ ` s[o : ε]. s : /0,s (OutQ)

Γ ` s[i : h]. s : I,s Γ ` v :T
Γ ` s[i : v ·h]. s :?(T); I,s

(RcvQ)
Γ ` s[i : h]. s : I,s

Γ ` s[i : l ·h]. s :&l; I,s
(BraQ)

Γ ` s[o : h]. s :O,s Γ ` v :T
Γ ` s[o : v ·h]. s :!(T);O,s

(SndQ)
Γ ` s[o : h]. s :O,s

Γ ` s[o : h · l]. s :⊕l;O,s
(SelQ)

Γ ` s[i : h]. s : I,s
Γ ` s[i : s′ ·h]. s :?(S′); I · s′ :S′,s

(InDelQ)
Γ ` s[o : h]. s :O,s · s′ :S′

Γ ` s[o : s′ ·h]. s :!(S′);O,s
(DelQ)

Fig. 9. Typing system for queues

B.4 Proof of Subject Reduction Theorem (Proposition 2.1)
This appendix proves the subject reduction theorem of the asynchronous session types
typing system.

First we note that:

Lemma B.1. Let P = Q | s[i : ε,o : ε] and Γ ` P .∆ with wc(∆). Then if P→→ Q′ | s[i :
~h1,o : ~h2] then ~h1 = /0 or ~h2 = /0.

Theorem B.1 (Subject Reduction). (Proposition 2.1) If Γ ` P .∆ , ∆ is well-configures
and P→→ P′ then Γ ` P.∆ ′ and ∆ →→ ∆ ′ and ∆ ′ is well-configured.

Proof. The proof is done by induction on the reduction relation.
The proof for subject congruence (i.e. the case for P≡ Q) is the standard. Hence we prove
the case for P−→ Q.
Case [Request1]. Γ ` a(x);P .∆ −→ (ν s)(P{s/x} | a〈s〉 | s[i : ε,o : ε]) .∆ ′. By rule (Req),
we have that Γ ` P . ∆ · x : S. By rules (InQ, OutQ), we obtain that Γ ` s[i : ε,o : ε] . /0.
Then by rule (Areq), we have Γ ` a(s);.s : S. We now apply rule (Conc) to obtain Γ `
P{s/x} | a〈s〉 | s[i : ε,o : ε].∆ ·s :S ·s :S. Rule (Sres) gives us Γ ` (ν s)(P{s/x} | a〈s〉 | s[i :
ε,o : ε]).∆ , as required.
Case [Request2]. Γ ` a〈s〉 | a[~s] .~s :~S · s : S −→ a[~s · s] .~s :~S · s : S. We type the processes that
compose the left hand side process using typing rules (Queue), (Areq). By rule (Conc) and the
definition of ∗ we get the typing ~s :~S · s : S. The right hand side is typed using typing rule
(Areq) to get the same result.
Case [Accept]. Γ ` a(x).P | a[s ·~s].∆ ·~s :~S · s :S−→ P{s/x} | a[~s].∆ ·~s :~S · s :S. For the left

19

Γ ·u :U ` u :U (Name) Γ ` tt,ff :bool (Bool)

Γ ` ei :bool
Γ ` e1 and e2 :bool

(And) Γ ·u :i〈S〉 ` u :o〈S〉 (Name’)

Γ ` u :i〈S〉
Γ ` arrive a :bool

(Areq)
Γ ` v :U

Γ ,∆ · s :?(U);S ` arrive k v :bool
(Amsg)

Γ ,∆ ` arrive k v :bool
Γ ` arrive k :bool

(Asess)

Γ ` a :o〈S〉 Γ ` P.∆ · x :S
Γ ` a(x);P.∆

(Req)
Γ ` a :i〈S〉 Γ ` P.∆ · x :S

Γ ` a(x).P.∆
(Acc)

Γ ` v :U U 6= i〈S〉 Γ ` P.∆ · k :S
Γ ` k!〈v〉; P.∆ · k :!(U);S

(Send)
Γ · x :U ` P.∆ · k :S U 6= i〈S〉

Γ ` k?(x); P.∆ · k :?(U);S
(Recv)

Γ ` P.∆ · k :S
Γ ` k!〈k′〉; P.∆ · k :!(S′);S · k′ :S′

(Deleg)
Γ ` P.∆ · k :S · k′ :S′

Γ ` k?(x); P.∆ · k :?(S′);S
(SRecv)

Γ ` P.∆ · k :S
Γ ` k⊕ l; P.∆ · k :⊕{li : Si}i∈I

(Sel)
Γ ` Pi .∆ · k :Si ∀ i ∈ I

Γ ` k&{li : Pi}i∈I .∆ · k :&{li : Si}i∈I
(Bra)

Γ ` Pi .∆i (i = 1,2)
if s ∈ ∆i then s 6∈ ∆ j(i 6= j)

Γ ` P1 | P2 .∆1 ∗∆2
(Conc)

Γ ,∆ ` e :bool Γ ` P.∆ Γ ` Q.∆

Γ ` if e then P else Q.∆
(If)

∆end only
Γ ` 0.∆

(Inact)
Γ ·a :U ` P.∆ ·a

Γ ` (ν a)P.∆
(NRes)

Γ ` P.∆ · s :S · s :S,s
Γ ` (ν s)P.∆

(SRes)
∆end only

Γ ` a[ε].∆ ·a
(EQueue)

Γ ` a[~h].∆

Γ ` a[~h · s].∆ · s :S
(Queue) Γ ·X :∆ ` X .∆ (Var)

Γ ·X :∆ ` P.∆

Γ ` µX .P.∆
(Rec) Γ ` a〈s〉. s :S (AReq)

∀i ∈ I Γ ` Pi .∆ ·xi :Ti ∪i∈I Ti ≤ T
Γ ` typecase k of {(xi :Ti)Pi}i∈I .∆ ·k :T

(Typecase)

We write Γ ` P.∆ as Γ ` /0 P.∆ .
Fig. 10. Typing System

hand side, we use rules (Queue), (Acc) and (Conc), to get the typing result. From rule (Acc) we
have that Γ ` P{s/x}.∆ . From here is easy to find the same typing for the right hand side.

Case [Send] (Value). Γ ` s!〈v〉; P | s[i : ε,o :~h].∆ · s :S,s−→ P | s[i : ε,o : v ·~h].∆ · s :S,s,
where Γ `~h :~T ,Γ ` v : T . For the left hand side we type Γ ` s!〈v〉; P .∆ · s :!(T);S′ and
Γ ` s[i : ε,o :~h].s :O,s. Using (Conc) we get !(T);S′ ∗O = S. Now if we type the right hand
side we get Γ ` s!〈v〉; P.∆ · s :S′ and Γ ` s[i : ε,o : v ·~h]. s :!(T);O,s. We compose to get
S′∗!(T);O =!(T);S′ ∗O = S.

Case [Receive] (Value). Γ ` s?(x); P | s[i : v ·~h,o : ε] . ∆ · s : S,s −→ P{v/x} | s[i : ~s,o :

20

ε] . ∆ · s : S,s. For the left hand side we have Γ ` s?(x); P . ∆ · s :?(T);S′ and Γ ` s[i :
v ·~h,o : ε].s :?(T); I,s. We compose and get ?(T);S′∗?(T); I = S′ ∗ I = S. For the right hand
side we have Γ ` P.∆ · s :S′ and Γ ` s[i :~h,o : ε]. s :I,s. By composition we get S′ ∗ I = S.
Case [Receive] (Delegation). Γ ` s?(x); P | s[i : s′ ·~h] .∆ · s : S · s′ : S′,s −→ P{s′/x} | s[i :
~h].∆ · s :S · s′ :S′,s. We have Γ ` s?(x); P.∆ · s :?(S′);S′′, Γ ` s[i : s′ ·~h]. s :?(S′); I · s′ :S′,s
and ∆ ·s :?(S′);S′′ ∗s :?(S′); I ·s′ :S′,s = ∆ ·s :?(S′);S ·s′ :S′,s. For the right hand side we have
Γ ` P{s′/x}.∆ ·s :S′′ ·s′ :S′, Γ ` s[i :~h].s :I,s and ∆ ·s :S′′ ·s′ :S′ ∗s :I,s = ∆ ·s :?(S′);S ·s′ :
S′,s.
Case [Send] (Delegation). Similar to the above case.
Case [Sel]. Γ ` s⊕v; P | s[i : ε,o :~h].∆ · s :S,s−→ P | s[i : ε,o : l ·~h].∆ · s :S,s. The proof
is similar to [Send] case.
Case [Bra]. Γ ` s&{li : Pi}i∈I | s[i : lk ·~h,o : ε].∆ · s :S′,s −→ Pk | s[i :~s,o : ε].∆ · s :S′,s
where S′ = Sk ∗ I and Γ ` s[i :~s,o : ε]. s : I,s. The proof is similar to the (Receive) case.
Case [Comm]. Γ ` P | s[i : ε,o :~h · v] | s[i : ~h′,o : ε].∆1 −→ P | s[i : ε,o :~h] | s[i : ~h′ · v,o :
ε].∆1. Γ `P.∆ ·s:S1 ·s:S2 with Γ `P | s[i : ε,o :~h ·v] | s[i :~h′,o : ε].∆ ·s:!(T);S ·s:?(T);S
from the induction hypothesis. If we type the right hand side we have that Γ ` P | s[i : ε,o :
~h] | s[i : ~h′ · v,o : ε].∆ · s :S · s :S as required.

C Appendix for Section 3

Transitions: We write =⇒ for the reflexive and transitive closure of τ−→, `
=⇒ for the

composition =⇒ `−→=⇒ and
ˆ̀

=⇒ for =⇒ if ` = τ and `
=⇒ otherwise. Furthermore we

write
ˆ̀
−→ for −→ if `= τ and `−→ otherwise.

Subject and Object: We define the subject (subj(`)) and object (obj(`)) for actions `. For
session transitions, we have subj(a〈s〉) = subj(a〈s〉) = subj(a(s)) = {a} and obj(a〈s〉) =
obj(a〈s〉) = obj(a(s)) = {s}. For session transitions, we have subj(s!〈v〉) = subj(s?〈x〉) =
subj(s!(a))= subj(s⊕l)= subj(s&l)= {a} and obj(s!〈v〉)= {v}, obj(s?〈x〉)= {x}, subj(s!(a))=
{a} subj(s⊕ l) = subj(s&l) = {l}.
Free and Bound Names: Free and bound names follow the definition, fn(a〈s〉)= fn(a〈s〉)=
{a,s}, fn(a(s)) = {a}, bn(a〈s〉) = bn(a〈s〉) = /0, bn(a(s)) = {s} for shared name actions.
For session name actions, we have fn(s!〈v〉)= fn(s?〈x〉)= fn(s!(a))= fn(s⊕l)= fn(s&l)=
{s}, where v is not a name, fn(s!〈a〉)= {s,a}, fn(s!〈s′〉)= {s,s′} and bn(s!〈v〉)= fn(s?〈x〉)=
subj(s!〈a〉) = bn(s⊕ l) = bn(s&l) = /0, bn(s!(a)) = {a}, bn(s!(s′)) = {s′}.

The names of an action (n(`)) is the union of fn(`) and bn(`), n(`) = fn(`)∪bn(`).

Definition C.1 (context). A context is defined as

C ::= − | C |C′ | (ν n)C | if e then C else C′ | 0 | X | µX .C |
s!〈v〉; C | s?(x); C | s⊕ l; C | s&{li : Ci}i∈I | a(x);C | a(x).C |
a〈s〉 | a[~s] | s[i :~h,o :~h]

Expression C[P] substitutes process P in each hole (−) of the context C definition.

C.1 Proof for Theorem 3.3
Theorem (Coincidence) ≈ and ∼= coincide.

The above theorem requires to show the equality into two directions.

21

Lemma C.1 (Soundness). ≈ implies ∼=

Proof. Reduction closeness and barb observation properties are easy to be verified. The
only remaining property is showing that ≈ is a congruence.

Output, restriction, if construct and recursion congruence are easy to be verified. Input
congruence is is similar to output congruence, since we are dealing with programs, which
are processes without free variables We give the result for Parallel congruence.

Parallel Congruence
Assume relation

S = {((ν ~a,~s)(P | R),(ν ~a,~s)(Q | R)) | (1)
P≈ Q,∀R · P | R,Q | R are typable,∀~a,~s} (2)

We show that S is a typed relation.
Since P≈ Q we have that Γ ` P.∆ and Γ ` Q.∆ ′ with ∆ ./ ∆ ′. Since P,Q are localised
and R is localised and P | R,Q | R are typable then dom∆ ∩ dom∆ ′ = /0. Using Conc and
the ∗ definition we get the result.

We show that S is a bisimulation. There are three cases:

Case (1) Suppose Γ ` P | R.∆1
`−→ P′ | R.∆ ′1. Then Γ ` P.∆P

`−→ P′ .∆ ′P.

By the definition of S , we have that Γ ` Q.∆Q
`

=⇒ Q′ .∆ ′Q.

So have that Γ ` Q | R.∆2
`

=⇒ Q′ | R.∆ ′2.

Case (2) Suppose Γ ` P | R.∆1
`−→ P | R′ .∆ ′1. Then Γ ` R.∆R

`−→ R′ .∆ ′R.

By the above, we have that Γ `Q | R.∆2
`−→Q | R′ .∆ ′2. It remains to show that ∆ ′1 ./ ∆ ′2.

From here, we conclude P | R≈ Q | R as required.

Case (3) Suppose Γ ` P | R.∆1 −→ (ν ~a,~s)(P′ | R′).∆ ′1. Then we have

Γ ` P.∆P
`−→ P′ .∆

′
P (3)

(4)

By the definition of S, we have:

Γ ` Q.∆Q =⇒ `−→ =⇒ Q′ .∆
′
Q (5)

By (5), we have that Γ ` Q | R.∆2 =⇒ (ν ~a,~s)(Q′ | R′).∆ ′2. Then it remains to show that
∆ ′1 ./ ∆ ′2.
The last result gives us that P | R≈ Q | R as required. ut

The proof for the completeness direction follows the technique shown in [6]. However
we need to adapt it to session and buffers.

Definition C.2 (definability). An external action ` is definable if for for a set of names
N, action succ, /∈ N there is a testing process T 〈N,succ, `〉 with the property that for every
process P and fn(P)⊆ N

– Γ ` P.∆1
`−→ P′ .∆ ′1 implies that Γ ` T 〈N,succ, `〉 | P.∆ →→ (ν bn(`),b)(succ[o :

bn(`)] | R | P′).∆ ′.

22

– Γ `T 〈N,succ, `〉 |P.∆→→Q.∆ ′, where Q⇓succ implies that Q=(ν bn(`),b)(succ[o :

bn(`)] | R | P′) where Γ ` P.∆1
`

=⇒ P′ .∆ ′1.

R = b(x).R′ or R = 0. Note that b(x).R is used to keep the composition P | T 〈N,succ, `〉
typable. Also R 6 l−→ either due to the restriction of b, or because R = 0.

Lemma C.2. Every external action is definable.

Proof. The input action cases are straightforward:

1. If Γ ` P.∆
a(s)−→ P′ .∆ ′ then T 〈 /0,succ,a(s)〉= a(x);R | succ[o : tt].

2. If Γ ` P.∆
s?〈v〉−→ P′ .∆ ′ then T 〈 /0,succ,s?〈v〉〉= (ν b)(s!〈v〉; b(x).R) | succ[o : tt].

3. If Γ ` P.∆
s&l−→ P′ .∆ ′ then T 〈 /0,succ,s&l〉= (ν b)(s⊕ l; b(x).R) | succ[o : tt].

The requirements of Definition C.2 can be verified with simple transitions.

Output actions cases:

1. If Γ ` P.∆
a〈s〉−→ P′ .∆ ′ then we have,

T 〈{s} ,succ,a〈s〉〉 = (ν b)(a(x).
(if x = s then succ!〈x〉; R
else b(x).succ!〈x〉; R)) |
succ[i : ε,o : ε] | a[ε]

2. If Γ ` P.∆
s!〈b〉−→ P′ .∆ ′ then we have that

T 〈{b} ,succ,s!〈b〉〉 = (ν b)(s?(x);
(if x = b then succ!〈x〉; b(x).R
else b(x).(succ!〈x〉; R)) |
succ[i : ε,o : ε]

3. If Γ ` P.∆
s!(b)−→ P′ .∆ ′ then we have that

T 〈{b} ,succ,s!(b)〉 = (ν b)(s?(x);
(if x = b then succ!〈x〉; b(x).R
else b(x).(succ!〈x〉; R)) |
succ[i : ε,o : ε]

4. If Γ ` P.∆
s⊕lk−→ P′ .∆ ′ then we have that:

T 〈 /0,succ,s⊕ lk〉 = (ν b)(s&{lk : succ!〈tt〉; R, li : b(x).R}i∈I),1≤ i≤ n

Again the requirements of Definition C.2 can be verified by simple transitions for each
case.

23

Lemma C.3. If succ is fresh, b ∈~a ·~s and

Γ ` (ν~a,~s,b)(P | succ [o :a′] | b(x).R).∆1 ∼= (ν~a,~s,b)(Q | succ [o :a′] | b(x).R).∆2 (6)

then

Γ ` P.∆P ∼= Q.∆Q (7)

Proof. Let relation

S = {(Γ ` P.∆P,Γ ` Q.∆Q) |
Γ ` (ν~a,~s,b)(P | succ [o :a′] | b(x).R).∆1
∼= (ν~a,~s,b)(Q | succ [o :a′] | b(x).R).∆2, succ is fresh}

We will show that the contextual properties hold in S .

Typing: It should hold that S is a typed relation. From S definition we have that
Γ ` (ν ~a,~s,b)(P | succ[o : a′] | b(x).R).∆ ≈ (ν ~a,~s,b)(Q | succ[o : a′] | b(x).R).∆ ′, ∆ ./∆ ′.
From here, by using typing rules (Nres), (Sres), (Conc), we get the required result.

Reduction Closedness: S is reduction closed by the freshness of succ. We cannot ob-
served a reduction on succ or on b(x).R, so we conclude that if
Γ ` (ν ~a,~s,b)(P | succ[o : a′] | b(x).R).∆ −→ (ν ~a,~s,b)(P′ | succ[o : a′] | b(x).R).∆ ′ im-
plies
Γ ` (ν ~a,~s,b)(Q | succ[o : a′] | b(x).R).∆ →→ (ν ~a,~s)(Q′ | succ[o : a′] | b(x).R).∆ ′ then
Γ ` P.∆1 −→ P′ .∆P implies Γ ` Q.∆1→→ Q′ .∆Q

Preserve Observation: We do a case analysis on the cases where P ↓m.

If P ↓m, m /∈ ~a ·~s and (ν ~a,~s,b)(P | succ[o : a′] | b(x).R) ↓m then (ν ~a,~s,b)(Q | succ[o :
a] | b(x).R) ⇓m. From the definition of S and the freshness of succ, we conclude Q ⇓m.

If P ↓m, m /∈~a ·~s and (ν ~a,~s,b)(P | succ[o : a′] | b(x).R) 6↓m then by the environment typ-
ing transition we have that m is a session occurring free in succ[o : a′] | b(x).R, and also
(ν ~a,~s,b)(Q | succ[o : a] | b(x).R) 6⇓m. The case where Q 6⇓m does not hold, because it would
be possible to have (ν ~a,~s,b)(Q | succ[o : a] | b(x).R) |Q′ with Q′ having as a free name ses-
sion m and have a typable process. But composition (ν ~a,~s,b)(P | succ[o : a′] | b(x).R) |Q′
is untypable because P ↓m, thus breaking reduction congruence. This results to the conclu-
sion that Q ↓m.

Context Property: The interesting case is the Parallel composition. We will show that if
Γ `P.∆PS Γ `Q.∆Q. Then for arbitrary process R we have that Γ `P |P1.∆ ′PS Q | P1∆ ′Q.

To show this, it is enough to show that
Γ ` (ν ~a,~s,b)(P | P1 | succ′[o : a′] | R).∆ ′′P

∼= (ν ~a,~s,b)(Q | P1 | succ′[o : a′] | R).∆ ′′Q, con-
sidering that succ may occur in P1 and succ′ is fresh.

To prove this assume the process tt〈 /0,succ′, `〉 = succ?(x); (succ′!〈x〉; 0 | P′1) | succ′[i :
ε,o : ε], where P1 = P1 {a′/x}.

24

From the contextual property of the theorem assumption and simple reductions, we have
that:
Γ ` (ν ~a,~s,b)(P | P1 | succ′[o : a′] | R).∆1 ∼= Γ ` (ν ~a,~s,b)(Q | P1 | succ′[o : a′] | R).∆ ′1.
We need to verify that
Γ ` (ν ~a,~s,b)(P | P1 | succ′[o : a′] | R) .∆1 ≈ (ν ~a,~s,b)(P | | P1 | succ′[o : a′] | R) .∆ ′1,
which is simple because R≈ 0. By using lemma C.1 we get the result.

ut

We are know ready to prove the completeness direction.

Lemma C.4 (Completness). ∼= implies ≈

Proof. For the proof we show that if

Γ ` P.∆P ∼= Q.∆Q and (8)

Γ ` P.∆P
`−→ P′ .∆

′
P (9)

then Γ ` Q.∆Q
`

=⇒ Q′ .∆ ′Q and Γ ` P′ .∆ ′P
∼= Q′ .∆ ′Q

Suppose (8) and (9). Then there are two cases.
If `= τ then by reduction closeness of ∼= the result follows.
In the case where ` is an external action we can do a definability test for P by choosing the
appropriate test T 〈N,succ, l〉.
Because∼= is context preserving we have that Γ `P |T 〈N,succ, l〉.∆PT ∼=Q |T 〈N,succ, l〉.
∆QT . By Lemma C.2 we have that Γ ` P | T 〈N,succ, l〉 . ∆PT =⇒ (ν bn(`))(succ [o :
bn(`)]|P′).∆ so by the definition of∼= (Definition 3.1), we have that Γ ` T 〈N,succ, l〉 |Q.
∆QT =⇒ R.∆ ′. According to the second part of the Definition C.2, we can write:

Γ ` Γ .Q′ = Γ ` (ν bn(`))(succ[o : bn(`)] | b(x). −→ | Q′′).∆
′′ (10)

Γ ` Q.∆Q
`

=⇒ Q′ .∆
′
Q (11)

Now we can derive Γ `Γ .(ν bn(`),b)(succ[o : bn(`)] | b(x). −→ |P′)∼=Γ ` (ν bn(`),b)(succ[o :
bn(`)] | b(x). −→ | Q′).∆ ′′. By Lemma C.3 we conclude that:

Γ ` P′ .∆
′
P
∼= Q′ .∆

′
Q (12)

(13)

We began with the assumption that Γ ` P .∆P ∼= Γ ` Q .∆Q and we concluded to (11),
(12). Thus ∼= implies ≈.

ut

C.2 Bisimulation Properties

Proof for Lemma 3.4 We define input and output actions.

Definition (Input/Output Actions).

1. ` is an input action if ` ∈ {a〈s〉,a〈s〉,s?〈v〉,s?(v),s&li}
2. ` is an output action if ` ∈ {a〈s〉,a(s),s!〈v〉,s!(v),s⊕ li}

25

Lemma (Input and Output Asynchrony).

Suppose Γ ` P.∆
`

=⇒ P′ .∆ ′.

1. (input advance) If ` is an input action, then Γ ` P.∆
`−→=⇒ P′ .∆ ′.

2. (output delay) If ` is an output action, then Γ ` P.∆ =⇒ `−→ P′ .∆ ′.

Proof. For the first part of Lemma 3.4, there are two cases.

Case (1) P has the form P = R | a[~s]. Γ ` R | a[~s] .∆
a?〈s〉
=⇒ R′ | a[~s′ · s] .∆ ′ with ~s = sδ ·~s′.

Now we can observe Γ ` R | a[~s].∆
a?〈s〉−→ R | a[~s · s].∆ ′′ =⇒ R′ | a[~s′ · s].∆ ′ as required.

Case (2) Input communication takes place on a session channel. It is similar using a session
queue.
For the second part of Lemma 3.4, there are two cases.

The first case is the action happening on a shared channel. Then Γ `P.∆ =⇒P′′ | a〈s〉 a!〈s〉−→
P′′ =⇒ P′ .∆ ′.
From this we can always conclude that Γ ` P.∆ =⇒ P′ | a〈s〉 a!〈s〉−→ P′ .∆ ′.
It is obvious that ∆ = ∆ ′.
For the second case, we have the action to be observed on a session channel. Γ ` P | s [o :

v ·~h].∆
s!〈v〉
=⇒ P′ | s [o :~h′].∆ ′, where ~h′ =~h · ~hδ .

Thus we can see that Γ ` P | s [o : v ·~h] .∆ =⇒ P′ | s [o : v ·~h′] s!〈v〉−→ P′ | s [o :~h′] .∆ ′, where
v ·~h′ = v ·~h · ~hδ , which concludes the same result as above, with ∆ = ∆ ′. ut

Proof for Lemma 3.8

Lemma. Let P be session determinate and Γ ` P.∆ =⇒ Q.∆ ′. Then P≈ Q.

Proof. The proof considers induction on the length of =⇒s transition. The basic step is
trivial. For the induction step step we do a case analysis on −→s transition.

Case Receive.. By the typability of P, we have that P′ = s?(x).Q | s [i :v ·~h] | R−→s P′′ =
Q{v/x} | s [i :~h] | R.

From the induction step, we have that P ≈ P′. To show that P ≈ P′′ we need to show
that P′ ≈ P′′. We will use the fact that bisimulation is a congruence. Consider R ≈ R and
s?(x).Q | s [i :v ·~h]≈ Q | s [i :~h].

Due to s /∈ fn(R) we can compose in parallel bisimilar processes and get that P′ ≈ P′′

as required.
The rest of the cases follow similar arguments. ut

Proof for Lemma 3.9

Lemma C.5. Let typable, localised P and actions `1, `2 such that subj(`1),subj(`2) are

session names and `1 ./ `2. If Γ ` P .∆
`1−→ P1 .∆1 and Γ ` P .∆

`2−→ P1 .∆2 then Γ `
P1 .∆

`2b`1−→ P′ .∆ ′ and Γ ` P2 .∆
`1b`2−→ P′ .∆ ′

26

Proof. The result is an easy case analysis on all the possible combinations of `1, `2.

We give an interesting case. Let (ν a)(P | s1 [o : ~h1 · a] | s2 [o : ~h2 · a])
s1!(a)−→ P | s1 [o :

~h1] | s2 [o : ~h2 · a] and (ν a)(P | s1 [o : ~h1 · a] | s2 [o : ~h2 · a])
s2!(a)−→ P | s1 [o : ~h1 · a] | s2 [o : ~h2].

Now it is easy to see that P | s1 [o :~h1] | s2 [o :~h2 ·a]
s2!〈a〉−→ P | s1 [o :~h1] | s2 [o :~h2] and P | s1 [o :

~h1 ·a] | s2 [o :~h2]
s1!〈a〉−→ P | s1 [o :~h1] | s2 [o :~h2] as required. ut

Two useful lemmas follow.

Lemma C.6. Let P be session determinate. Then if Γ `P.∆
`−→P′.∆ ′ and Γ `P.∆

`
=⇒

P′′ .∆ ′′ then P′ ≈ P′′

Proof. There are two cases:
Case τ:. Follow Lemma 3.8 to get P≈ P′ and P≈ P′′. The result then follows.

Case `:. Suppose that P `−→s P′ and P `
=⇒s P′′ implies P =⇒s P1

`−→s P2 =⇒s P′′. From
Lemma 3.8, we can conclude that P ≈ P1 and because of the bisimulation definition, we
have P′ ≈ P2 to complete we call upon 3.8 once more to get P′ ≈ P′′ as required. ut

Lemma C.7. Let P be session determinate and `1 ./ `2. Then if Γ ` P.∆
`1−→ P1 .∆1 and

Γ `P.∆
`2=⇒P2.∆2. Then Γ `P1.∆1

`2b`1
=⇒ P′.∆ ′ and Γ `P2.∆2

`1b`2
=⇒ P′′.∆ ′′ and P′≈P′′

Proof. The proof considers a case analysis on the combination of `1, `2.

Case `1 = s1!〈v1〉, `2 = s2?〈v2〉.

P | s1 [o :~h1 · v1] | s2 [i :~h2]
`1−→s P1 | s1 [o :~h1] | s2 [i :~h2]

=⇒s P′1 | s1 [o :~h′1] | s2 [i :~h′2]
`2−→s P′1 | s1 [o :~h′1] | s2 [i :~h′2 · v2]

=⇒s P′ | s1 [o : ~h′′1] | s2 [i : ~h′′2]

P | s1 [o :~h1 · v1] | s2 [i :~h2] =⇒s P0 | s1 [o :~h0 · v1] | s2 [i :~h′0]
`2−→s P′0 | s1 [o :~h0 · v1] | s2 [i :~h′0 · v2]

=⇒s P2 | s1 [o :~h′2 · v1] | s2 [i : ~h′′2 · v2]

=⇒s P′2 | s1 [o :~h3 · v1] | s2 [i :~h′3]
`2−→s P′2 | s1 [o :~h4] | s2 [i :~h′4]

=⇒s P′′ | s1 [o :~h′] | s2 [i : ~h′′]

By using Lemma 3.4, we have that P | s1 [o : ~h1 · v1] | s2 [i : ~h2] =⇒s
`1−→s

`2−→s=⇒s

P′ | s1 [o:~h′′1] | s2 [i:~h′′2] and P | s1 [o:~h1 ·v1] | s2 [i:~h2]
`2−→s=⇒s

`1−→s P′′ | s1 [o:~h′] | s2 [i:~h′′].

We use the lemmas C.5, 3.4 to get P | s1 [o : ~h1 · v1] | s2 [i : ~h2]
`2−→s=⇒s

`1−→s P′ | s1 [o :
~h′′1] | s2 [i : ~h′′2].

The rest of the proof considers Lemma 3.8.

27

We summarise the above to prove Lemma 3.9.

Lemma. If P is session determinate then P is determinate and confluent.

Proof. From the definition of confluence (resp. determinacy) and from the definition of P
we have that each derivative Q of P is also session determinate. The proof is an immediate
result of lemmas C.7, resp. C.6.

Proof for Lemma 3.11

Lemma. Let R be a determinate upto-expansion relation. Then R is inside a bisimulation.

Proof. The proof is easy by showing =⇒R⇐= is a bisimulation. If we write this relation
S , we can easily check that this relation is a bisimulation, using determinacy (commuta-
tivity with other actions).

ut

D Comparison with Asynchronous/Synchronous Calculi
D.1 Behavioural Theory for Session Type System with Input Buffer Endpoints
Before we prove the relations in § 5, we define a behavioural theory for the asynchronous
session π-calculus with two end-point queues but without IO-queues [4, 5, 20].

〈AccA〉 a[~s]
a〈s〉−→ a[~s · s] 〈ReqA〉 a〈s〉 a〈s〉−→ 0 〈InA〉 s[~h]

s?〈v〉−→ s[~h · v]

〈OutA〉 s!〈v〉; P
s!〈v〉−→ P 〈BraA〉 s[~h] s&l−→ s[~h · l] 〈SelA〉 s!� l; P s⊕l−→ P

〈LocalA〉
P −→ Q

P τ−→ Q
〈ParA〉

P `−→ P′ bn(`)∩ fn(Q) = /0

P | Q `−→ P′ | Q
〈TauA〉

P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`,`′))(P′ | Q′)

〈ResA〉
P `−→ P′ n 6∈ fn(`)

(ν n)P `−→ (ν n)P′
〈OpenSA〉

P
a〈s〉−→ P′

(ν a)P
a(s)−→ P′

〈OpenNA〉
P

s〈a〉−→ P′

(ν a)P
s(a)−→ P′

〈AlphaA〉
P≡α P′ P′ `−→ Q

P `−→ Q

Fig. 11. Labelled Transition for Session Type System with Two Buffer Endpoint Without IO

A labelled transition system is given in Figure 11. The LTS is similar to the LTS of
the calculus studied in this paper (4), except from the output actions. Shared channels, and
input actions have identical transition labels. The output actions cannot be observed on
the buffer since there is no output buffer defined. Instead they are observed in an output
reduction of a process.

D.2 Proofs for Section 5
We prove the results in § 5 for the two asynchronous session typed π-calculus, by either
giving the bisimulation closures when a bisimulation holds or giving the counterexample
when bisimulation does not hold. The results for the synchronous and asynchronous π-
calculi are well-known, hence we omit.

28

1. Case s!〈v〉; s!〈w〉; P | s [o : ε] 6≈ s!〈w〉; s!〈v〉; P | s [o : ε]. On the left hand side pro-

cess we can observe a τ transition and get s!〈w〉; P | s [o : v]
s!〈v〉−→ s!〈w〉; P | s [o : ε] but

s!〈w〉; s!〈v〉; P | s [o :ε] 6 s!〈v〉
=⇒ as required.

2. Case s1!〈v〉; s2!〈w〉; P | s1 [o :ε] | s2 [o :ε]≈ s2!〈w〉; s1!〈v〉; P | s1 [o :ε] | s2 [o :ε]. Rela-
tion:

R = { (s1!〈v〉; s2!〈w〉; P | s1 [o :ε] | s2 [o :ε] , s2!〈w〉; s1!〈v〉; P | s1 [o :ε] | s2 [o :ε]),
(s2!〈w〉; P | s1 [o :v] | s2 [o :ε] , P | s1 [o :v] | s2 [o :w]),
(P | s1 [o :v] | s2 [o :w] , s1!〈v〉; P | s1 [o :ε] | s2 [o :w]),
(P | s1 [o :v] | s2 [o :w] , P | s1 [o :v] | s2 [o :w]),
(s2!〈w〉; P | s1 [o :ε] | s2 [o :ε] , P | s1 [o :ε] | s2 [o :w]),
(P | s1 [o :ε] | s2 [o :ε] , P | s1 [o :ε] | s2 [o :ε]),
(P | s1 [o :ε] | s2 [o :w] , P | s1 [o :ε] | s2 [o :w]),
(P | s1 [o :v] | s2 [o :ε] , P | s1 [o :v] | s2 [o :ε])}

gives the result.
3. Case s?(x).s?(y).P | s [i :ε] 6≈ s?(y).s?(x).P | s [i :ε].

On both processes we can observe a s?〈v〉 transition and get s?(x).s?(y).P | s [i :v] τ−→
s?(y).P{v/x} | s [i :ε] and s?(w).s?(v).P | s [i :v] τ−→ s?(x).P{v/y} | s [i :ε]. From the
substitution, we have that both processes are not bisimilar.

4. Case s1?(x).s2?(y).P | s1 [i :ε] | s2 [i :ε]≈ s2?(y).s1?(x).P | s1 [i :ε] | s2 [i :ε].
Relation

R = { (s1?(x).s2?(y).P | s1 [i :ε] | s2 [i :ε] , s2?(y).s1?(x).P | s1 [i :ε] | s2 [i :ε]),
(s1?(x).s2?(y).P | s1 [i :v] | s2 [i :ε] , s2?(y).s1?(x).P | s1 [i :v] | s2 [i :ε]),
(s1?(x).s2?(y).P | s1 [i :ε] | s2 [i :w] , s2?(y).s1?(x).P | s1 [i :ε] | s2 [i :w]),
(s1?(x).s2?(y).P | s1 [i :v] | s2 [i :w] , s2?(y).s1?(x).P | s1 [i :v] | s2 [i :w]),
(s2?(y).P | s1 [i :ε] | s2 [i :ε] , s2?(y).s1?(x).P | s1 [i :v] | s2 [i :ε]),
(s1?(x).s2?(y).P | s1 [i :ε] | s2 [i :w] , s1?(x).P | s1 [i :ε] | s2 [i :ε]),
(s2?(y).P | s1 [i :ε] | s2 [i :w] , P | s1 [i :ε] | s2 [i :ε]),
(P | s1 [i :ε] | s2 [i :ε] , s1?(x).P | s1 [i :v] | s2 [i :ε]),
(s2?(y).P | s1 [i :ε] | s2 [i :w] , s2?(y).s1?(x).P | s1 [i :v] | s2 [i :w]),
(s1?(x).s2?(y).P | s1 [i :v] | s2 [i :w] , s1?(x).P | s1 [i :v] | s2 [i :ε]),
(P | s1 [i :ε] | s2 [i :ε] , P | s1 [i :ε] | s2 [i :ε])}

gives the result.

D.3 Arrived Operators in the π-Calculi

In this subsection, we define two arrive inspected calculi that try to simulate blocking and
order-preserving properties as the synchronous and asynchronous π-calculi, respectively.

For the synchronous π-calculus, we have blocking and order-preserving input and out-
put and for the asynchronous π-calculus we have non-blocking and non-order preserving
input and output.

In the context of the synchronous π-calculus, we cannot easily define the arrived

operator without a slight compromise of the non blocking input property, due to the asyn-
chronous nature of the arrived operator on the input queue of an endpoint.

The synchronous π-calculus can be represented asynchronously by having channel
buffers of size one.

29

Syntax of the Synchronous-like π-Calculus with Arrive.

P ::= 0 | a[ε] | a(x).P | a〈v〉.P | P|P | (ν a)P | if arrived a then P else P

Labelled Transition Semantics of the Synchronous π-Calculus with Arrive.

a〈v〉.P a〈v〉−→ P a(x).P|a[ε] a〈v〉−→ a(x).P|a[v] a(x).P | a[v]−→ P{v/x}

P `−→ P′, fn(`)∩ fn(Q) = /0

P|Q `−→ P′|Q

P `−→ P′, Q `′−→ Q′, `� `′

P|Q τ−→ (ν bn(`,`′))(P′|Q′)
P `−→ P′ n 6∈ fn(`)

(ν n)P `−→ (ν n)P′

P
a〈v〉−→ P′

(ν a)P
a(v)−→ P′

P≡α P′ P′ `−→ Q

P `−→ Q

if arrived a then P else Q|a[ε] τ−→ Q|a[ε]

if arrived a then P else Q|a[v] τ−→ P|a[v]

In the synchronous π-calculus with arrived operator, channel buffers have size of one
and we can receive a value from the environment, only if a corresponding process is ready
to receive on the buffer channel.

To demonstrate the compromise done in to achieve this definition consider

a(x).P
a?〈v〉−→ P{v/x}

a(x).P | a[ε] a?〈v〉−→−→ P{v/x} | a[ε]
The first process is in the classic synchronous π calculus. We can only observe one input

action. For the second system we observe an asynchronous input action. First a message
is put in the communication buffer and then the actual receive happens. Between the two
transition an arrive inspection can happen.

The asynchronous π-calculus with arrived operator is easier to be defined in a queue
context. The idea here is to have endpoints that use a random policy for message exchange:
Syntax of the Asynchronous π-Calculus with Arrive.

P ::= 0 | a[ε] | a(x).P | a〈v〉 | P|P | (ν a)P | if arrived a then P else P

Labelled Transition Semantics of the Asynchronous π-Calculus with Arrive.

a〈v〉 a〈v〉−→ 0 a[~h]
a〈h〉−→ a[~h ·h]

a?(x).P | a[~h1 ·hi · ~h2]−→ P{hi/x} | a[~h1 · ~h2]
P `−→ P′ fn(`)∩ fn(Q) = /0

P|Q `−→ P′|Q
P `−→ P′ Q `′−→ Q′ `� `′

P|Q τ−→ (ν bn(`,`′))(P′|Q′)
P `−→ P′ n 6∈ fn(`)

(ν n)P `−→ (ν n)P′

P
a〈v〉−→ P′

(ν v)P
a(v)−→ P′

P≡α P′ P′ `−→ Q

P `−→ Q

if arrived a then P else Q|a[ε] τ−→ Q|a[ε]

if arrived a then P else Q|a[h ·~h] τ−→ P|a[~h]

The above definition disallows the order preserving property in the system but keeps
the non blocking property as required by the asynchronous π-calculus.

Figure 6 shows that the arrive construct behaves the same on all of the calculi.

30

E Appendix for Selectors
E.1 Mapping
The selector operator is discussed in detailed along with its reduction properties and appli-
cations in [12]. In this section we present an ESP encoding of the selector.

We can extend ESP with the selector operations, with the following reduction seman-
tics.

new selector r in P−→ (ν r)(P | sel〈r, ε〉) register〈s′,r〉;P | sel〈r,~s〉 −→ P | sel〈r,~s · s′〉
let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r, s′ ·~s〉 | s′ [S,i :~h]

−→ Pi{s′/xi} | sel〈r,~s〉 | s′ [S,i :~h] (~h 6= ε)
let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r, s′ ·~s〉 | s′ [i :ε]

−→ let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r,~s · s′〉 | s′ [i :ε]

where in the third line S and Ti satisfies the condition for typecase in Figure 3. We also
include the structural rules with garbage collection rules for queues as (ν r)sel〈r, ε〉 ≡ 0.
Operator new selector r in P (binding r in P) creates a new selector sel〈r, ε〉, named r
and with the empty queue ε . Operator register〈s′,r〉;P registers a session channel s to r,
adding s′ to the original queue~s. let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I re-
trieves a registered session and checks the availability to test if an event has been triggered.
If so, find the match of the type of s′ among {Ti} and select Pi; if not, the next session is
tested.

We now show this behaviour can be easily encoded by combining arrival predicates
and typecase. Below we omit type annotations.

[[new selector r in P]] def
= (ν b)(b(r).b(r). [[P]] | b : [ε]) [[register〈s,r〉;P]] def

= r!〈s〉; [[P]]
[[let x = select(r) in typecase x of {(xi :Si) : Pi}i∈I]]

def
= Select(rr)

[[sel〈r,~s ·~s′〉]] def
= r [o :~s′] | r [i :~s]

def Select(xx) = x?(y);if arrived y then typecase y of {(xi :Si) : [[Pi]]}i∈I
else x!〈y〉;Select〈xx〉 in Select〈rr〉

The use of arrived is the key to avoid blocked inputs, allowing the system to proceed
asynchronously. The operations on the collection need to carry session channels, hence the
use of delegation (linear channel passing) is essential [8]. We can easily check that the
embedding operationally simulates the selector given above as the extension of ESP, and
that, under a suitable bisimulation, that it is semantically faithful.

E.2 Typing
The typing rules for the selector are naturally suggested from the ESP-typing of its encod-
ing. We write the type for a user of a selector storing channels of type T , by sel(T), and
the type for a selector itself by sel(T). For simplicity we assume these types do not occur
as part of other types. The linear environment ∆ now includes two new type assignments,
r :sel(T) and r :sel(T). The typing rules for the selector follow.

Γ ` P.∆ ·r :sel(T)
Γ ` new selector r in T P.∆

(Selector)
Γ ` P.∆ ·r :sel(T) S≤ T

Γ ` register〈s,r〉;P.∆ ·r :sel(T)·s :S
(Register)

∀i ∈ I.Γ ` Pi .∆ ·r :sel(T)·xi :Si Si ≤ T
Γ ` let x = select(r) in typecase x of {(xi :Si) : Pi}i∈I .∆ ·r :sel(T)

(Select)

The typing rule for the selector queue is similar to the runtime typing for a shared input
queue. By setting [[∆]] as the compositional mapping such that [[r : sel(T)]] is given as

31

r : Sr ·r : Sr where Sr = µ X.!(T);X, and otherwise identity, as well as extending the notion
of error to the internal typecase of the select command, we obtain, writing ESP+ for the
extension of ESP with the selector:

Proposition E.1 (Soundness of Selector Typing Rules).

1. (Type Preservation) Γ ` P.Σ in ESP+if and only if Γ ` [[P]]. [[Σ]].
2. (Soundness) P≡ P′ implies [[P]]≡ [[P′]]; and P−→ P′ implies [[P]]−→∗ [[P′]].
3. (Safety) A typable process in ESP+ never reduces to the error.

Full proofs and further discussion are given in [12].

F Appendix: Lauer-Needham Transform

This appendix gives the detailed illustration of the Lauer-Needham transformation. Our
translation uses the notations in Figure 12 for brevity, including: pairs, polyadic input-
s/outputs, a refined typecase, a refined selector, and an environment as used in the standard
CPS transform. All of them are easily encodable in the eventful calculus in [12].

LN [[∗a(w :S);P]] def
= (νo,q,~c)(Loop〈o,q〉 | o | q〈a,c0〉 | CodeBlocks〈a,o,q,~c〉)

where P1, ..,Pn are the positive sub-terms of P; P1, ..,Pn−m the
blocking ones whose subjets are respectively typed S1, ..,Sn−m;
and o, q and~c = c1..cn are fresh and pairwise distinct.

Loop〈o,q〉 def
= ∗o. let w = select(q) in typecase w of {

(x : S, z : env) : new y : env in z〈y〉,
(x : S1, y : env, z : S1,env) : z〈x,y〉, . . .
(x : Sn−m, y : env, z : Sn−m,env) : z〈x,y〉

}

CodeBlocks〈a,o,q,~c〉 def
= B[[a(w :S);P]] |∏1≤i≤nB[[Pi]]

B[[∗a(w :S).P]] def
= ∗c0(y).a(w′ :S).update(y,w,w′); register〈q,a,c0〉; [[P,y]]

B[[x(i)?(z : T).Q]]
def
= ∗ci(x′,y).x′?(z′).update(y,z,z′); update(y,x,x′); [[Q,y]]

B[[x(i)�{l j : Q j} j]]
def
= ∗ci(x′,y).x′�{l j : update(y,x,x′); [[Q j,y]]} j

[[x!〈e〉;Q,y]] def
= let x′ = [[x]]y in x′!〈[[e]]y〉;update(y,x,x′); [[Q,y]]

[[x!〈k〉;Q,y]] def
= let x′ = [[x]]y in let k′ = [[k]]y in x′!〈k′〉;update(y,xk,x′k′); [[Q,y]]

[[x/ l j;Q,y]] def
= let z = [[x]]y in z/ l j; [[Q,y]]

[[b(z : S);Q,y]] def
= b(z′ : S);update(y,z,z′); [[Q,y]]

[[Q,y]] def
= let x′=[[x]]y inregister〈q,x′, ci, y〉;o (Q is blocking at x(i))

[[0,y]] def
= o

Fig. 12. Translation Function for Lauer-Needham Transform

The formal mapping follows. Below we say a process is positive if it is either an ac-
ceptor, an input, a branching or a definition, and is blocking if it is positive and is not a
definition. The subject of a positive term is the initial channel name if it is blocking, and
the initial process variable if it is a definition.

32

Definition F.1 (Lauer-Needham Transform). Let ∗a(w : S);P be a simple server. Then
the mapping LN [[∗a(w : S);P]] is inductively defined by the rules in Figure 12, assuming
the following annotation on P: the subjects of distinct positive subterms in P are labelled
with distinct numerals from 1 to n, as in e.g. x(i)?(y);Q (then we say the prefix is blocking at
x(i)), such that 1 to n−m are used for the prefixes and the rest for the definitions (n≥m≥ 0).
We also assume all environments have the same fields named by the (free and bound)
variables occurring in P which we assume to be pairwise distinct.

As outlined in the main section, the main map LN [[∗a(w : S);P]] consists of:

1. An event loop Loop〈o,q〉 which denotes a loop invoked at o without parameters. It also
uses a selector queue q. It is composed with o, initiating the loop.

2. A selector queue q〈a,c0〉 named q with a single element 〈a,c0〉.
3. A collection of code blocks CodeBlocks〈a,o,q,~c〉, each defined using an auxiliary map

B[[R]] and [[Q,y]]. Its behaviour is illustrated below.

The initial execution of LN [[∗a(w : S);P]] starts from the event-loop. It fetches a channel
at which a message has arrived by select: what it finds in the selector queue is checked and
typed by the typecase construct from [12] (as illustrated in Appendix A). Initially it will
only find a request via a. After finding it, the loop then creates a brand new environment
and jumps to the initial code block at c0, passing the environment.

Once invoked, the initial code block, B[[a(w : S);P]], receives a fresh session channel
through the buffer of a, saves it in the environment, and moves to [[P,y]]. The code [[P,y]]
carries out “instructions” from P, using the environment denoted by y to interpret variables.
After completing all the consecutive non-blocking actions (invocations, outputs, selections,
conditionals and recursions) starting from the initial input, the code will reach a blocking
prefix or 0. If the former is the case, it registers that blocking session channel, the associated
continuation and the current environment in a selector queue. Then the control flow returns
to the event loop.

The event loop then tries to sense the arrival of a message again by scanning the reg-
istered channels (shared and session). Assume it finds a message via a session channel
this time. It then decides its type by typecase and invokes the corresponding continuation
code block, passing the session channel and the environment. The code block, which has
the shape B[[Pi]] for a blocking sub-term Pi of P, now receives the message via the passed
session channel, saves it in the passed environment, and continues with the remaining be-
haviour until it reaches a blocking action, in the same way as illustrated for the initial code
block. The combination of a typecase and a session channel passing above enables the
protection of session type abstraction, ensuring type and communication safety.

G LN Transform Properties
In this section consider that B1 = s1[i : ~h1,o : ~h′1]

G.1 Selector Properties
Lemma G.1. Let

Qi = Def
X1 = if arrive s1 then C1[X2] else X2

...
Xn = if arrive sn then Cn[X1] else X1

in Xi

33

with Ci = typecase si of {S1 : Ri1;−, . . . ,Sm : Rim;−}

P = select x from r in typecase x of {S1 : C[R1],Sm : C[Rm]} | r〈s1, . . . ,sn〉

Recall that the selector recurses on a process variable (appendix E). In this case the process
variable is X. Now we define C.
C =−; register x to r in X and Ri j = R j {si/x}.
Then Q1 | s1[i : ~h1,o : ~h′1] | . . . | sn[i : ~hn,o : ~h′n]≈ P | s1[i : ~h1,o : ~h′1] | . . . | sn[i : ~hn,o : ~h′n]

Proof. By unfolding P n times we have a process that can be related to Q1 | B1 | . . . | Bn.
To relate the two processes we use the selector definition for select and register. From there
it easy to build and verify a bisimulation closure.

Lemma G.2. select x from r in typecase x of {S1 : C[R1],Sm : C[Rm]} |
r〈s1, . . . ,sn〉 | s1[i : h1,o : h′1] | . . . | sn[i : hn,o : h′n] is confluent.
Where C =−; register x to r in X, C[Ri] is sequential and C[Ri]

{
s j/x

}
| s j[i : ~h j,o : ~h′j]

is session determinate and non blocking.

Proof. The fact that the selector is reduced using the rule [Sarr] makes the selector process
to be non session determinate. We will need to use the confluence definition to establish
the final result.
We build our result out of simpler results.
Let

Qi = Def
X1 = if arrive s1 then C1[X2] else X2
X2 = if arrive s2 then C2[X1] else X1

in Xi

and define s[i : ~h′i ·~hi,o : ~ho]� s[i : ~hi,o : ~h′o · ~ho]
We show that Q1 | B1 | B2 is confluent. We will use confluence definition to get a derivative
of Q1 | B1 | B2.

Q1 | B1 | B2
~l

=⇒ Q = R | B′1 | B′2
We do a case analysis on all possible combinations of `1, `2. We will show a case.

Q
s1?〈v〉−→ s2!〈v〉

=⇒ R | s1[i : ~h1 · v] | s2[i : ~h2,o : ~h′2], Q
s2!〈v〉
=⇒ s1?〈v〉

=⇒ R′ | s1[i : ~h′′1] | s2[i : ~h′′2 ,o : ~h′′′2].
We show that the above resulting processes are bisimilar.

R = {(P,Q),(Q,P) |
P = R′′ | B1 | B2
Q = Q1 | B′1 | B′2
where R′′ is a postfix of processes Ci[X j]
Bi � B′i}

Lemma G.1 shows that select x from r in typecase x of {S1 :C[R′1],S2 :C[R′2]} | r〈s1,s2〉 | s1[i :
h1,o : h′1] | s2[i : h2,o : h′2] is also confluent since bisimulation preserves confluency.
We can now generalise for the n-ary case. The bisimulation closure is similar to the binary
case.

34

R = {(P,Q),(Q,P) |
P = R′′ | B1 | . . . | Bn
Q = Q1 | B′1 | . . . | B′n
where R′′ is a postfix of processes Ci[X j]
Bi � B′i}

The rest of the proof is similar to the binary case.

We give a core result about the selector’s behaviour. The selector’s ordering of events
is irrelevant to the selector’s behaviour when each events computation follows a confluent
execution.

Lemma G.3. select x from r in typecase x of {S1 : C[R1],Sm : C[Rm]} |
r〈s1, . . . ,si,si+1, . . . ,sn〉 | s1[i : h1,o : h′1] | . . . | sn[i : hn,o : h′n]≈
select x from r in typecase x of {S1 :C[R1],Sm :C[Rm]} | r〈s1, . . . ,si+1,si, . . . ,sn〉 | s1[i :
h1,o : h′1] | . . . | sn[i : hn,o : h′n]
Where C =−; register x to r in X, C[Ri] is sequential and C[Ri]

{
s j/x

}
| s j[i : ~h j,o : ~h′j]

is session determinate and non blocking.

Proof. We will construct a bisimulation relying on simpler bisimilar processes. Let

Qi = Def
X1 = if arrive s1 then s1?(x); X2 else X2
X2 = if arrive s2 then s2?(x); X1 else X1

in Xi

and
Bi = si[i : ~hi,o : ~h′i]

We give a confluent up-to relation.
Let S = {(Q1 |B1 |B2,Q2 |B1 |B2),(Q1 | s1[i : ε] | s2[i : ε],Q1 | s1[i : ε] | s2[i : ε]),(Q2 | s1[i :
ε] | s2[i : ε],Q2 | s1[i : ε] | s2[i : ε])}.
Simple transitions give the required result. Both processes are confluent from proof of
lemma G.1.
Now let

Qi = Def
X1 = if arrive s1 then C1[X2] else X2
X2 = if arrive s2 then C2[X1] else X1

in Xi

with Ci = typecase si of {S1 : Ri1;−, . . . ,Sm : Rim;−}.
Let

S = {(Q1 | B1 | B2,Q2 | B1 | B2),
(Q1 | s1[i : ε] | s2[i : ε],Q1 | s1[i : ε] | s2[i : ε]),
(Q2 | s1[i : ε] | s2[i : ε],Q2 | s1[i : ε] | s2[i : ε])}

Again we verify with simple transitions that S is closed under the bisimulation definition.
Now let

R = typecase x of {S1 : C[R1],S2 : C[R2]}

with C =−; register x to r in X and Ri j = R j {si/x}. and

35

P1 = µX .r?(y); if arrive y then R else r!〈x〉; X | r[i : s1,s2,o : ε] | r[i : ε,o : ε] | B1 | B2
Q1 = µX .r?(y); if arrive y then R else r!〈x〉; X | r[i : s2,s1,o : ε] | r[i : ε,o : ε] | B1 | B2

We show that P1 ≈ Q1 by using lemma G.1 to relate under bisimulation X1 | B1 | B2 ≈ PP1
and X2 | B1 | B2 ≈ Q1.
We generalize for the n-ary case.
Define

QYi = Def
Y1 = if arrive s1 then C1[Y2] else Y2

...
Yi = if arrive si then Ci[Yi+1] else Yi+1
Yi+i = if arrive si+1 then Ci+1[Yi+2] else Yi+2

...
Yn = if arrive sn then Cn[Y1] else Y1

in Yi

QXi = Def
X1 = if arrive s1 then C1[X2] else X2

...
Xi−i = if arrive si−i then Ci−i[Xi+1] else Xi+1
Xi+i = if arrive si+i then Ci+i[Xi] else Xi
Xi = if arrive si then Ci[Xi+2] else Xi+2

...
Xn = if arrive sn then Cn[X1] else X1

in Xi

We again construct a simple confluent up-to bisimulation, given the fact that
PX1 | B1 | . . . | Bn,PY1 | B1 | . . . | Bn are confluent processes.

R = {(PX1 | B1 | . . . | Bn,PY1 | B1 | . . . | Bn)}

We verify this relation using simple transitions. Processes Ci[Yi+1],Ci[Xi+1] are non block-
ing and can be reduced by observing τ transitions.
Now lets take the processes:

P = select x from r in R | r〈s1, . . . ,si,si+1, . . . ,sn〉 | B1 | . . . | Bn
Q = select x from r in R | r〈s1, . . . ,si+1,si, . . . ,sn〉 | B1 | . . . | Bn

Again lemma G.1 is used to relate under bisimulation P ≈ PY1 | B1 | . . . | Bn and Q ≈
PX1 | B1 | . . . | Bn as we did in the binary case.

The above lemma gives an understanding about the selectors behaviour when dealing
with a static set of arrived-inspect sessions. When we add the arrive-inspection of a shared
queue, we can dynamically add session queues in the selector (as in the LN-transform).
This fact should not change the selector’s behaviour.

Lemma G.4. select x from r in typecase x of {S1 : C[R1],Sm : C[Rm]} |
r〈a,s1, . . . ,si,si+1, . . . ,sn〉 | s1[i : h1,o : h′1] | . . . | sn[i : hn,o : h′n] | a[~s]

36

≈ select x from r in typecase x of {S1 :C[R1],Sm :C[Rm]} | r〈a,s1, . . . ,si+1,si, . . . ,sn〉 | s1[i :
h1,o : h′1] | . . . | sn[i : hn,o : h′n] | a[~s]
Where C[Ri] =−; register x to r in X, C[Ri] is sequential and C[Ri]

{
s j/x

}
| s j[i : ~h j,o :

~h′j] is session determinate and non blocking.

Proof. The proof continues the proof from G.3.
We create an up-to confluent relation for the dynamic selector.

R = {(select x from r in typecase x of {S1 : C[R1],Sm : C[Rm]} |
r〈a,s1, . . . ,si,si+1, . . .〉 | s1[i : h1,o : h′1] | . . . | a[~s],
select x from r in typecase x of {S1 : C[R1],Sm : C[Rm]} |
r〈a,s1, . . . ,si+i,s, . . .〉 | s1[i : h1,o : h′1] | . . . | a[~s])}

Note that the selector can have an arbitrary numbers of sessions registered to it, along with
the corresponding session endpoint. The verification uses simple reduction. The interesting
case is when a new session is created and registered in the selector.

G.2 LN-transform properties
Lemma G.5. ∗(a(x).P) | a[ε], where P is session determinate and sequential, is confluent.

Proof. Since a(x).P | a[s ·~s]−→ P{s/x} | s[i : ε,o : ε] | a[s ·~s] and P{s/x} is confluent by
theorem ??. So it is trivial to see that a(x).P | a[s ·~s] is also confluent.
We want to show that Q = (µX.a(x).P | X) | a[~s] is confluent.
For a derivative of Q we have (µX.a(x).P | X) | a[~s] | R1 | . . . | Rn | B1 | . . .Bn and Ri | Bi
are session determinate.
We should verify the confluence definition. We can do a case analysis on all possible action
definitions to get that the entire process is confluence.

To work with the event based server we establish an equivalence result between CPS style
and recursive progamming style.

Lemma G.6.
Def

X1 = C1[Xi]
X2 = C2[X j]
...
Xn = Cn[Xk]

in Xm | ∏l∈J sl [i : ~hl ,o : ~h′l]

≈ Q = ∗c1.C1[![ci]] | ∗ c2.C2[![c j]] | . . . | ∗ cn.C1[![ck]] | ![cm] | ∏l∈J sl [i : ~hl ,o : ~h′l]
where Ci = Ri;− and Ri is sequential (does not contain parallel composition, restriction or
if-else construct) and non-blocking (input prefixes can immediately receive a value from a
queue)

Proof. We can create a closed relation under bisimulation.

R = {P1,P2 | P1 = Def X1 =C1[Xi], . . . ,in Xi
P2 = ∗c1.C1[![ci]] | . . . |Ci[![c j]]
P1 = Def X1 =C1[Xi], . . . ,in R′i
P2 = ∗c1.C1[![ci]] | . . . | R′′i
Ci[X j] =⇒ R′i,Ci[![c j]] =⇒ R′′i }

The fact that R is a bisimulation can be verified using simple transitions.

37

A usefull definition is that of the LN-transform in recursive programming style.
Definition G.1 (LN transform-recursive programming style).

LNR[[∗a(x).P]] def
= (ν q)(Loop〈q〉 | q〈a〉)

where P1, ..,Pn are the positive sub-terms of P; P1, ..,Pn−m the
blocking ones whose subjets are respectively typed S1, ..,Sn−m;
and o, q and~c = c1..cn are fresh and pairwise distinct.

Loop〈q〉 def
= select x from q in typecase x of {

(x : S) : new y : env in)B[[∗a(x).P]],
(x : S1, y : env) : B[[P1]], . . .

(x : Sn−m, y : env) : B[[Pn]]

}

B[[∗a(x).P]] def
= a(w).update(y,w,w′); register a to q in [[P,y]]

B[[x(i)?(z : T); Q]]
def
= x′?(z′); update(y,z,z′); update(y,x,x′); [[Q,y]]

B[[x(i)&
{

l j : Q j
}

j]]
def
= x′&

{
l j : update(y,x,x′); [[Q j,y]]

}
j

[[x!〈e〉; Q,y]]
def
= Let x′ = [[x]]y in in x′!〈[[e]]y in 〉; update(y,x,x′); [[Q,y]]

[[x!〈k〉; Q,y]]
def
= Let x′ = [[x]]y in in Let k′ = [[k]]y in in x′!〈k′〉; update(y,xk,x′k′); [[Q,y]]

[[x⊕ l j; Q,y]]
def
= Let z = [[x]]y in in z⊕ l j; [[Q,y]]

[[b(z : S);Q,y]]
def
= b(z′ : S);update(y,z,z′); [[Q,y]]

[[Q,y]]
def
= Let x′ = [[x]]y in in register x′,y to q in Loop〈q〉 (Q is blocking at x(i))

[[0,y]] def
= Loop〈q〉

Lemma G.7. LN[[∗(a(x).P) | a[ε]]]≈ LNR[[∗(a(x).P) | a[ε]]]

Proof. The proof is a direct application of lemma G.6.

The LN-transformed process is essentially a sequential process with session endpoints
composed in parallel. Hence we can also establish:

Lemma G.8. LN[[∗(a(x).P) | a[ε]]] is confluent.

Proof. We use lemma G.2 to show that LNR[[∗(a(x).P) | a[ε]]] then by lemma G.7 and the
fact that bisimulation preserves confluence, we get the required result.

Using these results, we can establish the fundamental result, which crucially relies on asyn-
chronous nature of our bisimulations, noting that the original simple server and its trans-
lation generally have completely different timings at which the session input/branching
subjects (prefixes) become active: in the former they are made active in parallel for all
threads, while in the latter they are made active only sequentially.

We can know study the behaviour of the LN-transform.

Lemma G.9. Let

P1 =(ν~cor)(Loop |CodeBlocks | r〈. . . ,(si,ξi,ci),(s j,ξ j,c j), . . .〉 | a[~s] | ∏
m∈I

sm[i : ~him,o : ~hom]),

P2 =(ν~cor)(Loop |CodeBlocks | r〈. . . ,(s j,ξ j,c j),(si,ξi,ci), . . .〉 | a[~s] | ∏
m∈I

sm[i : ~him,o : ~hom])

Then P1 ≈ P2.

38

Proof. The first step is to consider the recursive definition G.1of the LN transform. We then
apply lemmas G.4 and G.7.

The final result gives the equivalence between the simple server and its Lauer-Needham
transform.

Theorem G.1. ∗a(x).P | a[ε]≈ LN[[∗a(x).P | a[ε]]]

Proof. Since both processes are confluent we can develop a confluent up-to relation along
with lemma G.9 to prove bisimulation closure.
Let relation R such that

R = {(P1,P2),(P2,P1) | P1 = ∗a(x).P | R1 | . . . | Rn | B1 | . . . | Bn | a[~s]
R1, . . . ,Rn blocking subterms of P
P2 = Loop | CodeBlocks | r〈s j, . . . ,s j−1〉 | B1 | . . . | Bn | a[~s]}

We will prove that R is a bisimulation up-to confluence. For observable actions bisimula-
tion definition holds trivially since if P1

`−→ P′1 then P2
`−→ P′2 and P′1RP′2.

Let P2 −→ Q′ | CodeBlocks | r〈s j, . . . ,s j−1〉 | B1 | . . . | Bn | a[~s] then
P1 =⇒ ∗a(x).P | R1 | . . . | R′j | . . . | Rn | B1 | . . . | Bn | a[~s], where R j =⇒ R′j and R′j is a
blocking server subterm of P and Q′ | CodeBlocks | r〈s j, . . . ,s j−1〉 | B1 | . . . | Bn | a[~s] =⇒
Loop | CodeBlocks | r〈s j+1, . . . ,s j〉 | B1 | . . . | Bn | a[~s].
For the symmetric case
If P1 −→ ∗a(x).P | R1 | . . . | R′i | . . . | Rn | B1 | . . . | Bn | a[~s] then we choose a processe
P′2 ≈ P2 (from lemma G.4) such that
P′2 = Loop | CodeBlocks | r〈si,s j . . . ,s j+1〉 | B1 | . . . | Bn | a[~s]

Now we can observe P′2 =⇒ Loop | CodeBlocks | r〈s j, . . . ,si〉 | B1 | . . . | Bn | a[~s] and
∗a(x).P |R1 | . . . |R′i | . . . |Rn |B1 | . . . |Bn | a[~s] =⇒∗a(x).P |R1 | . . . |R′′i | . . . |Rn |B1 | . . . |Bn | a[~s]
where R′′i is a blocking subterm of P.
This completes the proof.

H Performance Evaluation of the LN-Transform
This Appendix presents a benchmark evaluation of the type-directed transformation from
multithreaded to thread-eliminated (i.e. event-driven) programs by the LN-transform (§ 4).
The benchmark compares the performance of implementations of the Server processes from
Examples 4.1 and 4.1 under load from a varying number of concurrent clients, ranging up to
1000. As discussed earlier, event-driven concurrency is typically regarded as trading perfor-
mance for more complex implementation; the present benchmark examines these aspects
from each side of the trade-off. First, the results show that the LN-transformed Server ex-
hibits the performance and scalability improvements expected of thread-elimination. The
second and key point, however, is that the LN-transformation, with formal justification
by asynchronous session bisimilarity (Theorem 4.4), ensures the thread-eliminated Server
preserves equivalent behaviour to the original. This benchmark thus demonstrates how the
session-oriented behavioural equivalence theory presented in this paper can be directly ap-
plied to the development of practical tools for real-world concurrent programming.
Benchmark Programs. The implementation and execution of the session-typed bench-
mark applications uses SJ (Session Java) [13] with extensions for event-driven session
programming [12]. The session type implemented by the multithreaded Server (MT) is
a slightly modified version of the type from Example 4.1 (to allow variation of the message
size), which written in SJ syntax is:

39

● ● ● ●
●

●

10 100 300 500 700 900

0

1

2

3

4

5

Number of Clients

T
hr

ou
gh

pu
t (

se
ss

io
ns

/m
ill

is
ec

on
d)

● MT.100
MT.1000
TE.100
TE.1000

Fig. 13. Throughput of multithreaded (MT) and LN-transformed (TE) SJ Servers under increasing
client loads.

?(byte[]).!<byte[]>.?(byte[]).!<byte[]>

The MT Server spawns a new thread to execute a session of this type for each client that
connects. The LN-transformed Server (TE) uses a single-threaded central event-loop to dis-
patch the input events of the above type across concurrent sessions one-by-one, following
Example 4.1. The same Client program, which implements the dual of the above type, is
used to interact with both the MT and TE Servers.

Methodology and Environment. The benchmark measures Server throughput in terms of
the number of Client sessions completed per millisecond. The benchmark parameters are
the message size (100 Bytes and 1 KB), and the number (10, 100, 300, 500, 700 and 900)
of concurrent Clients, which simply request and execute repeated sessions with the Server.
After the execution of the benchmark configuration has stabilised, a measurement is taken
by recording the number of sessions completed by the Server within a 30 s measurement
window. For each parameter combination, we take measurements from three windows to
each Server instance, and repeat the whole benchmark 20 times.

The benchmark is conducted in the following cluster environment: each node is a Sun
Fire x4100 with two 64-bit Opteron 275 processors at 2 GHz and 8 GB of RAM, running
64-bit Mandrakelinux 10.2 (kernel 2.6.11) and connected via gigabit Ethernet. Latency be-
tween each node is measured to be 0.5 ms on average (ping 64 bytes). The benchmark
applications are compiled and executed using the Sun Java SE compiler and Runtime ver-
sions 1.6.0.

Results. Figure 13 gives the mean throughput for the multithreaded (MT) and thread-
eliminated (TE) Server implementations for the increasing number of Clients. In all cases,
as expected, the TE Server exhibits higher throughput than the MT server. We observe that
the throughput of the MT Server decreases steadily due to the thread scheduling overhead.
For the TE Server, there is first an increase in throughput, until the saturation point for the
Server performance is reached, and then a decline as the number of Clients increases, due
to the cost of the event selector handling more Client connections. We also observe higher
throughput for the smaller message size: this is because more messages of the smaller size
can be transmitted, and thus more sessions can be completed, in the same period of time.

40

