
On the Expressiveness of Multiparty Sessions

Romain Demangeon1 and Nobuko Yoshida2

1 Université Pierre et Marie Curie, Paris 6
2 Imperial College London

Abstract
This paper explores expressiveness of asynchronous multiparty sessions. We model the behaviours of
endpoint implementations in several ways: (i) by the existence of different buffers and queues used to
store messages exchanged asynchronously, (ii) by the ability for an endpoint to lightly reconfigure his
behaviour at runtime (flexibility), (iii) by the presence of explicit parallelism or interruptions (exceptional
actions) in endpoint behaviour. For a given protocol we define several denotations, based on traces of
events, corresponding to the different implementations and compare them.

Keywords and phrases concurrency, message-passing, session, asynchrony, expressiveness

1 Introduction

Asynchronous Multiparty Sessions In large-scale distributed infrastructures, most interactions
are based upon the production of interleaving flows of messages between independent participants.
Verification of such distributed protocols is challenging: participants are executing applications
written in different languages and the way messages are treated between production and consumption
may vary. The presence of intermediate layers where on-transit messages are stored and transferred
via, e.g. buffers or queues, makes the analyses difficult, even with the guarantee that the order of
messages is preserved for each intermediate structure.

The approach of multiparty session types [11, 7] (extended from the binary [10]) introduced a
flexible formal method for verification of message-passing protocols without central control: the
desired interactions at the scale of the network itself are specified into a session (called global type).
These formal objects describe interactions between all participants through simple syntax including
send and receive operations, choice and recursion. Global types are then projected onto several local
types (one for each participant), which describe the protocol from a local point of view. These local
types are used to validate an application through type-checking or monitoring. Theory of session
types guarantees that local conformance of all participants induces global conformance of the network
to the initial global type. Sessions type theory is well-studied and gave birth to languages such
as Scribble [22], directly inspired by formal session types, letting developers specify and verify
(through automatically generated monitors) distributed protocols and applications, e.g. for large
cyberinfrastructures [8] and business protocols [15].

Although various extensions of multiparty sessions [11] are studied, several fundamental open
problems remain, such as expressiveness questions: whether permutations of types (used to compen-
sate the order of arrival of messages from different sources) [16, 6, 17] and interruptible sessions [8]
are more expressive than standard sessions or not. We require a canonical methodology to compare
these extensions systematically.

Session type expressiveness This paper explores and compares expressiveness of different semantics
for asynchronous multiparty sessions in the literature, based on message traces.

We first study the effect of buffers – order-preserving stores for in-transit messages – on the
expressiveness. For instance, adding buffers on the sender side (messages are stored in a queue after
being produced and before being transferred to the receiver) is innocuous, whereas receiver-side
buffers can produce deadlocks. As an example, consider global type G = r → q : m, q → p :

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Initial

p : q?m1.r?m2.end

q : r?m.p!m1.end

r : q!m.p.m2.end

p J ε

q J ε

r J ε

Ongoing

p : q?m1.r?m2.end

q : r?m.p!m1end

r : end

p J 〈m2〉

q J 〈m〉

r J ε

Deadlock

p : q?m1.r?m2.end

q : end

r : end

p J 〈m2〉 〈m1〉

q J ε

r J ε

Figure 1 Configurations with single input queues for G

Initial

p : q?m1.r?m2.end

q : r?m.p!m1.end

r : q!m.p.m2.end

p J r ε p J q ε

q J r ε q J p ε

r J q ε r J p ε

Ongoing

p : q?m1.r?m2.end

q : r?m.p!m1end

r : end

p J r 〈m2〉 p J q ε

q J r 〈m〉 q J p ε

r J q ε r J p ε

No Deadlock

p : q?m1.r?m2.end

q : end

r : end

p J r 〈m2〉 p J q 〈m1〉

q J r ε q J p ε

r J q ε r J p ε

Figure 2 Configurations with multiple input queues for G

m1, r→ p : m2.end which consists of a sequence of three messages exchanged between three partic-
ipants. It is projected to local types p : q?m1.r?m2.end, q : r?m.p!m1.end and r : q!m.p!m2.end,
in which each participant (p, q, r) is expected to perform two consecutive actions. q!m is the output
of message m to q and r?m is the input of message m from r. end denotes termination. If each
participant uses one buffer on the receiver-side (called input queue), message m2 can be arrived and
be enqueued in the structure of p before m1, leading to a deadlock (as p expects to consume m1 first),
as described in Figure 1. There exist several ways to allow usage of buffers on the receiving side
without risking deadlocks. First, one can separate the input queue into several input queues (as in [7]),
one for each possible sender, a program being allowed to consume messages from any queues. In our
example, m2 (coming from r) and m1 (coming from q) would be stored in different input queues at
p, allowing m1 not to be blocked by an early arrival of m2. This situation is described in Figure 2.
Alternatively, one can introduce flexibility in the program running at p to make it able to accept m2
before m1. Formally, it boils down to a permutation of p : q?m1.r?m2.end to p : r?m2.q?m1.end,
adapting it to the order of arrival of m1 and m2.

Configurations and traces The common framework we use to describe session networks is config-

urations (drawn from [2]), which are collections of local types – the remaining expected actions for all
participants – and queues – the order-preserving structures storing in-transit messages. For instance,
the deadlocked situation explained above is described by configuration p : q?m1.r?m2.end, q :
end, r : end, (p J: 〈q, p,m1〉.〈r, p,m2〉) where q and r are finished, p expects to first receive m1
then m2 and the (only) input queue at p is ready to deliver m2 then m1.

From these configurations, we extract traces to compare semantics. They are mappings from
participants to sequences of actions, send or receive events, ordered locally: two events at the same
location are ordered, but two events performed by different participants are not. As an example, a trace
σ leading to the configuration above from the initial configuration is s.t. σ(p) = ε, σ(q) = r?m.p!m1,
σ(r) = q!m.p!m2, describing the fact that m1 and m2 have been sent by r and q, but not yet received

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

by p. The traces contains no information on whether m1 was sent before of after m2.
A protocol can then be given a denotation, w.r.t. a given semantics, as a set of completed local

traces, that is, traces of configurations which cannot progress further. Different semantics yield
different denotations for the same type; for instance, the denotation of G under a semantics with
simple input queues contains traces stopped at deadlocked configurations (such as σ), whereas the
denotation of G under a semantics with multiple input queues (as described above) will only contain
completed traces (traces reaching a configurations where all local types are end).

Parallel and interruptible sessions Next we study the impact on expressiveness of two different
constructs: the parallel composition, explicitly notifying that two actions can appear in any order and
interruptions. Interruptible sessions have been studied in [12, 8] through the use of scopes describing
sessions in which a participant can, at any time, raise a interruption to stop the current block of
interactions. Suppose {|p → q : m1.q → r : m2.end|}c〈i by p〉; p → r : m3. In {|G|}, m2 is
supposed to be sent by q after receiving m1. Participant p can interrupt the session at any time, as
specified in 〈i by p〉, for instance after sending m1, by broadcasting the message i. If i reaches q after
m1 is received and before m2 is sent, q will not send m2 and the session continues with message m3
from p to r.

Contributions This paper systematically compares the expressiveness of different semantics of
multiparty session types based on: (i) the presence and the nature of different data structures used to
store messages on either side of communications, (ii) the flexibility of the local types – defined as a
subtyping relation, and (iii) the presence of parallel and interruptions.

For the first time, we use sets of languages of local traces to compare expressiveness. We prove,
for (i) that the introduction of universal input queues (buffer storing incoming messages regardless
of their provenance) leads to deadlock but that in absence of such structure, the denotation of any
session G stays the same, regardless of the structures used. We then introduce flexible subtyping
(ii) which permutes the order of local actions in a limited way. We explain how the combination of
flexibility and queues can lead to deadlocks and prove that using flexibility yields greater expressive
power. Finally (iii), we claim that session parallelism and interruption have greater expressiveness
using our local trace formalism.

2 Multiparty Session Types

Sessions, seen as protocol specifications, are described by global types G [11, 7], the main objects
being compared in this work. A global type specifies the interactions expected to happen in a session,
between several participants (denoted by p, q, r), seen from an omniscient point of view. Syntax of
the global and local types is given by:

G ::= end | µt.G | t | r1 → r2{mi.Gi}i∈I
T ::= end | µt.T | t | p?{mi.Ti}i∈I | p!{mi.Ti}i∈I

We call the different (mi)i∈I sets of messages. Type end is a termination of session, which we
sometimes omit. µt.G and t are the recursion operators. We manipulate equirecursive types, not
distinguishing between µt.G and G[µt.G/t]. We assume recursion variables t are guarded, i.e. they
appear only under some prefix. r1 → r2{mi.Gi}i∈I is the basic interaction inside global types:
participant r1 is expected to send message mj to participant r2 – we assume r1 6= r2; according to
the j chosen by the sender, the protocol will continue as global type Gj . We write p→ q : m1.G1
when |I| = 1. We sometimes write q? or r! when the message is not relevant.

Local types describe these protocols from the point of view of a participant and are considered
as local guidelines distributed processes must follow. Interactions are decomposed into two sides:
input p?{mi.Ti}i∈I and output p!{mi.Ti}i∈I . Local types are effectively (potentially infinite) trees

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

of input and output actions. We often write p!m.T or p?m.T for a singleton and p! if the message is
not important.

Projections Local types are obtained from global types through projection G�(r) (the projection of
a global type G onto a participant r). Projection is given by the following rules:

end�(r) = end t�(r) = t
µt.G�(r) = µt.G�(r) (if G�(r) 6= t) µt.G�(r) = end (otherwise)

r1 → r2{mi.Gi}i∈I�(r) = r!{mi.Gi�(r)}i∈I (if r = r1)
r1 → r2{mi.Gi}i∈I�(r) = r?{mi.Gi�(r)}i∈I (if r = r2)
r1 → r2{mi.Gi}i∈I�(r) = G1�(r) (otherwise, and ∀i, j ∈ I.Gi�(r) = Gj�(r))

Recursive global types are projected into recursive local types except when projection name r does
not appear in a recursion block, i.e. r is not involved in the recursion, thus projection is end. When
projecting an communication, if the projection name is the sender (resp. the receiver), the result will
be a send (resp. receive) action. If the name is not involved in the communication, the first branch is
chosen to continue projection. In the last rule, a choice made during a communication is unobservable
to other participants, hence projections in all branches are the same (see [11]). We call projectable
global types well-formed and assume all types are well-formed in the following.

I Example 1 (Projection). Consider G = p → q : m.q → p : m1.r → p : m2.end, described
above. This global type describes a session composed of three interactions: r sends a message m to q
which then sends a message m1 to p and finally r sends a message m2 to p. Projection of G onto its
three participants gives: {r : q!m.p!m2, q : r?m.p!m1, p : q?m1.r?m2}.

As seen above, local types do not represent a direct causality between sending m1 and m2 as the
actions are done by different participants. There is however causality between the reception of m1
and m2 from the point-of-view of p – should the semantics be synchronous, this causality would be
propagated to send operations.

3 Expressiveness of Multiparty Session Configurations

This section first defines the operational semantics of multiparty session types as session configura-
tions. Then we define our notion of expressiveness, introducing the denotational semantics. Finally
we show that (without asynchronous subtyping), expressive powers of all semantics are equivalent.

Semantics for sessions are transitions between configurations ∆: models of the state of a system
through (i) a set of local types describing remaining actions to be performed by the participants and
(ii) queues describing messages currently travelling in the networks. Semantics presented below are
parametric w.r.t. the existence (and usage) of such queues.

3.1 Configuration semantics

The syntax of configurations (∆) and queues (Q) is given below:

∆ ::= ∅ | p : T,∆ | Q,∆ h ::= ε | 〈p, q,m〉.h
Q ::= (p J q : h) | (p I q : h) | (p J: h) | (p I: h)

Queues can be output queues (p I q : h), (p I: h) and store messages after they are produced by a
participant – before they travel through the network – or input queues (p J q : h), (p J: h) and store
messages before they are consumed by a participant – after they arrived from the network.

Queues can be linked to a single endpoint, the endpoint consuming messages for input queues,
and the endpoint producing messages for output queues. They are written (p J: h) and (p I: h) and
are called single queues. Queues can also be labelled by two endpoints (source and destination of the
message) and are in this case called multiple queues and written (p J q : h) and (p I q : h).

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

(Com) p : q!{mi.Ti}i∈I , q : p?{mi.Ti}i∈I
pq:mj−−−−→ p : Tj , q : Tj j ∈ I

(InIn) q : p?{mi.Ti}i∈I , (q / p : 〈p, q,mj〉.h) p?q:mj−−−−→ p : Tj , (q / p : h) j ∈ I

(OutIn) p : q!{mj .Ti}i∈I , (q / p : h) p!q:mj−−−−→ p : Tj , (q / p : h.〈p, q,mj〉) j ∈ I

(InOut) q : p?{mi.Ti}i∈I , (p . q : h.〈p, q,mj〉)
p?q:mj−−−−→ p : Tj , (p . q : h) j ∈ I

(OutOut) p : q!{mi.Ti}i∈I , (p . q : h) p!q:mj−−−−→ p : Tj , (p . q : 〈p, q,mj〉.h) j ∈ I
(Transit) (p . q : h.〈p, q,m〉), (q / p : h) τ−→ (p . q : h), (q / p : 〈p, q,m〉.h)

(Par) ∆1
`−→ ∆′1 =⇒ ∆1,∆2

`−→ ∆′1,∆2

(p / q : h) (resp. (p . q : h)) stands for either (p J q : h) (resp. (p I q : h)) or (p J: h) (resp. (p I: h))

Figure 3 Operational semantics of session cofigurations

Rule (OutOut)

p : q!m.Tp

q : p?m.Tq

p J r . . .

p I . . .

p J q . . .

q J r . . .

q I . . .

q J p . . .

Rule (Transit)

p : Tp

q : p?m.Tq

p J r . . .

p I 〈m〉 . . .

p J q . . .

q J r . . .

q I . . .

q J p . . .

Rule (InIn)

p : Tp

q : p?m.Tq

p J r . . .

p I . . .

p J q . . .

q J r . . .

q I . . .

q J p 〈m〉 . . .

Figure 4 Illustration of several rules in the semantics (M, 1)

The transition rules are given in Figure 3. In the following, the system will either (i) have no input
(resp. output) queues, or (ii) one single input (resp. output) queue per participant and no multiple
input (resp. output) queues, or (iii) one multiple input (resp. output) queues per pair of participants
and no multiple input (resp. output) queues. A system with n participants with single input (resp.
output) queues will have n input (resp. output) queues. A system with n participants with multiple
input (resp. output) will have n2 input (resp. output) queues. In the last rule, ` denotes a label which
is either input (p?q : mj), output (p!q : mj), internal action (τ) or synchronisation (pq : m).

A semantics φ is defined by a pair (I,O) representing the nature of the input and output queues
of the system. I (resp. O) can be 0 (no input (resp. output) queues), 1 (single input (resp. output)
queues), or M (multiple input (resp. output) queues). This effectively defines 9 different semantics
using different sets of rules. They are summarised in Table 1.

Figure 4 illustrates the three rules used by semantics (M, 1), i.e. a semantics with single output
queues and multiple input queues. Rule (OutOut) consumes the action q!m of participant p to
produce message 〈p, q,m〉 (noted as only 〈m〉 in the picture) in the output queue (p I). When
the message reaches the end of the queue, it is dispatched to the input queue (p J q) through rule
(Transit). Eventually, the message will be ready to be consumed by the action p?m of participant q by
rule (InIn).

The (0, 0) semantics is the synchronous semantics. The three semantics (1, _) are called the
single-input semantics or unsafe semantics and the six other ones are called safe semantics. These
names come from Proposition 11. We say that ∆1

`−→ ∆2 through semantics φ when ∆1
`−→ ∆2 is

derived with rules belonging to φ (according to Table 1).
In the following, we consider that two systems are different if the possible sequences of actions

for one participant differ. We only consider the order of actions happening locally. We will compare

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

(0, 0) (0, 1) (0,M) (1, 0) (1, 1) (1,M) (M, 0) (M, 1) (M,M)
(Com) √

(InIn) √ √ √ √ √ √

(OutIn) √ √

(InOut) √ √

(OutOut) √ √ √ √ √ √

(Transit) √ √ √ √

Table 1 Rules used by the different semantics φ

configuration traces, which are collections of local traces.
An event e is either a send event p!m or a receive event p?m. For a participant, sending

corresponds either to a communication (synchronous semantics), or putting a message in its own
output queue ((_, 1) and (_,M)), or putting a message in the target input queue (_, 0).

I Definition 2 (Configuration traces). A configuration trace σ is a mapping from participants
to finite sequences of events: σ(r) = (e)n≤N for N ∈ N. We use ε for the empty sequence. A
participant r is in the domain of σ if σ(r) 6= ε. The length of a trace σ is the sum of the length of the
sequences σ(r) for all r in its domain. We say σ ≤ σ′ when ∀r, σ(r) is a sequence prefix of σ′(r).

The relation between traces and configuration is given by the relation ∆ σ
φ ∆′ meaning ∆

executes trace σ0 to ∆ for semantics φ defined with:
1. For any configuration ∆ and semantics φ, ∆ σ0

φ ∆ where σ0 is defined by: for all roles r,
σ0(r) = ε.

2. For any configurations ∆, ∆1, ∆2, any trace σ, any label `, and any semantics φ, if ∆ σ
φ ∆1

and if ∆1
`−→ ∆2 through φ, then we define ∆ σ′

φ ∆2 as follows:
a. if ` = p!q : mj , then σ′ is defined by: σ′(p) = σ(p).q!mj and σ′(r) = σ(r) for r 6= p.
b. if ` = p?q : mj , then σ′ is defined by: σ′(q) = σ(q).p?mj and σ′(r) = σ(r) for r 6= p.
c. if ` = pq : mj , then σ′ is defined by: σ′(p) = σ(p).q!mj , σ′(q) = σ(q).p?mj and σ′(r) =
σ(r) for r /∈ {p, q}.

d. if ` = τ , then σ′ = σ.

A trace σ is in the trace set of a configuration ∆ for a semantic φ, written σ ∈ Tφ(∆), (we
sometimes write ∆ has trace σ for semantics φ) whenever there exist ∆′ s.t. ∆ σ

φ ∆′. The trace
set of a global type G for the semantics φ is the trace set for semantics φ of configuration δ(G)
defined by δ(G) = r1 : T1 . . . , rn : Tn, Q1, . . . , Qn where r1, . . . , rn are the roles involved in G,
Ti = G�(ri), and Qi are all empty ε and correspond to φ. A terminated trace of a global type G for
the semantics φ is a trace σ s.t. δ(G) σ

φ ∆ where ∆ 6→. A completed trace of a global type G for
the semantics φ is a trace σ s.t. δ(G) σ

φ 0 where 0 = r1 : end, . . . , rn : end, Q1, . . . , Qn where
Qi are all ε. A completed trace is terminated.

I Example 3 (Configuration). Let ∆e = {p : q!m1.r!m3, q : p?m1.r!m2, r : q?m2.p?m3}
(cf. Example 1). The initial configuration from Ge for (0, 0) is ∆e, the one for (M, 1) is ∆e, (p I:
ε), (q I: ε), (r I: ε), (p J q : ε), (p J r : ε), (q J p : ε), (q J r : ε), (r J p : ε), (r J q : ε). Both
configurations can evolve along the terminated trace σe : p 7→ q!m1.r!m3, q 7→ p?m1.r!m2, r 7→
q?m2.p!m3 even if non-terminated traces are different; for instance σt : p 7→ q!m1, q 7→ ∅, r 7→ ∅ is
a valid trace from Ge by (M, 1) and not by (0, 0).

3.2 Expressiveness via denotational semantics

We can extract from Definition 2 a denotation of a global type G, w.r.t a particular semantics, as the
set of terminated traces of G. We can compare, for a given type G, the terminated traces of G for
two different semantics. As sessions ensure the local interaction follows an expected behaviour, local
traces are strongly constrained by the semantics. This observation is still useful for two reasons: (i) it

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

establishes a distinction between safe semantics which prevents deadlocks from arising and unsafe
semantics, and (ii) further operations (§ 4, 5.1 and 5.2) on types will remove this constraint. Secondly,
we can associate, to a type G containing n participants, the languages {Li}i≤n corresponding to the
local traces in the set of terminated traces for G. We can then consider the expressive power of φ
as the set of all languages obtainable for all possible G with φ. We define φ1 has greater expressive
power than φ2 if all languages in the expressive power of φ2 are in the expressive power of φ1.

I Definition 4 (Denotation of a type under a semantics). We define the denotation of global
type G under semantics φ, noted D(G,φ), as the set of all terminated traces from G w.r.t. φ.

I Definition 5 (Progress). We say that φ ensures progress if for all G, D(G,φ) contains only
completed traces.

If role r appears in G, D(G,φ, r) is the set of all local traces for r obtained from terminated traces
of D(G,φ) , that is D(G,φ, r) = {σ(r)|σ ∈ D(G,φ)}.

I Definition 6 (Expressive power of a semantics). We define the expressive power of semantics
φ as follows: {D(G,φ, r) | r ∈ G and G well-formed}, that is, the collection of all languages of
local traces corresponding to terminated traces from well-formed global types.

3.3 Expressiveness results (without subtyping)

The first theorem (Theorem 10) states that all safe semantics give the same denotations: adding
non-single-input queues has no influence on denotations. We first prove confluence of semantics by
stating that we can always complete a trace of any semantics by using synchronous semantics.

I Lemma 7 (Confluence of trace semantics). Let φ1 be a safe semantics and G a well-formed
global type. If δ(G) σ

φ1
∆, there exists ∆′, σ′ s.t. δ(G) σ.σ′

φ1
∆′ and δ(G) σ.σ′

(0,0) ∆′

Proof. We first prove that if σ is a valid trace for φ but not for (0, 0), it has outputs with unmatched
inputs. We then prove that (as the semantics is safe), messages in transit can be moved and consumed
at their destination. We thus reach a configuration with only empty queues with a trace corresponding
to a synchronous one. J

I Definition 8 (Prefix). Let T be a type, σ a trace and r a participant. The prefix relation
σ(r) <p T is defined as: (1) ε <p T ; (2) p!mj .σ <p q!{Ti}i∈I and σ <p Tj ; and (3) p?mj .σ <p

q?{Ti}i∈I and σ <p Tj .

I Lemma 9 (Session fidelity). Let φ be a safe semantics and G a well-formed global type. If
δ(G) σ

φ ∆, r ∈ G, then σ(φ) <p G�(r).

Proof. Easy by induction over the length of σ, noticing that the possible actions of r are constrained
by G�(r). J

I Theorem 10 (Expressiveness of safe semantics). For any G, the sets D(G,φ) for all safe φ
are the same.

Proof. Done by proving that all safe semantics are equivalent to the synchronous one: local traces
stay the same, as they are constrained by the initial global types. Suppose σ1 is a completed trace for
φ1. By using Lemma 7 there exists σ′1 s.t. σ1.σ

′
1 is a trace for φ1 and (0, 0). By Lemma 9, σ′1 is ε. It

follows that σ1 is a completed trace for (0, 0), thus a completed trace for φ2. J

However, unsafe semantics are not comparable with the others, as they lead to deadlocks.

I Proposition 11 (Single input deadlock). Unsafe semantics do not ensure progress.
© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Proof. Consider a global type Ge = p→ q : m1.q→ r : m2.p→ r : m3 with the (1, 0) semantics
(same reasoning applies to (1, 0) and (1,M)). After the sequence p!q : m1.p!r : m3.p?q : m1.q!r :
m2, r type is q?m2.p?m3.end and its queue is (r J • : 〈p, r,m3〉〈q, r,m2〉) meaning the system
can no longer proceed: r expects m2 then m3 but the queue offers m3 then m2. J

I Proposition 12 (Regularity). The languages in expressive power of safe semantics are regular.

Proof. Suppose G is a session type containing participant p. We prove that the traces accepted by
local T = G�(r) by induction on T .

If T = end, the set of possible completed traces is ∅ and we conclude.
If T = q?{mi.Ti}i∈I , then the possible completed traces q?lj .t all start with one q?lj and follows
by an accepted trace tj of Tj . By induction, the language Lj of all tj is regular. Thus the accepted
language is the sum, for all j of the traces q?lj .Lj , and is regular. Same reasoning holds for
T = q!{mi.Ti}i∈I .
If T = µt.T ′(t) we check the number of occurrences of end in T ′(t). If end does not appear,
the accepted language of T is ∅. Otherwise, by masking about the recursion token t, we can see
the accepted traces of T ′ as a sum of language ΣLk, each language Lk corresponding of one
branch of T ′. There is at most one branch ending with t, suppose it is the branch corresponding
to L1, it means the accepted traces of T are (L1) ∗ .(Σk 6=1Lk), which is regular. J

I Remark (Asymmetry of expressiveness). Progress requires input queues to be multiple (or no
input queues at all), but is independent from output queues. Output queues do not affect expressiveness
as they cannot block endpoints: if there is an input queue, the former can always unload its content in
the latter, if there is none, as the order of messages in the output queue matches the order of the session,
session type soundness ensures progress. Without input queues, session fidelity [11] is required, for
instance consider the configuration r : p!m1.q!m2.end, p : q!m3.r?m1.end, q : r?m2.p?m1.end.
Terminated traces are different for (0, 0) and (0, 1) (in this case, the system is blocked as it would
require m2 to be sent before m1) and for (0,M) (the system can proceed to a completed state);
however, the initial configuration does not correspond to a global type.

4 Expressiveness of subtyping

As described in the previous section, the mechanisms of session maintain an order over local
components traces: actions performed by the participants happen in the exact order expected by
types. As a consequence, if transport structures change the order of arrival of messages from different
sources – a realistic assumption, this condition can lead to deadlocks.

Implementations of session types [22, 18] sometimes enforce flexibility for the endpoint applica-
tion: for instance, by allowing two outputs expected to be sent sequentially to be performed in any
order. This flexibility is represented formally by the use of subtyping, as in [16, 6, 17], describing
transformations on types by switching pairs of consecutive actions. We study input-input and output-
output flexibility which make it possible to exchange two consecutive actions of the same nature.
Input-output (resp. output-input) flexibility allows one output (resp. input) to be performed before
previously expected inputs and outputs.

4.1 Subtyping rules

As explained above, input-input flexibility offers the possibility for the second input in a se-
quence of two consecutive inputs to be executed first. For instance, input flexibility allows type

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

p?m1.q?m2.p!m3.end to be converted into q?m2.p?m1.p!m3.end. Consider the following types:

T = p?
{
m11.q?m2.p!m3.end
m12.q?m2.p!m4.end

T ′ = q?m2.p?
{
m11.p!m3.end
m12.p!m4.end

In T , the first input is branching and models a program reacting to two different messages from
p, either m11 or m12. In both branches, a message m2 from q is expected. One would expect an
input-input flexible program to be able to accept message m2 if it arrives first, which would mean
converting T to T ′, which means T ′ is a subtyping of T .

For a subtyping definition, we introduce the input and output contexts. They are parametered with
the name of the participant of the action being permuted, as we do not exchange two actions with
the same participant. An input (resp. output) context is a term formed only of branched input (resp.
output) actions, seen as tree where each branch finishes with a hole. Input-output and output-input
contexts contain both type of actions, they only differ in the name verification.

I Definition 13 (Input/Output contexts). Input and input/output type contexts are defined by:

Cq
I ::= [] | p?{mi.Cq

I }i∈I (p 6= q) Cq
IO ::= [] | p?{mi.Cq

IO}i∈I | r!{mi.Cq
IO}i∈I (r 6= q)

Cq
O ::= [] | q!{mi.Cq

O}i∈I (p 6= q) Cq
OI ::= [] | p!{mi.Cq

OI}i∈I (p 6= q) | r?{mi.Cq
OI}i∈I

Flexibility is defined by the subtyping rules, which realise the possible exchanges in branched types.

I Definition 14 (Subtyping). Subtyping ≤ is coinductively defined by the following rules:

(II) ∀(i, k), Ti ≤ q?mk.Cp
I [T ′

i] q 6= p
p?{mi.Ti}i∈I ≤ q?{mk.Cq

I [p?{T ′
i}i∈I]}k∈K

(OO) ∀(i, k), Ti ≤ q!mk.Cp
O[T ′

i] q 6= p
p!{mi.Ti}i∈I ≤ q!{mk.Cq

O[p!{T ′
i}i∈I]}k∈K

(IO) ∀(i, k), Ti ≤ q!mk.Cp
IO[T ′

i] q 6= p
p!{mi.Ti}i∈I ≤ q?{mk.Cq

IO[p!{T ′
i}i∈I]}k∈K

(OI) ∀(i, k), Ti ≤ q!mk.Cp
OI[T

′
i] q 6= p

p?{mi.Ti}i∈I ≤ q!{mk.Cq
IO[p?{T ′

i}i∈I]}k∈K

Subtyping is extended on configurations. To describe semantics with subtyping, we define a subtyping
policy P as a subset of {OO, II,OI, IO} abiding to OO ∈ P ⇒ OI ∈ P and OI ∈ P ⇒ OO ∈ P .
We use the notation T1 ≤P T2 to state that T1 ≤ T2 is derivable using only rules in P . We consider
semantics φ associated to a subtyping policy P , which are obtained by adding the following rule:

(Sub : P) ∆1
l−→ ∆2 ∆′1 ≤P ∆1 =⇒ ∆′1

l−→ ∆2

Subtyping makes it possible to first perform an action that is present in the branches of all possible
behaviours. (II) performs inputs from different senders in any order; (OO) performs an output before
other outputs to different receivers, (IO) allows an output to be performed before other actions with
different participants, and (OI) allows an input to be performed before other actions with different
participants.

4.2 Progress and expressiveness of flexibility

Flexibility introduces deadlock under the synchronous semantics. For instance, consider the global
type r → q : m.q → p : m1.r → p : m2.end. In one application of (IO) on the initial configura-
tion, we reach configuration (r : q!m.p!m2, q : p!m1.r?m2, p : q?m1.r!m2) which is locked for
synchronous semantics, and we have no means to retrieve initial configuration. Proposition 16 and
Table 2 describe which association of a semantics φ and a set of subtyping rules P avoid deadlocks.
A subtyping policy P is safe w.r.t. a semantics φ if the system P ensure progress under φ.

I Lemma 15. ∅, {OO} and {II} and {OI, IO} are safe w.r.t. all safe semantics.
{IO} is safe w.r.t. all non-synchronous semantics.
{OI} is unsafe w.r.t. all semantics.

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

(0, 0) (0, 1) (0, D) (1, 0) (1, 1) (1, D) (D, 0) (D, 1) (D,D)
∅ √ √ √ × × × √ √ √

II √ √ √ √ √ √ √ √ √

OO √ √ √ × × × √ √ √

IO × √ √ √ √ √ √ √ √

OI × × × × × × × × ×
IO,OI √ √ √ √ √ √ √ √ √

Table 2 Safe subtyping with respect to semantics

I Proposition 16 (Safe subtyping). Safety for subtyping policy and semantics is given by Table 2:
"√" represents a safe semantics, and "×" an unsafe one.

For a given semantics, one can use subtyping to complete traces that are not possible without
it. As a simple example consider p → q : m1.p → r : m2, trace r!m2.q!m1 is accepted with
OO-subtyping but cannot be accepted otherwise. We use D(G,P, φ) to represent the denotation of
type G under semantics φ and subtyping rules P . Below Proposition 17 confirms that subtyping
actually changes the denotations of types. Theorem 18 states that subtyping accept traces beyond the
regular languages.

I Proposition 17 (Denotations in presence of subtyping). If φ is safe and P1 (P2,
1. for all projectable global type G, D(G,P1, φ) ⊆ D(G,P1, φ)
2. there exists a projectable global type G, D(G,P1, φ) (D(G,P1, φ)

Proof. 1. Direct, as all completed traces for P1, φ are completed traces for P2, φ.
2. For instance if P1 is ∅ and P2 is II, the denotation D(r→ p : m1, q→ p : m2,P2, φ) contains a

trace σ s.t. σ(p) = q?m2.p?m1, whereas all traces σ in D(r→ p : m1, q→ p : m2,P1, φ) are
s.t. σ(p) = p?m1.q?m2. J

I Theorem 18 (Expressive power of subtyping). The expressive power of subtyped sessions is
strictly greater than the expressive power of standard sessions.

Proof. We prove that the expressive power of subptyped sessions contained non-regular languages.
Consider the type G = µt.p → q.p → r.t. Its projection on p is T = µt.(q!.r!.t + q.end).
Although it is of no importance for the following, we can establish the possible completed traces
from T by the safe semantics (∅, ∅) is (q!.r!)∗.q!. (1) With the semantics (∅, {OO}), it is easy to see
the language L of possible completed traces are all the words obtain by shuffling q!n+1 and r!n: all
completed traces that contains n !q contains exactly (n − 1) r! and type permutations allow us to
move any r! leftwards in any trace and stay inside the completed trace set – thanks to the OO rule.
(2) The shuffling of q!n+1 and r!n is not regular. It follows from Proposition 12 that there does not
exist a type G s.t. the language of possible traces for p in G�(p) is L. J

5 Expressiveness of parallel and interruptible sessions

We study here the influence on expressive power of two different updates of the language syntax: the
addition of parallel composition and interruptible scopes.

5.1 Influence of parallel composition

In the previous section, the reduction rules are updated with subtyping, giving flexibility to the local
endpoint. Similar behaviour can also be reached by adding in the syntax a parallel operator explicitly
stating that two actions can be performed in any order. We consider in the following, parallel sessions
which are sessions with the additional constructs for parallel composition G1 | G2 and T1 | T2.
Related projection and semantics rules are standard and can be found in [11].

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

As expected, adding parallel composition of actions, leads to irregularity of the safe semantics.

I Proposition 19 (Parallel). Expressive power of parallel sessions contains irregular languages.

Proof. The language of completed traces accepted at p for the type µt.(p→ q.t+p→ q.end | p→
r.end) is not regular – and is a particular shuffling of q!n and r!n. J

Both subtyping rule and parallel syntax can be used to get rid of potential deadlocks. Parallel
composition allows one session designer to precisely describe which actions are unordered whereas
subtyping is a global policy for permutation. As a result, parallel sessions are more expressive than
subtyping sessions, giving a finer control over which actions can be exchanged.

I Proposition 20 (Parallel and subtyping). Parallel sessions have a strictly greater expressive
power than subtyping sessions.

Proof. For every G without parallel and every safe combination of φ and P , we can find G′ which
has exactly the same trace set. G′ is obtained from G by putting in parallel consecutive events from
G w.r.t. P . J

5.2 Expressiveness of Interruptible Session Types

Interruptible sessions introduce a mechanism for participants to exceptionally exit blocks of interac-
tions; we study here the resulting gain in expressiveness. Interruptible session types are presented
in [8, 12]: in the global type syntax, particular ranges of actions (called scopes) can be interrupted at
any time by a participant; a special message is broadcasted to all participants of the scope. As soon as
one of them is notified of the interruption, it gives up any action related to this scope. Interruptions
have been included in protocol language Scribble [22] because it was needed to represent usecases
in [1], see [12]. We prove here that this inclusion is necessary, and that such protocols cannot be
described with standard sessions.

As a simple example of the interrupt, consider:

G = {|r→ p : m.(µt.p→ q : m1.q→ p : m2.t)|}c〈i by r〉; q→ r : a.end

G is a type consisting of one interruptible scope c. It starts with message m from r to p, which
initiates a loop of messages m1 and m2 between p and q. At any time during this loop, r can decide
to stop it by raising an interruption: message i is sent to both p and q which are expected to stop
interacting with each other as soon as they receive it. After interruption, the session then resumes by
a message a from q to r.

Interruptible session types are standard session types with the addition of scope constructions.
{|G|}c〈l by r〉;G′ is the global type composed of one scope name c encompassing the type G. At
any time, progress inside G can be interrupted by participant r with a special interrupt message
carrying label l and Eend stands for a exceptionally ended scope. After G is finished - either normally
or exceptionally, the protocol continues as G′. Each scope c is associated to a set of participants
involved through the mapping Γ. Such information allows the semantics to notify each participant
when an exceptional behaviour arises. Additional projection rules needed for interruptible scopes,
projection remembers whether it projects on the name which can interrupt the scope or not, resulting
in two different constructs for interruptible local types:

{|G|}c〈l by r〉;G′�(r) = {|G�(r)|}c . 〈r?l〉;G′�(r)
{|G|}c〈l by r′〉;G′�(r) = {|G�(r)|}c / 〈r′!l〉;G′�(r) when r ∈ G otherwise G′�(r)

Excerpt of configuration semantics for interruptible sessions (details are in [8, 12]) is given be-
low through the use of evaluation contexts Cc which has a hole in {|_|} and after the sequential
composition:

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Cε = []
Cc = {|Cc|}c′ 6=c . 〈r?l〉;T ′ | {|Cc|}c′ 6=c / 〈r!l〉;T ′ | {|Cε|}c . 〈r?l〉;T ′

| {|Cε|}c / 〈r!l〉;T ′ | {|Eend|}c′ 6=c . 〈r?l〉;Cc | {|Eend|}c′ 6=c / 〈r!l〉;Cc

| {|end|}c′ 6=c . 〈r?l〉;Cc | {|end|}c′ 6=c / 〈r!l〉;Cc

(EOut) r : Cc0 [{|T |}c . 〈r?l〉;T ′], r1 : h, . . . , rn : h
→ r : Cc0 [{|Eend|}c . 〈r?l〉;T ′], r1 : 〈cI, r, r1, l〉.h, . . . , rn : 〈cI, r, rn, l〉.h

(EIn) r : Cc0 [{|T |}c . 〈q?l〉;T ′]; r : h.〈cI, q, r, l〉.h→ r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : h
(Disc) r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : 〈c1, q, r, l〉.h→ r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : h
(EDisc) r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : 〈cI

1, q, r, l〉.h→ r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : h

In this framework, in-transit messages contains scope information c, it allows interrupt messages to
exit the right scope. In (EOut), participant r decides to raise an interruption of scope c and continues
as T ′ but remembers that scope c was exited exceptionally; interruption messages are broadcasted to
all participants present in scope c. In (EIn) a participant r executing actions in scope c receives an
interrupt messages fromQ, and immediately exits c. Rule (Disc) (resp. rule (EDisc)) is used to discard
incoming standard (resp. interruption) messages to already-exited scopes.

Theorem 22 claims that session languages with interruptions have greater expressiveness. Deno-
tations resulting from interruptible session types cannot be obtained by use of parallel, choice and
flexibility subtyping. We use the following lemma whose detailed proofs can be found in Appendix.

I Lemma 21. Expressive powers of standard, parallel and subtyped sessions do not contain
languages of the form an.bk with k ≤ n.

Proof. We prove that for any global type G, L the language of completed traces for a non-
interruptible semantics of G�(p), and a and b two actions s.t. there exist traces in L with an
arbitrary number of a and b, if in all traces of L, all occurrences of a happen before all occurrences of
b, then there exists traces in L s.t. the number of occurrences of b are strictly greater than the number
of occurrences of a. This prevent L to be of the form an.bk with k ≤ n.

We prove that if in all traces of L, all occurrences of a happen before all occurrences of b, then
there exists traces in L s.t. the number of occurrences of b are strictly greater than the number of
occurrences of a. This prevent L to be of the form an.bk with k ≤ n.

If, in all traces, all occurrences of a follows all occurrences of b it means that the occurrences of
a and the occurrences of b in T are in two separate recursions – and that a and b are not allowed to
permute by the semantics. If they are in separate recursions, it follows that for a given trace t, we can
unfold the recursion containing b and obtain a possible trace. J

I Theorem 22 (Expressiveness of interruptible sessions). 1. Interruptible sessions have a
strictly greater expressive power than sessions.

2. Interruptible sessions have a different expressive power than parallel sessions.
3. Interruptible sessions have a different expressive power than subptyped sessions.

Proof. It is easy to see, as interrupts are an enrichment of the syntax, that session types with
interrupts are at least as expressive as session types.

We place ourselves in the case where the semantics is not fully asynchronous, for instance, oo is
not in the type permutation scheme, it is easy to prove the following by replacing oo by any other
type permutation.

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

We propose the following type and prove that its trace semantics does not correspond to a valid
semantics of the standard session types:

G = µt.{|p→ q.t|}c〈i by q〉; q→ p.end

Its projection on p is µt.{|q!.t|}c . 〈q?i〉; q?.end. This type is composed of infinitely many
embedded scopes. For instance it is equal to {|q!.{|q!.µt.{|q!.t|}c3 . 〈q.end?i〉; q?|}c2 .

〈q?i〉; q?.end|}c1 . 〈q?i〉; q?.end after three unfoldings.
A completed trace can be described as the following: first p continuously sends messages to
q, the ith such message belongs to the scope ci (and to all scopes k ≤ i). At some point, let
us say after n messages, q decides to interrupt a scope. It can interrupt any scope ≤ n with a
message i. Suppose it interrupts scope m ≤ n, then p receives the interruption q?i and is then
bound to receive n − m messages from q, in a descending scope order (first a message from
the continuation of scope m, then a message from continuation of scope m− 1, . . .). However,
q can further interrupt any remaining scope at any time: in this case, the number of remaining
receptions q? expected by p decreases. Note that after the first interruption, no message to q can
be sent and that the total number of receptions is strictly smaller than n. The number of initial
outputs to q is either equal to n or to n− 1, depending whether the first interruption was received
before or after the sending of the n-th message.
As oo is not in the permutation scheme, q! and q? cannot commute.
It follows that L the language of possible completed traces for T is q!n.Π(q?i.q?ki) with (Σki ≤
n+ 1), which is not regular.
We note that occurrences of q! and q? are not bound in L and that all occurrences of q? follow all
occurrences of q!. From Lemma 12, we conclude.
Suppose semantics is fully asynchronous P{ii,oi,io,oo}. Without interruptible scopes, com-
pleted traces are full shuffling of actions. Yet, the semantics of the type described above is still
q!n.Π(q?i.q?ki), as type permutations cannot be used to receive something from the continuation
of an interruptible scope before the scope is terminated – either exceptionally or normally.

Interruptible sessions are not strictly more expressive than parallel and subtyped sessions. The
languages corresponding to types µt.(p → q.t + p → q.end | p → r.end) from Proposition 19
and µt.p→ q.p→ r.t from Theorem 18 are not in the expressive power of interruptible sessions,
which does not contain shufflings.

J

6 Related Works

There is a vast literature on expressiveness studies for process calculi; we refer to [20] for a survey
(see also [21, § 2.3]). Our work is original as (i) we study expressiveness of types, based on the
language theory; (ii) we compare the design choices of the network (queue) topology (§ 3); the local
permutations (§ 4); and the type constructs (parallel in § 5.1 and and interrupt in § 5.2); and (iii) our
notion of expressiveness is based on denotational and operational: we compare completed traces of
local actions induced by a global type. As far as we have known, this is the first work to define and
investigate expressiveness based on denotations and languages made by traces of concurrecy types.

Our concurrent model stems from a previous work [2] in which networks are modeled as configu-
rations, i.e. collections of types and queues. The model used in [2] is multisession and uses routing
information updated at runtime to maintain network topology. This feature has been removed for the
sake of clarity, as it has little impact on expressiveness.

The first part of our work, focusing on expressiveness on different queue configurations, is inspired
by [14] where they studied the typed bisimulation theories of binary sessions with located queues.

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Existing works about expressiveness in process algebra is based on encodings; for example,
the early work [19] compares expressiveness of synchronous and asynchronous CCS through the
impossibility of an encoding. Our work focus on the semantics of types based on the language
acceptance of local traces induced by types without encodings. Another paper [9] compares the
expressiveness of several process algebras (asynchronous π, distributed π, ambients) through the use
of encodings in order to state possibility and impossibility results. Our approach is different, as we
use both operation expressiveness and language comparisons.

The syntax and semantics for interruptible sessions have been defined in [12] and are driven
by implementation. The gap in expressiveness created by the addition of operator for exceptional
behaviours has been studied in [3]. However, the setting is different and the comparisons are based on
Turing-(in)completeness of the different calculi defined, whereas, in § 5.2 we use a comparison based
on language inclusion. Our interrupt [12, 8] differs from exceptions in sessions studied in [5, 13, 4]
as we provide distributed mechanisms for exceptional behaviours. None of [12, 5, 13, 4, 8] studies
the expressiveness.

Acknowledgements This work has been partially sponsored by EPSRC EP/K011715/1, EPSRC EP/K034413/1, and EPSRC EP/L00058X/1,

EU project FP7-612985 UpScale, EU COST Action IC1201 BETTY and Laboratoire d’Informatique de Paris 6 (UPMC).

References

1 Ocean Observatories Initiative (OOI). http://www.oceanobservatories.org/.
2 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida. Moni-

toring networks through multiparty session types. In FMOODS/FORTE 2013, pages 50–65, 2013.
3 Mario Bravetti and Gianluigi Zavattaro. On the expressive power of process interruption and com-

pensation. Mathematical Structures in Computer Science, 19(3):565–599, 2009.
4 Sara Capecchi, Elena Giachino, and Nobuko Yoshida. Global escape in multiparty sessions. MSCS,

29:1–50, 2015.
5 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured interactional exceptions in session

types. In CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.
6 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the preciseness of

subtyping in session types. In PPDP 2014, pages 146–135. ACM Press, 2014.
7 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global

progress for dynamically interleaved multiparty sessions. MSCS, 760:1–65, 2015.
8 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. Prac-

tical interruptible conversations: Distributed dynamic verification with multiparty session types and
python. FMSD, pages 1–29, 2015.

9 Daniele Gorla. On the relative expressive power of asynchronous communication primitives. In
FOSSACS 2006, pages 47–62, 2006.

10 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type disciplines
for structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
22–138, 1998.

11 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

12 Raymond Hu, Rumyana Neykova, Nobuko Yoshida, Romain Demangeon, and Kohei Honda. Prac-
tical interruptible conversations - distributed dynamic verification with session types and python.
In RV 2013, pages 130–148, 2013.

13 Svetlana Jaksic and Luca Padovani. Exception handling for copyless messaging. Sci. Comput.
Program., 84:22–51, 2014.

14 Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda. On asynchronous eventful
session semantics. MSCS, 2015.

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.oceanobservatories.org/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In POPL, pages 221–232, 2015.

16 Dimitris Mostrous and Nobuko Yoshida. Session typing and asynchronous subtyping for the higher-
order π-calculus. Inf. Comput., 241:227–263, 2015.

17 Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially com-
mutative asynchronous sessions. In ESOP’09, number 5502 in LNCS. Springer, 2009.

18 Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty Session C: Safe parallel programming
with message optimisation. In TOOLS, volume 7304 of LNCS, pages 202–218. Springer, 2012.

19 Catuscia Palamidessi. Comparing the expressive power of the synchronous and asynchronous pi-
calculi. Mathematical Structures in Computer Science, 13(5):685–719, 2003.

20 Joachim Parrow. Expressiveness of process algebras. Electr. Notes Theor. Comput. Sci., 209:173–
186, 2008.

21 Jorge A. Pérez. Higher-Order Concurrency: Expressiveness and Decidability Results. PhD thesis,
University of Bologna, 2010.

22 Scribble Project homepage. www.scribble.org.

© Romain Demangeon, Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

www.scribble.org
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	Introduction
	Multiparty Session Types
	Expressiveness of Multiparty Session Configurations
	Configuration semantics
	Expressiveness via denotational semantics
	Expressiveness results (without subtyping)

	Expressiveness of subtyping
	Subtyping rules
	Progress and expressiveness of flexibility

	Expressiveness of parallel and interruptible sessions
	Influence of parallel composition
	Expressiveness of Interruptible Session Types

	Related Works

