
JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.1 (1-54)

Information and Computation ••• (••••) •••–•••
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

On the relative expressiveness of higher-order session

processes

Dimitrios Kouzapas a,∗, Jorge A. Pérez b,∗, Nobuko Yoshida c,∗
a University of Cyprus, Nicosia, Cyprus
b University of Groningen & CWI, Amsterdam, the Netherlands
c Imperial College London, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 October 2017
Received in revised form 23 December 2018
Accepted 7 June 2019
Available online xxxx

Keywords:
Concurrency
Process calculi
Behavioural types
Session types
Expressiveness

By integrating constructs from the λ-calculus and the π-calculus, in higher-order process cal-
culi exchanged values may contain processes. This paper studies the relative expressiveness
of HOπ , the higher-order π-calculus in which communications are governed by session
types. Our main discovery is that HO, a subcalculus of HOπ which lacks name-passing and
recursion, can serve as a new core calculus for session-typed higher-order concurrency. We
show that HO can encode HOπ fully abstractly (up to typed contextual equivalence) more
precisely and efficiently than the first-order session π-calculus (π). Overall, under the dis-
cipline of session types, HOπ , HO, and π are equally expressive; however, we show that
HOπ is more tightly related to HO than to π .

© 2019 Published by Elsevier Inc.

1. Introduction

Type-preserving compilations are important in the design of functional and object-oriented languages: type information
has been used to, e.g., justify code optimizations and reason about programs [26,37,22]. In concurrency theory, a vast
literature on expressiveness also studies compilations (or encodings) [31,10,7,20,36]: they are used to transfer reasoning
techniques across calculi, and to implement complex programming abstractions using simpler process constructs.

In this work, we study the relative expressiveness of HOπ , a higher-order process language that integrates message-passing
concurrency (including recursion) with functional features. We consider type-preserving encodings between source and target
calculi coupled with session types [12] denoting interaction protocols. Building on untyped frameworks for relative expres-
siveness [10], we propose type preservation as a new criterion for precise encodings. We identify HO, a new core calculus
for higher-order session concurrency which lacks name passing and recursion. We show that HO can encode HOπ precisely
and efficiently. Requiring type preservation makes this encoding far from trivial: we crucially exploit advances on session
type duality [1,4] and recent characterisations of typed contextual equivalence [15,17]. We develop a full hierarchy of vari-
ants of HOπ based on precise encodings: our encodings are type-preserving and fully abstract up to typed behavioural
equivalences. Fig. 1 illustrates this hierarchy; the variants of HOπ are explained next.

Context In session-based concurrency, interactions are organised into sessions, basic communication units. Interaction pat-
terns can then be abstracted as session types [12], against which specifications may be checked. The session type ?(U); S
(resp. !〈U 〉; S) describes a protocol that first receives (resp. sends) a value of type U and then continues as protocol S . Also,

* Corresponding authors.
E-mail addresses: dimitrios.kouzapas@cs.ucy.ac.cy (D. Kouzapas), j.a.perez@rug.nl (J.A. Pérez), n.yoshida@imperial.ac.uk (N. Yoshida).
https://doi.org/10.1016/j.ic.2019.06.002
0890-5401/© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.ic.2019.06.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:dimitrios.kouzapas@cs.ucy.ac.cy
mailto:j.a.perez@rug.nl
mailto:n.yoshida@imperial.ac.uk
https://doi.org/10.1016/j.ic.2019.06.002

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.2 (1-54)

2 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Fig. 1. Encodability in Higher-Order Sessions. Precise encodings are defined in Definition 4.6.

given an index set I , types &{li : Si}i∈I and ⊕{li : Si}i∈I define, respectively, external and internal choice constructs for a
labelled choice mechanism; types μt.S and end specify recursive and completed protocols, respectively. By distinguishing
between linear and shared names, session types for the π -calculus describe the intended interactive behaviour of the names
in a process [12].

Session-based concurrency has also been cast in higher-order process calculi which, by combining features from the
λ-calculus and the π -calculus, enable the exchange of values that may contain processes [27,11]. The higher-order calculus
with sessions studied here, called HOπ , can specify protocols involving code mobility: it includes constructs for synchro-
nisation along shared names, session communication (value passing, labelled choice) along linear names, recursion and
applications. Values in communications can be names but also first-order abstractions—functions from name identifiers to
processes. (In contrast, HOπ lacks higher-order abstractions—functions from processes to processes—but these can be en-
coded, see below.) Abstractions can be linear or shared, depending on whether they contain linear names or not; their
types are denoted C�� and C→�, respectively (C denotes a name).

Expressiveness of HOπ We study the type-preserving, relative expressivity of HOπ . As expected from known literature in the
untyped setting [39], the first-order session π -calculus [12] (here denoted π) can encode the higher-order calculus HOπ
preserving session types. In this paper, our main discovery concerns the opposite direction: we show that HOπ without
name-passing and recursion can serve as a core calculus for higher-order session concurrency. We call this core calculus
HO. We show that HO can encode HOπ more efficiently than π . In addition, in the higher-order session typed setting, HO
offers more tractable bisimulation techniques than π (cf. § 3.3.2).

Challenges and contributions We assess the relative expressiveness of HOπ , HO, and π as delineated by session types. We
introduce the notion of type-preserving encodings: type information is used to define encodings and to retain the semantics of
session protocols. Indeed, not only we require well-typed source processes are encoded into well-typed target processes; we
also demand that session type constructs (input, output, branching, select) used to type the source process are preserved by
the typing of the target process. This criterion is included in our notion of precise encoding (Definition 4.6), which extends
encodability criteria for untyped processes with full abstraction. Full abstraction results are stated up to two behavioural
equivalences that characterise barbed congruence: characteristic bisimilarity (≈C , introduced in [15]) and higher-order bisimi-
larity (≈H , introduced in [16] and developed in [17]). Using precise encodings we establish strong correspondences between
HOπ and its variants—see below.

Our contributions can be divided in two parts. First, we develop a precise encoding of HOπ into HO (§ 5.1). Since HO
lacks both name-passing and recursion, this encoding involves two key challenges:

a. In known (typed) encodings of name-passing into process-passing [42] only the output capability of names can be sent—a
received name cannot be used in later inputs. This is far too limiting in HOπ , where session names may be passed around
(delegation) and types describe interaction structures, rather than “loose” name capabilities.

b. Known encodings of recursion in untyped higher-order calculi do not carry over to session typed calculi such as HOπ ,
because linear abstractions cannot be copied/duplicated. Hence, the discipline of session types limits the possibilities for
representing infinite behaviours—this holds for even simple forms, such as input-guarded replication.

Our encoding overcomes these two obstacles, as we discuss in § 2.
In the second part, we offer additional technical contributions, which include:

(i) the encodability of HO into π (§ 5.2);
(ii) a non encodability result showing that shared names strictly add expressive power to session calculi (§ 5.4).

(iii) extensions of our encodability results to richer settings (§ 6);

In essence, (i) extends known results for untyped processes [39] to the session typed setting. Concerning (iii), we develop
extensions of our encodings to

- The extension of HOπ with higher-order abstractions (HOπ+);
- The extension of HOπ with polyadic name passing and abstraction (HO π̃);
- The super-calculus of HOπ+ and HO π̃ (denoted HO π̃ +), equivalent to the calculus in [27].

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.3 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 3
Fig. 1 summarises our encodability results. They connect HOπ with existing higher-order process calculi [27], and high-
light the status of HO as the core calculus for session concurrency. Finally, to our knowledge we are the first to prove the
non encodability result (ii), exploiting session determinacy and typed equivalences.

Outline § 2 overviews key ideas of the precise encoding of HOπ into π . § 3 collects background material: § 3.1 presents
HOπ and its subcalculi (HO and π); § 3.2 summarises their session type system; § 3.3 presents behavioural equalities for
HOπ from [15,17]: barbed congruence, characteristic bisimilarity, and higher-order bisimilarity. § 4 defines precise encodings
by extending encodability criteria for untyped processes. § 5 gives precise encodings of HOπ into HO and into π (Theo-
rems 5.1 and 5.2). Mutual encodings between π and HO are derivable; all these calculi are thus equally expressive. Via
empirical and formal comparisons between these two precise encodings, in § 5.3 we establish that HOπ and HO are more
tightly related than HOπ and π (Theorem 5.3). Moreover, we prove the impossibility of encoding communication along
shared names using linear names (Theorem 5.4). In § 6 we show encodings of HOπ+ and HO π̃ into HOπ (Theorems 6.1
and 6.2). § 7 reviews related works and § 8 concludes. Omitted definitions and proofs are in the Appendices (Appendix A
and Appendix B).

This paper is an extended and revised version of the homonymous conference paper that appeared in the Proceedings of
ESOP’16 [16]. With respect to [16], the current paper provides extended discussions, additional examples, and full technical
details. Moreover, it offers a sharper focus on relative expressiveness: a detailed treatment of higher-order bisimilarity (first
introduced in [16]) can now be found in our paper [17] (which corresponds to the journal version of [15]).

2. Overview: encoding name passing into process passing

A precise encoding of name-passing into process-passing As mentioned above, our encoding of HOπ into HO (§ 5.1) should
(a) enable the communication of arbitrary names, as required to represent delegation, and (b) address the fact that the
linear communication discipline, enforced by session types, limits the possibilities for representing infinite behaviour.

To illustrate our encoding of name passing into HO, we informally introduce some process syntax; formal definitions are
given in § 3.1. Below, a, b are names and s is a linear session name; name s is the dual of s—they are endpoints of the same
session. Processes a!〈V 〉.P and a?(x).P denote output and input at a, respectively; abstractions and applications are denoted
λx.P and (λx.P) a, respectively. Processes (ν s)(P), P | Q , and 0 represent usual forms of name restriction/hiding, parallel
composition, and inaction.

In our encoding, we “pack” the name to be sent (denoted b) into an abstraction; upon reception, the receiver “unpacks”
this object following a precise protocol on a fresh session (denoted s):

�a!〈b〉.P � = a!〈λz. z?(x).(x b)
〉
.� P �

�a?(x).Q � = a?(y).(ν s)(y s | s!〈λx. � Q �〉.0)

Thus, an abstraction containing the name b is first passed around along a. Following this communication, a sequence of
(deterministic) reductions between s and s guarantees that b is properly unpacked by means of abstraction passing and
appropriate applications. Indeed, the above encoding requires three extra reduction steps to mimic a single name commu-
nication step in HOπ . Also, notice that an output action in the source process is translated into an output action in the
encoded process (and similarly for input). This is key to ensure the preservation of session type operators mentioned above
(cf. Definition 4.4).

As hinted at above, a challenge in encoding recursion is preserving linearity of session names. Roughly speaking, given
μX .P , we encode its recursion body P as an abstraction λx̃.

⌊⌊
P
⌋⌋

σ
in which each session name of P (included in set σ)

is converted into a name variable in x̃. Since λx̃.
⌊⌊

P
⌋⌋

σ
does not mention (linear) session names, we may embed it into

a “duplicator” process which implements recursion using higher-order communication [45]. The encoding of the recursion
variable X invokes this duplicator in a by-need fashion: it receives λx̃.

⌊⌊
P
⌋⌋

σ
and uses two copies of it: one copy allows us

to obtain P through the application of the session names in σ ; the other allows us to invoke the duplicator when needed.
Interestingly, for this encoding to work we require non-tail recursive session types; this exploits recent advances on the
theory of duality for session types [1,4].

A plausible encoding that is not precise Our notion of precise encoding (Definition 4.6) requires the translation of both process
and types; it admits only process mappings that preserve session types and are fully abstract. Thus, our encodings not
only exhibit strong behavioural correspondences, but also relate source and target processes with consistent communication
structures described by session types. These requirements are demanding and make our developments far from trivial. In
particular, requiring type preservation may rule out other plausible encoding strategies. To illustrate this point, consider the
following alternative encoding of name-passing into HO1:

1 This encoding was suggested by a reviewer of a previous version of this paper.

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.4 (1-54)

4 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
n ::= a,b | s, s

u, w ::= n | x, y, z

V , W ::= u | λx. P | x, y, z

P , Q ::= u!〈V 〉.P | u?(x).P | u
 l.P | u � {li : Pi}i∈I | V u | P | Q | (ν n)P | 0 | X | μX .P

Fig. 2. Syntax of HOπ . While HO lacks shaded constructs, π lacks boxed constructs.

�a?(x).Q �u = a!〈λx. � Q �u 〉
.0

�a!〈b〉.P �u = a?(x).(x b | � P �u)

Intuitively, the encoding of input takes the initiative by sending an abstraction containing the encoding of its continuation
Q ; the encoding of output applies this received value to name b. Hence, this mapping entails a “role inversion”: outputs
are translated into inputs, and inputs are translated into outputs. Although fairly reasonable, we will see that the encoding
�·�u is not type preserving (cf. Ex. 4.1). Consequently, it is also not precise. Since individual prefixes (input, output, branch-
ing, select) represent actions in a structured communication sequence (i.e., a protocol abstracted by a session type), the
encoding �·�u would simply alter the meaning of the session protocol in the source language.

3. Preliminaries

We introduce the higher-order session π -calculus (HOπ). We first define syntax, operational semantics, and its sub-calculi
(denoted π and HO). Then, a type system and behavioural equivalences for HOπ are recalled in § 3.2 and § 3.3. HOπ
features first-order abstractions and monadic communication; extensions with higher-order abstractions and polyadicity
(denoted HOπ+ and HO π̃ , respectively) are discussed in § 6. In § 3.4 we recall the Hotel Booking scenario, a case study for
HOπ that we developed in [15,17].

3.1. HOπ : syntax, operational semantics, and subcalculi

Syntax The syntax of HOπ is defined in Fig. 2. HOπ is a subcalculus of the language studied in [27]. It is also a variant of
the language that we investigated in [15], which includes higher-order value applications.

Names a, b, c, . . . (resp. s, s, . . .) range over shared (resp. session) names. Names m, n, t, . . . are session or shared names.
Dual endpoints are n with s = s and a = a. Variables are denoted with x, y, z, . . . , and recursive variables are denoted
with X, Y , An abstraction λx. P is a process P with name parameter x. Values V , W , . . . include identifiers u, v, . . . and
abstractions λx. P (first- and higher-order values, resp.).

Process terms P , Q , . . . include usual prefixes for sending and receiving values V . Processes u
 l.P and u � {li : Pi}i∈I are
the usual constructs for selection and branching, used to specify labelled deterministic choices within sessions [12]. Process
V u denotes application; it substitutes name u on the abstraction V . Typing ensures that V is not a name. Recursion μX .P
binds the recursive variable X in P . Constructs for inaction 0, parallel composition P1 | P2, and name restriction (ν n)P are
standard.

Notation 1. We shall write ∗ P to denote a replicated process P , representable as μX .(P | X).

Session name restriction (ν s)P simultaneously binds endpoints s and s in P . Functions fv(P), fn(P), and fs(P) denote,
respectively, the sets of free variables, names, and session names in P , and are defined as expected. We assume V in u!〈V 〉.P
does not include free recursive variables X . If fv(P) = ∅, we call P closed.

In a statement, a name (resp. variable) is fresh if it is not among the names (resp. variables) of the objects (processes,
actions, etc.) of the statement. We shall follow Barendregt’s convention: all (session) names and variables in binding occur-
rences, in any mathematical context, are pairwise distinct but also distinct from free (session) names and variables.

Operational semantics The operational semantics of HOπ is defined in terms of a reduction relation, denoted −→, whose
rules are given in Fig. 3 (top). We briefly describe the rules. Rule [App] defines name application. Rule [Pass] defines a shared
interaction at n (with n= n) or a session interaction. Rule [Sel] is the standard rule for labelled choice/selection. Other rules
are standard π -calculus rules. Reduction is closed under structural congruence, noted ≡ and given in Fig. 3 (bottom). We
write ≡α to denote α-conversion and assume the expected extension of ≡ to values V . We write −→∗ for a multi-step
reduction.

Subcalculi As motivated in the introduction, we define two subcalculi of HOπ :

• The core higher-order session calculus, denoted HO, lacks recursion and name passing; its formal syntax is obtained from
Fig. 2 by excluding constructs in grey .

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.5 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 5
(λx. P) u −→ P {u/x} [App]

n!〈V 〉.P | n?(x).Q −→ P | Q {V/x} [Pass]

n
 l j .Q | n � {li : Pi}i∈I −→ Q | P j (j ∈ I) [Sel]

P −→ P ′ ⇒ (ν n)P −→ (ν n)P ′ [Res]

P −→ P ′ ⇒ P | Q −→ P ′ | Q [Par]

P ≡ Q −→ Q ′ ≡ P ′ ⇒ P −→ P ′ [Cong]
P | 0≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3)≡ (P1 | P2) | P3 (ν n)0≡ 0

P | (ν n)Q ≡ (ν n)(P | Q) (n /∈ fn(P)) μX .P ≡ P {μX .P/X} P ≡ Q if P ≡α Q

Fig. 3. Operational semantics of HOπ .

U ::= C | L

C ::= S | 〈S〉 | 〈L〉
L ::= C→� | C��
S ::= !〈U 〉; S | ?(U); S | ⊕ {li : Si}i∈I | &{li : Si}i∈I | μt.S | t | end

Fig. 4. Syntax of session types for HOπ .

• The session π -calculus, denoted π , lacks higher-order communication but includes recursion; its formal syntax is obtained
from Fig. 2 by excluding constructs in boxes .

Let C ∈ {HOπ, HO, π}. We write C−sh to denote the calculus C without shared names: we delete a, b from n. Thus, languages
in C−sh feature linear, deterministic behaviour only. In § 5 we shall demonstrate that HOπ , HO, and π have the same
expressivity, and that C is strictly more expressive than C−sh .

3.2. Session types for HOπ

We state key definitions and properties for the session type system for HOπ . The considered type system, introduced
in [17], distills the key features of [27,28] and so it is simpler.

The syntax of types for HOπ is given in Fig. 4. We write � to denote the process type. Value type U includes first-order
types C and higher-order types L. Types C→� and C�� denote shared and linear higher-order types, respectively. Session
types, denoted by S , follow the standard binary session type syntax [12], with the extension that carried types U may be
higher-order. Shared channel types are denoted 〈S〉 and 〈L〉.

The type syntax of HO exclude C from value types U ; the types of π excludes L and 〈L〉 . Given C ∈ {HOπ, HO, π},
the sub-calculus C−sh is obtained by excluding shared name types (〈S〉 and 〈L〉), from name type C .

We now define session type duality [1], which builds upon type equivalence.

Definition 3.1 (Type equivalence). Let ST a set of closed session types. Two types S and S ′ are said to be isomorphic if a pair
(S, S ′) is in the largest fixed point of the monotone function F :P(ST× ST) →P(ST× ST) defined by:

F (�) = {(end,end)}
∪ {(!〈U1〉; S1, !〈U2〉; S2) | (S1, S2), (U1, U2) ∈ �}
∪ {(?(U1); S1,?(U2); S2) | (S1, S2), (U1, U2) ∈ �}
∪ {(&{li : Si}i∈I , &{li : S ′i}i∈I) | ∀i ∈ I.(Si, S ′i) ∈ �}∪ {(⊕{li : Si}i∈I , ⊕{li : S ′i}i∈I) | ∀i ∈ I.(Si, S ′i) ∈ �}∪ {(μt.S, S ′) | (S{μt.S/t}, S ′) ∈ �}
∪ {(S,μt.S ′) | (S, S ′{μt.S ′/t}) ∈ �}

Standard arguments ensure that F is monotone, thus the greatest fixed point of F exists. We write S1 ∼ S2 if (S1, S2) ∈ �.

Intuitively, duality is obtained by swapping ! by ?, ? by !, ⊕ by &, and & by ⊕, including the fixed point construction.
More formally, we have:

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.6 (1-54)

6 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Definition 3.2 (Duality). Let ST a set of closed session types. Two types S and S ′ are said to be dual if a pair (S, S ′) is in the
largest fixed point of the monotone function F :P(ST× ST) →P(ST× ST) defined by:

F (�) = {(end,end)}
∪ {(!〈U1〉; S1,?(U2); S2) | (S1, S2) ∈ �, U1 ∼ U2}
∪ {(?(U1); S1, !〈U2〉; S2) | (S1, S2) ∈ �, U1 ∼ U2}
∪ {(⊕{li : Si}i∈I , &{li : S ′i}i∈I) | ∀i ∈ I.(Si, S ′i) ∈ �}∪ {(&{li : Si}i∈I , ⊕{li : S ′i}i∈I) | ∀i ∈ I.(Si, S ′i) ∈ �}∪ {(μt.S, S ′) | (S{μt.S/t}, S ′) ∈ �}
∪ {(S,μt.S ′) | (S, S ′{μt.S ′/t}) ∈ �}

Standard arguments ensure that F is monotone, thus the greatest fixed point of F exists. We write S1 dual S2 if (S1, S2) ∈ �.

We consider shared, linear, and session environments, denoted �, �, and 	, resp.:

� ::= ∅ | � · x : C→� | � · u : 〈S〉 | � · u : 〈L〉 | � · X :	
� ::= ∅ | � · x:C��
	 ::= ∅ | 	 · u : S

� maps variables and shared names to value types, and recursive variables to session environments; it admits weakening,
contraction, and exchange principles. � maps variables to linear higher-order types; 	 maps session names to session types.
Both � and 	 are only subject to exchange. The domains of �, �, and 	 are assumed pairwise distinct. We write 	1 ·	2
for the disjoint union of 	1 and 	2. We write �\x to denote the environment obtained from � by removing the assignment
x : U→�, for some U . Similarly, we write 	1\	2 and �1\�2 with the expected reading.

Given the above intuitions for environments, the typing judgements for values V and processes P are denoted �; �; 	 �
V � U and �; �; 	 � P � �, respectively.

Fig. 5 gives the typing rules. We now describe some of them; see [17] for a full account. The shared type C→� is
derived using Rule (Prom) only if the value has a linear type with an empty linear environment. Rule (EProm) allows us
to freely use a shared type variable as linear. Abstraction values are typed with Rule (Abs). Application typing is governed
by Rule (App): we expect the type C of an application name u to match the type of the application variable x (i.e., C ��
or C→�). In Rule (Send), the type U of value V should appear as a prefix in the session type !〈U 〉; S of u. Rule (Rcv) is
its dual. Rules (Req) and (Acc) type interaction along shared names; the type of the sent/received object (S and L, resp.)
should match the type of the sent/received subject (〈S〉 and 〈L〉, resp.).

We close this section by stating type soundness for HOπ , as established in [17]; it implies type soundness for HO, π , and
C−sh . We require two auxiliary definitions. First, we focus on balanced session environments:

Definition 3.3 (Balanced environments). We say that a session environment 	 is balanced if whenever s : S1, s : S2 ∈	 then
S1 dual S2 (cf. Definition 3.2).

Second, we define a notion of reduction for session environments:

Definition 3.4. We define the relation −→ on session environments 	 as:

	 · s :!〈U 〉; S1 · s :?(U); S2 −→	 · s : S1 · s : S2

	 · s : ⊕{li : Si}i∈I · s : &{li : S ′i}i∈I −→	 · s : Sk · s : S ′k (k ∈ I)

We write −→∗ to denote multi-step reduction.

We then have:

Theorem 3.1 (Type soundness [17]). Suppose �; ∅; 	 � P � � with 	 balanced. Then P −→ P ′ implies �; ∅; 	′ � P ′ � � and 	 =	′
or 	 −→	′ with 	′ balanced.

3.3. Behavioural theory for HOπ

We first define reduction-closed, barbed congruence (∼=, Definition 3.9) as the reference equivalence relation for HOπ
processes. We then recall two characterisations of ∼=: characteristic and higher-order bisimilarities (denoted ≈C and ≈H , cf.
Definitions 3.12 and 3.11). We refer to Appendix A for omitted definitions, and to our previous paper [17] for a detailed
treatment of these behavioural equivalences.

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.7 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 7
(Sess)

�; ∅; {u : S} � u � S
(Sh)

� · u : U ; ∅;∅ � u � U

(LVar)

�; {x : C��};∅ � x � C��
(RVar)

� · X :	; ∅;	 � X � �

(Abs)

�;�;	1 � P � � �; ∅;	2 � x � C

�\x;�;	1\	2 � λx. P � C��

(App)

�;�;	1 � V � C �� �∈ {�,→} �; ∅;	2 � u � C

�;�;	1 ·	2 � V u � �

(Prom)

�; ∅;∅ � V � C��
�; ∅;∅ � V � C→�

(EProm)

�;� · x : C��;	 � P � �
� · x : C→�;�;	 � P � �

(End)

�;�;	 � P � T u /∈ dom(�,�,)

�;�;	 · u : end � P � �

(Rec)

� · X :	; ∅;	 � P � �
�; ∅;	 �μX .P � �

(Par)

�;�i;	i � Pi � � i = 1,2

�;�1 ·�2;	1 ·	2 � P1 | P2 � �
(Nil)

�; ∅;∅ � 0 � �

(Send)

u : S ∈	1 ·	2 �;�1;	1 � P � � �;�2;	2 � V � U

�;�1 ·�2; ((1 ·	2) \ u : S) · u :!〈U 〉; S � u!〈V 〉.P � �

(Req)

�;�;	1 � P � � �; ∅;∅ � u � 〈U〉 �; ∅;	2 � V �U U ∈ {S, L}
�;�;	1 ·	2 � u!〈V 〉.P � �

(Rcv)

�;�1;	1 · u : S � P � � �;�2;	2 � x � U

�\x;�1\�2;	1\	2 · u :?(U); S � u?(x).P � �

(Acc)

�;�1;	1 � P � � �; ∅;∅ � u � 〈U〉 �;�2;	2 � x �U U ∈ {S, L}
�\x;�1\�2;	1\	2 � u?(x).P � �

(Bra)

∀i ∈ I �;�;	 · u : Si � Pi � �
�;�;	 · u : &{li : Si}i∈I � u � {li : Pi}i∈I � �

(Sel)

�;�;	 · u : S j � P � � j ∈ I

�;�;	 · u : ⊕{li : Si}i∈I � u
 l j .P � �

(ResS)

�;�;	 · s : S1 · s : S2 � P � � S1 dual S2

�;�;	 � (ν s)P � �

(Res)

� · a : 〈S〉;�;	 � P � �
�;�;	 � (ν a)P � �

Fig. 5. Typing rules for HOπ .

3.3.1. Reduction-closed, barbed congruence (∼=)
We consider typed relations � that relate closed terms whose session environments are balanced and confluent:

Definition 3.5 (Session environment confluence). We denote 	1 � 	2 if there exists 	 such that 	1 −→∗ 	 and 	2 −→∗ 	.

Definition 3.6 (Typed relation). We say that �; ∅; 	1 � P � � � �; ∅; 	2 � Q � � is a typed relation whenever P and Q are
closed; 	1 and 	2 are balanced; and 	1 �	2.

We write �; 	1 � P � 	2 � Q for the typed relation �; ∅; 	1 � P � � � �; ∅; 	2 � Q � �.

A barb ↓n is an observable on an output or selection prefix with subject n [25]. Notice that observing output barbs is
enough to (indirectly) observe input actions. A weak barb ⇓n is a barb after zero or more reduction steps. Typed barbs ↓n

(resp. ⇓n) occur on typed processes �; ∅; 	 � P � �. When n is a session name we require that its dual endpoint n is not
present in the session environment 	:

Definition 3.7 (Untyped and typed barbs). Let P be a closed process. We define:

1. P ↓n if P ≡ (ν m̃)(n!〈V 〉.P2 | P3) or P ≡ (ν m̃)(n
 l.P2 | P3), with n /∈ m̃.
2. �; 	 � P ↓n if �; ∅; 	 � P � � with P ↓n and n /∈ dom().
3. �; 	 � P ⇓n if P −→∗ P ′ and �; 	′ � P ′ ↓n .

To define a congruence relation, we introduce the family C of process contexts:

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.8 (1-54)

8 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Definition 3.8 (Context). A context C is defined as:

C ::= − | u!〈V 〉.C | u?(x).C | u!〈λx.C〉.P | (ν n)C | (λx.C)u | μX .C

| C | P | P |C | u
 l.C | u � {l1 : P1, · · · , li :C, · · · , ln : Pn}
Notation C[P] replaces the hole − in C with P .

We define reduction-closed, barbed congruence [13].

Definition 3.9 (Barbed congruence). Typed relation �; 	1 � P � 	2 � Q is a reduction-closed, barbed congruence whenever:

1. If P −→ P ′ then there exist Q ′, 	′
1, 	′

2 such that Q −→∗ Q ′ and �; 	′
1 � P ′ � 	′

2 � Q ′;
2. If �; 	1 � P ↓n then �; 	2 � Q ⇓n;
3. For all C, there exist 	′′

1, 	′′
2 such that �; 	′′

1 �C[P] � 	′′
2 �C[Q];

4. The symmetric cases of 1 and 2.

The largest such relation is denoted with ∼=.

3.3.2. Two equivalence relations: ≈H and ≈C

In [15,17] we have characterised reduction-closed, barbed congruence for HOπ via two typed relations, called charac-
teristic bisimilarity and higher-order bisimilarity. Their definition uses a typed labelled transition system (LTS) on processes,
informed by session types [18], whose key notions are summarized next. We will be working with closed process terms,
i.e., processes without free variables.

A typed labelled transition system The typed LTS describes the interaction of well-typed processes with their environment.
We shall focus on well-typed processes whose type judgements have an empty �, i.e., an empty environment for linear
higher-order types. Given this, we write

�;	 � P

−→	′ � P ′

to denote a (strong) transition with action label
 (cf. Definition 3.10 below).

Formally, the typed LTS is obtained by coupling an untyped LTS on processes, whose transitions are denoted P

−→ P ′

with a labelled transition relation on typing environments, whose transitions are denoted (�,)
−→ (�, 	′) (see Defini-
tion Appendix A.2). These auxiliary LTSs are given in Fig. A.14 and Fig. A.15, respectively. The key idea is that the transitions
of a typed process should be enabled by its associated typing:

if P

−→ P ′ and (�,)

−→ (�,	′) then �;	 � P

−→	′ � P ′.

The LTS on untyped processes, the LTS on typing environments, and the typed LTS share the same set of action labels:

Definition 3.10 (Action labels). The set of action labels for HOπ , ranged over by
,
′, . . ., is defined as follows:

 ::= τ | (ν m̃)n!〈V 〉 | n?〈V 〉 | n⊕ l | n&l

Label τ defines internal actions. Action (ν m̃)n!〈V 〉 denotes the sending of value V over channel n with a possible empty
set of restricted names m̃ (we may write n!〈V 〉 when m̃ is empty). The action for value reception is n?〈V 〉. Actions for select
and branch on a label l are denoted n ⊕ l and n&l, respectively. We write fn(
) and bn(
) to denote the sets of free/bound
names in
, respectively.

Remark 3.1 (Type Annotations (1)). We sometimes annotate process actions with their type. In particular, given a value V of
type U , we may write label (ν m̃)n!〈V 〉 as (ν m̃)n!〈V :U 〉.

The sets of actions for HO and π is derived from the above syntax, in line with the syntax of values V in Fig. 2. This
way, e.g., (ν m̃)n!〈λx. P 〉 is an action label for HO but not for π ; similarly, s?〈n〉 is an action label for π but not for HO.

A refined typed LTS The characterisation of barbed congruence relies on a refined typed LTS on typing environments. Intu-
itively, the objective is to have a more stringent rule for input transitions, given as follows:

s /∈ dom() �;�′;	′ � V � U V =m∨ V ≡ [(U)]c ∨ V ≡ λx. t?(y).(y x) with t fresh
s?〈V 〉 ′ ′
(�;�;	 · s :?(U); S) �−−−→ (�;� ·� ;	 ·	 · s : S)

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.9 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 9
[(?(U); S)]u def= u?(x).(t!〈u〉.0 | [(U)]x) [(S)]c def= s (s fresh)

[(!〈U 〉; S)]u def= u!〈[(U)]c〉.t!〈u〉.0 [(〈S〉)]c def= a (a fresh)

[(⊕{l : S})]u def= u
 l.t!〈u〉.0 [(〈L〉)]c def= a (a fresh)

[(&{li : Si}i∈I)]u def= u � {li : ti !〈u〉.0}i∈I [(U→�)]c def= λx. [(U)]x
[(μt.S)]u def= [(S{end/t})]u [(U ��)]c def= λx. [(U)]x
[(end)]u def= 0

[(〈S〉)]u def= u!〈[(S)]c〉.t!〈u〉.0
[(〈L〉)]u def= u!〈[(L)]c〉.t!〈u〉.0

[(U→�)]u def= u [(U)]c
[(U ��)]u def= u [(U)]c

(t fresh in all cases)

Fig. 6. Characteristic processes (left) and characteristic values (right).

This rule states that a session environment can input a value if such a value is typed with an input prefix and is either a
name m, a characteristic value [(U)]c , or a trigger value (the abstraction λx. t?(y).(y x)). A characteristic value is the simplest
process that inhabits a type (here, the type U carried by the input prefix). The above rule is used to limit the input actions
that can be observed from a session input prefix. The definition of characteristic processes and values is given in Fig. 6.

This refined LTS on typing environments in turn gives rise to a different, refined LTS on processes (cf. Definition Appendix
A.5). Note the different notation for standard and refined transitions:

s?〈V 〉−→ and
s?〈V 〉�−−−→. In the refined LTS, weak transitions

are as expected: we write �=⇒ for the reflexive, transitive closure of τ�−→,

�==⇒ for �=⇒
�−−→�=⇒, and
̂

�==⇒ for

�=⇒ if
 �= τ and �=⇒

otherwise. Further details on the typed LTSs are given in Appendix A and [17].

Characterising ∼= We now recall the definition of higher-order bisimilarity and characteristic bisimilarity, as jointly introduced
in [17]. These bisimilarity relations use two different trigger processes:

t ←↩H V
def=

{
t?(x).(ν s)(s?(y).(x y) | s!〈V 〉.0) if V is a first-order value

t?(x).(ν s)(s?(y).(y x) | s!〈V 〉.0) if V is a higher-order value
(1)

t ⇐C V :U def= t?(x).(ν s)(s?(y).[(U)]y | s!〈V 〉.0) (2)

The process in (1) is called higher-order trigger process, while process in (2) is called characteristic trigger process. Notice that
while in (1) there is a higher-order input on t , in (2) the variable x does not play any rôle. Process [(U)]y is the characteristic
process of type U , implemented along name y. We use higher-order trigger processes to define higher-order bisimilarity:

Definition 3.11 (Higher-order bisimilarity). A typed relation � is a higher-order bisimulation if for all �; 	1 � P1 � 	2 � Q 1

1) Whenever �; 	1 � P1
(ν m̃1)n!〈V 1〉�−−−−−−−→	′

1 � P2, there exist Q 2, V 2, 	′
2 such that �; 	2 � Q 1

(ν m̃2)n!〈V 2〉
�========⇒	′

2 � Q 2 and, for a
fresh t ,

�;	′′
1 � (ν m̃1)(P2 | t ←↩H V 1) �	′′

2 � (ν m̃2)(Q 2 | t ←↩H V 2)

2) For all �; 	1 � P1

�−→	′

1 � P2 such that
 is not an output, there exist Q 2, 	′
2 such that �; 	2 � Q 1

̂
�=⇒	′

2 � Q 2 and
�; 	′

1 � P2 � 	′
2 � Q 2; and

3) The symmetric cases of 1 and 2.

The largest such bisimulation is called higher-order bisimilarity, denoted by ≈H .

We exploit characteristic trigger processes to define characteristic bisimilarity:

Definition 3.12 (Characteristic bisimilarity). A typed relation � is a characteristic bisimulation if for all �; 	1 � P1 � 	2 � Q 1,

1) Whenever �; 	1 � P1
(ν m̃1)n!〈V 1:U1〉�−−−−−−−−−→	′

1 � P2 then there exist Q 2, V 2, 	′
2 such that �; 	2 � Q 1

(ν m̃2)n!〈V 2:U2〉
�==========⇒	′

2 � Q 2

and, for a fresh t ,

�;	′′
1 � (ν m̃1)(P2 | t ⇐C V 1 :U1) �	′′

2 � (ν m̃2)(Q 2 | t ⇐C V 2 :U2)

2) For all �; 	1 � P1

�−→	′

1 � P2 such that
 is not an output, there exist Q 2, 	′
2 such that �; 	2 � Q 1

̂
�=⇒	′

2 � Q 2 and
�; 	′ � P2 � 	′ � Q 2; and
1 2

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.10 (1-54)

10 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
3) The symmetric cases of 1 and 2.

The largest such bisimulation is called characteristic bisimilarity, denoted by ≈C .

We state the following important coincidence result:

Theorem 3.2 ([17]). Typed relations ∼=, ≈H , and ≈C coincide for HOπ processes.

Remark 3.2 (Differences between ≈H and ≈C). Although ≈H and ≈C are conceptually similar, they differ in the kind of trigger
process considered. Because of the application in t ←↩H V (cf. (1)), ≈H cannot be used to reason about first-order session
processes (i.e., processes without higher-order features). In contrast, ≈C is more general: it can uniformly input characteris-
tic, first- or higher-order values.

An up-to technique As mentioned above, processes that do not use shared names (e.g., those in languages in C−sh) are
deterministic. Internal transitions associated to session interactions or β-reductions are deterministic. To define an auxiliary
proof technique that exploits determinacy we require some auxiliary definitions. Recall that �; 	 � P

τ�−→	′ � P ′ denotes an
internal (typed) transition.

The following up-to technique, based on determinacy properties, will be useful in proofs (§ 5).

Notation 2 (Deterministic transitions). We distinguish two kinds of τ -transitions: session transitions, noted �; 	 � P
τs�−→	′ � P ′ ,

and β-transitions, noted �; 	 � P
τβ�−→ 	′ � P ′ . Intuitively, τs�−→ results from a session communication (i.e., synchronization be-

tween two dual endpoints), while
τβ�−→ results from an application. We write �; 	 � P

τd�−→ 	′ � P ′ to denote a session transition
or a β-transition. See § A.4 and [17] for formal definitions of

τβ�−→ and τs�−→.

We have the following determinacy property:

Lemma 3.1 (τ -Inertness [17]). Suppose �; ∅; 	 � P � � with balanced 	.

1) If �; 	 � P
τd�−→	′ � P ′ then �; 	 � P ≈H 	′ � P ′ , with 	 −→∗ 	′ .

2) If P is an HOπ−sh process, and P −→∗ P ′ then �; 	 � P ≈H 	′ � P ′ , with 	 −→∗ 	′ .

We use Lemma 3.1 to prove Theorem 5.4, the negative result stated in § 5.4. This property also enables us to define
the following up-to technique, useful in full abstraction proofs. We write τd

�==⇒ to denote a (possibly empty) sequence of
deterministic steps τd�−→. We can finally state:

Lemma 3.2 (Up-to deterministic transition [17]). Let �; 	1 � P1 � 	2 � Q 1 such that if whenever:

1. ∀(ν m̃1)n!〈V 1〉 such that �; 	1 � P1
(ν m̃1)n!〈V 1〉�−−−−−−−→	3 � P3 implies that ∃Q 2, V 2 such that �; 	2 � Q 1

(ν m̃2)n!〈V 2〉
�========⇒	′

2 � Q 2 and
�; 	3 � P3

τd
�==⇒	′

1 � P2 and for fresh t:
�; 	′′

1 � (ν m̃1)(P2 | t ←↩H V 1) � 	′′
2 � (ν m̃2)(Q 2 | t ←↩H V 2).

2. ∀
 �= (ν m̃)n!〈V 〉 such that �; 	1 � P1

�−→	3 � P3 implies that ∃Q 2

such that �; 	1 � Q 1

̂

�=⇒	′
2 � Q 2 and �; 	3 � P3

τd
�==⇒	′

1 � P2 and �; 	′
1 � P2 � 	′

2 � Q 2 .
3. The symmetric cases of 1 and 2.

Then � ⊆≈H .

3.4. The hotel booking scenario

We recall the case study for HOπ that we developed in our previous works [15,17]: a specification of a hotel booking
scenario. The scenario involves a Client process that wants to book a hotel room. Client narrows the choice down to two
hotels, and requires a quote from the two in order to decide. The round-trip time (RTT) required for taking quotes from the
two hotels is not optimal, so the client sends mobile processes to both hotels to automatically negotiate and book a room.

Fig. 7 presents two possible HOπ implementations of this scenario. For convenience, we write if e then P1 else P2
to denote a conditional process that executes P1 or P2 depending on boolean expression e (this process is encodable using
labelled choice). The first implementation, given by process Client1, sends two abstractions with body P xy , one to each hotel,
using sessions s1 and s2. In P xy , name x is meant to be instantiated by the hotel as the negotiating endpoint, whereas name

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.11 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 11
Client1
def= (ν h1,h2)(s1!〈λx. P xy{h1/y}〉.s2!〈λx. P xy{h2/y}〉.0 |

h1?(x).h2?(y).if x≤ y then

(h1
 accept.h2
 reject.0 else h1
 reject.h2
 accept.0))

P xy
def= x!〈room〉.x?(quote).y!〈quote〉.y �

{
accept : x
 accept.x!〈credit〉.0 ,

reject : x
 reject.0

}

Client2
def= (ν h)(s1!〈λx. Q 1{h/y}〉.s2!〈λx. Q 2{h/y}〉.0)

Q 1
def= x!〈room〉.x?(quote1).y!〈quote1〉.y?(quote2).Rx

Q 2
def= x!〈room〉.x?(quote1).y?(quote2).y!〈quote1〉.Rx

Rx
def= if quote1 ≤ quote2 then (x
 accept.x!〈credit〉.0 else x
 reject.0)

Fig. 7. Two implementations of the Hotel Booking scenario in HOπ [17].

y is used to interact with Client1. Intuitively, process P xy : (i) sends the room requirements to the hotel; (ii) receives a quote
from the hotel; (iii) sends the quote to Client1; (iv) expects a choice from Client1 whether to accept or reject the offer; (v) if
the choice is accept then it informs the hotel and performs the booking; otherwise, if the choice is reject then it informs
the hotel and ends the session. Client1 instantiates two copies of P xy as abstractions on session x. It uses fresh endpoints
h1, h2 to substitute channel y in P xy . This enables communication with the mobile code(s): Client1 uses the dual endpoints
h1 and h2 to receive the negotiation result from the two remote instances of P and then inform the two processes for the
final booking decision.

In the second implementation, given by process Client2, the two mobile processes reach an agreement by interacting
with each other (rather than with the client). Processes Q 1 and Q 2 negotiate a quote from the hotel in the same fashion
as process P xy in Client1. The key difference with respect to P xy is that y is used for interaction between process Q 1 and
Q 2. Both processes send their quotes to each other and then internally follow the same logic to reach to a decision. Process
Client2 then uses sessions s1 and s2 to send the two instances of Q 1 and Q 2 to the two hotels, using them as abstractions
on name x. It further substitutes the two endpoints of a fresh channel h to channels y respectively, in order for the two
instances to communicate with each other.

To illustrate the type system of HOπ , we give types to the client processes. Assume

S = !〈quote〉;&{accept : end, reject : end}
U = !〈room〉;?(quote);⊕{accept :!〈credit〉;end, reject : end}

where quote, room, and credit are (first-order) base types. We then have:

∅;∅; y : S � λx. P xy � U ��
∅;∅; s1 :!〈U ��〉;end · s2 :!〈U ��〉;end � Client1 � �

∅;∅; y :!〈quote〉;?(quote);end � λx. Q i � U �� (i = 1,2)

∅;∅; s1 :!〈U ��〉;end · s2 :!〈U ��〉;end � Client2 � �
4. Correctness criteria for typed encodings

We define the formal notion of encoding by extending to a typed setting existing encodability criteria for untyped pro-
cesses, as put forward in, e.g., [29,31,35,10,20,7,46,34]. We first define a typed calculus parametrised by a process syntax,
an operational semantics, and a type system. Based on this definition, in § 5 and § 6 we will define concrete instances of
(higher-order) typed calculi.

4.1. Basic definitions

Definition 4.1 (Typed calculus). A typed calculus L is a tuple 〈C, T , �−→, ≈, �〉 where C and T are sets of processes and
types, respectively; also, �−→, ≈, and � denote a transition system (over an underlying set of actions, denoted A), a typed
equivalence, and a typing system for C, respectively.

Most elements of the formal notion of typed calculus are self-explanatory. Concerning the operational semantics, we shall
assume a notion of transition system in which transitions are labelled with elements from a finite set of actions A, which
contains at least the unobservable action τ . We will often be interested in τ -transitions, denoted τ�−→, which characterise

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.12 (1-54)

12 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
reductions. Nevertheless, to state more precise forms of operational correspondence, we will sometimes find it convenient
to use transitions of the form
�−→, where
 ∈A and
 �= τ (i.e., visible transitions).

Our notion of encoding considers mappings on both processes and types; these are denoted �·� and (〈·〉), respectively:

Definition 4.2 (Typed encoding). Consider two typed calculi L1 =〈C1, T1, �−→1, ≈1, �1〉 and L2 = 〈C2, T2, �−→2, ≈2, �2〉. Given
mappings �·� : C1 → C2 and (〈·〉) : T1 → T2, we write

〈
�·�, (〈·〉)〉 : L1 → L2 to denote the typed encoding of L1 (the source

calculus) into L2 (the target calculus). Mapping (〈·〉) on types extends to typing environments in the expected way.

When considering forms of operational correspondence with visible actions, our notion of typed encoding shall include
mappings �·� and (〈·〉), but also a mapping { {·} } : A1 → A2 describing how visible actions in the source calculus L1 are
mapped in the target calculus L2.

We now introduce syntactic criteria for typed encodings. Let σ denote a substitution of names for names (a renaming,
as usual). Given environments 	 and �, we write σ() and σ(�) to denote the effect of applying σ on the domains of 	
and �. In the case of HOπ and its variants, σ(�) clearly concerns only shared names in �: process and recursive variables
in � are not affected by σ .

Definition 4.3 (Syntax preservation). We say that the typed encoding
〈

�·�, (〈·〉)〉 :L1 →L2 is syntax preserving if it is:

1. Homomorphic wrt parallel, if (〈�〉); ∅; (〈	1 ·	2〉) �2 � P1 | P2 � � �
then (〈�〉); ∅; (〈	1〉) · (〈	2〉) �2 � P1 � | � P2 � � �.

2. Compositional wrt restriction, if (〈�〉); ∅; (〈	〉) �2 �(ν n)P � � �
then (〈�〉); ∅; (〈	〉) �2 (ν n)� P � � �.

3. Name invariant, if (〈σ(�)〉); ∅; (〈σ()〉) �2 �σ(P)� � � then
σ((〈�〉)); ∅; σ((〈	〉)) �2 σ(� P �) � �, for any injective renaming of names σ .

Homomorphism wrt parallel (used in, e.g., [31,35]) expresses that translations should preserve the distributed topology of
source processes. This criterion is appropriate for both encodability and non encodability results; in our setting, it is induced
by the typing rule for parallel composition (cf. Rule (Par) in Fig. 5). Compositionality wrt restriction is also supported by
typing and is useful in our encodability results (§ 5). The name invariance criterion follows [10,20].

We now state type preservation, a static criterion on the mapping (〈·〉) : T1 → T2: it ensures that a typed operator is always
translated into itself. The source and target calculi that we consider here share five (session) type operators: input, output,
recursion (binary operators); selection and branching (n-ary operators). As such, type preservation is key to retain the
meaning of structured protocols: as session types operators abstract communication behaviour, type preserving encodings
help us maintain behaviour across translations.

Definition 4.4 (Type preservation). The typed encoding
〈

�·�, (〈·〉)〉 : L1 → L2 is type preserving if for every k-ary type operator
op in T1 it holds that

(〈op(T1, · · · , Tk)〉)= op((〈T1〉), · · · , (〈Tk〉))

Example 4.1. Following the discussion in § 2, let (〈·〉)u be a mapping on session types such that

(〈!〈U 〉; S〉)u =?((〈U 〉)u); (〈S〉)u

(〈?(U); S〉)u =!〈(〈U 〉)u〉; (〈S〉)u

and other type operators are translated homomorphically. Since (〈·〉)u translates the output type operator into an input type
operator (and viceversa), it does not satisfy type preservation.

Next we define semantic criteria for typed encodings. Recall that (un)typed barbs have been defined in Definition 3.7.

Definition 4.5 (Semantic preservation). Consider typed calculi L1 = 〈C1, T1, �−→1, ≈1, �1〉 and L2 = 〈C2, T2, �−→2, ≈2, �2〉. We
say that the typed encoding

〈
�·�, (〈·〉)〉 :L1 →L2 is semantic preserving if it satisfies the properties below.

1. Type Soundness: if �; ∅; 	 �1 P � � then (〈�〉); ∅; (〈	〉) �2 � P � � �.
2. Barb Preserving: if �; 	 �1 P ↓n then (〈�〉); (〈	〉) �2 � P � ⇓n .
3. Operational Correspondence: If �; ∅; 	 �1 P � � then

(a) Completeness: If �; 	 �1 P
τ�−→1 	′ �1 P ′ then ∃Q , 	′′ such that

(i) (〈�〉); (〈	〉) �2 � P � �=⇒2 (〈	′′〉) �2 Q and
(ii) (〈�〉); (〈	′〉) �2 � P ′�≈2 (〈	′′〉) �2 Q .

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.13 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 13
(b) Soundness: If (〈�〉); (〈	〉) �2 � P � �=⇒2 (〈	′〉) �2 Q then ∃P ′, Q ′, 	′′, 	′′′ such that

(i) �; 	 �1 P
τ�−→1 	′′ �1 P ′ ,

(ii) (〈�〉); (〈	′〉) �2 Q �=⇒2 (〈	′′′〉) �2 Q ′ and
(iii) (〈�〉); (〈	′′〉) �2 � P ′�≈2 (〈	′′′〉) �2 Q ′ .

4. Full Abstraction: �; 	 �1 P ≈1 	′ �1 Q if and only if (〈�〉); (〈	〉) �2 � P � ≈2 (〈	′〉) �2 � Q �.

Together with type preservation (Definition 4.4), type soundness is a distinguishing encodability criterion. Barb preser-
vation, related to success sensitiveness in [10], is convenient in our developments as all considered calculi have the same
notion of barb. Operational correspondence, standardly divided into completeness and soundness, is also based on [10];
it relies on τ -transitions (reductions). Completeness ensures that a step of the source process is mimicked by a step of
its associated encoding. Soundness is the converse of completeness; the formulation given above is called weak soundness
in [36].

Above, operational correspondence is stated in generic terms. It is worth stressing that the operational correspondence
statements for our encodings are tailored to the specifics of each encoding, and so they are actually stronger than the criteria
given above (see Propositions 5.2, 5.5, 6.2, and 6.5). In particular, we will consider forms of operational correspondence that
account also for visible actions, relying on a mapping { {·} } on actions, as already explained (cf. Definition 4.7 below). Finally,
following [39,35,51], we consider full abstraction as an encodability criterion: this leads to stronger encodability results.

4.2. Precise, minimal, and tight encodings

We may now introduce precise, minimal, and tight encodings. While we state strong positive encodability results in terms
of precise encodings, to prove the non-encodability result in § 5.4, we appeal to the weaker minimal encodings. Also, to
compare two precise encodings in § 5.3 here we introduce the notion of tight encodings.

Definition 4.6 (Typed encodings: precise and minimal). Let
〈

�·�, (〈·〉)〉 :L1 →L2 be a typed encoding.

- We say that the typed encoding is precise, if it is syntax, type, and semantic preserving (Definitions 4.3, 4.4, 4.5).
- We say that the typed encoding is minimal, if it is syntax preserving (Definition 4.3), barb preserving (Definition 4.5(2)),

and operationally complete (Definition 4.5(3)(a)).

The following property, concerning composability of precise encodings, will come in handy in § 6. It follows closely a
similar property established in [9] for (untyped) valid encodings between languages with equivalences which are reduction-
closed.

Proposition 4.1 (Composability). Assume typed calculi L1, L2 , and L3 whose typed equivalences (≈1, ≈2 , and ≈3 , respectively) are
reduction-closed. Let

〈
�·�1, (〈·〉)1〉 : L1 → L2 and

〈
�·�2, (〈·〉)2〉 : L2 → L3 be two precise encodings. Then their composition, denoted 〈

�·�2 ◦ �·�1, (〈·〉)2 ◦ (〈·〉)1〉 :L1 →L3 , is precise.

Proof. The proof follows directly from the definitions, and is very similar to the proof of Proposition 10 in [9]. �
We now introduce the notion of tight encodings, which refine precise encodings with extra correctness criterion: a form

of operational correspondence for visible actions. As already motivated above, we write
1,
2 to denote actions different
from τ , and
�−→ (resp.

�=⇒) to denote a (weak) visible transition; recall that { {·} } stands for a mapping on action labels.

Definition 4.7 (Labelled correspondence / tight encodings). Consider typed calculi L1 and L2, defined as L1 = 〈C1, T1, �−→1
, ≈1, �1〉 and L2 = 〈C2, T2, �−→2, ≈2, �2〉. The encoding

〈
�·�, (〈·〉)〉 : L1 → L2 satisfies labelled operational correspondence if it

satisfies:

1. If �; 	 �1 P

1�−→1 	′ �1 P ′ then ∃Q , 	′′ ,
2 such that:

(i) (〈�〉); (〈	〉) �2 � P �
2
�==⇒2 (〈	′′〉) �2 Q ; (ii)
2 = { {
1} }; and

(iii) (〈�〉); (〈	′′〉) �2 Q≈2(〈	′〉) �2 � P ′�.

2. If (〈�〉); (〈	〉) �2 � P �
2�==⇒2 (〈	′〉) �2 Q then ∃P ′ , Q ′ , 	′′ , 	′′′ ,
1 such that:

(i) �; 	 �1 P

1�−→1 	′′ �1 P ′; (ii)
2 = { {
1} }; (iii) (〈�〉); (〈	′〉) �2 Q �=⇒2 (〈	′′′〉) �2 Q ′ (iv) (〈�〉); (〈	′′〉) �2 � P ′�≈2(〈	′′′〉) �2 Q ′ .

A tight encoding is a typed encoding which is precise (Definition 4.6) and that also satisfies labelled operational correspon-
dence as above.

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.14 (1-54)

14 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
⌊⌊
w!〈λx. Q 〉.P⌋⌋

σ

def= u!〈λx.
⌊⌊

Q
⌋⌋

σ ·x〉.
⌊⌊

P
⌋⌋

σ

⌊⌊
w � {li : Pi}i∈I

⌋⌋
σ

def= u � {li :
⌊⌊

Pi
⌋⌋

σ
}i∈I⌊⌊

w?(x).P
⌋⌋

σ

def= u?(x).
⌊⌊

P
⌋⌋

σ

⌊⌊
w
 l.P

⌋⌋
σ

def= u
 l.
⌊⌊

P
⌋⌋

σ⌊⌊
(ν n)P

⌋⌋
σ

def= (ν n)
⌊⌊

P
⌋⌋

σ ·n
⌊⌊

(λx.Q) w
⌋⌋

σ

def= (λx.
⌊⌊

Q
⌋⌋

σ ·x) u⌊⌊
P | Q

⌋⌋
σ

def= ⌊⌊
P
⌋⌋

σ
| ⌊⌊Q

⌋⌋
σ

⌊⌊
x w

⌋⌋
σ

def= x u⌊⌊
0
⌋⌋

σ

def= 0

In all cases: u =
{

xn if w is a name n and n /∈ σ (x fresh)

w otherwise: w is a variable or a name n and n ∈ σ

Fig. 8. Auxiliary mapping used to encode HOπ into HO (Definition 5.1).

This way, the notion of labelled correspondence complements/generalizes the notions of operational soundness and
completeness given in Definition 4.5, which is restricted to τ -labelled transitions.

5. Expressiveness results for HOπ , HO, and π

In this section, we present two precise encodings: (1) higher-order communication with recursion and name-passing
(HOπ) into higher-order communication without name-passing nor recursion (HO) (§ 5.1); and (2) HOπ into the first-order
calculus with name-passing with recursion (π) (§ 5.2). We then compare these encodings (§ 5.3). Moreover, in § 5.4 we state
our impossibility result for shared/linear names. We consider the following typed calculi, which result as three instances
of Definition 4.1:

LHOπ = 〈HOπ,T1, �−→,≈H,�〉
LHO = 〈HO,T2, �−→,≈H,�〉
Lπ = 〈π,T3, �−→,≈C,�〉

where T1, T2, and T3 are sets of types of HOπ , HO, and π , respectively. The typing � is defined in § 3.2. The LTSs follow
the intuitions given in § 3.3.2. The set of actions AHOπ is as in Definition 3.10; the sets of actions AHO and Aπ are obtained
from AHOπ as expected, considering the differences in the syntax of values V . Moreover, higher-order and characteristic
bisimilarities ≈H and ≈C are as in Definition 3.11 and Definition 3.12.

Remark 5.1 (Type Annotations (2)). In encodings, we sometimes type-annotate bound variables in order to distinguish first-
and higher-order values and processes. This way, e.g., we may write u?(x :C).P and u?(x : L).P to denote first- and higher-
order input prefixed processes, respectively.

5.1. Precise encoding of HOπ into HO

HO is expressive enough to precisely encode HOπ . As discussed above, the main challenges are to encode (1) name pass-
ing and (2) recursion, for which we only use abstraction passing. As explained in § 2, for (1), we pass an abstraction which
enables to use the name upon application. For (2), we copy a process upon reception; passing around linear abstractions is
delicate because they cannot be copied. To handle linearity, we define the auxiliary mappings | | · | | and

⌊⌊ · ⌋⌋
σ

: the former
maps sequences of session names into sequences of variables; the second maps processes with free names to processes
without free names (but with free variables instead):

Definition 5.1 (Auxiliary mappings). We define mappings | | · | | and
⌊⌊ · ⌋⌋

σ
as follows:

• | | · | | : 2N −→ Vω is a map of sequences of lexicographically ordered names to sequences of variables, defined inductively
as:

||ε|| = ε

||n · m̃|| = xn · ||m̃|| (x fresh)

• Given a set of session names and variables σ , the map
⌊⌊ · ⌋⌋

σ
: HO→ HO is as in Fig. 8.

Let P be an HOπ process with fn(P) = {n1, · · · , nk}. Intuitively, our encoding �·�1f exploits the abstraction λx1, · · · ,
xk.

⌊⌊
� P �1

⌋⌋
, where x j = | |n j | |, for all j ∈ {1, . . . , k}:
f ∅

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.15 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 15
Terms:

�u!〈w〉.P �1f
def= u!〈λz. z?(x).(x w)〉.� P �1f

�u?(x:C).Q �1f
def= u?(y).(ν s)(y s |s!〈λx. � Q �1f 〉.0)

�u!〈λx. Q 〉.P �1f
def= u!〈λx. � Q �1f 〉.� P �1f

�u?(x:L).P �1f
def= u?(x).� P �1f

�s
 l.P �1f
def= s
 l.� P �1f

�s � {li :Pi}i∈I �1f
def= s � {li : � Pi �1f }i∈I

�0�1f
def= 0

�(ν n)P �1f
def= (ν n)� P �1f

�x u�1f
def= x u

�(λx. Q) u�1f
def= (λx. � Q �1f) u

� P | Q �1f
def= � P �1f | � Q �1f

�μX .P �1f
def= (ν s)

(
s!〈λ(||ñ||, y). y?(zX).

⌊⌊
� P �1f ,{X→ñ}

⌋⌋
∅
〉
.0 | s?(zX).� P �1f ,{X→ñ}

)
(ñ= fn(P))

� X �1f
def= (ν s)(zX (ñ, s) | s!〈zX 〉.0) (ñ= f (X))

Above, fn(P) is a lexicographically ordered sequence of free names in P . Map
⌊⌊ · ⌋⌋

σ
is given in Definition 5.1 and Fig. 8.

Types: ⌊
S
⌋1 def= (?((〈S〉)1��);end)�� ⌊〈S〉⌋1 def= (?(〈(〈S〉)1〉→�);end)��⌊〈L〉⌋1 def= (?(〈(〈L〉)1〉→�);end)�� ⌊

C��⌋1 def= (〈C〉)1��⌊
C→�⌋1 def= (〈C〉)1→�

(〈〈S〉〉)1 def= 〈(〈S〉)1〉 (〈〈L〉〉)1 def= 〈(〈L〉)1〉
(〈!〈U 〉; S〉)1 def= !〈⌊U

⌋1〉; (〈S〉)1 (〈?(U); S〉)1 def= ?(
⌊

U
⌋1

); (〈S〉)1

(〈⊕{li : Si}i∈I 〉)1 def= ⊕{li : (〈Si〉)1}i∈I (〈&{li : Si}i∈I 〉)1 def= &{li : (〈Si〉)1}i∈I

(〈μt.S〉)1 def= μt.(〈S〉)1 (〈t〉)1 def= t

(〈end〉)1 def= end

Fig. 9. Encoding of HOπ into HO (Definition 5.2).

Definition 5.2 (Typed encoding of HOπ into HO). Let f be a map from process variables to sequences of name variables.
The typed encoding

〈
�·�1 f , (〈·〉)1〉 : LHOπ → LHO is given in Fig. 9. Mapping (〈·〉)1 on types homomorphically extends to

environments 	 and �, with

(〈� · X : {ni : Si}1≤i≤m〉)1 = (〈�〉)1 · zX : ((〈S1〉)1, . . . , (〈Sm〉)1, S∗)→�
where S∗ is defined as μt.?(((〈S1〉)1, . . . , (〈Sm〉)1, t) →�); end.

Observe that the encoding of types (〈·〉)1 depends on an auxiliary encoding for value types, denoted
⌊ · ⌋1 . Notice also that

	 in X :	 is mapped to a non-tail recursive session type with variable zX . Non-tail recursive session types were studied
in [4,1]; to our knowledge, this is the first application in the context of higher-order session types. For convenience, we
use polyadic name abstractions λx1, . . . , xk. P , with k ≥ 2 (sometimes also denoted as λ(x1, . . . , xk). P). A precise encoding
of polyadicity into HOπ is given in § 6.2 (see also Corollary 6.2 to its extension to HO).

Key elements in Fig. 9 are encodings of name passing (�u!〈w〉.P �1f and �u?(x).P �1f) and recursion (�μX .P �1f and � X �1f).
As motivated in § 2, a name w is passed as an input-guarded abstraction; on the receiver side, the encoding i) receives the
abstraction; ii) applies to it a fresh endpoint s; iii) uses the dual endpoint s to send the continuation P as an abstraction.
Thus, name substitution is achieved via name application. As for recursion, to encode μX .P we first record a mapping from
recursive variable X to process variable zX ; here, we assume that for each recursive variable Xi there is a fresh variable
zXi . Then, using the auxiliary mapping

⌊⌊ · ⌋⌋
σ

in Definition 5.1, we encode the recursion body P as a name abstraction in
which free names of P are converted into name variables. (Notice that P is first encoded into HO and then transformed
using mapping

⌊⌊ · ⌋⌋
σ

.) Subsequently, this higher-order value is embedded in an input-guarded “duplicator” process. We
encode X in such a way that it simulates recursion unfolding by invoking the duplicator in a by-need fashion. That is, upon

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.16 (1-54)

16 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
reception, the HO abstraction encoding P is duplicated: one copy is used to recover the original recursion body P (through
the application of fn(P)); another copy is used to re-invoke the duplicator when needed.

We illustrate the encoding by means of two examples: the first illustrates our strategy for encoding recursion, while the
second illustrates the strategy for first-order session communication.

Example 5.1 (Encoding recursion). Let μX .a!〈m〉.X be an HOπ process. Its encoding into HO is given next; notice that f = ∅
and f ′ = X → a m.

�μX .a!〈m〉.X �1f = (ν s1)
(
s1!〈λ(xa, xm, y1). y1?(zX).

⌊⌊
�a!〈m〉.X �1f ′

⌋⌋
∅〉.0 | s1?(zX).�a!〈m〉.X �1f ′

)
�a!〈m〉.X �1f ′ = a!〈λz1. z1?(x).(xm)〉.(ν s2)(zX (a,m, s2) | s2!〈zX 〉.0)⌊⌊

�a!〈m〉.X �1f ′
⌋⌋
∅ = xa!〈λz1. z1?(x).(x xm)〉.(ν s2)(zX (xa, xm, s2) | s2!〈zX 〉.0)

This way, by writing V to denote the abstraction

λ(xa, xm, y1). y1?(zX).xa!〈λz1. z1?(x).(x xm)〉.(ν s2)(zX (xa, xm, s2) | s2!〈zX 〉.0)

we would have

�μX .a!〈m〉.X �1f = (ν s1)
(
s1!〈V 〉.0 | s1?(zX).a!〈λz1. z1?(x).(xm)

〉
.(ν s2)(zX (a,m, s2) | s2!〈zX 〉.0)

)
Next we illustrate the behaviour of �μX .a!〈m〉.X �1f ; below
 stands for a!〈λz. z?(x).(x m)〉.

�μX .a!〈m〉.X �1f
τ�−→ a!〈λz1. z1?(x).(xm)〉.(ν s2)(V (a,m, s2) | s2!〈V 〉.0)

�−→ (ν s2)(V (a,m, s2) | s2!〈V 〉.0)
τ�−→ (ν s2)

(
s2?(zX).a!〈λz1. z1?(x).(xm)

〉
.(ν s3)(zX (a,m, s3) | s3!〈zX 〉.0) | s2!〈V 〉.0

)
≡ (ν s2)

(
s2!〈V 〉.0 | s2?(zX).a!〈λz1. z1?(x).(xm)

〉
.(ν s3)(zX (a,m, s3) | s3!〈zX 〉.0)

)
≡α �μX .a!〈m〉.X �1f

Example 5.2 (Encoding a hotel booking client). The HOπ process Client2 (cf. Fig. 7) is one possible implementation for the
hotel booking scenario described in § 3.4. Its encoding in HO is as follows:

�Client2 �1f = �(ν h)(s1!〈λx. Q 1{h/y}〉.s2!〈λx. Q 2{h/y}〉.0)�1f

= (ν h)(s1!〈λx. � Q 1{h/y}�1f 〉.s2!〈λx. � Q 2{h/y}�1f 〉.0)

where � Q 1 �1f and � Q 2 �1f are given in Fig. 10.

We now state the properties of the encoding. We start with type preservation and type soundness:

Proposition 5.1 (HOπ into HO: type preservation and type soundness). The encoding from LHOπ into LHO (cf. Definition 5.2) is type
preserving (cf. Definition 4.4) and type sound (cf. Definition 4.5(1)).

Proof. Type preservation follows directly from Fig. 9. Type soundness is shown by induction on the inference of �; ∅; 	 �
P � �. See Proposition Appendix B.1 (Page 35) in B.1. �

We now state a generalised form of operational correspondence, which includes τ -labelled transitions (reductions) but
also visible actions. To this end, we define a mapping on action labels:

Definition 5.3. Given the typed encoding
〈

�·�1f , (〈·〉)1
〉 : LHOπ → LHO (cf. Definition 5.2), the mapping on actions { {·} }1 :

AHOπ →AHO is defined as follows:

{{(νm̃)n!〈m〉}}1 def= (νm̃)n!〈λz. z?(x).(xm)〉
{{n?〈m〉}}1 def= n?〈λz. z?(x).(xm)〉

{{(νm̃)n!〈λx. P 〉}}1 def= (νm̃)n!〈λx. � P �1∅〉
{{n?〈λx. P 〉}}1 def= n?〈λx. � P �1∅〉

and as an homomorphism for other actions
 ∈AHOπ .

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.17 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 17
� Q 1 �1f = �x!〈room〉.x?(quote1).y!〈quote1〉.y?(quote2).Rx �1f

= x!〈λz1. z1?(x1).(x1 room)〉.�x?(quote1).y!〈quote1〉.y?(quote2).Rx �1f

= x!〈λz1. z1?(x1).(x1 room)〉.x?(y1).(ν s1)
(

y1 s1 |
s1!〈λquote1. � y!〈quote1〉.y?(quote2).Rx �1f 〉.0

)
= x!〈λz1. z1?(x1).(x1 room)〉.x?(y1).(ν s1)

(
y1 s1 |

s1!〈λquote1. y!〈λz2. z2?(x2).(x2 quote1)〉.� y?(quote2).Rx �1f 〉.0
)

= x!〈λz1. z1?(x1).(x1 room)〉.x?(y1).(ν s1)
(

y1 s1 |
s1!〈λquote1. y!〈λz2. z2?(x2).(x2 quote1)〉.y?(u1).(ν s2)(u1 s2 | s2!〈λquote2. � Rx �1f 〉.0)〉.0)

� Q 2 �1f = �x!〈room〉.x?(quote1).y?(quote2).y!〈quote1〉.Rx �1f

= x!〈λz1. z1?(x1).(x1 room)〉.x?(y1).(ν s1)
(

y1 s1 |
s1!〈λquote1. y?(u1).(ν s2)(u1 s2 | s2!〈λquote2. y!〈λz2. z2?(x2).(x2 quote1)〉.� Rx �1f 〉.0)〉.0)

with

� Rx �1f = �if quote1 ≤ quote2 then (x
 accept.x!〈credit〉.0 else x
 reject.0)�1f

= if quote1 ≤ quote2 then �(x
 accept.x!〈credit〉.0 else x
 reject.0)�1f

= if quote1 ≤ quote2 then (x
 accept.x!〈λz. z?(x).(x credit)〉.0 else x
 reject.0)

Fig. 10. Encodings of the hotel booking clients (Example 5.2).

We then have:

Proposition 5.2 (Operational correspondence, HOπ into HO). Let P be an HOπ process. If �; ∅; 	 � P � � then:

1. Suppose �; 	 � P

1�−→	′ � P ′ . Then we have:

a) If
1 ∈ {(ν m̃)n!〈m〉, (ν m̃)n!〈λx. Q 〉, s ⊕ l, s&l} then ∃
2 s.t.

(〈�〉)1; (〈	〉)1 � � P �1f

2�−→ (〈	′〉)1 � � P ′�1f and
2 = { {
1} }1 .

b) If
1 = n?〈λy. Q 〉 and P ′ = P0{λy. Q/x} then ∃
2 s.t.

(〈�〉)1; (〈	〉)1 � � P �1f

2�−→ (〈	′〉)1 � � P0 �1f {λy. � Q �1∅/x} and
2 = { {
1} }1 .

c) If
1 = n?〈m〉 and P ′ = P0{m/x} then ∃
2 , R such that (〈�〉)1; (〈	〉)1 � � P �1f

2�−→ (〈	′〉)1 � R, with
2 = { {
1} }1 , and

(〈�〉)1; (〈	′〉)1 � R
τβ�−→ τs�−→ τβ�−→ (〈	′〉)1 � � P0 �1f {m/x}.

d) If
1 = τ and P ≡ (ν m̃)(n!〈m〉.P1 | n?(x).P2) and P ′ = (ν m̃)(P1 | P2{m/x}) then ∃R such that

(〈�〉)1; (〈	〉)1 � � P �1f
τ�−→ (〈	〉)1 � (ν m̃)(� P1 �1f | R), and

(〈�〉)1; (〈	〉)1 � (ν m̃)(� P1 �1f | R)
τβ�−→ τs�−→ τβ�−→ (〈	〉)1 � (ν m̃)(� P1 �1f | � P2 �1f {m/x}).

e) If
1 = τ and P ≡ (ν m̃)(n!〈λy. Q 〉.P1 | n?(x).P2) and P ′ = (ν m̃)(P1 | P2{λy. Q/x}) then

(〈�〉)1; (〈	〉)1 � � P �1f
τ�−→ (〈	1〉)1 � (ν m̃)(� P1 �1f | � P2 �1f {λy. � Q �1∅/x}).

f) If
1 = τ and P ≡ (ν m̃)((λx. P1) V) and P ′ = (ν m̃)(P1{V/x}) then

(〈�〉)1; (〈	〉)1 � � P �1f
τ�−→ (〈	′

1〉)1 � � P ′�1f .

2. Suppose (〈�〉)1; (〈	〉)1 � � P �1f

2�−→ (〈	′〉)1 � Q . Then we have:

a) If
2 ∈ {(ν m̃)n!〈λz. z?(x).(x m)〉, (ν m̃)n!〈λx. R〉, s ⊕ l, s&l} then ∃
1, P ′ s.t.

�; 	 � P

1�−→	′ � P ′ ,
1 = { {
2} }1 , and Q = � P ′�1f .

b) If
2 = n?〈λy. R〉 then either:

(i) ∃
1, x, P ′, P ′′ s.t. �; 	 � P

1�−→	′ � P ′{λy. P ′′/x},
1 = { {
2} }1 , � P ′′�1∅ = R, and Q = � P ′�1f .

(ii) R ≡ y?(x).(x m) and ∃
1, z, P ′ s.t. �; 	 � P

1�−→	′ � P ′{m/z},
1 = { {
2} }1 , and

(〈�〉)1; (〈	′〉)1 � Q
τβ�−→ τs�−→ τβ�−→ (〈	′′〉)1 � � P ′{m/z}�1
f

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.18 (1-54)

18 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
c) If
2 = τ then 	′ =	 and either

(i) ∃P ′ s.t. �; 	 � P
τ�−→	 � P ′ , and Q = � P ′�1f .

(ii) ∃P1, P2, x, m, Q ′ s.t. �; 	 � P
τ�−→	 � (ν m̃)(P1 | P2{m/x}), and

(〈�〉)1; (〈	〉)1 � Q
τβ�−→ τs�−→ τβ�−→ (〈	〉)1 � � P1 �1f | � P2{m/x}�1f

Proof. By transition induction. See Proposition Appendix B.2 (Page 37) in B.1. �
In the above proposition, it is worth observing how we can explicitly distinguish the role of finite, deterministic reduc-

tions (τs�−→ and
τβ�−→, cf. Not. 2) in soundness and completeness statements.

The typed operational correspondence given above is an important component in the proof of full abstraction, which we
state next.

Proposition 5.3 (HOπ into HO: full abstraction). Let P1, Q 1 be HOπ processes.
�; 	1 � P1 ≈H 	2 � Q 1 if and only if (〈�〉)1; (〈	1〉)1 � � P1 �1f ≈H (〈	2〉)1 � � Q 1 �1f .

Proof. The proof of both directions proceeds coinductively. See Proposition Appendix B.3 (Page 40) in B.1. �
We may state the main result of this section:

Theorem 5.1 (Precise encoding of HOπ into HO). The encoding from LHOπ into LHO (cf. Definition 5.2) is precise.

Proof. According to Definition 4.6, preciseness includes syntax-, type-, and semantics-preservation. Syntax preservation fol-
lows immediately from the definition of the encoding. Type preservation follows from Proposition 5.1 (Page 16). Semantics-
preservation follows from Proposition 5.2 (Page 17) and Proposition 5.3 (Page 18). �
5.2. Precise encoding of HOπ into π

We now discuss the precise encodability of HOπ into π ; the only non trivial issue is encoding higher-order communica-
tion, which is present in HOπ but not in π . We closely follow Sangiorgi’s encoding [39,42], which represents the exchange
of a process/abstraction by passing around a fresh trigger name. Trigger names may then be used to activate copies of the
abstraction, which becomes a persistent resource represented by an input-guarded replication.

The process mapping �·�2 , which we now informally discuss, casts this strategy in the setting of session-typed com-
munications. In the presence of session names (which are linear and cannot be replicated), our approach uses replicated
names as triggers for shared resources and non-replicated names for linear resources. The encoding of abstraction sending
therefore distinguishes two cases:

�u!〈λx. Q 〉.P �2
def=

{
(ν a)(u!〈a〉.(� P �2 | ∗a?(y).y?(x).� Q �2)) if fs(Q)= ∅
(ν a)(u!〈a〉.(� P �2 | a?(y).y?(x).� Q �2)) otherwise

where ∗ P stands for μX .(P | X) (Not. 1). In the first case, if the abstraction body does not contain (linear) session names
then it can be safely represented as a persistent server accessible via a (fresh) trigger name a, which is sent in place of the
abstraction. The second case covers the case in which the abstraction to be passed around is linear: the server on a should
be invoked exactly once—it cannot be persistent. In this scheme, the encoding of abstraction reception simply expects a
trigger name:

�u?(x).P �2
def= u?(x).� P �2

The mechanism for representing abstraction passing with name passing is completed in the encoding of name application.
There are two cases:

�x u�2
def= (ν s)(x!〈s〉.s!〈u〉.0)

�(λx. P) u�2
def= (ν s)(s?(x).� P �2 | s!〈u〉.0)

Thus, in both cases we first establish a fresh session s with the server representing the abstraction body; the name to be
applied (u) is then passed around using s. Observe how this encoding naturally induces the name substitution expected
from a name application. We may now define:

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.19 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 19
Terms:

�u!〈λx. Q 〉.P �2
def=

{
(ν a)(u!〈a〉.(� P �2 | ∗a?(y).y?(x).� Q �2)) if fs(Q)= ∅
(ν a)(u!〈a〉.(� P �2 | a?(y).y?(x).� Q �2)) otherwise

�u?(x).P �2
def= u?(x).� P �2

�x u�2
def= (ν s)(x!〈s〉.s!〈u〉.0)

�(λx. P) u�2
def= (ν s)(s?(x).� P �2 | s!〈u〉.0)

Types:

(〈!〈S��〉; S1〉)2 def= !〈〈?((〈S〉)2);end〉〉; (〈S1〉)2

(〈?(S��); S1〉)2 def= ?
(〈?((〈S〉)2);end〉); (〈S1〉)2

Elided mappings are homomorphic.

Fig. 11. Encoding of HOπ into π (Definition 5.4).

Definition 5.4 (Typed encoding of HOπ into π). The typed encoding
〈

�·�2, (〈·〉)2〉 :LHOπ →Lπ is defined in Fig. 11.

Example 5.3 (Encoding Client1 and Client2). The Hotel Booking scenario is described in § 3.4 (and Fig. 7) as the HOπ processes
Client1 and Client2. We first encode Client1 in π is as follows:

�Client1 �2 = �(ν h1,h2)(s1!〈λx. P xy{h1/y}〉.s2!〈λx. P xy{h2/y}〉.0 |
h1?(x).h2?(y).if x≤ y then

(h1
 accept.h2
 reject.0 else h1
 reject.h2
 accept.0))�2

= (ν h1,h2)(�s1!〈λx. P xy{h1/y}〉.s2!〈λx. P xy{h2/y}〉.0�2 |
h1?(x).h2?(y).if x≤ y then

(h1
 accept.h2
 reject.0 else h1
 reject.h2
 accept.0))

= (ν h1,h2)
(
(ν a1)(s1!〈a1〉.(�s2!〈λx. P xy{h2/y}〉.0�2 | a1?(y).y?(x).� P xy{h1/y}�2)) |

h1?(x).h2?(y).if x≤ y then

(h1
 accept.h2
 reject.0 else h1
 reject.h2
 accept.0)
)

= (ν h1,h2)
(
(ν a1)(s1!〈a1〉.(ν a2)(s2!〈a2〉.

(0 | a2?(y).y?(x).� P xy{h2/y}�2)) | a1?(y).y?(x).� P xy{h1/y}�2) |
h1?(x).h2?(y).if x≤ y then

(h1
 accept.h2
 reject.0 else h1
 reject.h2
 accept.0)
)

where � P xy �2 = P xy , for it does not involve higher-order communication. Similarly, the encoding of Client2 is as follows:

�Client2 �2 = �(ν h)(s1!〈λx. Q 1{h/y}〉.s2!〈λx. Q 2{h/y}〉.0)�2

= (ν h)
(
(ν a1)(s1!〈a1〉.(�s2!〈λx. Q 2{h/y}〉.0�2 | a1?(y).y?(x).� Q 1{h/y}�2))

)
= (ν h)

(
(ν a1)(s1!〈a1〉.(ν a2)(s2!〈a2〉.0 |
a2?(y).y?(x).� Q 2{h/y}�2) | a1?(y).y?(x).� Q 1{h/y}�2)

)
where � Q 1 �2 = Q 1 and � Q 2 �2 = Q 2 for they do not involve higher-order communication.

We state the properties of this encoding. First, type preservation, type soundness, and operational correspondence, which
requires a mapping on action labels.

Proposition 5.4 (HOπ into π : type preservation and type soundness). The encoding from LHOπ into Lπ (cf. Definition 5.4) is type
preserving (cf. Definition 4.4) and type sound (cf. Definition 4.5(1)).

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.20 (1-54)

20 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Proof. Type preservation follows directly from Fig. 11. Type soundness is proven by induction on the inference �; ∅; 	 �
P � �. See Proposition Appendix B.4 (Page 42) in B.2. �
Definition 5.5. Given the typed encoding

〈
�·�2, (〈·〉)2〉 :LHOπ →Lπ (cf. Definition 5.4), the mapping on actions { {·} }2 :AHOπ →

Aπ is defined as follows:

{{(νm̃)n!〈λx. P 〉}}2 def= (ν m)n!〈m〉
{{n?〈λx. P 〉}}2 def= n?〈m〉 (m fresh)

and as an homomorphism for other actions
 ∈AHOπ .

We now state operational correspondence:

Proposition 5.5 (Operational correspondence, HOπ into π). Let P be an HOπ process such that �; ∅; 	 � P � �.

1. Suppose �; 	 � P

1�−→	′ � P ′ . Then we have:

a) If
1 = (ν m̃)n!〈λx. Q 〉, then ∃�′, 	′′ where either:

- (〈�〉)2; (〈	〉)2 � � P �2
{{
1}}2�−−−→ �′ · (〈�〉)2; (〈	′〉)2 � � P ′�2 | ∗a?(y).y?(x).� Q �2 (if fs(Q) = ∅)

- (〈�〉)2; (〈	〉)2 � � P �2
{{
1}}2�−−−→ (〈�〉)2; 	′′ � � P ′�2 | s?(y).y?(x).� Q �2 (otherwise)

b) If
1 = n?〈λy. Q 〉 then ∃R where either

- (〈�〉)2; (〈	〉)2 � � P �2
{{
1}}2�−−−→ �′; (〈	′′〉)2 � R, for some �′ and

(〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′′〉)2 � (ν a)(R | ∗a?(y).y?(x).� Q �2) (if fs(Q) = ∅)

- (〈�〉)2; (〈	〉)2 � � P �2
{{
1}}2�−−−→ (〈�〉)2; (〈	′′〉)2 � R, and

(〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′′〉)2 � (ν s)(R | s?(y).y?(x).� Q �2) (otherwise)

c) If
1 = τ , with τ �= τβ then one of the following holds:

- (〈�〉)2; (〈	〉)2 � � P �2
τ�−→ (〈	′〉)2 � (ν m̃)(� P1 �2 | (ν a)(� P2 �2{a/x} | ∗a?(y).y?(x).� Q �2)), for some P1 , P2 , Q (with

fs(Q) = ∅);

- (〈�〉)2; (〈	〉)2 � � P �2
τ�−→ (〈	′〉)2 � (ν m̃)(� P1 �2 | (ν s)(� P2 �2{s/x} | s?(y).y?(x).� Q �2)), for some P1 , P2 , Q (with fs(Q) �=

∅);

- (〈�〉)2; (〈	〉)2 � � P �2
τ�−→ (〈�〉)2; (〈	′〉)2 � � P ′�2

d) If
1 = τβ then (〈�〉)2; (〈	〉)2 � � P �2
τs�−→ (〈�〉)2; (〈	′〉)2 � � P ′�2

e) If
1 ∈ {n ⊕ l, n&l} then

∃
2 = { {
1} }2 such that (〈�〉)2; (〈	〉)2 � � P �2

2�−→ (〈�〉)2; (〈	′〉)2 � � P ′�2 .

2. Suppose (〈�〉)2; (〈	〉)2 � � P �2

2�−→ (〈	′〉)2 � R.

a) If
2 = (ν m)n!〈m〉 then one of the following holds:

- ∃P ′ such that P
(ν m)n!〈m〉�−−−−−−→ P ′ and R = � P ′�2;

- ∃Q , P ′ such that P
n!〈λx. Q 〉�−−−−−→ P ′ and R = � P ′�2 | ∗a?(y).y?(x).� Q �2 and fs(Q) = ∅;

- ∃Q , P ′ such that P
n!〈λx. Q 〉�−−−−−→ P ′ and R = � P ′�2 | s?(y).y?(x).� Q �2 and fs(Q) �= ∅;

b) If
2 = n?〈m〉 then one of the following holds:

- ∃P ′ such that P
n?〈m〉�−−−→ P ′ and R = � P ′�2;

- ∃Q , P ′ such that P
n?〈λx. Q 〉�−−−−−−→ P ′

and (〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′〉)2 � (ν a)(R | ∗a?(y).y?(x).� Q �2) and fs(Q) = ∅;

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.21 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 21
- ∃Q , P ′ such that P
n?〈λx. Q 〉�−−−−−−→ P ′

and (〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′〉)2 � (ν s)(R | s?(y).y?(x).� Q �2) and fs(Q) �= ∅.

c) If
2 = τ then ∃P ′ such that P τ�−→ P ′ and (〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′〉)2 � R.
d) If
2 /∈ {n!〈m〉, n ⊕ l, n&l} then ∃
1 such that
1 = { {
2} }2 and

�; 	 � P

1�−→ �; 	 � P ′ .

Proof. By transition induction. See Proposition Appendix B.5 (Page 44) in B.2. �
Some comments on the completeness properties given by Proposition 5.5 (Page 20) are in order. Items 1(a), 1(b), and

1(e) describe the way in which the encoding mimicks source visible transitions (output, input, and labelled choice/selection,
respectively). As discussed above, the encoding of output sets up a potentially persistent server to represent the body of the
abstraction being exchanged. The statement in 1(a) formalises the fact that after an output transition in the source process
this server has not been yet invoked/used on the target side, and so it appears as a residual context (∗ a?(y).y?(x).� Q �2

or s?(y).y?(x).� Q �2) in parallel to the encoding of the continuation of the output (� P ′�2). Similarly, the statement in
1(b) formalises the fact that after an input transition the resulting process R should be placed in an appropriate context
containing the server representing the abstraction body. Together, R and its server are behaviourally equivalent to � P ′�2 .
Items 1(c) and 1(d) state correspondences for internal actions, in the sense of Definition 4.5. In particular, the first two
sub-items in 1(c) describe how a source reduction due to abstraction passing is matched: in our encoding this is mimicked
by exchanging the trigger names; the third sub-item covers other possibilities for source reductions.

Exploiting the above properties (type preservation, typed operational correspondence), we can show that our typed
encoding is fully abstract and precise.

Proposition 5.6 (HOπ to π : full abstraction). Let P1, Q 1 be HOπ processes. �; 	1 � P1 ≈H 	2 � Q 1 if and only if (〈�〉)2; (〈	1〉)2 �
� P1 �2 ≈C (〈	2〉)2 � � Q 1 �2 .

Proof. The proof of both directions proceeds coinductively. See Proposition Appendix B.6 (Page 46) in B.2. �
We may now finally state:

Theorem 5.2 (Precise encoding of HOπ into π). The encoding from LHOπ into Lπ (cf. Definition 5.4) is precise.

Proof. According to Definition 4.6, preciseness includes syntax-, type-, and semantics-preservation. Syntax preservation fol-
lows immediately from the definition of the encoding. Type preservation follows from Proposition 5.4 (Page 19). Semantics-
preservation follows from Proposition 5.5 (Page 20) and Proposition 5.6 (Page 21). �
5.3. Comparing two precise encodings

The precise encodings in § 5.1 and § 5.2 confirm that HO and π constitute two important sources of expressiveness
in HOπ . This naturally begs the question: which of the two sub-calculi is more tightly related to HOπ? We argue, both
empirically and formally, that when compared to π , HO is more economical and satisfies tighter correspondences.

Empirical comparison: reduction steps We first contrast the way in which

a) the encoding from HOπ to HO, denoted �·�1f (§ 5.1), translates processes with name passing;

b) the encoding from HOπ to π , denoted �·�2 (§ 5.2), translates processes with abstraction passing.

Consider the HOπ processes:

P1 = s!〈a〉.0 | s?(x).(x!〈s1〉.0 | . . . | x!〈sn〉.0)

P2 = s!〈λx. R〉.0 | s?(x).(x s1 | . . . | x sn)

P1 features pure name passing (no abstraction-passing), whereas P2 involves pure abstraction passing (no name passing).
Intuitively, P1 and P2 have a similar purpose: in both cases, the intended communication on s leads to n usages of the
communication object (name a in P1, abstraction λx. R in P2). Consider now the reduction steps from P1 and P2:

P1
τ�−→ a!〈s1〉.0 | . . . | a!〈sn〉.0

P2
τ�−→ (λx. R) s1 | . . . | (λx. R) sn

τβ�−→ τβ�−→ · · · τβ�−→︸ ︷︷ ︸
n

R{s1/x} | . . . | R{sn/x}

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.22 (1-54)

22 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
We now encode P1 into HO and P2 into π and contrast the results. First, by considering the encoding of P1 into HO
(following mapping �·�1f in Fig. 9) we obtain:

� P1 �1f = s!〈λz. z?(x).x a
〉
.0 |

s?(y).(ν s0)
(

y s0 | s0!
〈
λx. (x!〈V 1〉.0 | . . . | x!〈Vn〉.0)

〉
.0

)
τs�−→ τβ�−→ (ν s0)(s0?(x).x a | s0!

〈
λx. (x!〈V 1〉.0 | . . . | x!〈Vn〉.0)

〉
.0)

τs�−→ τβ�−→ a!〈V 1〉.0 | . . . | a!〈Vn〉.0
where we write V i to stand for λz. z?(xi).xi si . Now, we encode P2 into π (following mapping �·�2 in Fig. 11):

� P2 �2 = (ν a)(s!〈a〉.(0 | ∗a?(y).y?(x).� R �2)) |
s?(x).

(
(ν s0)(x!〈s0〉.s0!〈s1〉.0) | . . . | (ν s0)(x!〈s0〉.s0!〈sn〉.0)

)
τs�−→≡ (ν a)

(∗a?(y).y?(x).� R �2 |
(ν s0)(a!〈s0〉.s0!〈s1〉.0) | . . . | (ν s0)(a!〈s0〉.s0!〈sn〉.0)

)
τs�−→ τs�−→ (ν a)

(∗a?(y).y?(x).� R �2 | � R �2{s1/x} |
(ν s0)(a!〈s0〉.s0!〈s2〉.0) | . . . | (ν s0)(a!〈s0〉.s0!〈sn〉.0)

)
�=⇒2∗(n−1) (ν a)

(∗a?(y).y?(x).� R �2 | � R �2{s1/x} | � R �2{s2/x} | . . . | � R �2{sn/x})
Clearly, encoding P1 into HO is more economical than encoding P2 into π . Not only moving to a pure higher-order setting
requires less reduction steps than in the first-order concurrency of π ; in the presence of shared names, moving to a
first-order setting brings the need of setting up and handling replicated processes which will eventually lead to garbage
(stuck) processes (such as ∗ a?(y).y?(x).� R �2 above). In contrast, the mechanism present in HO works efficiently regardless
of the linear or shared properties of the name that is “packed” into the abstraction. The use of β-transitions guarantees
local synchronizations, which are arguably more economical than point-to-point, session synchronizations.

It is useful to move our comparison to a purely linear setting. Consider processes Q 1 and Q 2:

Q 1 = s′!〈s〉.0 | s′?(x).x!〈a〉.0
τ�−→ s!〈a〉.0

Q 2 = s!〈λx. R〉.0 | s?(x).x a
τ�−→ τ�−→ R{a/x}

Q 1 is a π process and Q 2 is an HO process. If we consider the encoding of Q 1 into HO and of Q 2 into π , respectively, we
obtain:

� Q 1 �1f = s′!〈λz. z?(x).x s〉.0 | s′?(y).(ν s0)(y s0 | s0!
〈
λx. x!〈λz. z?(y).y a〉.0〉

.0)

τs�−→ τβ�−→ (ν s0)(s0?(x).x s | s0!
〈
λx. x!〈λz. z?(y).y a〉.0〉

.0)
τs�−→ (λx. x!〈λz. z?(y).y a〉.0) s
τβ�−→ s!〈λz. z?(y).y a〉.0

� Q 2 �2 = (ν a1)(s!〈a1〉.(0 | a1?(y).y?(x).� R �2)) | s?(x).(ν s0)(x!〈s0〉.s0!〈a〉.0)
τs�−→ τs�−→ (ν s0)(s0?(x).� R �2 | s0!〈a〉.0)

τs�−→ � R �2{a/x}
In this case, the encoding �·�2 is more efficient because it induces less reduction steps. Therefore, considering a fragment of
HOπ without shared communications (linearity only) has consequences in terms of reduction steps. These apparent benefits
of encoding �·�2 over encoding �·�1f in the presence of linearity should, however, be considered in a broader setting, for
in § 5.4 we prove that linear resources do not suffice to encode shared communications. Therefore, in the general case
featuring linear and shared communication not only the benefits of �·�2 over �·�1f could not be obtained, but the drawbacks
mentioned in the comparison between � P1 �1f and � P2 �2 (i.e., the garbage processes generated by �·�2) could well be more
prominent. This observation may be used to informally argue that �·�1f is “better than” �·�2 (or, alternatively, that HOπ is
closer to HO than to π); next, we develop a formal argument to substantiate this claim.

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.23 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 23
Formal comparison: labelled transition correspondence To formally state that HOπ and HO are more closely related than HOπ
and π , we may distinguish the precise encodings �·�1f and �·�2 depending on whether they are also tight encodings or not
(cf. Definition 4.7):

Theorem 5.3 (HO tightly encodes HOπ). While the encoding of HOπ into HO (Definition 5.2) is tight, the encoding of HOπ into π
(Definition 5.4) is not tight.

Proof (Sketch). The proof proceeds by showing that the encoding �·�1f enjoys labelled operational correspondence, whereas
�·�2 does not. Recall that a labelled operational correspondence for �·�1f has been already stated in Proposition 5.2 (Page 17).
The analog of Proposition 5.2 (Page 17) does not hold for the encoding �·�2 of HOπ into π . Consider the HOπ process:

�; ∅;	 � s!〈λx. P 〉.0 � � s!〈λx. P 〉�−−−−−→∅� 0 ��−→
with λx. P being a linear value. We translate it into a π process:

(〈�〉)2; ∅; (〈	〉)2 � (ν a)(s!〈a〉.(0 | a?(y).y?(x).� P �2)) � � s!〈a〉�−−→	′ � a?(y).y?(x).� P �2 � � a?〈V 〉�−−−→ . . .

The resulting processes have a mismatch both in the typing environment (′ �= (〈∅〉)2) and in the actions that they can
subsequently observe: the first process cannot perform any action, while the second process can perform actions of the
encoding of λx. P . �
5.4. A negative result

As most session calculi, HOπ includes communication on both shared and linear names. Shared names enable non
deterministic, unrestricted behaviour; linear names represent deterministic communication structures. The expressiveness of
shared names is also illustrated by our encoding from HOπ into π (Fig. 11). This result begs the question: can we represent
interaction along shared names using linear names only? It turns out that shared names strictly add expressiveness to HOπ :
next we prove the non existence of a minimal encoding of interaction along shared names using linear names.

Theorem 5.4. There is no minimal encoding from π to HOπ−sh .

Proof. Assume, towards a contradiction, that such a typed minimal encoding indeed exists. Recall that a minimal encoding
is syntax preserving, barb preserving, and operationally complete (cf. Definition 4.6). Consider the π process

P = a〈s〉.0 | a(x).n
 l1.0 | a(x).m
 l2.0 (with n �=m)

such that �; ∅; 	 � P � �. From process P we have one of the following:

�;	 � P
τ�−→	′ � n
 l1.0 | a(x).m
 l2.0= P1 (3)

�;	 � P
τ�−→	′ �m
 l2.0 | a(x).n
 l1.0= P2 (4)

Thus, by definition of typed barb (cf. Definition 3.7) we have:

�;	′ � P1 ↓n ∧ �;	′ � P1 �↓m (5)

�;	′ � P2 �↓n ∧ �;	′ � P2 ↓m (6)

Consider now the HOπ−sh process � P �. By our assumption of operational completeness (Definition 4.5-3(a)), from (3) with
(4) we infer that there exist HOπ−sh processes S1 and S2 such that:

(〈�〉); (〈	〉) � � P �
τs

�==⇒ (〈	′〉) � S1 ≈H � P1 � (7)

(〈�〉); (〈	〉) � � P �
τs

�==⇒ (〈	′〉) � S2 ≈H � P2 � (8)

By our assumption of barb preservation, from (5) with (6) we infer:

(〈�〉); (〈	′〉) � � P1 � ⇓n ∧ (〈�〉); (〈	′〉) � � P1 � �⇓m (9)

(〈�〉); (〈	′〉) � � P2 � �⇓n ∧ (〈�〉); (〈	′〉) � � P2 � ⇓m (10)

By definition of ≈, by combining (7) with (9) and (8) with (10), we infer barbs for S1 and S2:

(〈�〉); (〈	′〉) � S1 ⇓n ∧ (〈�〉); (〈	′〉) � S1 �⇓m (11)

(〈�〉); (〈	′〉) � S2 ⇓m ∧ (〈�〉); (〈	′〉) � S2 �⇓n (12)

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.24 (1-54)

24 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
That is, S1 and � P1 � (resp. S2 and � P2 �) have the same barbs. Now, by τ -inertness (Lemma 3.1), we have both

(〈�〉); (〈	′〉) � S1 ≈H (〈	〉) � � P � (13)

(〈�〉); (〈	′〉) � S2 ≈H (〈	〉) � � P � (14)

Combining (13) with (14), by transitivity of ≈H , we infer

(〈�〉); (〈	′〉) � S1 ≈H (〈	′〉) � S2 (15)

In turn, from (15) we infer that it must be the case that:

(〈�〉); (〈	′〉) � � P1 � ⇓n ∧ (〈�〉); (〈	′〉) � � P1 � ⇓m

(〈�〉); (〈	′〉) � � P2 � ⇓n ∧ (〈�〉); (〈	′〉) � � P2 � ⇓m

which clearly contradict (9) and (10) above. We therefore conclude that a minimal encoding from π to HOπ−sh does not
exist. �

We then have:

Corollary 5.1. Let C1, C2 ∈ {HOπ, HO, π}.

(a) There is no minimal encoding from LC1 into LC−sh
2

.

(b) There is a precise encoding of LC−sh
1

in LC−sh
2

.

Proof. Part (a) is immediate from Theorem 5.4. Part (b) follows from the definitions of the typed encodings of HOπ into
HO (cf. Definition 5.2) and of HO into π (cf. Definition 5.4), which work uniformly for linear and shared names, as well as
from the preciseness results for such encodings (cf. Proposition 5.1 (Page 18) and Proposition 5.2 (Page 21)). �
6. Extensions: HOπ with higher-order abstractions and with polyadicity

We now extend HOπ in two orthogonal ways: HOπ+ extends HOπ with higher-order applications/abstractions, while
HO π̃ extends HOπ with polyadicity. In both cases, we detail the required modifications in syntax and types. By combining
HOπ+ and HO π̃ into a single calculus we obtain HO π̃ +: the extension of HOπ with both higher-order abstractions/appli-
cations and polyadicity (cf. Corollary 6.1 and Corollary 6.2)

We present precise encodings of HOπ+ and HO π̃ into HOπ . We then use the encodings of HOπ into HO and π
in the previous section, together with encoding composability (Proposition 4.1 (Page 13)), to relate HO and π with the
super-calculus HO π̃ + , which subsumes both HOπ+ and HO π̃ .

6.1. Precise encoding of HOπ+ into HOπ

We first introduce HOπ+ , the extension of HOπ with higher-order abstractions and applications. This is the calculus
whose (typed) behavioural theory we studied in [15,17]. The syntax of HOπ+ is obtained from Fig. 2 by replacing V u with
V W in the syntax of processes, where W is a higher-order value. As for the reduction semantics, we keep the rules in
Fig. 3, except for Rule [App], which is replaced by

(λx. P) V −→ P {V/x}

Example 6.1. The following is a simple HOπ+ process with its corresponding reductions:

s!〈λx. Q 〉.0 | s?(y).(λz. (z s1) y)−→ (λz. (z s1)) (λx. Q)

−→ (λx. Q) s1

−→ Q {s1/x}
Above, the additional expressivity of HOπ+ with respect to HOπ is in the ability of applying a function such as λz. (z s1) to
an argument such as λx. Q , which is not a name but another function.

The syntax of types in Fig. 4 is modified as follows:

L ::= U→� | U ��.

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.25 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 25
Values and Terms:

{|x|}3 def= x

{|λx : L. P |}3 def= λz. z?(x).� P �3

�u!〈λx : L. Q 〉.P �3
def= u!〈{|λx. Q |}3〉.� P �3

�u?(x).P �3
def= u?(x).� P �3

�(x : L) V �3
def= (ν s)(x s | s!〈{|V |}3〉.0)

�(λx : L. P) V �3
def= (ν s)(s?(x).� P �3 | s!〈{|V |}3〉.0)

Types:

(〈L→�〉)3 def= ?((〈L〉)3);end→� (〈!〈L→�〉; S〉)3 def= !〈(〈L→�〉)3〉; (〈S〉)3

(〈L��〉)3 def= ?((〈L〉)3);end�� (〈?(L→�); S〉)3 def= ?((〈L→�〉)3); (〈S〉)3

Mappings for elided processes and types are homomorphic.

Fig. 12. Encoding of HOπ+ into HOπ .

These types can be easily accommodated in the type system in § 3.2: in Fig. 5, we replace C by U in Rule (Abs) and C by
U ′ in Rule (App). With these extensions, subject reduction (Theorem 3.1) holds for HOπ+ (cf. [15])

We give an encoding of HOπ+ into HOπ and show that it is precise. We may then use encoding composition (Proposi-
tion 4.1 (Page 13)) to encode HOπ+ into HO and π . We consider the following typed calculus (cf. Definition 4.1):

LHOπ+ = 〈HOπ+,T4,

�−→,≈H,�〉

where T4 is a set of types of HOπ+; the typing � is defined in § 3.2 with Rules (Abs) and (App) modified as explained
above. Formally, the set AHOπ+ coincides with AHOπ , for the syntax of values V is the same in both languages. However,
by considering the refined actions given by type-annotated values (cf. Remark 5.1), we have that AHOπ+ includes output and
input actions of the form (ν m̃)n!〈λx :L. P 〉 and n?〈λx:L. P 〉, whereas AHOπ includes only labels of the form (ν m̃)n!〈λx :C . P 〉
and n?〈λx:C . P 〉.

Definition 6.1 (Typed encoding of HOπ+ into HOπ). The typed encoding
〈

�·�3, (〈·〉)3〉 :LHOπ+ →LHOπ is defined in Fig. 12.

We consider mappings for terms and types, denoted �·�3 and (〈·〉)3 , respectively. Since now functions can be applied
to (higher-order) values, we have also an auxiliary mapping on values, denoted { | · | }3 . We illustrate the essence of these
mappings by means of an example.

Example 6.2. We translate the simple process from Ex. 6.1, underlining the parts of the translation which are expanded/mod-
ified from one line to the following:

�s!〈λx. Q 〉.0 | s?(y).(λz. (z s1) y)�3

= s!〈{|λx. Q |}3〉.�0�3 | s?(y).�(λz. (z s1) y)�3

= s!〈λw. w?(x).� Q �3〉.0 | s?(y).(ν s0)(s0?(z).�(z s1)�3 | s0!〈{|y|}3〉.0)

= s!〈λw. w?(x).� Q �3〉.0 | s?(y).(ν s0)(s0?(z).(ν s2)(z s2 | s2!〈{|s1|}3〉.0) | s0!〈y〉.0)

= s!〈λw. w?(x).� Q �3〉.0 | s?(y).(ν s0)(s0?(z).(ν s2)(z s2 | s2!〈s1〉.0) | s0!〈y〉.0)

−→ 0 | (ν s0)(s0?(z).(ν s2)(z s2 | s2!〈s1〉.0) | s0!〈λw. w?(x).� Q �3〉.0)

−→ 0 | (ν s2)((λw. w?(x).� Q �3) s2 | s2!〈s1〉.0) | 0

−→ 0 | (ν s2)(s2?(x).� Q �3 | s2!〈s1〉.0) | 0

−→≡ � Q �3{s1/x}

This typed encoding satisfies the following properties:

Proposition 6.1 (HOπ+ into HOπ : type preservation and type soundness). The encoding from LHOπ+ into LHOπ (cf. Fig. 12) is type
preserving (cf. Definition 4.4) and type sound (cf. Definition 4.5(1)).

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.26 (1-54)

26 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Proof. Type preservation follows directly from Fig. 12. Type soundness is shown by induction on the inference of �; ∅; 	 �
P � �. See Proposition Appendix B.7 (Page 47) in B.3. �

Before proving operational correspondence we define a mapping on action labels:

Definition 6.2. Given the typed encoding
〈

�·�3, (〈·〉)3〉 : LHOπ+ → LHOπ (cf. Definition 6.1), the mapping on actions { {·} }3 :
AHOπ+ →AHOπ is defined as follows:

{{(ν m̃)n!〈λx:L. P 〉}}3 def= (ν m̃)n!〈λz :(〈L〉)3. z?(x).� P �3〉
{{n?〈λx:L. P 〉}}3 def= n?〈λz :(〈L〉)3. z?(x).� P �3〉

and as an homomorphism for all other actions
 ∈AHOπ+ .

We may now state a labelled form of operational correspondence, as well as full abstraction:

Proposition 6.2 (Operational correspondence. From HOπ+ to HOπ). Let �; ∅; 	 � P be an HOπ+ process.

1. �; 	 � P

�−→	′ � P ′ implies

a) If
 ∈ {(ν m̃)n!〈λx. Q 〉, n?〈λx. Q 〉} then (〈�〉)3; (〈	〉)3 � � P �3

′�−→ (〈	′〉)3 � � P ′�3 with { {
} }3 =
′ .

b) If
 /∈ {(ν m̃)n!〈λx. Q 〉, n?〈λx. Q 〉, τ } then (〈�〉)3; (〈	〉)3 � � P �3

�−→ (〈	′〉)3 � � P ′�3 .

c) If
 = τβ then (〈�〉)3; (〈	〉)3 � � P �3
τ�−→	′′ � R and (〈�〉)3; (〈	′〉)3 � � P ′�3 ≈H 	′′ � R, for some R.

d) If
 = τ and
 �= τβ then (〈�〉)3; (〈	〉)3 � � P �3
τ�−→ (〈	′〉)3 � � P ′�3 .

2. (〈�〉)3; (〈	〉)3 � � P �3

�−→ (〈	′′〉)3 � Q implies

a) If
 ∈ {(ν m̃)n!〈λx. R〉, n?〈λx. R〉} then �; 	 � P

′�−→	′ � P ′ with { {
′} }3 =
 and Q ≡ � P ′�3 .

b) If
 /∈ {(ν m̃)n!〈λx. R〉, n?〈λx. R〉, τ } then �; 	 � P

�−→	′ � P ′ and Q ≡ � P ′�3 .

c) If
 = τ then either �; 	 � P
τ�−→	′ � P ′ with Q ≡ � P ′�3

or �; 	 � P
τβ�−→	′ � P ′ and (〈�〉)3; (〈	′′〉)3 � Q

τβ�−→ (〈	′′〉)3 � � P ′�3 .

Proof. By transition induction. See Proposition Appendix B.8 (Page 48) in B.3. �
The correspondence is rather tight: in both completeness and soundness directions, the most interesting cases are due

to input and output actions (whose label explicitly mentions a value) and to τβ internal actions in the source process. We
may now have:

Proposition 6.3 (Full abstraction. From HOπ+ to HOπ). Let P , Q be HOπ+ processes with �; ∅; 	1 � P � � and �; ∅; 	2 � Q � �.
Then �; 	1 � P ≈H 	2 � Q if and only if (〈�〉)3; (〈	1〉)3 � � P �3 ≈H (〈	2〉)3 � � Q �3 .

Proof. By coinduction. See Proposition Appendix B.9 (Page 49) in B.3. �
Using the above propositions, Theorems 5.1 and 5.2, and Proposition 4.1 (Page 13), we derive the following:

Theorem 6.1 (Encoding HOπ+ into HOπ). The encoding from LHOπ+ into LHOπ (cf. Fig. 12) is precise.

Proof. According to Definition 4.6, preciseness includes syntax-, type-, and semantics-preservation. Syntax preservation fol-
lows immediately from the definition of the encoding. Type preservation follows from Proposition 6.1 (Page 25). Semantics-
preservation follows from Proposition 6.2 (Page 26) and Proposition 6.3 (Page 26). �

We then have the following corollary:

Corollary 6.1 (Encodability of HOπ+ into HOπ and π). Consider the typed encodings

-
〈

�·�1, (〈·〉)1〉 :LHOπ →LHO (cf. Definition 5.2)
f

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.27 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 27
-
〈

�·�2, (〈·〉)2〉 :LHOπ →Lπ (cf. Definition 5.4)
-

〈
�·�3, (〈·〉)3〉 :LHOπ+ →LHOπ (cf. Definition 6.1)

Then the following typed encodings are precise:

-
〈

�·�1 ◦ �·�3, (〈·〉)1 ◦ (〈·〉)3〉 :LHOπ+ →LHO

-
〈

�·�2 ◦ �·�3, (〈·〉)2 ◦ (〈·〉)3〉 :LHOπ+ →Lπ

Proof. Directly from Theorem 5.1, Theorem 5.2, and Theorem 6.1 (which give preciseness for all the involved encodings),
using Proposition 4.1 (Page 13). �
6.2. Precise encoding of HO π̃ into HOπ

The calculus HO π̃ extends HOπ with polyadicity so as to enable the exchange of tuples of names ̃n (with fixed length
k ≥ 1) in both session communication and as arguments to function applications. Communication along shared names
remains monadic. As such, the syntax of Fig. 2 is modified by considering polyadic first-order applications of the form
λx1, . . . , xk. Q (k ≥ 1) in the syntax of values V ; the syntax of processes includes polyadicity in input and output prefixes,
as well as in function applications. The operational semantics in Fig. 3 requires only minor modifications to accommodate
the simultaneous substitution {Ṽ/̃x} (for equally sized ̃u/Ṽ and ̃x) in Rules [App] and [Pass]:

(λ̃x. P) ũ −→ P {̃u/x}
n!〈Ṽ 〉.P | n?(̃x).Q −→ P | Q {Ṽ/̃x}

The type syntax in Fig. 4 is extended accordingly, as follows:

L ::= C̃→� | C̃��
S ::= !〈Ũ 〉; S | ?(Ũ); S | · · ·

As in [27,28], the type system for HO π̃ disallows polyadicity along shared names. We consider the following typed calculus
(cf. Definition 4.1):

LHO π̃ = 〈HO π̃ ,T5,

�−→,≈H,�〉

where T5 is the set of types of HO π̃ ; the typing � is defined in § 3.2 with type syntax given above. Also, writing k to denote
the arity of HO π̃ , the set of labels AHO π̃ extends that in Definition 3.10 with actions (ν m̃)n!〈m1, . . . , mk〉, n!〈λx1, . . . , xk. P 〉,
n?〈m1, . . . , mk〉, and n?〈λx1, . . . , xk. P 〉.

We now define a typed encoding of HO π̃ into HOπ . For simplicity, in definitions and statements we sometimes give the
dyadic case (tuples of length 2); the general k-adic case is as expected.

Definition 6.3 (Typed encoding of HO π̃ into HOπ). The typed encoding
〈

�·�4, (〈·〉)4〉 :LHO π̃ →LHOπ in Fig. 13.

The encoding is unsurprising: a single polyadic communication of a tuple of length k > 1 is translated as k independent
monadic communications, exploiting the already private communication medium given by the session name—unlike classical
encodings [23], there is no need to create an additional fresh name for carrying out the monadic exchanges. Polyadic
first-order abstraction and application appeal to an auxiliary fresh session along which parameters are communicated one
by one.

The encoding satisfies the following properties:

Proposition 6.4 (HO π̃ into HOπ : type preservation and type soundness). The encoding from LHO π̃ into LHOπ (cf. Fig. 13) is type
preserving (cf. Definition 4.4) and type sound (cf. Definition 4.5(1)).

Proof. Type preservation follows directly from Fig. 13. Type soundness is shown by induction on the inference �; ∅; 	 �
P � �. See Proposition Appendix B.10 (Page 49) in B.4. �

In this case, the required mapping on actions maps an action on AHO π̃ into a sequence of actions in AHOπ . This is a
natural consequence of dividing a polyadic name communication or application into several independent (monadic) com-
munications:

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.28 (1-54)

28 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Terms:

�u!〈u1, u2〉.P �4
def= u!〈u1〉.u!〈u2〉.� P �4

�u!〈λx1, x2. Q
〉
.P �4

def= u!〈λz. z?(x1).z?(x2).� Q �4
〉
.� P �4

�x (u1, u2)�4
def= (ν s)(x s | s!〈u1〉.s!〈u2〉.0)

�(λx1, x2. P) (u1, u2)�4
def= (ν s)(s?(x1).s?(x2).� P �4 | s!〈u1〉.s!〈u2〉.0)

Types:

(〈!〈S1, S2〉; S〉)4 def= !〈(〈S1〉)4〉; !〈(〈S2〉)4〉; (〈S〉)4

(〈!〈L〉; S〉)4 def= !〈(〈L〉)4〉; (〈S〉)4

(〈(C2, C2)→�〉)4 def= (
?((〈C1〉)4);?((〈C2〉)4);end

)→�
(〈(C1, C2)��〉)4 def= (

?((〈C1〉)4);?((〈C2〉)4);end
)��

The input cases are defined as the output cases by replacing ! by ?. Elided mappings for processes and types are homomorphic.

Fig. 13. Encoding of HO π̃ (dyadic case) into HOπ .

Definition 6.4. Given the typed encoding
〈

�·�4, (〈·〉)4〉 : LHO π̃ → LHOπ (cf. Definition 6.3), the mapping on actions { {·} }4 :
AHO π̃ →AHOπ

∗ is defined as follows:

{{(ν m̃)n!〈m1,m2〉}}4 def=
1,
2 where

{

i = (ν mi)n!〈mi〉 if mi ∈ m̃

i = n!〈mi〉 if mi /∈ m̃

{{(ν m̃)n!〈λx1, x2. P 〉}}4 def= (ν m̃)n!〈λz. z?(x1).z?(x2).� P �4〉

{{τ }}4 def=
{
τβ, τs, τs if τ = τβ

τ , τ otherwise

{{n⊕ l}}4 def= n⊕ l

{{n&l}}4 def= n&l

The above definition handles the dyadic case. Notice that we distinguish two kinds of internal actions: the first case
above results from the translation of function applications; the second case is associated to internal actions arising from the
mapping of polyadic name synchronization. We may now state operational correspondence:

Proposition 6.5 (Operational correspondence. From HO π̃ to HOπ). Let �; ∅; 	 � P be an HOπ̃ process.

1. �; 	 � P

�−→	′ � P ′ implies

a) If
 = (ν m̃′)n!〈m̃〉 then (〈�〉)4; (〈	〉)4 � � P �4

1�−→ . . .

k�−→ (〈	′〉)4 � � P ′�4 with { {
} }4 =
1, · · · ,
k.

b) If
 = n?〈m̃〉 then (〈�〉)4; (〈	〉)4 � � P �4

1�−→ . . .

k�−→ (〈	′〉)4 � � P ′�4 with { {
} }4 =
1, · · · ,
k.

c) If
 ∈ {(ν m̃)n!〈λx̃. R〉, n?〈λx̃. R〉} then (〈�〉)4; (〈	〉)4 � � P �4

′�−→ (〈	′〉)4 � � P ′�4 with { {
} }4 =
′ .

d) If
 ∈ {n ⊕ l, n&l} then (〈�〉)4; (〈	〉)4 � � P �4

�−→ (〈	′〉)4 � � P ′�4 .

e) If
 = τβ then (〈�〉)4; (〈	〉)4 � � P �4
τβ�−→ τs�−→ . . .

τs�−→ (〈	′〉)4 � � P ′�4 with { {
} }=τβ, τs, · · · , τs︸ ︷︷ ︸
k

.

f) If
 = τ then (〈�〉)4; (〈	〉)4 � � P �4
τ�−→ . . .

τ�−→ (〈	′〉)4 � � P ′�4 with { {
} }4 = τ , · · · , τ︸ ︷︷ ︸
k

.

2. (〈�〉)4; (〈	〉)4 � � P �4

�−→ (〈	1〉)4 � P1 implies

a) If
 ∈ {n?〈m〉, n!〈m〉, (ν m)n!〈m〉} then �; 	 � P

′�−→	′ � P ′ and

(〈�〉)4; (〈	1〉)4 � P1

2�−→ . . .

k�−→ (〈	′〉)4 � � P ′�4 with { {
′} }4 =
1, · · · ,
k and
 =
1 .

b) If
 ∈ {(ν m̃)n!〈λx. R〉, n?〈λx. R〉} then �; 	 � P

′�−→	′ � P ′ with { {
′} }4 =
 and P1 ≡ � P ′�4 .

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.29 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 29
c) If
 ∈ {n ⊕ l, n&l} then �; 	 � P

�−→	′ � P ′ and P1 ≡ � P ′�4 .

d) If
 = τβ then �; 	 � P
τβ�−→	′ � P ′ and (〈�〉)4; (〈	1〉)4 � P1

τs�−→ . . .
τs�−→ (〈	′〉)4 � (〈P ′〉)4 with { {
} }4 = τβ, τs, · · · , τs︸ ︷︷ ︸

k

.

e) If
 = τ and
 �= τβ then �; 	 � P
τ�−→	′ � P ′ and (〈�〉)4; (〈	1〉)4 � P1

τ�−→ . . .
τ�−→ (〈	′〉)4 � (〈P ′〉)4 with { {
} }4 = τ , · · · , τ︸ ︷︷ ︸

k

.

Proof. The proof of both parts is by transition induction, following the mapping defined in Fig. 13. See Proposition Appendix
B.11 (Page 50) in B.4. �

As expected, the above correspondence is most interesting in the cases of input and output actions and of τβ /τ reduc-
tions in the source process. The case of first-order input and output (Items 1(a) and 1(b)) a single source action is reflected
as k independent actions from the corresponding target process. In contrast, when the source action is a single τβ (Item
1(e)) then we have k +1 independent actions: the first is a τβ synchronisation as it corresponds to the application of a fresh
session name; the other k actions are τs synchronisations, as they correspond to the communication of the k arguments to
the function, which are passed around using the session established thanks to the first τβ action. When the source action is
a single regular synchronisation (Item 1(f)) then we have k synchronisations in the target side. The correspondences in the
soundness direction follow similar intuitions. We may now state:

Proposition 6.6 (Full abstraction: from HO π̃ to HOπ). Let P , Q be HO π̃ processes with �; ∅; 	1 � P � � and �; ∅; 	2 � Q � �.
Then we have:

�; 	1 � P ≈H 	2 � Q if and only if (〈�〉)4; (〈	1〉)4 � � P �4 ≈H (〈	2〉)4 � � Q �4 .

Using the above propositions, Theorems 5.1 and 5.2, and Proposition 4.1 (Page 13), we derive the following:

Theorem 6.2 (Encoding of HO π̃ into HOπ). The encoding from LHO π̃ into LHOπ (cf. Fig. 13) is precise.

Proof. According to Definition 4.6, preciseness includes syntax-, type-, and semantics-preservation. Syntax preservation fol-
lows immediately from the definition of the encoding. Type preservation follows from Proposition 6.4 (Page 27). Semantics-
preservation follows from Proposition 6.5 (Page 28) and Proposition 6.6 (Page 29). �

We then have the following corollary:

Corollary 6.2 (Encodability of HO π̃ into HOπ and π). Consider the typed encodings

-
〈

�·�1f , (〈·〉)1
〉 :LHOπ →LHO (cf. Definition 5.2)

-
〈

�·�2, (〈·〉)2〉 :LHOπ →Lπ (cf. Definition 5.4)

-
〈

�·�4, (〈·〉)4〉 :LHO π̃ →LHOπ (cf. Definition 6.3)

Then the following typed encodings are precise:

-
〈

�·�1 ◦ �·�4, (〈·〉)1 ◦ (〈·〉)4〉 :LHO π̃ →LHO

-
〈

�·�2 ◦ �·�4, (〈·〉)2 ◦ (〈·〉)4〉 :LHO π̃ →Lπ

Proof. Directly from Theorem 5.1, Theorem 5.2, and Theorem 6.2 (which give preciseness for all the involved encodings),
using Proposition 4.1 (Page 13). �

By combining Theorems 6.1 and 6.2, we can extend preciseness to the super-calculus HO π̃ + , which subsumes both
HOπ+ and HO π̃ .

7. Related work

There is a vast literature on expressiveness for process calculi; we refer to [32] and [33, § 2.3] for surveys. Our study offers
new encodability results and casts known results [39] into a session typed setting. Our work stresses the view of “encodings
as protocols”, namely session protocols which enforce linear and shared disciplines for names, a distinction little explored
in previous works. This distinction enables us to obtain refined operational correspondence results (cf. Propositions 5.2, 5.5,
6.2, 6.5). We showed that HO suffices to encode the first-order session calculus [12], here denoted π . To our knowledge, this
is a new result; its significance is stressed by the demanding encodability criteria considered, in particular full abstraction
up to typed bisimilarities (≈H/≈C , cf. Propositions 5.3 and 5.6). This encoding is relevant in a broader setting, as known

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.30 (1-54)

30 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
encodings of name-passing into higher-order calculi [42,2,24,47,49] require limitations in source/target languages, do not
consider types, and/or fail to satisfy strong encodability criteria (see below). We also showed that HO can encode HOπ
and its extension with higher-order applications (HOπ+). Thus, all these calculi are equally expressive with fully abstract
encodings (up to ≈H/≈C). To our knowledge, these are the first results of this kind.

Early works on (relative) expressiveness appealed to different notions of encoding. Later on, proposals of abstract
frameworks, which formalise the notion of encoding and state associated syntactic/semantic criteria, were put forward;
recent proposals include [10,7,46,34,36]. Our formulation of precise encoding (Definition 4.6) builds upon existing proposals
(e.g., [31,10,20]) to account for the session types associated to HOπ .

Early expressiveness studies for higher-order calculi are [44,39]; recent works include [2,20,21,47,48]. Due to the close
relationship between higher-order process calculi and functional calculi, encodings of (variants of) the λ-calculus into
the π -calculus (see, e.g., [38,8,50,3,43]) are also related. Sangiorgi’s encoding of the higher-order π -calculus into the
π -calculus [39] is fully abstract with respect to reduction-closed, barbed congruence. We have shown in § 5.2 that the
analogue of Sangiorgi’s encoding for the session-typed setting also enjoys full abstraction (up to ≈H/≈C , cf. Proposi-
tion 5.5 (Page 20)). A basic form of input/output types is used in [41], where the encoding in [39] is cast in the asynchronous
setting, with output and applications coalesced in a single construct. Building upon [41], a simply typed encoding for syn-
chronous processes is given in [42]; the reverse encoding (i.e., first-order communication into higher-order processes) is
also studied for an asynchronous, localised π -calculus (where only the output capability of names can be sent around). The
work [40] studies hierarchies for calculi with internal first-order mobility and with higher-order mobility without name-
passing (similarly as in HO); these hierarchies are defined according to the order of types needed in typing. Via fully abstract
encodings, it is shown that name- and process-passing calculi with equal order of types have the same expressiveness.

Other related works are [2,24,47,21]. The paper [2] gives a fully abstract encoding of the π -calculus into Homer, a
higher-order calculus with explicit locations, local names, and nested locations. The paper [24] presents a reflective calcu-
lus with a “quoting” operator: names are quoted processes and represent the code of a process; name-passing is then a
way of passing the code of a process. This reflective calculus can encode both first- and higher-order π -calculus. Building
upon [45], the work [47] studies the (non)encodability of the untyped π -calculus into a higher-order π -calculus with a
powerful name relabelling operator, which is essential to encode name-passing. The paper [49] defines an encoding of the
(untyped) π -calculus without relabelling. This encoding is quite different from the one in § 5.1: in [49] names are encoded
using polyadic name abstractions (called pipes); guarded replication enables infinite behaviours. While our encoding satisfies
full abstraction, the encoding in [49] does not: only divergence-reflection and operational correspondence (soundness and
completeness) properties are established. Soundness is stated up-to pipe-bisimilarity, an equivalence tailored to the encoding
strategy; the authors of [49] describe this result as “weak”.

A core higher-order calculus is studied in [21]: it lacks restriction, name passing, output prefix, and replication/recursion.
Still, this untyped subcalculus of HO is Turing equivalent. The work [20] extends this core calculus with restriction, out-
put prefix, and polyadicity; it shows that synchronous communication can encode asynchronous communication, and that
process passing polyadicity induces an expressiveness hierarchy. The paper [48] complements [20] by studying the expres-
sivity of second-order process abstractions. Polyadicity is shown to induce an expressiveness hierarchy; also, by adapting
the encoding in [39], process abstractions are encoded into name abstractions. In contrast, here we give a fully abstract
encoding of HO π̃ + into HO that preserves session types; this improves [20,48] by enforcing linearity disciplines on process
behaviour. The focus of [20,47–49] is on untyped, higher-order processes; they do not address communication disciplined
by (session) type systems.

Within session types, the works [6,5] encode binary sessions into a linearly typed π -calculus. While [6] gives an encoding
of π into a linear calculus (an extension of [3]), the work [5] gives operational correspondence (without full abstraction)
for the first- and higher-order π -calculi into [14]. By the result of [6], HOπ+ is encodable into the linearly typed π -calculi.
The syntax of HOπ is a subset of that in [27,28]. The work [27] develops a higher-order session calculus with process
abstractions and applications; it admits the type U = U1 → U2 . . . Un → � and its linear type U 1 which corresponds to
Ũ→� and Ũ �� in a super-calculus of HOπ+ and HO π̃ . Our results show that the calculus in [27] is not only expressed
but also reasoned in HO via precise encodings (with a limited form of arrow types: C→� and C��). The work [30] studies
two encodings: from PCF with an effect system into a session-typed π -calculus, and its reverse. The reverse encoding is
used to implement session channel passing in Concurrent Haskell. In future work we plan to use the core calculi studied in
this paper to implement higher-order communication efficiently into Concurrent Haskell without losing its expressiveness.

8. Concluding remarks

We have thoroughly studied the expressivity of the higher-order π -calculus with sessions, here denoted HOπ . To this
end, we developed a new abstract notion of (precise) encoding that accounts for (session) types in both source and target
calculi. Indeed, unlike most previous works, we have carried out our expressiveness study in the setting of session types.
Types not only delineate and enable encodings; they inform the techniques required to reason about their correctness
properties.

Our results cover a wide spectrum of features intrinsic to higher-order concurrency: pure process-passing (first- and
higher-order abstractions), name-passing, polyadicity, linear/shared communication (cf. Fig. 1). Remarkably, the discipline
embodied by session types turns out to be fundamental to show that all these languages are equally expressive, up to

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.31 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 31
strong typed bisimilarities. Indeed, although our encodings may be used in an untyped setting, session type information is
critical to establish key properties for preciseness, in particular full abstraction.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

We are grateful to Alen Arslanagić and to the anonymous reviewers for their useful remarks and suggestions.
This work has been partially sponsored by the Doctoral Prize Fellowship, EPSRC EP/K011715/1, EPSRC EP/K034413/1, EP-

SRC EP/L00058X/1, EPSRC EP/N027833/1, EPSRC EP/N028201/1, and EU COST Actions IC1201 (BETTY), IC1402 (ARVI), IC1405
(Reversible Computation), and CA15123 (EUTypes).

Kouzapas was partially funded by the European Union via the Horizon 2020: Future Emerging Topics call (FETOPEN),
grant EU736876, project VISORSURF (http://www.visorsurf .eu).

Pérez has been partially supported by the Netherlands Organization for Scientific Research (NWO) under the VIDI Project
No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software). He is also affiliated to the NOVA Laboratory for
Computer Science and Informatics (NOVA LINCS), Universidade Nova de Lisboa, Portugal.

Appendix A. Behavioural semantics

We report auxiliary definitions and results from [15,17], which were informally introduced in § 3.3.

A.1. Labelled transition system for processes

We define the interaction of processes with their environment using action labels
:

 ::= τ | (ν m̃)n!〈V 〉 | n?〈V 〉 | n⊕ l | n&l

Label τ defines internal actions. Action (ν m̃)n!〈V 〉 denotes the sending of value V over channel n with a possible empty
set of restricted names m̃ (we may write n!〈V 〉 when m̃ is empty). Dually, the action for value reception is n?〈V 〉. Actions
for select and branch on a label l are denoted n ⊕ l and n&l, respectively. We write fn(
) and bn(
) to denote the sets of
free/bound names in
, respectively. Given
 �= τ , we say
 is a visible action; we write subj(
) to denote its subject. This
way, we have: subj((ν m̃)n!〈V 〉) = subj(n?〈V 〉) = subj(n ⊕ l) = subj(n&l) = n.

Dual actions occur on subjects that are dual between them and carry the same object; thus, output is dual to input and
selection is dual to branching.

Definition Appendix A.1 (Dual actions). We define duality on actions as the least symmetric relation % on action labels that
satisfies:

n⊕ l% n&l (ν m̃)n!〈V 〉 % n?〈V 〉

The (early) labelled transition system (LTS) fpr untyped processes is given in Fig. A.14. We write P1

−→ P2 with the

usual meaning. The rules are standard [19,18]; we comment on some of them. A process with an output prefix can interact
with the environment with an output action that carries a value V (Rule 〈Snd〉). Dually, in Rule 〈Rv〉 a receiver process can
observe an input of an arbitrary value V . Select and branch processes observe the select and branch actions in Rules 〈Sel〉
and 〈Bra〉, respectively. Rule 〈Res〉 enables an observable action from a process with an outermost restriction, provided that
the restricted name does not occur free in the action. If a restricted name occurs free in the carried value of an output
action, the process performs scope opening (Rule 〈New〉). Rule 〈Rec〉 handles recursion unfolding. Rule 〈Tau〉 states that two
parallel processes which perform dual actions can synchronise by an internal transition. Rules 〈ParL〉/〈ParR〉 and 〈Alpha〉 define
standard treatments for actions under parallel composition and α-conversion.

A.2. Environmental labelled transition system

Our typed LTS is obtained by coupling the untyped LTS given before with a labelled transition relation on typing envi-
ronments, given in Fig. A.15. Building upon the reduction relation for session environments in Definition 3.4, such a relation
is defined on triples of environments by extending the LTSs in [19,18]; it is denoted

(�1,�1,	1)

−→ (�2,�2,	2)

Recall that � admits weakening. Using this principle (not valid for � and), we have (�′, �1, 	1)

�−→ (�′, �2, 	2) whenever

(�, �1, 	1)

�−→ (�′, �2, 	2).

http://www.visorsurf.eu

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.32 (1-54)

32 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
〈App〉
(λx. P) V

τ−→ P {V/x}
〈Snd〉

n!〈V 〉.P n!〈V 〉−→ P

〈Rv〉

n?(x).P
n?〈V 〉−→ P {V/x}

〈Sel〉

s
 l.P
s⊕l−→ P

〈Bra〉
j ∈ I

s � {li : Pi}i∈I
s&l j−→ P j

〈Alpha〉
P ≡α Q Q

−→ P ′

P

−→ P ′

〈Res〉
P

−→ P ′ n /∈ fn(
)

(ν n)P

−→ (ν n)P ′

〈New〉
P

(ν m̃)n!〈V 〉−→ P ′ m1 ∈ fn(V)

(ν m1)P
(ν m1 ·m̃)n!〈V 〉−→ P ′

〈ParL 〉
P

−→ P ′ bn(
)∩ fn(Q)= ∅
P | Q

−→ P ′ | Q

〈Tau〉
P

1−→ P ′ Q

2−→ Q ′
1 %
2

P | Q
τ−→ (ν bn(
1)∪ bn(
2))(P ′ | Q ′)

〈Rec〉
P {μX .P/X }
−→ P ′

μX .P

−→ P ′

Fig. A.14. The untyped LTS for HOπ processes. We omit Rule 〈ParR 〉.

[SRv]

s /∈ dom() �;�′;	′ � V � U

(�;�;	 · s :?(U); S)
s?〈V 〉−→ (�;� ·�′;	 ·	′ · s : S)

[ShRv]

�; ∅;∅ � a � 〈U 〉 �;�′;	′ � V � U

(�;�;)
a?〈V 〉−→ (�;� ·�′;	 ·	′)

[SSnd]

� · �′;�′;	′ � V � U �′; ∅;	 j �m j � U j s /∈ dom()

	′\(∪ j	 j)⊆ (· s : S) �′; ∅;	′
j �m j � U ′j �′ ⊆�

(�;�;	 · s :!〈U 〉; S)
(ν m̃)s!〈V 〉−→ (� · �′;�\�′; (· s : S · ∪ j	

′
j)\	′)

[ShSnd]

� · �′;�′;	′ � V � U �′; ∅;	 j �m j � U j �; ∅;∅ � a � 〈U 〉
	′\(∪ j	 j)⊆	 �′; ∅;	′

j �m j � U ′j �′ ⊆�

(�;�;)
(ν m̃)a!〈V 〉−→ (� · �′;�\�′; (· ∪ j	

′
j)\	′)

[Sel]

s /∈ dom() j ∈ I

(�;�;	 · s : ⊕{li : Si}i∈I)
s⊕l j−→ (�;�;	 · s : S j)

[Bra]

s /∈ dom() j ∈ I

(�;�;	 · s : &{li : Ti}i∈I)
s&l j−→ (�;�;	 · s : S j)

[Tau]

	1 −→	2 ∨	1 =	2

(�;�;	1)
τ−→ (�;�;	2)

Fig. A.15. Labelled transition system for typed environments.

Input actions These actions are defined by Rules [SRv] and [ShRv]. In Rule [SRv] the type of value V and the type of the object
associated to the session type on s should coincide. The resulting type tuple must contain the environments associated to
V . The dual endpoint s cannot be present in the session environment: if it were present the only possible communication
would be the interaction between the two endpoints (cf. Rule [Tau]). Following similar principles, Rule [ShRv] defines input
actions for shared names.

Output actions These actions are defined by Rules [SSnd] and [ShSnd]. Rule [SSnd] states the conditions for observing action
(ν m̃)s!〈V 〉 on a type tuple (�, �, 	 · s : S). The session environment 	 · s : S should include the session environment of the
sent value V (denoted 	′ in the rule), excluding the session environments of names m j in m̃ which restrict the scope of
value V (denoted 	 j in the rule). Analogously, the linear variable environment �′ of V should be included in �. The rule
defines the scope extrusion of session names in m̃; consequently, environments associated to their dual endpoints (denoted
	′

j in the rule) appear in the resulting session environment. Similarly for shared names in m̃ that are extruded. All free
values used for typing V (denoted �′ and 	′ in the rule) are subtracted from the resulting type tuple. The prefix of session
s is consumed by the action. Rule [ShSnd] follows similar ideas for output actions on shared names: the name must be typed
with 〈U 〉; conditions on value V are identical to those on Rule [SSnd].

Other actions Rules [Sel] and [Bra] describe actions for select and branch. Rule [Tau] defines internal transitions: it reduces
the session environment (cf. Definition 3.4) or keeps it unchanged.

We illustrate Rule [SSnd] by means of an example:

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.33 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 33
Example Appendix A.1. Consider environment tuple (�; ∅; s :!〈(!〈S〉; end) � �〉; end · s′ : S) and typed value V =
λx. x!〈s′〉.m?(z).0 with

�; ∅; s′ : S ·m :?(end);end � V � (!〈S〉;end)��
Then, by Rule [SSnd], we can derive:

(�; ∅; s :!〈(!〈S〉;end)��〉;end · s′ : S)
(ν m)s!〈V 〉−→ (�; ∅; s : end ·m :!〈end〉;end)

Observe how the protocol along s is partially consumed; also, the resulting session environment is extended with m, the
dual endpoint of the extruded name m.

Recall that we sometimes annotate the output action (ν m̃)n!〈V 〉 with the type of V ; this is written as (ν m̃)n!〈V :U 〉 (cf.
Remark 3.1).

The typed LTS combines the LTSs in Fig. A.14 and Fig. A.15.

Definition Appendix A.2 (Typed transition system). A typed transition relation is a typed relation �; 	1 � P1

−→ 	2 � P2

where:

1. P1

−→ P2 and

2. (�, ∅, 	1)

−→ (�, ∅, 	2) with �; ∅; 	i � Pi � � (i = 1, 2).

We write =⇒ for the reflexive and transitive closure of −→,
=⇒ for the transitions =⇒
−→=⇒, and
̂=⇒ for
=⇒ if
 �= τ
otherwise =⇒.

A typed transition relation requires type judgements with an empty �, i.e., an empty environment for linear higher-order
types. Notice that for open process terms (i.e., with free variables), we can always apply Rule (EProm) (cf. Fig. 5) and obtain
an empty �. We will be working with closed process terms, i.e., processes without free variables.

A.3. Characteristic values and the refined LTS

We first define characteristic processes/values:

Definition Appendix A.3 (Characteristic process and values). Let u and U be a name and a type, respectively. The characteristic
process of U (along u), denoted [(U)]u , and the characteristic value of U , denoted [(U)]c , are defined in Fig. 6.

We can verify that characteristic processes/values do inhabit their associated type.

Proposition Appendix A.1 (Characteristic processes/values inhabit their types).

1. Let U be a channel type. Then, for some �, 	, we have �; ∅; 	 � [(U)]c � U .
2. Let S be a session type. Then, for some �, 	, we have �; ∅; 	 · s : S � [(S)]s � �.
3. Let U be a channel type. Then, for some �, 	, we have � · a : U ; ∅; 	 � [(U)]a � �.

Definition Appendix A.4 (Trigger value). Given a fresh name t , the trigger value on t is defined as the abstraction
λx. t?(y).(y x).

We define the refined typed LTS by considering a transition rule for input in which admitted values are trigger or
characteristic values or names:

Definition Appendix A.5 (Refined typed labelled transition system). The refined typed labelled transition relation on typing
environments

(�1;�1;	1)

�−→ (�2;�2;	2)

is defined on top of the rules in Fig. A.15 using the following rules:

[Tr]

(�1;�1;	1)

−→ (�2;�2;	2)
 �= n?〈V 〉

(� ;� ;)

�−→ (� ;� ;)
1 1 1 2 2 2

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.34 (1-54)

34 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
[RRcv]

(�1;�1;	1)
n?〈V 〉−→ (�2;�2;	2) V =m∨ V ≡ [(U)]c ∨ V ≡ λx. t?(y).(y x) t fresh

(�1;�1;	1)
n?〈V 〉�−−−→ (�2;�2;	2)

Then, the refined typed labelled transition system

�;	1 � P1

�−→	2 � P2

is given as in Definition Appendix A.2, replacing the requirement

(�,∅,	1)

−→ (�,∅,	2)

with (�1; �1; 	1)

�−→ (�2; �2; 	2), as just defined. Following Definition Appendix A.2, we write �=⇒ for the reflexive and

transitive closure of τ�−→,

�=⇒ for the transitions �=⇒
�−→�=⇒, and
̂

�=⇒ for

�=⇒ if
 �= τ otherwise �=⇒.

Notice that the (refined) transition �; 	1 � P1

�−→	2 � P2 implies the (ordinary) transition �; 	1 � P1

−→	2 � P2.

A.4. More on deterministic transitions and up-to techniques

As hinted at earlier, internal transitions associated to session interactions or β-reductions are deterministic. To define an
auxiliary proof technique that exploits determinacy we require some auxiliary definitions.

Definition Appendix A.6 (Deterministic transitions). Suppose �; ∅; 	 � P � � with balanced 	. Transition �; 	 � P
τ�−→	′ � P ′

is called:

− a session-transition whenever transition P
τ−→ P ′ is derived using Rule 〈Tau〉 (where subj(
1) and subj(
2) in the

premise are dual endpoints), possibly followed by uses of Rules 〈Alpha〉, 〈Res〉, 〈Rec〉, or 〈ParL〉/〈ParR〉 (cf. Fig. A.14).

− a β-transition whenever transition P
τ−→ P ′ is derived using Rule 〈App〉, possibly followed by uses of Rules 〈Alpha〉, 〈Res〉,

〈Rec〉, or 〈ParL〉/〈ParR〉 (cf. Fig. A.14).

Notation 3. We use the following notations:

− �; 	 � P
τs�−→	′ � P ′ denotes a session-transition.

− �; 	 � P
τβ�−→	′ � P ′ denotes a β-transition.

− �; 	 � P
τd�−→	′ � P ′ denotes either a session-transition or a β-transition.

− We write τd
�==⇒ to denote a (possibly empty) sequence of deterministic steps τd�−→.

Using the above properties, we can state the following up-to technique. Recall that the higher-order trigger t ←↩H V has
been defined in (2) (Page 9).

Lemma Appendix A.1 (Up-to deterministic transition). Let �; 	1 � P1 � 	2 � Q 1 such that if whenever:

1. ∀(ν m̃1)n!〈V 1〉 such that �; 	1 � P1
(ν m̃1)n!〈V 1〉�−−−−−−−→	3 � P3 implies that ∃Q 2, V 2 such that �; 	2 � Q 1

(ν m̃2)n!〈V 2〉
�========⇒	′

2 � Q 2 and
�; 	3 � P3

τd
�==⇒	′

1 � P2 and for a fresh name t and 	′′
1, 	′′

2:

�;	′′
1 � (ν m̃1)(P2 | t ←↩H V 1) �	′′

2 � (ν m̃2)(Q 2 | t ←↩H V 2)

2. ∀
 �= (ν m̃)n!〈V 〉 such that: �; 	1 � P1

�−→	3 � P3 implies that ∃Q 2 such that

�; 	1 � Q 1

̂

�=⇒	′
2 � Q 2 and �; 	3 � P3

τd
�==⇒	′

1 � P2 and �; 	′
1 � P2 � 	′

2 � Q 2 .
3. The symmetric cases of 1 and 2.

Then � ⊆≈H .

Proof (Sketch). The proof proceeds by showing that the relation

�
τd�==⇒ = {(P2, Q 1) | �;	1 � P1 �	′

2 � Q 1, �;	1 � P1
τd

�==⇒	′
1 � P2}

is a higher-order bisimulation, which requires the use of Proposition 3.1 (Page 10). �

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.35 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 35
Appendix B. Expressiveness results

In this section we give the proofs for the expressiveness results stated in § 5 and § 6. Proving precise encodings entails
proving type preservation, operational correspondence, and full abstraction (cf. Definition 4.6). For operational correspon-
dence, recall that we prove a stronger statement than Definition 4.5(3), as we consider both visible and internal actions. For
full abstraction, we rely on a notational convention:

Notation 4 (Typed relations). For the sake of readability, when describing typed relations we shall omit typing information for pairs of
processes, which is usually clear from the context. This way, e.g., in the proof of Proposition Appendix B.3 (Page 40) we write

�= {(P1, Q 1) | (〈�〉)1; (〈	1〉)1 � � P1 �1f ≈H (〈	2〉)1 � � Q 1 �1f }
instead of

�= {(P1, Q 1) | �; ∅;	1 � P1 � � ∧ �; ∅;	2 � Q 1 � �
∧ (〈�〉)1; (〈	1〉)1 � � P1 �1f ≈H (〈	2〉)1 � � Q 1 �1f }

B.1. Properties for encoding LHOπ into LHO

In this section we prove Theorem 5.1 (Page 18) which states that the encoding �·�1f of LHOπ into LHO is precise. A
precise encoding requires to prove three independent results:

• Type preservation, stated as Proposition 5.1 (Page 16) and proven here as Proposition Appendix B.1 (Page 35).
• Operational Correspondence, stated as Proposition 5.2 (Page 17) and proven here as Proposition Appendix B.2 (Page 37).
• Full Abstraction, stated as Proposition 5.3 (Page 18) and proven here as Proposition Appendix B.3 (Page 40).

Proposition Appendix B.1 (Type preservation, HOπ into HO). Let P be an HOπ process. If �; ∅; 	 � P � � then (〈�〉)1; ∅; (〈	〉)1 �
� P �1f � �.

Proof. By induction on the inference of �; ∅; 	 � P � �. We consider four interesting cases:

1. Case P = k!〈n〉.P ′ . Then there are several sub-cases, depending on whether k and n are linear or not. We content ourselves
by checking the case in which k is a session (linear) name. There are two sub-cases, depending on whether n is a linear
or a shared name.

(a) In the first sub-case n = k′ (output of a linear channel). Then we have the following typing in the source language:

�; ∅;	 · k : S � P ′ � � �; ∅; {k′ : S1} � k′ � S1

�; ∅;	 · k′ : S1 · k :!〈S1〉; S � k!〈k′〉.P ′ � �
Thus, by IH we have:

(〈�〉)1; ∅; (〈	〉)1 · k : (〈S〉)1 � � P ′�1f � �
Let us write U1 to stand for ?((〈S1〉)1��); end��. The corresponding typing in the target language is as follows:

(〈�〉)1; {x : (〈S1〉)1��};∅ � x � (〈S1〉)1�� (〈�〉)1; ∅; {k′ : (〈S1〉)1} � k′ � (〈S1〉)1
(〈�〉)1; {x : (〈S1〉)1��};k′ : (〈S1〉)1 � x k′ � �

(〈�〉)1; {x : (〈S1〉)1��};k′ : (〈S1〉)1 · z : end � x k′ � �
(〈�〉)1; ∅;k′ : (〈S1〉)1 · z :?((〈S1〉)1��);end � z?(x).(x k′) � �

(〈�〉)1; ∅;k′ : (〈S1〉)1 � λz. z?(x).(x k′) � U1
(B.1)

(〈�〉)1; ∅; (〈	〉)1 · k : (〈S〉)1 � � P ′�1f � � (〈�〉)1; ∅;k′ : (〈S1〉)1 � λz. z?(x).(x k′) � U1 (B.1)

(〈�〉)1; ∅; (〈	〉)1 · k′ : (〈S1〉)1 · k :!〈U1〉; (〈S〉)1 � k!〈λz. z?(x).(x k′)
〉
.� P ′�1f � �

(b) In the second sub-case, we have n = a (output of a shared name). Then we have the following typing in the source
language:

� · a : 〈S1〉; ∅;	 · k : S � P ′ � � � · a : 〈S1〉; ∅;∅ � a � 〈S1〉
� · a : 〈S1〉; ∅;	 · k :!

〈〈S1〉
〉; S � k!〈a〉.P ′ � �

The typing in the target language is derived similarly as in the first sub-case.

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.36 (1-54)

36 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
2. Case P = k?(x).Q . Again, there are several sub-cases, depending on whether k and x have linear types. We content
ourselves by checking the case in which k is a session (linear) name. We have two sub-cases, depending on the type of
x (linear or shared name).

(a) In the first case, x stands for a linear name. Then we have the following typing in the source language:

�; ∅;	 · k : S · x : S1 � Q � �
�; ∅;	 · k :?(S1); S � k?(x).Q � �

Thus, by IH we have:

(〈�〉)1; ∅; (〈	〉)1 · k : (〈S〉)1 · x : (〈S1〉)1 � � Q �1f � �
Let us write U1 to stand for (?((〈S1〉)1��); end) ��. The corresponding typing in the target language is as follows;
we have three auxiliary derivations:

(〈�〉)1; {x : U1}; ∅ � x � U1 (〈�〉)1; ∅; s :?((〈S1〉)1��);end � s�?((〈S1〉)1��);end
(〈�〉)1; {x : U1}; s :?((〈S1〉)1��);end � x s � � (B.2)

(〈�〉)1; ∅;∅ � 0 � �
(〈�〉)1; ∅; s : end � 0 � �

(〈�〉)1; ∅; (〈	〉)1 · k : (〈S〉)1 · x : (〈S1〉)1 � � Q �1f � �
(〈�〉)1; ∅; (〈	〉)1 · k : (〈S〉)1 � λx. � Q �1f � (〈S1〉)1��

(〈�〉)1; ∅; (〈	〉)1 · k : (〈S〉)1 · s :!〈(〈S1〉)1��〉;end � s!〈λx. � Q �1f
〉
.0 � � (B.3)

(〈�〉)1; {x : U1}; s :?((〈S1〉)1��);end � x s � � (B.2)
(〈�〉)1; ∅; (〈	〉)1 · k : (〈S〉)1 · s :!〈(〈S1〉)1��〉;end � s!〈λx. � Q �1f

〉
.0 � � (B.3)

(〈�〉)1; {x : U1}; (〈	〉)1 · k : (〈S〉)1 · s :?((〈S1〉)1��);end · s :!〈(〈S1〉)1��〉;end
� x s | s!〈λx. � Q �1f

〉
.0 � �

(B.4)

Finally we have:

(〈�〉)1; {x : U1}; (〈	〉)1 · k : (〈S〉)1 · s :?((〈S1〉)1��);end · s :!〈(〈S1〉)1��〉;end
� x s | s!〈λx. � Q �1f

〉
.0 � � (B.4)

(〈�〉)1; {x : U1}; (〈	〉)1 · k : (〈S〉)1 � (ν s)(x s | s!〈λx. � Q �1f
〉
.0) � �

(〈�〉)1; ∅; (〈	〉)1 · k :?(U1); (〈S〉)1 � k?(x).(ν s)(x s | s!〈λx. � Q �1f
〉
.0) � �

(b) In the second sub-case, x is a shared name, and we have the following typing in the source language:

� · x : 〈S1〉; ∅;	 · k : S � Q � �
�; ∅;	 · k :?(〈S1〉); S � k?(x).Q � �

The typing in the target language is derived similarly as in the first sub-case.

3. Case P0 = X . Then we have the following typing in the source language:

�′ · X :	︸ ︷︷ ︸
�

; ∅ ; 	 � X � �

Let 	 = n1 : S1, . . . , nm : Sm , with dom() = ñ. By Definition 5.2, we have that

(〈�〉)1 = (〈�′ · X : {ni : Si}1≤i≤m〉)1 = (〈�′〉)1 · zX : ((〈S1〉)1, . . . , (〈Sm〉)1︸ ︷︷ ︸
T̃

, S∗)→�

where S∗ =μt.?((T̃ , t) →�); end, which is equivalent to ?((T̃ , S∗) →�); end. By Fig. 9,

� X �1f = (ν s)(zX (ñ, s) | s!〈zX 〉.0)

with ñ= f (X). We shall show that

(〈�′〉)1 · zX : (T̃ , S∗)→�; ∅; (〈	〉)1 � � X �1f � �
We first have two auxiliary derivations:

(〈�〉)1; ∅; ∅ � zX � (T̃ , S∗)→�
(〈�〉)1; ∅; {ni : (〈Si〉)1} � ni � (〈Si〉)1

(〈�〉)1; ∅; {s : S∗} � s �?((T̃ , S∗)→�);end
1 1 ˜ ∗ (B.5)
(〈�〉) ; ∅; (〈	〉) · s :?((T , S)→�);end � zX (ñ, s) � �

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.37 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 37
and

(〈�〉)1; ∅; ∅ � 0 � �
(〈�〉)1; ∅; s : end � 0 � � (〈�〉)1; ∅; ∅ � zX � (T̃ , S∗)→�

(〈�〉)1; ∅; s :!〈(T̃ , S∗)→�〉;end � s!〈zX 〉.0 � � (B.6)

We may now derive:

(〈�〉)1; ∅; (〈	〉)1 · s :?((T̃ , S∗)→�);end � zX (ñ, s) � � (B.5)
(〈�〉)1; ∅; s :!〈(T̃ , S∗)→�〉;end � s!〈zX 〉.0 � � (B.6)

(〈�〉)1; ∅; (〈	〉)1 · s :?((T̃ , S∗)→�);end, s :!〈(T̃ , S∗)→�〉;end � zX (ñ, s) | s!〈zX 〉.0 � �
(〈�〉)1; ∅; (〈	〉)1 � (ν s)(zX (ñ, s) | s!〈zX 〉.0) � �

4. Case P0 =μX .P . Then we have the following typing in the source language:

� · X :	; ∅; 	 � P � �
�; ∅; 	 �μX .P � �

By Fig. 9, we have:

�μX .P �1f = (ν s)(s!〈λ(||ñ||, y). y?(zX).
⌊⌊

� P �1f ,{X→ñ}
⌋⌋
∅
〉
.0 | s?(zX).� P �1f ,{X→ñ})

We shall show that

(〈�〉)1; ∅; (〈	〉)1 � �μX .P �1f � �
Below we write R to stand for � P �1f ,{X→ñ} and x̃= | |fn(P)| | (cf. Definition 5.1). Moreover, we write 	x̃ to denote 	 after
a renaming with names x̃.

We have two auxiliary derivations:

(〈�〉)1; ∅; ∅ � 0 � �
(〈�〉)1; ∅; s : end � 0 � �

(〈�〉)1 · zX : (T̃ , S∗)→�; ∅; (〈	x̃〉)1 �
⌊⌊

R
⌋⌋
∅ � �

(〈�〉)1 · zX : (T̃ , S∗)→�; ∅; (〈	x̃〉)1 · y : end � ⌊⌊
R
⌋⌋
∅ � �

(〈�〉)1; ∅; (〈	x̃〉)1 · y :?((T̃ , S∗)→�);end � y?(zX).
⌊⌊

R
⌋⌋
∅ � �

(〈�〉)1; ∅; ∅ � λ(x̃, y). y?(zX).
⌊⌊

R
⌋⌋
∅ � (T̃ , S∗)→�

(〈�〉)1; ∅; s :!〈(T̃ , S∗)→�〉;end � s!〈λ(x̃, y). y?(zX).
⌊⌊

R
⌋⌋
∅
〉
.0 � � (B.7)

and

(〈�〉)1 · zX : (T̃ , S∗)→�; ∅; (〈	ñ〉)1 � R � �
(〈�〉)1 · zX : (T̃ , S∗)→�; ∅; (〈	ñ〉)1 · s : end � R � �

(〈�〉)1; ∅; (〈	〉)1 · s :?((T̃ , S∗)→�);end � s?(zX).R � � (B.8)

We then have:

(〈�〉)1; ∅; s :!〈(T̃ , S∗)→�〉;end � s!〈λ(x̃, y). y?(zX).
⌊⌊

R
⌋⌋
∅
〉
.0 � � (B.7)

(〈�〉)1; ∅; (〈	〉)1 · s :?((T̃ , S∗)→�);end � s?(zX).R � � (B.8)

(〈�〉)1; ∅; (〈	〉)1 · s :?((T̃ , S∗)→�);end, s :!〈(T̃ , S∗)→�〉;end �
s!〈λ(x̃, y). y?(zX).

⌊⌊
R
⌋⌋
∅
〉
.0 | s?(zX).R � �

(〈�〉)1; ∅; (〈	〉)1 � (ν s)(s?(zX).R | s!〈λ(x̃, y). y?(zX).
⌊⌊

R
⌋⌋
∅
〉
.0) � � �

We repeat the statement in Page 17. We use the mapping on actions { {·} }1 given in Definition 5.3.

Proposition Appendix B.2 (Operational correspondence, HOπ into HO). Let P be an HOπ process. If �; ∅; 	 � P � � then:

1. Suppose �; 	 � P

1�−→	′ � P ′ . Then we have:

a) If
1 ∈ {(ν m̃)n!〈m〉, (ν m̃)n!〈λx. Q 〉, s ⊕ l, s&l} then ∃
2 s.t.

(〈�〉)1; (〈	〉)1 � � P �1f

2�−→ (〈	′〉)1 � � P ′�1f and
2 = { {
1} }1 .

b) If
1 = n?〈λy. Q 〉 and P ′ = P0{λy. Q/x} then ∃
2 s.t.

(〈�〉)1; (〈	〉)1 � � P �1

2�−→ (〈	′〉)1 � � P0 �1{λy. � Q �1∅/x} and
2 = { {
1} }1 .
f f

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.38 (1-54)

38 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
c) If
1 = n?〈m〉 and P ′ = P0{m/x} then ∃
2 , R such that (〈�〉)1; (〈	〉)1 � � P �1f

2�−→ (〈	′〉)1 � R, with
2 = { {
1} }1 , and

(〈�〉)1; (〈	′〉)1 � R
τβ�−→ τs�−→ τβ�−→ (〈	′〉)1 � � P0 �1f {m/x}.

d) If
1 = τ and P ≡ (ν m̃)(n!〈m〉.P1 | n?(x).P2) and P ′ = (ν m̃)(P1 | P2{m/x}) then ∃R such that

(〈�〉)1; (〈	〉)1 � � P �1f
τ�−→ (〈	〉)1 � (ν m̃)(� P1 �1f | R), and

(〈�〉)1; (〈	〉)1 � (ν m̃)(� P1 �1f | R)
τβ�−→ τs�−→ τβ�−→ (〈	〉)1 � (ν m̃)(� P1 �1f | � P2 �1f {m/x}).

e) If
1 = τ and P ≡ (ν m̃)(n!〈λy. Q 〉.P1 | n?(x).P2) and P ′ = (ν m̃)(P1 | P2{λy. Q/x}) then

(〈�〉)1; (〈	〉)1 � � P �1f
τ�−→ (〈	1〉)1 � (ν m̃)(� P1 �1f | � P2 �1f {λy. � Q �1∅/x}).

f) If
1 = τ and P ≡ (ν m̃)((λx. P1) V) and P ′ = (ν m̃)(P1{V/x}) then

(〈�〉)1; (〈	〉)1 � � P �1f
τ�−→ (〈	′

1〉)1 � � P ′�1f .

2. Suppose (〈�〉)1; (〈	〉)1 � � P �1f

2�−→ (〈	′〉)1 � Q . Then we have:

a) If
2 ∈ {(ν m̃)n!〈λz. z?(x).(x m)〉, (ν m̃)n!〈λx. R〉, s ⊕ l, s&l} then ∃
1, P ′ s.t.

�; 	 � P

1�−→	′ � P ′ ,
1 = { {
2} }1 , and Q = � P ′�1f .

b) If
2 = n?〈λy. R〉 then either:

(i) ∃
1, x, P ′, P ′′ s.t. �; 	 � P

1�−→	′ � P ′{λy. P ′′/x},
1 = { {
2} }1 , � P ′′�1∅ = R, and Q = � P ′�1f .

(ii) R ≡ y?(x).(x m) and ∃
1, z, P ′ s.t. �; 	 � P

1�−→	′ � P ′{m/z},
1 = { {
2} }1 , and

(〈�〉)1; (〈	′〉)1 � Q
τβ�−→ τs�−→ τβ�−→ (〈	′′〉)1 � � P ′{m/z}�1f

c) If
2 = τ then 	′ =	 and either

(i) ∃P ′ s.t. �; 	 � P
τ�−→	 � P ′ , and Q = � P ′�1f .

(ii) ∃P1, P2, x, m, Q ′ s.t. �; 	 � P
τ�−→	 � (ν m̃)(P1 | P2{m/x}), and

(〈�〉)1; (〈	〉)1 � Q
τβ�−→ τs�−→ τβ�−→ (〈	〉)1 � � P1 �1f | � P2{m/x}�1f

Proof. By transition induction. We consider parts (1) and (2) separately:
Part (1) - Completeness. We consider two representative cases, the rest is similar or simpler:

1. Subcase 1(a): P = s!〈n〉.P ′ and
1 = s!〈n〉 (the case
1 = (ν n)s!〈n〉 is similar). By assumption, P is well-typed. We may
have:

�; ∅;	0 · s : S1 � P ′ � � �; ∅; {n:S} � n � S

�; ∅;	0 · n:S · s :!〈S〉; S1 � s!〈n〉.P ′ � �
for some S, S1, 	0. We may then have the following transition:

�;	0 · n:S · s :!〈S〉; S1 � s!〈n〉.P ′
1�−→	0 · s:S1 � P ′

The encoding of the source judgement for P is as follows:

(〈�〉)1; ∅; (〈	0 · n:S · s :!〈S〉; S1〉)1 � �s!〈n〉.P ′�1f � �
which, using Definition 5.2, can be expressed as:

(〈�〉)1; ∅; (〈	0〉)·n:(〈S〉)1 · s :!〈?((〈S〉)1��);end��〉; (〈S1〉)1 � s!〈λz. z?(x).(xn)
〉
.� P ′�1f � �

Now, { {
1} }1 = s!〈λz. z?(x).x n 〉. We may infer the following transition for � P �1f :

(〈�〉)1; (〈	〉)1 � s!〈λz. z?(x).(xn)
〉
.� P ′�1f � �

{{
1}}1�−−−→ (〈�〉)1; (〈	0〉)1 · s : (〈S1〉)1 � � P ′�1f � �
= (〈�〉)1; (〈	0 · s : S1〉)1 � � P ′�1f � �

from which the thesis follows easily.

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.39 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 39
2. Subcase 1(c): P = n?(x).P ′ and
1 = n?〈m〉. By assumption P is well-typed. We may have:

�; ∅;	0 · x : S · n : S1 � P ′ � � �; ∅; {x : S} � x � S

�; ∅;	0 · n :?(S); S1 � n?(x).P ′ � �
for some S, S1, 	0. We may infer the following typed transition:

�;	0 · n :?(S); S1 � n?(x).P ′ � � n?〈m〉�−−−→ �; s	0 · n : S1 ·m : S � P ′{m/x} � �
The encoding of the source judgement for P is as follows:

(〈�〉)1; ∅; (〈	0 · n :?(S); S1〉)1 � � P �1f � �
= (〈�〉)1; ∅; (〈	0〉)1 · n :?(?((〈S〉)1��);end��); (〈S1〉)1 � n?(x).(ν s)((x s) | s!〈λx. � P ′�1f

〉
.0) � �

Now, { {
1} }1 = n?〈λz. z?(x).(x m) 〉 and it is immediate to infer a transition for � P �1f :

(〈�〉)1; (〈	0〉)1 · n :?(?((〈S〉)1��);end��); (〈S1〉)1 � n?(x).(ν s)((x s) | s!〈λx. � P ′�1f
〉
.0) � �

{{
1}}1�−−−→ (〈�〉)1; (〈	0〉)1 · n : (〈S1〉)1 ·m : (〈S〉)1 � R � �
where R stands for the process (ν s)((x s) | s!〈λx. � P ′�1

〉
.0){λz. z?(x).(x m)/x}. We then have:

R
τβ�−→ (ν s)(s?(x).(xm) | s!〈λx. � P ′�1f

〉
.0)

τs�−→ (λx. � P ′�1f)m | 0
τβ�−→ � P ′�1f {m/x}

and so the thesis follows.

Part (2) - Soundness. We consider two representative cases, the rest is similar or simpler:

1. Subcase 2(a): P = n!〈m〉.P ′ and
2 = n!〈λz. z?(x).(x m)〉 (the case
2 = (ν m)n!〈λz. z?(x).(x m)〉 is similar). Then we have:

(〈�〉)1; ∅; (〈	0〉)1 · n :!〈?((〈S〉)1��);end��〉; (〈S1〉)1 � n!〈λz. z?(x).(xm)
〉
.� P ′�1f � �

for some S, S1, and 	0. We may infer the following typed transition for � P �1f :

(〈�〉)1; (〈	0〉)1 · n :!〈?((〈S〉)1��);end��〉; (〈S1〉)1 � n!〈λz. z?(x).(xm)
〉
.� P ′�1f

2�−→ (〈�〉)1; (〈	0〉)1 · n : (〈S1〉)1 � � P ′�1f

Now, in the source term P we can infer the following transition:

�; 	0 · n :!〈S〉; S1 � n!〈m〉.P ′ n!〈m〉�−−−→ �; 	0 · n : S1 � P ′

and thus the thesis follows easily by noticing that { {n!〈m〉} }1 = n!〈λz. z?(x).(x m)〉.
2. Subcase 2(b): P = n?(x).P ′ and
2 = n?〈λy. y?(x).(x m)〉. Then we have:

(〈�〉)1; ∅; (〈	0〉)1 · n :?(?((〈S〉)1��);end��); (〈S1〉)1 � n?(x).(ν s)((x s) | s!〈λx. � P ′�1f
〉
.0) � �

for some S , S1, 	0. We may infer the following typed transitions for � P �1f :

(〈�〉)1; (〈	0〉)1 · n :?(?((〈S〉)1��);end��); (〈S1〉)1 � n?(x).(ν s)((x s) | s!〈λx. � P ′�1f
〉
.0)

2�−→ (〈�〉)1; (〈	0〉)1 · n : (〈S1〉)1 ·m : (〈S1〉)1 � (ν s)((x s) | s!〈λx. � P ′�1f
〉
.0){λz. z?(x).x m/x}

= (〈�〉)1; (〈	0〉)1 · n : (〈S1〉)1 ·m : (〈S〉)1 � (ν s)((λz. z?(x).xm) s | s!〈λx. � P ′�1f
〉
.0)

τβ�−→ (〈�〉)1; (〈	0〉)1 · n : (〈S1〉)1 ·m : (〈S〉)1 � (ν s)(s?(x).(xm) | s!〈λx. � P ′�1f
〉
.0)

τs�−→ (〈�〉)1; (〈	0〉)1 · n : (〈S1〉)1 ·m : (〈S〉)1 � (λx. � P ′�1f)m

τβ�−→ (〈�〉)1; (〈	0〉)1 · n : (〈S1〉)1 ·m : (〈S〉)1 � � P ′�1f {m/x}
Now, in the source term P we can infer the following transition, from which the thesis follows:

�; 	0 · n :?(S); S1 � n?(x).P ′ n?〈m〉�−−−→ �; 	0 · n : S1 ·m : S � P ′{m/x} �

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.40 (1-54)

40 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
We now present the proof of the full abstraction result (Proposition 5.3 (Page 18)). In the proof, we rely heavily on
the (detailed) labelled correspondence given above to define typed bisimulation relations up-to determinacy (Appendix
A.1). Proving that these relations indeed satisfy the requirements is immediate for most cases, where we just follow the
requirements of the labelled correspondence transitions. The most interesting cases are the output cases, where the analyses
should be done up-to the characteristic process.

Proposition Appendix B.3 (Full abstraction, HOπ into HO). �; 	1 � P1 ≈H 	2 � Q 1 if and only if (〈�〉)1; (〈	1〉)1 � � P1 �1f ≈H

(〈	2〉)1 � � Q 1 �1f .

Proof. For the right-to-left direction we show that the following relation �:

�= {(P1, Q 1) | (〈�〉)1; (〈	1〉)1 � � P1 �1f ≈H (〈	2〉)1 � � Q 1 �1f }

is a higher-order bisimulation (Definition 3.11). Suppose �; 	1 � P1

�−→	′

1 � P2; we perform a case analysis on the shape of

, using the soundness direction of operational correspondence (cf. Proposition Appendix B.2 (Page 37)). The most interesting
case is when
 = (ν m̃1

′
)n!〈m1〉; the other cases are similar or easier.

Given �; 	1 � P1
(ν m̃1

′
)n!〈m1〉�−−−−−−−−→	′

1 � P2, we have that Proposition Appendix B.2 (Page 37) implies:

(〈�〉)1; (〈	1〉)1 � � P1 �1f
(ν m̃1

′
)n!〈λz. z?(x).(x m1)〉�−−−−−−−−−−−−−−−→ (〈	′

1〉)1 � � P2 �1f

Now, combining this transition with the definition of � we obtain both:

(〈�〉)1; (〈	2〉)1 � � Q 1 �1f
(ν m̃2

′
)n!〈λz. z?(x).(x m2)〉

�===============⇒ (〈	′
2〉)1 � � Q 2 �1f

and

(〈�〉)1; (〈	′
1〉)1 � (ν m̃1

′
)(� P2 �1f | t?(x).(ν s)(s?(y).(x y) | s!〈λz. z?(x).(xm1)〉.0))

≈H (〈	′
2〉)1 � (ν m̃2

′
)(� Q 2 �1f | t?(x).(ν s)(s?(y).(x y) | s!〈λz. z?(x).(xm2)〉.0))

Based on the encoding �·�1f (cf. Fig. 9), we may rewrite the above equality as follows:

(〈�〉)1; (〈	′
1〉)1 � �(ν m̃1

′
)(P2 | t?(x).(ν s)(s?(y).(x y) | s!〈m1〉.0))�1f

≈H (〈	′
2〉)1 � �(ν m̃2

′
)(Q 2 | t?(x).(ν s)(s?(y).(x y) | s!〈m2〉.0))�1f

We may then observe that:

�;	′
1 � (ν m̃1

′
)(P2 | t?(x).(ν s)(s?(y).(x y) | s!〈m1〉.0))

� 	′
2 � (ν m̃2

′
)(Q 2 | t?(x).(ν s)(s?(y).(x y) | s!〈m2〉.0))

which can be rewritten to coincide with the output clause of higher-order bisimilarity (Definition 3.11), as required:

�;	′
1 � (ν m̃1

′
)(P2 | t ←↩H m1) �	′

2 � (ν m̃2
′
)(Q 2 | t ←↩H m2)

This concludes the proof.

For the left-to-right direction, we consider the following relation:

�= {(� P1 �1f , � Q 1 �1f) | �;	1 � P1 ≈H 	2 � Q 1}

We show that � ⊂≈H . Suppose (〈�〉)1; (〈	1〉)1 � � P1 �1f

�−→ (〈	′

1〉)1 � � P2 �1f ; we perform a case analysis on the shape of
,
using the soundness direction of operational correspondence (cf. Proposition Appendix B.2 (Page 37)). We consider three
cases:

1. Case:
 /∈ {(ν m̃)n!〈λx. P 〉, n?〈λx. P 〉}. Then, we have that Proposition Appendix B.2 (Page 37) implies �; 	1 � P1

�−→	′

1 �
P2. From this transition and the definition of � we infer both:

�;	2 � Q 1

�=⇒	′
2 � Q 2 (B.9)

�;	′
1 � P2 ≈H 	′

2 � Q 2 (B.10)

From (B.9) and Proposition Appendix B.2 (Page 37) we obtain:

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.41 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 41
(〈�〉)1; (〈	2〉)1 � � Q 1 �1f

�=⇒ (〈	′
2〉)1 � � Q 2 �1f

Furthermore, from (B.10) and the definition of � we obtain, as required:

(〈�〉)1; (〈	′
1〉)1 � � P2 �1f � (〈	′

2〉)1 � � Q 2 �1f

2. Case:
 = (ν m̃)n!〈λx. P 〉. We distinguish two sub-cases, depending on whether λx. P corresponds to the encoding of a
name.
• If λx. P does not correspond to the encoding of a name, then by Proposition Appendix B.2 (Page 37) we infer that

(〈�〉)1; (〈	1〉)1 � � P1 �1f

�−→ (〈	′

1〉)1 � � P2 �1f

implies

�;	1 � P1

�−→	′

1 � P2

and the rest of the argument proceeds as in the previous case.
• If λx. P does correspond to the encoding of a name, then by Proposition Appendix B.2 (Page 37) we infer that

(〈�〉)1; (〈	1〉)1 � � P1 �1f
(ν m̃1

′
)n!〈λz. z?(x).(x m1)〉�−−−−−−−−−−−−−−−→ (〈	′

1〉)1 � � P2 �1f

implies

�;	1 � P1
(ν m̃1

′
)n!〈m1〉�−−−−−−−−→	′

1 � P2

for some m1. From the latter transition and the definition of � we infer both:

�;	2 � Q 1
(ν m̃2

′
)n!〈m2〉

�========⇒	′
2 � Q 2 (B.11)

and

�;	′
1 � (ν m̃1

′
)(P2 | t?(x).(ν s)(s?(y).(x y) | s!〈m1〉.0))

≈H 	′
2 � (ν m̃2

′
)(Q 2 | t?(x).(ν s)(s?(y).(x y) | s!〈m2〉.0)) (B.12)

for some m2. From (B.11) and Proposition Appendix B.2 (Page 37), we obtain:

(〈�〉)1; (〈	2〉)1 � � Q 1 �1f
(ν m̃2

′
)n!〈λz. z?(x).(x m2)〉

�===============⇒ (〈	′
2〉)1 � � Q 2 �1f

Furthermore, from (B.12) and the definition of � we obtain the following:

(〈�〉)1; (〈	′
1〉)1 � �(ν m̃1

′
)(P2 | t?(x).(ν s)(s?(y).(x y) | s!〈m1〉.0))�1f

� (〈	′
2〉)1 � �(ν m̃2

′
)(Q 2 | t?(x).(ν s)(s?(y).(x y) | s!〈m2〉.0))�1f

which coincides with the output clause of higher-order bisimilarity, as required.
3. Case:
 = n?〈λx. P 〉. Also here we distinguish whether the received abstraction corresponds to the encoding of a name:
• If λx. P does not correspond to the encoding of a name, then the proof proceeds as in previous cases.
• If λx. P does correspond to the encoding of a name, then by Proposition Appendix B.2 (Page 37) we infer that

(〈�〉)1; (〈	1〉)1 � � P1 �1f
n?〈λz. z?(x).(x m1)〉�−−−−−−−−−−−→ (〈	′′

1〉)1 � R

implies

�;	1 � P1
n?〈m1〉�−−−−→	′

1 � P2 (B.13)

(〈�〉)1; (〈	′′
1〉)1 � R

τβ�−→ τs�−→ (〈	′
1〉)1 � � P2 �1f (B.14)

From (B.13) and the definition of � we infer:

�;	2 � Q 1
n?〈m2〉

�====⇒	′
2 � Q 2 (B.15)

�;	′
1 � P2 ≈H 	′

2 � Q 2 (B.16)

for some m2. From (B.15) and Proposition Appendix B.2 (Page 37) we obtain:

(〈�〉)1; (〈	2〉)1 � � Q 1 �1
n?〈λz. z?(x).(x m2)〉

�============⇒ (〈	′ 〉)1 � � Q 2 �1
f 2 f

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.42 (1-54)

42 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Furthermore, from (B.16) and the definition of � we obtain:

(〈�〉)1; (〈	′
1〉)1 � � P2 �1f � (〈	′

2〉)1 � � Q 2 �1f

If we consider result (B.14) we obtain:

(〈�〉)1; (〈	′′
1〉)1 � R

τβ�−→ τs�−→ � (〈	′
2〉)1 � � Q 2 �1f

and then we may show that � is a bisimulation up-to τs
�==⇒, following Lemma Appendix A.1. �

B.2. Properties for encoding LHOπ into Lπ

In this section we prove Theorem 5.2 (Page 21), which states that the encoding �·�2 of LHOπ into Lπ is precise. A
precise encoding requires to prove three independent results:

• Type preservation, stated as Proposition 5.4 (Page 19) and proven here as Proposition Appendix B.4 (Page 42).
• Operational Correspondence, stated as Proposition 5.5 (Page 20) and proven here as Proposition Appendix B.5 (Page 44).
• Full Abstraction, stated as Proposition 5.6 (Page 21) and proven here as Proposition Appendix B.6 (Page 46).

Proposition Appendix B.4 (Type preservation, HOπ into π). Let P be an HOπ process.
If �; ∅; 	 � P � � then (〈�〉)2; ∅; (〈	〉)2 � � P �2 � �.

Proof. By induction on the inference �; ∅; 	 � P � �. We consider three representative cases:

1. Case P = k!〈λx. Q
〉
.P . Then there are several sub-cases, depending on whether k and x have linear types. We content

ourselves by checking the case in which k is a session (linear) name. We then have two possibilities, depending on the
typing for λx. Q .

(a) The first sub-case concerns a linear typing, and so we have in the source language:

�; ∅;	1 · k : S � P � � �; ∅;	2 · x : S1 � Q � �
�; ∅;	2 � λx. Q � S1��

�; ∅;	1 ·	2 · k :!〈S1��〉; S � k!〈λx. Q
〉
.P � �

Following Fig. 11, we have �k!〈λx. Q
〉
.P �2 = (ν a)(u!〈a〉.(� P �2 | a?(y).y?(x).� Q �2)). By IH we have:

(〈�〉)2; ∅; (〈	2〉)2 · x : (〈S1〉)2 � � Q �2 � �
(〈�〉)2; ∅; (〈	1〉)2 · k : (〈S〉)2 � � P �2 � �

Let U1 =?((〈S1〉)2); end. Also, we write (〈�′〉)2 to stand for (〈�〉)2 · a : 〈U1〉. We first have:

(〈�′〉)2; ∅;∅ � a � 〈U1〉
(〈�′〉)2; ∅; (〈	2〉)2 · x : (〈S1〉)2 � � Q �2 � �

(〈�′〉)2; ∅; (〈	2〉)2 · y : end · x : (〈S1〉)2 � � Q �2 � �
(〈�′〉)2; ∅; (〈	2〉)2 · y : U1 � y?(x).� Q �2 � �

(〈�′〉)2; ∅; (〈	2〉)2 � a?(y).y?(x).� Q �2 � � (B.17)

We then have:

(〈�′〉)2; ∅;∅ � a � 〈U1〉
(〈�′〉)2; ∅; (〈	1〉)2 · k : (〈S〉)2 � � P �2 � �

(〈�′〉)2; ∅; (〈	2〉)2 � a?(y).y?(x).� Q �2 � � (B.17)

(〈�′〉)2; ∅; (〈	1〉)2 · (〈	2〉)2 · k : (〈S〉)2 �
� P �2 | a?(y).y?(x).� Q �2 � �

(〈�′〉)2; ∅; (〈	1〉)2 · (〈	2〉)2 · k :!〈〈U1〉〉; (〈S〉)2 � k!〈a〉.(� P �2 | a?(y).y?(x).� Q �2) � �
(〈�〉)2; ∅; (〈	1〉)2 · (〈	2〉)2 · k :!〈〈U1〉〉; (〈S〉)2 �

(ν a)(k!〈a〉.(� P �2 | a?(y).y?(x).� Q �2)) � �
(B.18)

which concludes the proof for this sub-case.
(b) In the second sub-case, λx. Q has a shared type, and so fs(Q) = ∅. We have the following typing in the source

language:

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.43 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 43
�; ∅;	 · k : S � P � �
�; ∅; ·x : S1 � Q � �

�; ∅;∅ � λx. Q � S1��
�; ∅;∅ � λx. Q � S1→�

�; ∅;	 · k :!〈S1→�〉; S � k!〈λx. Q
〉
.P � �

Following Fig. 11, we have �k!〈λx. Q
〉
.P �2 = (ν a)(u!〈a〉.(� P �2 | ∗a?(y).y?(x).� Q �2)). Recall that by Not. 1, ∗ P is a

shorthand notation for μX .(P | X). By IH we have:

(〈�〉)2; ∅; x : (〈S1〉)2 � � Q �2 � �
(〈�〉)2; ∅; (〈	〉)2 · k : (〈S〉)2 � � P �2 � �

Let U1 = ?((〈S1〉)2);end. We also have:

(〈�1〉)2 = (〈�〉)2 · a : 〈U1〉
(〈�2〉)2 = (〈�1〉)2 · X : ∅

Also, let (∗) and (∗∗) stand for (〈�2〉)2; ∅; ∅ � a � 〈U1〉 and (〈�2〉)2; ∅; ∅ � X ��, respectively. We first have two auxiliary
derivations:

(〈�2〉)2 ; ∅ ; x : (〈S1〉)2 � � Q �2 � �
(〈�2〉)2 ; ∅ ; y : end · x : (〈S1〉)2 � � Q �2 � �

(〈�2〉)2 ; ∅ ; y :?((〈S1〉)2);end � y?(x).� Q �2 � � (∗)
(〈�2〉)2 ; ∅ ; ∅ � a?(y).y?(x).� Q �2 � � (∗∗)

(〈�2〉)2 ; ∅ ; ∅ � a?(y).y?(x).� Q �2 | X � �
(〈�1〉)2 ; ∅ ; ∅ �μX .(a?(y).y?(x).� Q �2 | X) � � (B.19)

and

(〈�1〉)2 ; ∅ ; (〈	〉)2 · k : (〈S〉)2 � � P �2 � �
(〈�1〉)2 ; ∅ ; ∅ � μX .(a?(y).y?(x).� Q �2 | X) � � (B.19)

(〈�1〉)2 ; ∅ ; (〈	〉)2 · k : (〈S〉)2 � � P �2 |μX .(a?(y).y?(x).� Q �2 | X) � � (B.20)

We now finally have:

(〈�1〉)2 ; ∅ ; ∅ � a � 〈U1〉
(〈�1〉)2 ; ∅ ; (〈	〉)2 · k : (〈S〉)2 � � P �2 |μX .(a?(y).y?(x).� Q �2 | X) � � (B.20)

(〈�1〉)2 ; ∅ ; (〈	〉)2 · k :!〈〈U1〉
〉; (〈S〉)2 � k!〈a〉.(� P �2 |μX .(a?(y).y?(x).� Q �2 | X)) � �

(〈�〉)2 ; ∅ ; (〈	〉)2 · k :!〈〈U1〉
〉; (〈S〉)2 � (ν a)(k!〈a〉.(� P �2 |μX .(a?(y).y?(x).� Q �2 | X))) � �

This completes the proof for this case.
2. Case P = k?(x).P . Here again there are several sub-cases, depending on whether k and x have linear types. We content

ourselves by checking the case in which k is a session (linear) name. Then there are two sub-cases: x : S1→� and
x : S1��.

(a) In the first case, we have the following typing in the source language:

� · x : S1→�; ∅; 	 · k : S � P � �
�; ∅; 	 · k :?(S1→�); S � k?(x).P � �

Following Fig. 11, the corresponding typing in the target language is as follows:

(〈�〉)2 · x : 〈?((〈S1〉)2);end〉; ∅; 	 · k : (〈S〉)2 � (〈P 〉)2 � �
(〈�〉)2; ∅; (〈	〉)2 · k :?(〈?((〈S1〉)2);end〉

); (〈S〉)2 � k?(x).� P �2 � �
(b) In the second case, we have the following typing in the source language:

�; {x : S1��}; 	 · k : S � P � �
�; ∅; 	 · k :?(S1��); S � k?(x).P � �

The corresponding typing in the target language is as follows:

(〈�〉)2 · x : 〈?((〈S1〉)2);end〉; ∅; 	 · k : (〈S〉)2 � (〈P 〉)2 � �
(〈�〉)2; ∅; (〈	〉)2 · k :?(〈?((〈S1〉)2);end〉

); (〈S〉)2 � k?(x).� P �2 � �

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.44 (1-54)

44 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
3. Case P = x k. Also here we have two sub-cases, depending on whether x has linear or shared type.

(a) In the first sub-case, x is linear and so we have the following source typing:

�; {x : S1��}; ∅ � x � S1�� �; ∅; {k : S1} � k � S1

�; {x : S1��}; k : S1 � x k � �
Notice that by Rule (EProm) we have:

�; {x : S1��}; k : S1 � x k � �
� · x : S1→�; ∅; k : S1 � x k � �

Following Fig. 11, we have that �x k�2 = (ν s)(x!〈s〉.s!〈k〉.0). Let us write (〈�1〉)2 to stand for (〈�〉)2 · x :
〈?((〈S1〉)2); end〉. To derive the corresponding typing in the target language we first need an auxiliary derivation:

(〈�1〉)2; ∅; ∅ � 0 � �
(〈�1〉)2; ∅; s : end � 0 � � (〈�1〉)2; ∅; {k : (〈S1〉)2} � k � (〈S1〉)2

(〈�1〉)2; ∅; k : (〈S1〉)2 · s :!〈(〈S1〉)2〉;end � s!〈k〉.0 � � (B.21)

We then have:

(〈�1〉)2; ∅; ∅ � x � 〈?((〈S1〉)2);end〉
(〈�1〉)2; ∅;k : (〈S1〉)2 · s :!〈(〈S1〉)2〉;end � s!〈k〉.0 � � (B.21)

(〈�1〉)2; ∅; {s :?((〈S1〉)2);end} � s �?((〈S1〉)2);end
(〈�1〉)2; ∅; k : (〈S1〉)2 · s :?((〈S1〉)2);end · s :!〈(〈S1〉)2〉;end � x!〈s〉.s!〈k〉.0 � �

(〈�1〉)2; ∅; k : (〈S1〉)2 � (ν s)(x!〈s〉.s!〈k〉.0) � �
which completes the proof for this sub-case.

(b) In the second sub-case, x is shared, and we have the following typing in the source language:

� · x : S1��; ∅; ∅ � x � S1→� �; ∅;k : S1 � k � S1

� · x : S1→�; ∅; k : S1 � x k � �
The associated typing in the target language is obtained similarly as in the first case. �

We repeat the statement in Page 20. Recall that we use the mapping on actions { {·} }2 given in Definition 5.5.

Proposition Appendix B.5 (Operational correspondence, HOπ into π). Let P be an HOπ process such that �; ∅; 	 � P � �.

1. Suppose �; 	 � P

1�−→	′ � P ′ . Then we have:

a) If
1 = (ν m̃)n!〈λx. Q 〉, then ∃�′, 	′′ where either:

- (〈�〉)2; (〈	〉)2 � � P �2
{{
1}}2�−−−→ �′ · (〈�〉)2; (〈	′〉)2 � � P ′�2 | ∗a?(y).y?(x).� Q �2 (if fs(Q) = ∅)

- (〈�〉)2; (〈	〉)2 � � P �2
{{
1}}2�−−−→ (〈�〉)2; 	′′ � � P ′�2 | s?(y).y?(x).� Q �2 (otherwise)

b) If
1 = n?〈λy. Q 〉 then ∃R where either

- (〈�〉)2; (〈	〉)2 � � P �2
{{
1}}2�−−−→ �′; (〈	′′〉)2 � R, for some �′ and

(〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′′〉)2 � (ν a)(R | ∗a?(y).y?(x).� Q �2) (if fs(Q) = ∅)

- (〈�〉)2; (〈	〉)2 � � P �2
{{
1}}2�−−−→ (〈�〉)2; (〈	′′〉)2 � R, and

(〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′′〉)2 � (ν s)(R | s?(y).y?(x).� Q �2) (otherwise)

c) If
1 = τ , with τ �= τβ then one of the following holds:

- (〈�〉)2; (〈	〉)2 � � P �2
τ�−→ (〈	′〉)2 � (ν m̃)(� P1 �2 | (ν a)(� P2 �2{a/x} | ∗a?(y).y?(x).� Q �2)), for some P1 , P2 , Q (with

fs(Q) = ∅);

- (〈�〉)2; (〈	〉)2 � � P �2
τ�−→ (〈	′〉)2 � (ν m̃)(� P1 �2 | (ν s)(� P2 �2{s/x} | s?(y).y?(x).� Q �2)), for some P1 , P2 , Q (with fs(Q) �=

∅);

- (〈�〉)2; (〈	〉)2 � � P �2
τ�−→ (〈�〉)2; (〈	′〉)2 � � P ′�2

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.45 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 45
d) If
1 = τβ then (〈�〉)2; (〈	〉)2 � � P �2
τs�−→ (〈�〉)2; (〈	′〉)2 � � P ′�2

e) If
1 ∈ {n ⊕ l, n&l} then

∃
2 = { {
1} }2 such that (〈�〉)2; (〈	〉)2 � � P �2

2�−→ (〈�〉)2; (〈	′〉)2 � � P ′�2 .

2. Suppose (〈�〉)2; (〈	〉)2 � � P �2

2�−→ (〈	′〉)2 � R.

a) If
2 = (ν m)n!〈m〉 then one of the following holds:

- ∃P ′ such that P
(ν m)n!〈m〉�−−−−−−→ P ′ and R = � P ′�2;

- ∃Q , P ′ such that P
n!〈λx. Q 〉�−−−−−→ P ′ and R = � P ′�2 | ∗a?(y).y?(x).� Q �2 and fs(Q) = ∅;

- ∃Q , P ′ such that P
n!〈λx. Q 〉�−−−−−→ P ′ and R = � P ′�2 | s?(y).y?(x).� Q �2 and fs(Q) �= ∅;

b) If
2 = n?〈m〉 then one of the following holds:

- ∃P ′ such that P
n?〈m〉�−−−→ P ′ and R = � P ′�2;

- ∃Q , P ′ such that P
n?〈λx. Q 〉�−−−−−−→ P ′

and (〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′〉)2 � (ν a)(R | ∗a?(y).y?(x).� Q �2) and fs(Q) = ∅;

- ∃Q , P ′ such that P
n?〈λx. Q 〉�−−−−−−→ P ′

and (〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′〉)2 � (ν s)(R | s?(y).y?(x).� Q �2) and fs(Q) �= ∅.

c) If
2 = τ then ∃P ′ such that P τ�−→ P ′ and (〈�〉)2; (〈	′〉)2 � � P ′�2 ≈C (〈	′〉)2 � R.
d) If
2 /∈ {n!〈m〉, n ⊕ l, n&l} then ∃
1 such that
1 = { {
2} }2 and

�; 	 � P

1�−→ �; 	 � P ′ .

Proof. The proof proceeds by transition induction. We only give details for the proof of Part 1, as Part 2 proceeds straight-
forwardly. We consider four representative sub-cases:

1. Case 1(a), with fs(Q) = ∅. Then �; ∅; 	 � P
n!〈λx. Q 〉�−−−−−→	′ � P ′ , and so we infer

(〈�〉)2; (〈	〉)2 � � P �2
(ν a)n!〈a〉�−−−−−→ (〈	〉)2 � � P ′�2 | ∗a?(y).y?(x).� Q �2

and from Definition 5.4 we have { {n!〈λx. Q 〉} }=(ν a)n!〈a〉, as required.
2. Case 1(a), with fs(Q) �= ∅. Then we have P = n!〈λx. Q 〉.P ′ and

� P �2 = (ν s)(n!〈s〉.� P ′�2 | s?(y).y?(x).� Q �2)

and the argument proceeds as in the previous case.

3. Case 1(b), with fs(Q) = ∅. Then �; ∅; 	 � P
n?〈λx. Q 〉�−−−−−−→	′ � P ′{λx. Q/x} and so we infer that

(〈�〉)2; (〈	〉)2 � � P �2
n?〈a〉−→ (〈	′′〉)2 � R{a/x}

with { {n?〈λx. Q 〉} }2 = n?〈a〉. It remains to show that

(〈�〉)2; (〈	′〉)2 � � P ′{λx. Q/x}�2 ≈C (〈	′′〉)2 � (ν a)(R{a/x} | ∗a?(y).y?(x).� Q �2)

which can be proven by structural induction on P ′ . The most interesting case is when P ′ = x m. We then have:

�xm{λx. Q/x}�2 = � Q {m/x}�2

(ν a)(R{a/x} | ∗a?(y).y?(x).� Q �2)= (ν a)((ν s)(x!〈s〉.s!〈m〉.0){a/x} | ∗a?(y).y?(x).� Q �2)

The right-hand side process can evolve as follows:

(〈�〉)2; (〈	′′〉)2 � (ν a)((ν s)(x!〈s〉.s!〈m〉.0){a/x} | ∗a?(y).y?(x).� Q �2)
τ�−→ τs�−→ (〈	′′〉)2 � (ν a)(� Q {m/x}�2 | ∗a?(y).y?(x).� Q �2)

which is bisimilar with � Q {m/x}�2 because a is fresh.
An interesting inductive step case is parallel composition, i.e., P ′ = P1 | P2. We need to show:

(〈�〉)2; (〈	′〉)2 � �(P1 | P2){λx. Q/x}�2 ≈C (〈	′′〉)2 � (ν a)(� P1 | P2 �2{a/x} | ∗a?(y).y?(x).� Q �2)

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.46 (1-54)

46 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
We know that

(〈�〉)2; (〈	1〉)2 � � P1{λx. Q/x}�2 ≈C (〈	′′
1〉)2 � (ν a)(� P1 �2{a/x} | ∗a?(y).y?(x).� Q �2)

(〈�〉)2; (〈	2〉)2 � � P2{λx. Q/x}�2 ≈C (〈	′′
1〉)2 � (ν a)(� P2 �2{a/x} | ∗a?(y).y?(x).� Q �2)

and so we conclude immediately exploiting the fact that ≈C is a congruence.
4. Case 1(b), with fs(Q) �= ∅. This case is similar to the previous one. �
Proposition Appendix B.6 (Full abstraction, from HOπ to π). Let P1, Q 1 be HOπ processes. �; 	1 � P1 ≈C 	2 � Q 1 if and only if
(〈�〉)2; (〈	1〉)2 � � P1 �2 ≈C (〈	2〉)2 � � Q 1 �2 .

Proof. The proof follows directly from operational correspondence (Proposition Appendix B.5 (Page 44)). The different cases
of the proposition are used to define bisimulation relation to prove the right-to-left direction, and a bisimulation up-to
determinate transition (Lemma Appendix A.1) to prove the left-to-right direction.

For the right-to-left direction, we show that the following relation:

�= {(P , Q) | (〈�〉)2; (〈	1〉)2 � � P �2 ≈C (〈	2〉)2 � � Q �2}
is a characteristic bisimilarity (Definition 3.12). Suppose �; 	1 � P1

�−→	′
1 � P2; we perform a case analysis on the shape

of
, using the soundness direction of operational correspondence (cf. Proposition Appendix B.5 (Page 44)). The most inter-
esting case is when
 = n!〈λx. R1〉; the other cases follow the bisimulation game that is implied by Proposition Appendix
B.5 (Page 44).

Given �1; 	1 � P
n!〈λx. R1〉�−−−−−−→	′

1 � P ′ , by Proposition Appendix B.5 (Page 44) (Part 1), we infer that:

(〈�〉)2; (〈	1〉)2 � � P �2
(ν a)n!〈a1:U 〉�−−−−−−−→ (〈	′

1〉)2 � � P ′�2 | ∗a1!〈y〉.y?(x).� R1 �2

which implies, from the requirements of ≈C , both

(〈�〉)2; (〈	2〉)2 � � Q �2
(ν a)n!〈a2:U 〉

�========⇒ (〈	′
2〉)2 � � Q ′�2 | ∗a2!〈y〉.y?(x).� R2 �2 (B.22)

and

(〈�〉)2; (〈	′
1〉)2 � (ν a1)(� P ′�2 | ∗a1?(y).y?(x).� R1 �2 | t?(x).(ν s)(s?(y).[(U)]y | s!〈a1〉.0))

≈C (〈	′
2〉)2 � (ν a2)(� Q ′�2 | ∗a2?(y).y?(x).� R2 �2 | t?(x).(ν s)(s?(y).[(U)]y | s!〈a2〉.0))

Now, from (B.22) and Proposition Appendix B.5 (Page 44) (Part 2), we infer that there exist Q ′, R2 such that:

�2;	2 � Q
n!〈λx. R2〉

�======⇒	′
2 � Q ′

By following the (deterministic) transitions from the latter pair of processes we obtain that:

�;	′
1 � P ′ | t?(x).(ν s)(s?(y).[(U)]y | s!〈R1〉.0)

� 	′
2 � Q ′ | t?(x).(ν s)(s?(y).[(U)]y | s!〈R2〉.0)

This suffices to conclude, because from the definition of �·�2 (cf. Fig. 11) we have:

� P ′ | t?(x).(ν s)(s?(y).[(U)]y | s!〈R1〉.0)�2 = � P ′�2 | ∗a2?(y).y?(x).� R2 �2

| t?(x).(ν s)(s?(y).[(U)]y | s!〈a2〉.)0

(and similarly for Q ′ | t?(x).(ν s)(s?(y).[(U)]y | s!〈R2〉.0)).

For the left-to-right direction, we show that the relation:

�= {(� P �2, � Q �2) | �;	1 � P ≈C 	2 � Q }
is a characteristic bisimulation. Suppose (〈�〉)2; (〈	1〉)2 � � P �2

�−→ (〈	′
1〉)2 � R; we need to exhibit a corresponding move from

� Q �2 . To this end, we perform a case analysis on the shape of
, using Proposition Appendix B.5 (Page 44) (Part 2).
One interesting case is when
 = (ν a1)n!〈a1〉 and P = n!〈λx. R1〉.P ′ with fs(R1) = ∅, for some R1, P ′; the other cases

are similar or simpler. Given these assumptions, and considering Fig. 11, the transition from � P �2 is as follows:

(〈�〉)2; (〈	1〉)2 � (ν a1)(n!〈a1〉.� P ′�2 | ∗a1?(y).y?(x).� R1 �2)
(ν a)n!〈a1〉�−−−−−−→ (〈	′ 〉)2 � � P ′�2 | ∗a ?(y).y?(x).� R �2
1 1 1

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.47 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 47
Then, using Proposition Appendix B.5 (Page 44) (Part 2(a)), we may infer a transition from P :

�;	1 � n!〈λx. R1〉.P ′ n!〈λx. R1〉�−−−−−−→	′
1 � P ′

In turn, this transition, together with the definition of �, enable us to infer both:

�;	2 � Q
n!〈λx. R2〉

�======⇒	′
2 � Q ′

and

�;	′
1 � P ′ | t?(x).(ν s)(s?(y).[(U)]y | s!〈R1〉.0)

≈C 	′
2 � Q ′ | t?(x).(ν s)(s?(y).[(U)]y | s!〈R2〉.0)

for some R2. Now, using this transition from Q in combination with Proposition Appendix B.5 (Page 44) (Part 1(a)) we
obtain:

(〈�〉)2; (〈	2〉)2 � � Q �2
(ν a2)n!〈a2〉

�=======⇒	′
2 � � Q ′�2 | ∗a2?(y).y?(x).� R2 �2

From the definition of � (and the fact that the pair of mapped processes can observe only deterministic transitions) we
may finally obtain:

(〈�〉)2; (〈	′
1〉)2 � � P ′�2 | ∗a1?(y).y?(x).� R1 �2 | t?(x).(ν s)(s?(y).[(U)]y | s!〈a1〉.0)

� (〈	′
2〉)2 � � Q ′�2 | ∗a2?(y).y?(x).� R2 �2 | t?(x).(ν s)(s?(y).[(U)]y | s!〈a2〉.0)

as required. This suffices, because

� P ′ | t?(x).(ν s)(s?(y).[(U)]y | s!〈R1〉.0)�2 = � P ′�2 | ∗a2?(y).y?(x).� R2 �2

| t?(x).(ν s)(s?(y).[(U)]y | s!〈a2〉.0)

(and similarly for Q ′ .) �
B.3. Properties for encoding LHOπ+ into LHOπ

In this section we prove Theorem 6.1 (Page 26), which states that the encoding �·�3 of LHOπ+ into LHOπ is precise. A
precise encoding requires to prove three independent results:

• Type preservation, stated as Proposition 6.1 (Page 25) and proven here as Proposition Appendix B.7 (Page 47).
• Operational Correspondence, stated as Proposition 6.2 (Page 26) and proven here as Proposition Appendix B.8 (Page 48).
• Full Abstraction, stated as Proposition 6.3 (Page 26) and proven here as Proposition Appendix B.9 (Page 49).

Proposition Appendix B.7 (Type preservation. From HOπ+ to HOπ). Let P be an HOπ+ process. If �; ∅; 	 � P � � then
(〈�〉)3; ∅; (〈	〉)3 � � P �3 � �.

Proof. By induction on the inference of �; ∅; 	 � P � �. We detail two representative cases:

1. Case P = u!〈λx. Q 〉.P ′ , with u linear and λx. Q with linear type. Then we have the following typing in HOπ+:

�;�1;	1 · u : S � P ′ � �
� · x : L;�2;	2 � Q � � � · x : L; ∅;∅ � x � L

�;�2;	2 � λx : L. Q � L��
�;�1 ·�2;	1 ·	2 · u :!〈L��〉; S � u!〈λx. Q 〉.P ′ � �

Thus, by IH we have:

(〈�〉)3; (〈�1〉)3; (〈	1〉)3 · u : (〈S〉)3 � � P ′�3 � � (B.23)

(〈�〉)3 · x : (〈L〉)3; (〈�2〉)3; (〈	2〉)3 � � Q �3 � � (B.24)

(〈�〉)3 · x : (〈L〉)3; ∅;∅ � x � (〈L〉)3 (B.25)

Following Fig. 12, the corresponding encoding and typing in HOπ is as follows. First an auxiliary derivation:

(B.24)
(〈�〉)3 · x : (〈L〉)3; (〈�2〉)3; (〈	2〉)3 · z : end � � Q �3 � � (B.25)

3 3 3 3 3
(B.26)
(〈�〉) ; (〈�2〉) ; (〈	2〉) · z :?((〈L〉));end � z?(x).� Q � � �

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.48 (1-54)

48 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Then we have:

(B.23)
(〈�〉)3; ∅; z :?((〈L〉)3);end � z�?((〈L〉)3);end (B.26)

(〈�〉)3; (〈�2〉)3; (〈	2〉)3 � λz. z?(x).� Q �3 � (?((〈L〉)3);end)��
(〈�〉)3; (〈�1〉)3 · (〈�2〉)3; (〈	1〉)3 · (〈	2〉)3 · u :!〈?((〈L〉)3);end��〉; (〈S〉)3 � u!〈λz. z?(x).� Q �3〉.� P ′�3 � �

2. Case P = (λx. P) (λy. Q). We may have different possibilities for the types of each abstraction. We consider only one of
them, as the rest are similar:

� · x : C→�;�;	1 � P � �
�;�;	1 � λx. P � (C��)��

�; ∅;	2 · y : C � Q � �
�; ∅;	2 � λy. Q � C��

�;�;	1 ·	2 � (λx. P) (λy. Q) � �
Thus, by IH we have:

(〈�〉)3 · x : (〈C→�〉)3; (〈�〉)3; (〈	1〉)3 � � P �3 � � (B.27)

(〈�〉)3; ∅; (〈	1〉)3 · y : (〈C〉)3 � � Q �3 � � (B.28)

Following Fig. 12, the corresponding typing in HOπ is as follows. First, we present an auxiliary derivation; recall that
(〈C��〉)3 = (〈C〉)3��.

(B.27)
(〈�〉)3 · x : (〈C→�〉)3; (〈�〉)3; (〈	1〉)3 · s : end � � P �3 � �

(〈�〉)3; (〈�〉)3; (〈	1〉)3 · s :?((〈C��〉)3);end � s?(x).� P �3 � � (B.29)

We now have:

(B.29)

(B.28)
(〈�〉)3; ∅; (〈	2〉)3 · y : (〈C〉)3 � � Q �3 � �

(〈�〉)3; ∅; (〈	2〉)3 � λy. � Q �3 � (〈C��〉)3
(〈�〉)3; ∅; (〈	2〉)3 · s : end � λy. � Q �3 � (〈C��〉)3

(〈�〉)3; ∅; (〈	2〉)3 · s :!〈(〈C��〉)3〉;end � s!〈λy. � Q �3〉.0 � �
(〈�〉)3; (〈�〉)3; (〈	1〉)3 · (〈	2〉)3 · s :?((〈C��〉)3);end · s :!〈(〈C��〉)3〉;end � s?(x).� P �3 | s!〈λy. � Q �3〉.0 � �

(〈�〉)3; (〈�〉)3; (〈	1〉)3 · (〈	2〉)3 � (ν s)(s?(x).� P �3 | s!〈λy. � Q �3〉.0) � � �

We repeat the statement in Page 26. Recall that we use the mapping on actions { {·} }3 given in Definition 6.2.

Proposition Appendix B.8 (Operational correspondence. From HOπ+ to HOπ). Let �; ∅; 	 � P be an HOπ+ process.

1. �; 	 � P

�−→	′ � P ′ implies

a) If
 ∈ {(ν m̃)n!〈λx. Q 〉, n?〈λx. Q 〉} then (〈�〉)3; (〈	〉)3 � � P �3

′�−→ (〈	′〉)3 � � P ′�3 with { {
} }3 =
′ .

b) If
 /∈ {(ν m̃)n!〈λx. Q 〉, n?〈λx. Q 〉, τ } then (〈�〉)3; (〈	〉)3 � � P �3

�−→ (〈	′〉)3 � � P ′�3 .

c) If
 = τβ then (〈�〉)3; (〈	〉)3 � � P �3
τ�−→	′′ � R and (〈�〉)3; (〈	′〉)3 � � P ′�3 ≈H 	′′ � R, for some R.

d) If
 = τ and
 �= τβ then (〈�〉)3; (〈	〉)3 � � P �3
τ�−→ (〈	′〉)3 � � P ′�3 .

2. (〈�〉)3; (〈	〉)3 � � P �3

�−→ (〈	′′〉)3 � Q implies

a) If
 ∈ {(ν m̃)n!〈λx. R〉, n?〈λx. R〉} then �; 	 � P

′�−→	′ � P ′ with { {
′} }3 =
 and Q ≡ � P ′�3 .

b) If
 /∈ {(ν m̃)n!〈λx. R〉, n?〈λx. R〉, τ } then �; 	 � P

�−→	′ � P ′ and Q ≡ � P ′�3 .

c) If
 = τ then either �; 	 � P
τ�−→	′ � P ′ with Q ≡ � P ′�3

or �; 	 � P
τβ�−→	′ � P ′ and (〈�〉)3; (〈	′′〉)3 � Q

τβ�−→ (〈	′′〉)3 � � P ′�3 .

Proof. We consider both parts separately, considering the mapping in Fig. 12.

1. The proof of Part 1 proceeds by transition induction. We content ourselves by showing two interesting cases; other cases
are similar. Suppose �; 	 � P

�−→	′ � P ′ .

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.49 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 49
a) Case 1(a): Then �; 	 � n!〈λx. Q 〉.P n!〈λx. Q 〉�−−−−−→	 � P ′ . By following the encoding in Fig. 12, we have that

� P �3 = n!〈{|λx. Q |}3〉.� P ′�3

= n!〈λz. z?(x).� Q �3〉.� P ′�3

and therefore (〈�〉)3; (〈	〉)3 � n!〈λz. z?(x).� Q �3〉.� P �3
n!〈λz. z?(x).� Q �3〉�−−−−−−−−−−−→	 � � P ′�3 , as required.

b) Case 1(c): Then �; 	 � (λx. Q 1) λy. Q 2
τβ�−→	 � Q 1{λy. Q 2/x}. By following the encoding in Fig. 12, we have the fol-

lowing:

� P �3 = (ν s)(s?(x).� Q 1 �3 | s!〈{|λy. Q 2|}3〉.0)

= (ν s)(s?(x).� Q 1 �3 | s!〈λz. z?(y).� Q 2 �3〉.0)

and therefore

(〈�〉)3; (〈	〉)3 � (ν s)(s?(x).� Q 1 �3 | s!〈λz. z?(y).� Q 2 �3〉.0)
τs�−→ (〈	′〉)3 � � Q 1 �3{λz. z?(y).� Q 2 �3/x}

We are left to show that � Q 1{λy. Q 2/x}�3 and � Q 1 �3{λz. z?(y).� Q 2 �3/x} are related by ≈H . This follows easily from the
structure of the encoding �·�3 , which mimics higher-order applications using deterministic transitions only.

2. The proof of Part 2 also proceeds by transition induction. All cases are easy: they are similar to those described for Part
1 or follow directly from the encoding in Fig. 12. �

Proposition Appendix B.9 (Full abstraction. From HOπ+ to HOπ). Let P and Q be HOπ+ processes with �; ∅; 	1 � P � � and
�; ∅; 	2 � Q � �. Then �; 	1 � P ≈H 	2 � Q if and only if (〈�〉)3; (〈	1〉)3 � � P �3 ≈H (〈	2〉)3 � � Q �3 .

Proof (Sketch). The right-to-left direction is proven by showing that the relation

�1 = {(P , Q) | (〈�〉)3; (〈	1〉)3 � � P �3 ≈H (〈	2〉)3 � � Q �3}
is a higher-order bisimulation, following Part 2 of Proposition Appendix B.8 (Page 48) for subcases (a) and (b). In subcase
(c) we use Proposition 3.1 (Page 10). Similarly, the left-to-right direction is proven by showing that the relation:

�2 = {(� P �3, � Q �3) | �;	1 � P ≈H 	2 � Q }
is a higher-order bisimulation up to deterministic transitions by following Part 1 of Proposition Appendix B.8 (Page 48). The
proof is straightforward for subcases (a), (b), and (d). In subcase (c) we use Lemma Appendix A.1. �
B.4. Properties for encoding LHO π̃ into LHOπ

In this section we prove Theorem 6.2 (Page 29), which states that the encoding �·�4 of LHO π̃ into LHOπ is precise. A
precise encoding requires to prove three independent results:

• Type preservation, stated as Proposition 6.4 (Page 27) and proven here as Proposition Appendix B.10 (Page 49).
• Operational Correspondence, stated as Proposition 6.5 (Page 28) and proven here as Proposition Appendix B.11 (Page 50).
• Full Abstraction, stated as Proposition 6.6 (Page 29) and proven here as Proposition Appendix B.12 (Page 52).

Proposition Appendix B.10 (Type preservation. From HOπ̃ to HOπ). Let P be an HOπ̃ process. If �; ∅; 	 � P � � then
(〈�〉)4; ∅; (〈	〉)4 � � P �4 � �.

Proof. By induction on the inference �; ∅; 	 � P � �. We examine two representative cases, using dyadic communications:

1. Case P = n!〈V 〉.P ′ and �; ∅; 	1 ·	2 · n :!〈(C1, C2) ��〉; S � n!〈V 〉.P ′ � �. Then either V = y or V = λ(x1, x2). Q , for some
Q . The case V = y is immediate; we give details for the case V = λ(x1, x2). Q , for which we have the following typing:

�; ∅;	1 · n : S � P ′ � �
�; ∅;	2 · x1 : C1 · x2 : C2 � Q � �

�; ∅;	2 � λ(x1, x2). Q � (C1, C2)��
�; ∅;	1 ·	2 · n :!〈(C1, C2)��〉; S � k!〈λ(x1, x2). Q 〉.P � �

We now show the typing for � P �4 . By IH we have both:

(〈�〉)4; ∅; (〈	1〉)4 · n : (〈S〉)4 � � P ′�4 � � (〈�〉)4; ∅; (〈	2〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 � � Q �4 � �

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.50 (1-54)

50 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Let L = (C1, C2) ��. By Fig. 13 we have (〈L〉)4= (
?((〈C1〉)4); ?((〈C2〉)4); end

)
�� and � P �4=n!〈λz. z?(x1).z?(x2).� Q �4

〉
.� P ′�4 .

We first infer the following auxiliary typing derivation:

(〈�〉)4; ∅; (〈	2〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 � � Q �4 � �
(〈�〉)4; ∅; (〈	2〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 · z : end � � Q �4 � �

(〈�〉)4; ∅; (〈	2〉)4 · x1 : (〈C1〉)4 · z :?((〈C2〉)4);end � z?(x2).� Q �4 � �
(〈�〉)4; ∅; (〈	2〉)4 · z :?((〈C1〉)4);?((〈C2〉)4);end � z?(x1).z?(x2).� Q �4 � �

(〈�〉)4; ∅; (〈	2〉)4 � λz. z?(x1).z?(x2).� Q �4 � ((〈C1〉)4, (〈C2〉)4)�� (B.30)

Now we have:

(〈�〉)4; ∅; (〈	1〉)4 · k : (〈S〉)4 � � P ′�4 � � (B.30)

(〈�〉)4; ∅; (〈	1〉)4 · (〈	2〉)4 · n :!〈(〈L〉)4〉; (〈S〉)4 � � P �4 � �
2. Case P = n?(x1, x2).P ′ and �; ∅; 	1 · n :?((C1, C2)); S � n?(x1, x2).P ′ � �. We then have the following typing derivation:

�; ∅;	1 · n : S · x1 : C1 · x2 : C2 � P ′ � � �; ∅;� x1, x2 � C1, C2

�; ∅;	1 · n :?((C1, C2)); S � n?(x1, x2).P ′ � �
By Fig. 13, we have � P �4 = n?(x1).k?(x2).� P ′�4 . By IH we have

(〈�〉)4; ∅; (〈	1〉)4 · n : (〈S〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 � � P ′�4 � �
and the following type derivation:

(〈�〉)4; ∅; (〈	1〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 · n : (〈S〉)4 � � P ′�4 � �
(〈�〉)4; ∅; (〈	1〉)4 · x1 : (〈C1〉)4 · n :?((〈C2〉)4); (〈S〉)4 � n?(x2).� P ′�4 � �

(〈�〉)4; ∅; (〈	1〉)4 · n :?((〈C1〉)4);?((〈C2〉)4); (〈S〉)4 � � P �4 � � �

We repeat the statement in Page 28. Recall that we use the mapping on actions { {·} }4 given in Definition 6.4.

Proposition Appendix B.11 (Operational correspondence. From HOπ̃ to HOπ). Let �; ∅; 	 � P be an HOπ̃ process.

1. �; 	 � P

�−→	′ � P ′ implies

a) If
 = (ν m̃′)n!〈m̃〉 then (〈�〉)4; (〈	〉)4 � � P �4

1�−→ . . .

k�−→ (〈	′〉)4 � � P ′�4 with { {
} }4 =
1, · · · ,
k.

b) If
 = n?〈m̃〉 then (〈�〉)4; (〈	〉)4 � � P �4

1�−→ . . .

k�−→ (〈	′〉)4 � � P ′�4 with { {
} }4 =
1, · · · ,
k.

c) If
 ∈ {(ν m̃)n!〈λx̃. R〉, n?〈λx̃. R〉} then (〈�〉)4; (〈	〉)4 � � P �4

′�−→ (〈	′〉)4 � � P ′�4 with { {
} }4 =
′ .

d) If
 ∈ {n ⊕ l, n&l} then (〈�〉)4; (〈	〉)4 � � P �4

�−→ (〈	′〉)4 � � P ′�4 .

e) If
 = τβ then (〈�〉)4; (〈	〉)4 � � P �4
τβ�−→ τs�−→ . . .

τs�−→ (〈	′〉)4 � � P ′�4 with { {
} }=τβ, τs, · · · , τs︸ ︷︷ ︸
k

.

f) If
 = τ then (〈�〉)4; (〈	〉)4 � � P �4
τ�−→ . . .

τ�−→ (〈	′〉)4 � � P ′�4 with { {
} }4 = τ , · · · , τ︸ ︷︷ ︸
k

.

2. (〈�〉)4; (〈	〉)4 � � P �4

�−→ (〈	1〉)4 � P1 implies

a) If
 ∈ {n?〈m〉, n!〈m〉, (ν m)n!〈m〉} then �; 	 � P

′�−→	′ � P ′ and

(〈�〉)4; (〈	1〉)4 � P1

2�−→ . . .

k�−→ (〈	′〉)4 � � P ′�4 with { {
′} }4 =
1, · · · ,
k and
 =
1 .

b) If
 ∈ {(ν m̃)n!〈λx. R〉, n?〈λx. R〉} then �; 	 � P

′�−→	′ � P ′ with { {
′} }4 =
 and P1 ≡ � P ′�4 .

c) If
 ∈ {n ⊕ l, n&l} then �; 	 � P

�−→	′ � P ′ and P1 ≡ � P ′�4 .

d) If
 = τβ then �; 	 � P
τβ�−→	′ � P ′ and (〈�〉)4; (〈	1〉)4 � P1

τs�−→ . . .
τs�−→ (〈	′〉)4 � (〈P ′〉)4 with { {
} }4 = τβ, τs, · · · , τs︸ ︷︷ ︸

k

.

e) If
 = τ and
 �= τβ then �; 	 � P
τ�−→	′ � P ′ and (〈�〉)4; (〈	1〉)4 � P1

τ�−→ . . .
τ�−→ (〈	′〉)4 � (〈P ′〉)4 with { {
} }4 = τ , · · · , τ︸ ︷︷ ︸

k

.

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.51 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 51
Proof. The proof of both parts is by transition induction, following the mapping defined in Fig. 13. We consider four
representative cases, using dyadic communication:

1. Case (1(a)), with P = n!〈m1, m2〉.P ′ and
1 = n!〈m1, m2〉. By assumption, P is well-typed. As one particular possibility, we
may have:

�; ∅;	0 · n : S � P ′ � � �; ∅;m1:S1 ·m2:S2 �m1,m2 � S1, S2

�; ∅;	0 ·m1:S1 ·m2:S2 · n :!〈S1, S2〉; S � n!〈m1,m2〉.P ′ � �
for some �, S, S1, S2, 	0, such that 	 =	0 ·m1:S1 ·m2:S2 · n :!〈S1, S2〉; S . We may then have the following typed transi-
tion:

�;	0 ·m1:S1 ·m2:S2 · n :!〈S1, S2〉; S � n!〈m1,m2〉.P ′
1�−→	0 · n:S � P ′

The encoding of the source judgement for P is as follows:

(〈�〉)4; ∅; (〈	0 ·m1:S1 ·m2:S2 · n :!〈S1, S2〉; S〉)4 � �n!〈m1,m2〉.P ′�4 � �
which, using Fig. 13, can be expressed as:

(〈�〉)4; ∅; (〈	0〉)·m1:(〈S1〉)4 ·m2:(〈S2〉)4 · n :!〈(〈S1〉)4〉; !〈(〈S2〉)4〉; (〈S〉)4 � n!〈m1〉.n!〈m2〉.� P ′�4 � �
Now, { {
1} }4 = n!〈m1〉, n!〈m2〉. It is immediate to infer the following typed transitions for � P �4 = n!〈m1〉.n!〈m2〉.� P ′�4:

(〈�〉)4; (〈	0〉)·m1:(〈S1〉)4 ·m2:(〈S2〉)4 · n :!〈(〈S1〉)4〉; !〈(〈S2〉)4〉; (〈S〉)4 � n!〈m1〉.n!〈m2〉.� P ′�4

n!〈m1〉�−−−−→ (〈�〉)4; (〈	0〉)·m2:(〈S2〉)4 · n :!〈(〈S2〉)4〉; (〈S〉)4 � n!〈m2〉.� P ′�4

n!〈m2〉�−−−−→ (〈�〉)4; (〈	0〉)·n:(〈S〉)4 � � P ′�4

= (〈�〉)4; (〈	0 · n : S〉)4 � � P ′�4

which concludes the proof for this case.
2. Case (1(c)) with P = n!〈λ(x1, x2). Q

〉
.P ′ and
1 = n!〈λ(x1, x2). Q 〉. By assumption, P is well-typed. We may have:

�; ∅;	0 · n : S � P ′ � � �; ∅;	1 � λ(x1, x2). Q � (C1, C2)��
�; ∅;	0 ·	1 · n :!〈(C1, C2)��〉; S � n!〈λ(x1, x2). Q 〉.P ′ � �

for some �, S , C1, C2, 	0, 	1, such that 	 =	0 ·	1 · n :!〈(C1, C2) ��〉; S . (For simplicity, we consider only the case of
a linear function.) We may have the following typed transition:

�;	0 ·	1 · n :!
〈
(C1, C2)��〉; S � n!〈λ(x1, x2). Q

〉
.P ′
1�−→	0 · n:S � P ′

The encoding of the source judgement is:

(〈�〉)4; ∅; (〈	0 ·	1 · n :!
〈
(C1, C2)��〉; S〉)4 � �n!〈λ(x1, x2). Q

〉
.P ′�4 � �

which, using Fig. 13, can be equivalently expressed as:

(〈�〉)4; ∅; (〈	0 ·	1〉)·n :!
〈(

?((〈C1〉)4);?((〈C2〉)4);end
)
��〉; (〈S〉)4 � n!〈λz. z?(x1).z?(x2).� Q �4

〉
.� P ′�4 � �

Now, { {
1} }4 = n!〈λz. z?(x1).z?(x2).� Q �4〉. It is immediate to infer the following typed transition for � P �4 =
n!〈λz. z?(x1).z?(x2).� Q �4

〉
.� P ′�4:

(〈�〉)4; (〈	0 ·	1〉)·n :!
〈(

?((〈C1〉)4);?((〈C2〉)4);end
)
��〉; (〈S〉)4 � n!〈λz. z?(x1).z?(x2).� Q �4

〉
.� P ′�4

{{
1}}4�−−−→ (〈�〉)4; (〈	0〉)·n : (〈S〉)4, � � P ′�4

= (〈�〉)4; (〈	0 · n : S〉)4 � � P ′�4

which concludes the proof for this case.
3. Case (2(a)), with P = n?(x1, x2).P ′ , � P �4 = n?(x1).n?(x2).� P ′�4 . We have the following typed transitions for � P �4 , for

some S , S1, S2, and 	:

(〈�〉)4; (〈	〉)4 · n :?((〈S1〉)4);?((〈S2〉)4); (〈S〉)4· � n?(x1).n?(x2).� P ′�4

n?〈m1〉�−−−−→ (〈�〉)4; (〈	〉)4 · n :?((〈S2〉)4); (〈S〉)4 ·m1 : (〈S1〉)4 � n?(x2).� P ′�4{m1/x1}
n?〈m2〉�−−−−→ (〈�〉)4; (〈	〉)4 · n : (〈S〉)4 ·m1 : (〈S1〉)4 ·m2 : (〈S2〉)4 � � P ′�4{m1/x1}{m2/x2} = Q

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.52 (1-54)

52 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
Observe that we use substitution twice. It is then immediate to infer the label for the source transition:
1 = n?〈m1, m2〉.
Indeed, { {
1} }4 = n?〈m1〉, n?〈m2〉. Now, in the source term P we can infer the following transition:

�;	 · n :?(S1, S2); S � n?(x1, x2).P
′
1�−→	 · n:S ·m1 : S1 ·m2 : S2 � P ′{m1,m2/x1, x2}

which concludes the proof for this case.
4. Case (2(b)), with P = n!〈λ(x1, x2). Q

〉
.P ′ , � P �4 = n!〈λz. z?(x1).z?(x2).� Q �4

〉
.� P ′�4 . We have the following typed transition,

for some S , C1, C2, and 	:

(〈�〉)4; (〈	〉)4 · n : (〈!〈(C1, C2)��〉; S〉)4 � n!〈λz. z?(x1).z?(x2).� Q �4
〉
.� P ′�4

′1�−→ (〈�〉)4; (〈	〉)4 · n : (〈S〉)4 � � P ′�4 = Q

where
′1 = n!〈λz. z?(x1).z?(x2).� Q �4〉. For simplicity, we consider only the case of linear functions. It is then immediate
to infer the label for the source transition:
1 = n!〈λ(x1, x2). Q 〉. Now, in the source term P we can infer the following
transition:

�;	 · n :!〈(C1, C2)��〉; S � n!〈λx1, x2. Q
〉
.P ′
1�−→	 · n:S � P ′

which concludes the proof for this case. �
Proposition Appendix B.12 (Full abstraction. From HOπ̃ to HOπ). Let P , Q be HOπ+ process with �; ∅; 	1 � P �� and �; ∅; 	2 �
Q � �.

Then �; 	1 � P ≈H 	2 � Q if and only if (〈�〉)4; (〈	1〉)4 � � P �4 ≈H (〈	2〉)4 � � Q �4 .

Proof. The proof is coinductive, and follows as a consequence of Proposition Appendix B.11 (Page 50).

The right-to-left direction follows by showing that the relation

�= {(P , Q) | (〈�〉)4; (〈	1〉)4 � � P �4 ≈H (〈	2〉)4 � � Q �4}
is a higher-order bisimulation, by following Part 2 of Proposition Appendix B.11 (Page 50). Suppose P makes a transition
with label
; we must exhibit a matching move from Q . We illustrate four representative cases:

1. If
 ∈ {n?〈m〉, n!〈m〉, (ν m)n!〈m〉} then (〈�〉)4; (〈	1〉)4 � � P �4

�−→ (〈	′

1〉)4 � P1 implies

(〈�〉)4; (〈	2〉)4 � � Q �4

�=⇒ (〈	′
2〉)4 � Q 1

From Part 2(a) of Proposition Appendix B.11 (Page 50) we conclude that

�;	1 � P

�−→	′′

1 � P ′

and

(〈�〉)4; (〈	′
1〉)4 � P1

2�−→ . . .

n�−→ (〈	′′

1〉)4 � � P ′�4

with { {
} }4 = {
1, . . . ,
n}. Moreover, �; 	2 � Q

�−→	′′

2 � Q ′ and

(〈�〉)4; (〈	′
2〉)4 � Q 1

2
�==⇒ . . .

n
�==⇒ (〈	′′

2〉)4 � � Q ′�4

If we follow the bisimulation game we conclude that

(〈�〉)4; (〈	′′
1〉)4 � � P ′�4 ≈H (〈	′′

2〉)4 � � Q ′�4

and

�;	′′
1 � P ′ �	′′

2 � Q ′

as required.

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.53 (1-54)

D. Kouzapas et al. / Information and Computation ••• (••••) •••–••• 53
2. If
 ∈ {(ν m̃)n!〈λx. R〉, n?〈λx. R〉} then (〈�〉)4; (〈	1〉)4 � � P �4

�−→ (〈	′

1〉)4 � P1 implies both

(〈�〉)4; (〈	2〉)4 � � Q �4

�=⇒ (〈	′
2〉)4 � Q 1

and

(〈�〉)4; (〈	′
1〉)4 � P1 | C ≈H (〈	′

2〉)4 � Q 1 | C

with C corresponding to the characteristic process if
 is an output action and C = 0 otherwise. From Part 2(b) of
Proposition Appendix B.11 (Page 50) we conclude that

�;	1 � P

′�−→	′

1 � P ′

with { {
′} }4 =
 and P1 ≡ � P ′�4 and �; 	2 � Q

′�−→	′

2 � Q ′ and P1 ≡ � P ′�4 and

(〈�〉)4; (〈	′
1〉)4 � � P ′ | C �4 ≈H (〈	′

2〉)4 � � Q ′ | C �4

because the characteristic trigger in the case where
 = n!〈λx. R〉 remains the same for { {
} }4 .

3. If
 ∈ {n ⊕ l, n&l} then (〈�〉)4; (〈	1〉)4 � � P �4

�−→ (〈	′

1〉)4 � P1 implies

(〈�〉)4; (〈	2〉)4 � � Q �4

�=⇒ (〈	′
2〉)4 � Q 1

From Part 2(c) of Proposition Appendix B.11 (Page 50) we conclude that �; 	1 � P

�−→	′

1 � P ′ with P1 ≡ � P ′�4 and

�;	2 � Q

�−→	′

2 � Q ′

with Q 1 ≡ � Q ′�4 , which concludes the case.
4. The cases for
 = τ are similar and correspond to Parts 2(d), 2(e) of Proposition Appendix B.11 (Page 50).

The left-to-right direction follows by showing that the relation:

�= {(� P �4, � Q �4) | �;	1 � P ≈H 	2 � Q }
is a higher-order bisimulation up to deterministic transitions, by following Part 1 of Proposition Appendix B.11 (Page 50).
Suppose � P �4 makes a transition with label
; we should exhibit a matching move from � Q �4 . We consider six cases:

1. If
 = (ν m̃′)n!〈m̃〉 then �; 	1 � P

�−→	′

1 � P ′ implies �; 	2 � Q

�=⇒	′
2 � Q ′ and

�;	′
1 � P ′ | C ≈H 	′

2 � Q ′ | C

with C corresponding to the trigger process. Furthermore, from Part 1 (a) of Proposition Appendix B.11 (Page 50) we
have that

(〈�〉)4; (〈	1〉)4 � � P �4

1�−→ . . .

n�−→ (〈	′
1〉)4 � � P ′�4

with { {
} }4 = {
1, . . . ,
n} and (〈�〉)4; (〈	2〉)4 � � Q �4

1�==⇒ . . .

n
�==⇒ (〈	′

2〉)4 � � Q ′�4 and

(〈�〉)4; (〈	′
1〉)4 � � P ′ | C1 | C2 �4 ≈H (〈	′

2〉)4 � � Q ′ | C1 | C2 �4

because the characteristic triggers remain the same for { {
} }4 .

2. If
 = n?〈m̃〉 then �; 	1 � P

�−→	′

1 � P ′ implies �; 	2 � Q

�=⇒	′
2 � Q ′ and

�;	′
1 � P ′ ≈H 	′

2 � Q ′

Furthermore, from Part 1 (b) of Proposition Appendix B.11 (Page 50) we have that

(〈�〉)4; (〈	1〉)4 � � P �4

1�−→ . . .

n�−→ (〈	′
1〉)4 � � P ′�4

with { {
} }4 = {
1, . . . ,
n} and (〈�〉)4; (〈	2〉)4 � � Q �4

1

�==⇒ . . .

n

�==⇒ (〈	′
2〉)4 � � Q ′�4 , as required.

3. The case for
 = (ν m̃)n!〈λx̃. R〉 is similar to the first case.
4. The case for
 = n?〈λx̃. R〉 is similar to the second case.
5. The case for
 ∈ {n ⊕ l, n&l} is similar to the second case.
6. The case for
 = τ is similar to the second case. �

JID:YINCO AID:4433 /FLA [m3G; v1.260; Prn:4/07/2019; 16:15] P.54 (1-54)

54 D. Kouzapas et al. / Information and Computation ••• (••••) •••–•••
References

[1] Giovanni Bernardi, Ornela Dardha, Simon J. Gay, Dimitrios Kouzapas, On duality relations for session types, in: Prof. of TGC, in: LNCS, vol. 8902,
Springer, 2014, pp. 51–66.

[2] Mikkel Bundgaard, Thomas T. Hildebrandt, Jens Chr. Godskesen, A cps encoding of name-passing in higher-order mobile embedded resources, Theor.
Comput. Sci. 356 (3) (2006) 422–439.

[3] Martin Berger, Kohei Honda, Nobuko Yoshida, Sequentiality and the π -calculus, in: Proc. TLCA’01, in: LNCS, vol. 2044, 2001, pp. 29–45.
[4] Viviana Bono, Luca Padovani, Typing copyless message passing, LMCS 8 (1) (2012).
[5] Ornela Dardha, Elena Giachino, Davide Sangiorgi, Session types revisited, in: Proc. of PPDP’12, ACM, 2012, pp. 139–150.
[6] Romain Demangeon, Kohei Honda, Full abstraction in a subtyped pi-calculus with linear types, in: CONCUR, in: LNCS, vol. 6901, Springer, 2011,

pp. 280–296.
[7] Yuxi Fu, Hao Lu, On the expressiveness of interaction, Theor. Comput. Sci. 411 (11–13) (2010) 1387–1451.
[8] Yuxi Fu, Variations on mobile processes, Theor. Comput. Sci. 221 (1–2) (1999) 327–368.
[9] Daniele Gorla, A taxonomy of process calculi for distribution and mobility, Distrib. Comput. 23 (4) (2010) 273–299.

[10] Daniele Gorla, Towards a unified approach to encodability and separation results for process calculi, Inf. Comput. 208 (9) (2010) 1031–1053.
[11] Simon J. Gay, Vasco Thudichum Vasconcelos, Linear type theory for asynchronous session types, J. Funct. Program. 20 (1) (2010) 19–50.
[12] Kohei Honda, Vasco T. Vasconcelos, Makoto Kubo, Language primitives and type disciplines for structured communication-based programming, in:

ESOP’98, in: LNCS, vol. 1381, Springer, 1998, pp. 22–138.
[13] Kohei Honda, Nobuko Yoshida, On reduction-based process semantics, TCS 151 (2) (1995) 437–486.
[14] Naoki Kobayashi, Benjamin C. Pierce, David N. Turner, Linearity and the Pi-calculus, TOPLAS 21 (5) (September 1999) 914–947.
[15] Dimitrios Kouzapas, Jorge A. Pérez, Nobuko Yoshida, Characteristic bisimulation for higher-order session processes, in: CONCUR 2015, in: LIPIcs, vol. 42,

Dagstuhl, Germany, 2015, pp. 398–411.
[16] Dimitrios Kouzapas, Jorge A. Pérez, Nobuko Yoshida, On the relative expressiveness of higher-order session processes, in: Peter Thiemann (Ed.), Pro-

gramming Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, in: Lecture Notes in Computer Science, vol. 9632,
Springer, 2016, pp. 446–475.

[17] Dimitrios Kouzapas, Jorge A. Pérez, Nobuko Yoshida, Characteristic bisimulation for higher-order session processes, Acta Inform. 54 (3) (2017) 271–341.
[18] Dimitrios Kouzapas, Nobuko Yoshida, Globally governed session semantics, LMCS 10 (4) (2014).
[19] Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, Kohei Honda, On asynchronous eventful session semantics, MSCS (2015).
[20] Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, Alan Schmitt, On the expressiveness of polyadic and synchronous communication in higher-order process

calculi, in: ICALP, vol. 6199, 2010, pp. 442–453.
[21] Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, Alan Schmitt, On the expressiveness and decidability of higher-order process calculi, Inf. Comput. 209 (2)

(2011) 198–226.
[22] Christopher League, Zhong Shao, Valery Trifonov, Type-preserving compilation of Featherweight Java, ACM Trans. Program. Lang. Syst. 24 (2) (2002)

112–152.
[23] Robin Milner, The Polyadic pi-Calculus: a Tutorial, Technical report, Technical Report ECS-LFCS-91-180, University of Edinburgh, 1991.
[24] L. Gregory Meredith, Matthias Radestock, A reflective higher-order calculus, Electron. Notes Theor. Comput. Sci. 141 (5) (2005) 49–67.
[25] Robin Milner, Davide Sangiorgi, Barbed bisimulation, in: W. Kuich (Ed.), 19th ICALP, in: LNCS, vol. 623, Springer, 1992, pp. 685–695.
[26] J. Gregory Morrisett, David Walker, Karl Crary, Neal Glew, From system F to typed assembly language, ACM Trans. Program. Lang. Syst. 21 (3) (1999)

527–568.
[27] Dimitris Mostrous, Nobuko Yoshida, Two session typing systems for higher-order mobile processes, in: TLCA, in: LNCS, vol. 4583, Springer, 2007,

pp. 321–335.
[28] Dimitris Mostrous, Nobuko Yoshida, Session typing and asynchronous subtying for higher-order π -calculus, Inf. Comput. 241 (2015) 227–263.
[29] Uwe Nestmann, What is a “good” encoding of guarded choice?, Inf. Comput. 156 (1–2) (2000) 287–319.
[30] Dominic Orchard, Nobuko Yoshida, Effects as sessions, sessions as effects, in: POPL 2016, ACM, 2016.
[31] Palamidessi Catuscia, Comparing the expressive power of the synchronous and asynchronous pi-calculi, MSCS 13 (5) (2003) 685–719.
[32] Joachim Parrow, Expressiveness of process algebras, Electron. Notes Theor. Comput. Sci. 209 (2008) 173–186.
[33] Jorge A. Pérez, Higher-Order Concurrency: Expressiveness and Decidability Results, PhD thesis, University of Bologna, 2010.
[34] Kirstin Peters, Uwe Nestmann, Ursula Goltz, On distributability in process calculi, in: Proc. of ESOP 2013, in: LNCS, vol. 7792, Springer, 2013,

pp. 310–329.
[35] Catuscia Palamidessi, Vijay A. Saraswat, Frank D. Valencia, Björn Victor, On the expressiveness of linearity vs persistence in the asychronous pi-calculus,

in: Proc. of LICS 2006, 2006, pp. 59–68.
[36] Kirstin Peters, Rob J. van Glabbeek, Analysing and comparing encodability criteria, in: Proc. of EXPRESS/SOS 2015, in: EPTCS, vol. 190, 2015, pp. 46–60.
[37] Zhong Shao, Andrew W. Appel, A type-based compiler for standard ML, in: Proc. of PLDI’95, ACM, 1995, pp. 116–129.
[38] D. Sangiorgi, The lazy lambda calculus in a concurrency scenario, in: 7th LICS Conf., IEEE Computer Society Press, 1992, pp. 102–109.
[39] Davide Sangiorgi, Expressing Mobility in Process Algebras: First-Order and Higher Order Paradigms, PhD thesis, University of Edinburgh, 1992.
[40] D. Sangiorgi, π -calculus, internal mobility and agent-passing calculi, TCS 167 (2) (1996) 235–274.
[41] Davide Sangiorgi, Asynchronous process calculi: the first- and higher-order paradigms, Theor. Comput. Sci. 253 (2) (2001) 311–350.
[42] Davide Sangiorgi, David Walker, The π -Calculus: A Theory of Mobile Processes, Cambridge University Press, 2001.
[43] Davide Sangiorgi, Xian Xu, Trees From Functions as Processes, Proc. of CONCUR 2014, vol. 8704, Springer, 2014, pp. 78–92.
[44] Bent Thomsen, Calculi for Higher Order Communicating Systems, PhD thesis, Dept. of Comp. Sci., Imperial College, 1990.
[45] Bent Thomsen, Plain CHOCS: a second generation calculus for higher order processes, Acta Inform. 30 (1) (1993) 1–59.
[46] Rob J. van Glabbeek, Musings on encodings and expressiveness, in: Proc. of EXPRESS/SOS 2012, in: EPTCS, vol. 89, 2012, pp. 81–98.
[47] Xian Xu, Distinguishing and relating higher-order and first-order processes by expressiveness, Acta Inform. 49 (7–8) (2012) 445–484.
[48] Xian Xu, Qiang Yin, Huan Long, On the expressiveness of parameterization in process-passing, in: WS-FM, in: LNCS, vol. 8379, Springer, 2014,

pp. 147–167.
[49] Xian Xu, Qiang Yin, Huan Long, On the computation power of name parameterization in higher-order processes, in: Proc. of ICE 2015, in: EPTCS,

vol. 189, 2015, pp. 114–127.
[50] Nobuko Yoshida, Martin Berger, Kohei Honda, Strong normalisation in the pi-calculus, Inf. Comput. 191 (2) (2004) 145–202.
[51] Nobuko Yoshida, Graph types for monadic mobile processes, in: FSTTCS, in: LNCS, vol. 1180, Springer, 1996, pp. 371–386.

http://refhub.elsevier.com/S0890-5401(19)30049-5/bib5447433134s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib5447433134s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib42756E64676161726448473036s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib42756E64676161726448473036s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib424859s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F636F72722F6162732D313230322D32303836s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4461726468613A323031323A5354523A323337303737362E32333730373934s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44656D616E67656F6E483131s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44656D616E67656F6E483131s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F7463732F46754C3130s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F7463732F46753939s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F64632F476F726C613130s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F69616E64632F476F726C613130s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F6A66702F476179563130s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib623132s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib623132s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib486F6E64614B596F73686964613935s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4C696E6561725069s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib63686172616374657269737469635F626973s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib63686172616374657269737469635F626973s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F65736F702F4B6F757A6170617350593136s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F65736F702F4B6F757A6170617350593136s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F65736F702F4B6F757A6170617350593136s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F65736F702F4B6F757A6170617350593136s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4B6F757A6170617350593137s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4B5932303135s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4B59484832303135s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F6963616C702F4C616E6573655053533130s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F6963616C702F4C616E6573655053533130s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F69616E64632F4C616E6573655053533131s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F69616E64632F4C616E6573655053533131s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F746F706C61732F4C656167756553543032s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F746F706C61732F4C656167756553543032s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4D696C6E657254523931s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F656E7463732F4D65726564697468523035s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4D6953613932s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F746F706C61732F4D6F727269736574745743473939s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F746F706C61732F4D6F727269736574745743473939s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib746C63613037s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib746C63613037s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4D6F7374726F7573593135s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4E6573746D616E6E3030s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib4F5932303136s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib50616C616D6964657373693033s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F656E7463732F506172726F773038s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib506572657A5068443130s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F65736F702F5065746572734E473133s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F65736F702F5065746572734E473133s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F6C6963732F50616C616D6964657373695356563036s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F6C6963732F50616C616D6964657373695356563036s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F636F72722F506574657273473135s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F706C64692F5368616F413935s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib53616E3932s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib53616E67696F726769443A6578706D7061s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib53616E3936696E74s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F7463732F53616E67696F7267693031s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib53615761626F6F6Bs1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F636F6E6375722F53616E67696F726769583134s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib54686F3930s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib54686F6D73656E423A706C6163686F6173676366686F70s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F636F72722F6162732D313230382D32373530s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib58754163746132303132s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F7773666D2F5875594C3133s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A636F6E662F7773666D2F5875594C3133s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F636F72722F5875594C3135s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F636F72722F5875594C3135s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib44424C503A6A6F75726E616C732F69616E64632F596F736869646142483034s1
http://refhub.elsevier.com/S0890-5401(19)30049-5/bib596F73686964613936s1

	On the relative expressiveness of higher-order session processes
	1 Introduction
	2 Overview: encoding name passing into process passing
	3 Preliminaries
	3.1 HOπ: syntax, operational semantics, and subcalculi
	3.2 Session types for HOπ
	3.3 Behavioural theory for HOπ
	3.3.1 Reduction-closed, barbed congruence (=)
	3.3.2 Two equivalence relations: ≈H and ≈C
	A typed labelled transition system
	A reﬁned typed LTS
	Characterising =
	An up-to technique

	3.4 The hotel booking scenario

	4 Correctness criteria for typed encodings
	4.1 Basic deﬁnitions
	4.2 Precise, minimal, and tight encodings

	5 Expressiveness results for HOπ, HO, and π
	5.1 Precise encoding of HOπ into HO
	5.2 Precise encoding of HOπ into π
	5.3 Comparing two precise encodings
	5.4 A negative result

	6 Extensions: HOπ with higher-order abstractions and with polyadicity
	6.1 Precise encoding of HOπ+ into HOπ
	6.2 Precise encoding of HOπ̃ into HOπ

	7 Related work
	8 Concluding remarks
	Acknowledgments
	Appendix A Behavioural semantics
	A.1 Labelled transition system for processes
	A.2 Environmental labelled transition system
	A.3 Characteristic values and the reﬁned LTS
	A.4 More on deterministic transitions and up-to techniques

	Appendix B Expressiveness results
	B.1 Properties for encoding LHOπ into LHO
	B.2 Properties for encoding LHOπ into Lπ
	B.3 Properties for encoding LHOπ+ into LHOπ
	B.4 Properties for encoding LHOπ̃ into LHOπ

	References

