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Abstract. By integrating constructs from the λ-calculus and the π-calculus, in
higher-order process calculi exchanged values may contain processes. This paper
studies the relative expressiveness of HOπ, the higher-order π-calculus in which
communications are governed by session types. Our main discovery is that HO, a
subcalculus of HOπ which lacks name-passing and recursion, can serve as a new
core calculus for session-typed higher-order concurrency. By exploring a new
bisimulation for HO, we show that HO can encode HOπ fully abstractly (up to
typed contextual equivalence) more precisely and efficiently than the first-order
session π-calculus (π). Overall, under session types, HOπ, HO, and π are equally
expressive; however, HOπ and HO are more tightly related than HOπ and π.

1 Introduction

Type-preserving compilations are important in the design of functional and object-
oriented languages: type information has been used to, e.g., justify code optimizations
and reason about programs [21,38,18]. A vast literature on expressiveness in concur-
rency theory also studies compilations (or encodings) [26,10,8,16,31]: they are used to
transfer reasoning techniques across calculi, and to implement process constructs using
simpler ones. In this work, we study relative expressiveness via type-preserving encod-
ings for HOπ, a higher-order process language that integrates message-passing con-
currency with functional features. We consider source and target calculi coupled with
session types [11] denoting interaction protocols. Building on untyped frameworks for
relative expressiveness [10], we propose type preservation as a new criterion for precise
encodings. We identify HO, a new core calculus for higher-order session concurrency
without name passing. We show that HO can encode HOπ precisely and efficiently.
Requiring type preservation makes this encoding far from trivial: we crucially exploit
advances on session type duality [2,3] and recent characterisations of typed contextual
equivalence [14]. We develop a full hierarchy of variants of HOπ based on precise en-
codings: our encodings are type-preserving and fully abstract up to typed behavioural
equalities. Fig. 1 illustrates this hierarchy; the variants of HOπ are explained next.

Context. In session-based concurrency, interactions are organised into sessions, basic
communication units. Interaction patterns can then be abstracted as session types [11],
against which specifications may be checked. Session type ?(U);S (resp. !〈U〉;S ) de-
scribes a protocol that first receives (resp. sends) a value of type U and then continues as
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Fig. 1: Encodability in Higher-Order Sessions. Precise encodings are defined in Def. 15.

protocol S . Also, given an index set I, types &{li : S i}i∈I and ⊕{li : S i}i∈I define, respec-
tively, external and internal choice constructs for a labelled choice mechanism; types
µt.S and end denote recursive and completed protocols, respectively. In the π-calculus,
session types describe the intended interactive behaviour of the names in a process [11].

Session-based concurrency has also been casted in higher-order process calculi
which, by combining features from the λ-calculus and the π-calculus, enable the ex-
change of values that may contain processes [22,9]. The higher-order calculus with
sessions studied here, called HOπ, can specify protocols involving code mobility: it
includes constructs for synchronisation along shared names, session communication
(value passing, labelled choice) along linear names, recursion, (first-order) abstractions
and applications. That is, values in communications include names but also (first-order)
abstractions—functions from name identifiers to processes. (In contrast, we rule out
higher-order abstractions—functions from processes to processes.) Abstractions can
be linear or shared; their types are denoted C(� and C→�, respectively (C denotes a
name). In HOπ we may have processes with a session type such as, e.g.,

S = &{up :?(C(�); !〈ok〉;end , down :!〈C→�〉; !〈ok〉;end , quit :!〈bye〉;end} .

S is the type of a server that offers (&) three different behaviours to a client: to upload
a linear function, to download a shared function, or to quit the protocol. Following a
client’s selection (⊕), the server sends a message (ok or bye) before closing the session.

Expressiveness of HOπ. We study the type-preserving, relative expressivity of HOπ.
As expected from known literature in the untyped setting [32], the first-order session π-
calculus [11] (here denoted π) can encode HOπ preserving session types. In this paper,
our main discovery is that HOπ without name-passing and recursion can serve as a core
calculus for higher-order session concurrency. We call this core calculus HO. We show
that HO can encode HOπmore efficiently than π. In addition, in the higher-order session
typed setting, HO offers more tractable bisimulation techniques than π (cf. § 5.2).

Challenges and Contributions. We assess the expressivity of HOπ, HO, and π as de-
lineated by session types. We introduce type-preserving encodings: type information is
used to define encodings and to retain the semantics of session protocols. Indeed, not
only we require well-typed source processes are encoded into well-typed target pro-
cesses: we demand that session type constructs (input, output, branching, select) used
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to type the source process are preserved by the typing of the target process. This crite-
rion is included in our notion of precise encoding (Def. 15), which extends encodability
criteria for untyped processes with full abstraction. Full abstraction results are stated up
to two behavioural equalities that characterise barbed congruence: characteristic bisim-
ilarity (≈C, defined in [14]) and higher-order bisimilarity (≈H), introduced in this work.
It turns out that ≈H offers more direct reasoning than ≈C. Using precise encodings we
establish strong correspondences between HOπ and its variants—see below.

One main contribution is an encoding of HOπ into HO (§ 7.1). Since HO lacks both
name-passing and recursion, this encoding involves two key challenges:

a. In known (typed) encodings of name-passing into process-passing [36] only the out-
put capability of names can be sent—a received name cannot be used in later inputs.
This is far too limiting in HOπ, where session names may be passed around (delega-
tion) and types describe interaction structures, rather than “loose” name capabilities.

b. Known encodings of recursion in untyped higher-order calculi do not carry over to
session typed calculi such as HOπ, because linear abstractions cannot be copied/du-
plicated. Hence, the discipline of session types limits the possibilities for represent-
ing infinite behaviours—even simple forms, such as input-guarded replication.

Our encoding overcomes these two obstacles, as we discuss in § 2.
Additional technical contributions include: (i) the encodability of HO into π (§ 7.2);

(ii) extensions of our encodability results to richer settings (§ 8); (iii) a non encodability
result showing that shared names strictly add expressive power to session calculi (§ 7.4).
In essence, (i) extends known results for untyped processes [32] to the session typed
setting. Concerning (ii), we develop extensions of our encodings to

- The extension of HOπ with higher-order abstractions (HOπ+);
- The extension of HOπ with polyadic name passing and abstraction (HO π̃);
- The super-calculus of HOπ+ and HO π̃ (HO π̃+), equivalent to the calculus in [22].

Fig. 1 summarises our encodability results: they connect HOπ with existing higher-
order process calculi [22], and highlight the status of HO as the core calculus for session
concurrency. Finally, to our knowledge we are the first to prove the non encodability
result (iii), exploiting session determinacy and typed equivalences.

Outline. § 2 overviews key ideas of the precise encoding of HOπ into π. § 3 presents
HOπ and its subcalculi (HO and π); § 4 summarises their session type system. § 5 pres-
ents behavioural equalities for HOπ: we recall definitions of barbed congruence and
characteristic bisimilarity [14], and introduce higher-order bisimilarity. We show that
these three typed relations coincide (Thm. 2). § 6 defines precise encodings by extend-
ing encodability criteria for untyped processes. § 7 gives precise encodings of HOπ into
HO and of HOπ into π (Thms. 3 and 4). Mutual encodings between π and HO are
derivable; all these calculi are thus equally expressive. Via empirical and formal com-
parisons between these two precise encodings, in § 7.3 we establish that HOπ and HO
are more tightly related than HOπ and π (Thm. 5). Moreover, we prove the impossibility
of encoding communication along shared names using linear names (Thm. 6). In § 8 we
show encodings of HOπ+ and HO π̃ into HOπ (Thms. 7 and 8). § 9 collects concluding
remarks and reviews related works. Omitted definitions and proofs are in [15].
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2 Overview: Encoding Name Passing Into Process Passing

A Precise Encoding of Name-Passing into Process-Passing. As mentioned above, our
encoding of HOπ into HO (§ 7.1) should (a) enable the communication of arbitrary
names, as required to represent delegation, and (b) address the fact that linearity of
session types limits the possibilities for representing infinite behaviour. To encode name
passing into HO we “pack” the name to be sent into an abstraction; upon reception, the
receiver “unpacks” this object following a precise protocol on a fresh session:

[[a!〈b〉.P]] = a!〈λz. z?(x).(xb)〉.[[P]]
[[a?(x).Q]] = a?(y).(ν s)(y s | s!〈λx. [[Q]]〉.0)

Above, a,b are names and s and s are linear session names (endpoints). Processes
a!〈V〉.P and a?(x).P denote output and input at a; abstractions and applications are
denoted λx.P and (λx.P)a. Processes (ν s)(P) and 0 represent hiding and inaction. Thus,
following a communication on a, a (deterministic) reduction between s and s guarantees
that b is properly unpacked by means of abstraction passing and appropriate applica-
tions. Notice that the above encoding requires three extra reduction steps to mimic a
name communication step in HOπ. Also, an output action in the source process is trans-
lated into an output action in the encoded process (and similarly for input). This is key
to ensure the preservation of session type operators mentioned above (cf. Def. 13).

As hinted at above, a challenge in encoding µX.P is preserving linearity of session
names. Intuitively, we encode the recursion body P as an abstraction λx̃.

⌊⌊
P
⌋⌋
σ in which

each session name of P (included in set σ) is converted into a name variable in x̃. Since
λx̃.

⌊⌊
P
⌋⌋
σ does not mention (linear) session names, we may embed it into a “duplica-

tor” process which implements recursion using higher-order communication [40]. The
encoding of the recursion variable X invokes this duplicator in a by-need fashion: it
receives λx̃.

⌊⌊
P
⌋⌋
σ and uses two copies of it: one copy allows us to obtain P through the

application of the session names of P; the other allows us to invoke the duplicator when
needed. Interestingly, for this encoding to work we require non-tail recursive session
types; this exploits recent advances on the theory of duality for session types [2,3].

A Plausible Encoding That is Not Precise. Our notion of precise encoding (Def. 15)
requires the translation of both process and types; it admits only process mappings
that preserve session types and are fully abstract. Thus, our encodings not only exhibit
strong behavioural correspondences, but also relate source and target processes with
consistent communication structures described by session types. These requirements
are demanding and make our developments far from trivial. In particular, requiring type
preservation may rule out other plausible encoding strategies. To illustrate this point,
consider the following alternative encoding of name-passing into HO:4

[[a?(x).Q]]u = a!〈λx. [[Q]]u〉.0
[[a!〈b〉.P]]u = a?(x).(xb | [[P]]u)

Intuitively, the encoding of input takes the initiative by sending an abstraction contain-
ing the encoding of its continuation Q; the encoding of output applies this received

4 This encoding was suggested by a reviewer of a previous version of this paper.
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u,w ::= n | x,y,z n ::= a,b | s, s V,W ::= u | λx.P

P,Q ::= u!〈V〉.P | u?(x).P | u / l.P | u . {li : Pi}i∈I | V u | P | Q | (νn)P | 0 | X | µX.P

Fig. 2: Syntax of HOπ. While HO lacks shaded constructs, π lacks boxed constructs.

value to name b. Hence, this mapping entails a “role inversion”: outputs are translated
into inputs, and inputs are translated into outputs. Although fairly reasonable, we will
see that the encoding [[·]]u is not type preserving. Consequently, it is also not precise.
Since individual prefixes (input, output, branching, select) represent actions in a struc-
tured communication sequence (i.e., a protocol abstracted by a session type), the encod-
ing [[·]]u would simply alter the meaning of the session protocol in the source language.

3 Higher-Order Session π-Calculi

We introduce the higher-order session π-calculus (HOπ). We define syntax, operational
semantics, and its sub-calculi (π and HO). A type system and behavioural equivalences
are introduced in § 4 and § 5. Extensions of HOπ with higher-order abstractions and
polyadicity (noted HOπ+ and HO π̃, respectively) are discussed in § 8.

3.1 HOπ: Syntax, Operational Semantics, and Subcalculi

Syntax. The syntax of HOπ is defined in Fig. 2. HOπ it is a subcalculus of the language
studied in [22]. It is also a variant of the language that we investigated in [14], which
includes higher-order value applications.

Names a,b,c, . . . (resp. s, s, . . . ) range over shared (resp. session) names. Names
m,n, t, . . . are session or shared names. Dual endpoints are n with s = s and a = a. Vari-
ables are denoted with x,y,z, . . . , and recursive variables are denoted with X,Y . . . . An
abstraction λx.P is a process P with name parameter x. Values V,W include identifiers
u,v, . . . and abstractions λx.P (first- and higher-order values, resp.).

Process terms P,Q, . . . include usual prefixes for sending/receiving values V . Pro-
cesses u / l.P and u . {li : Pi}i∈I are the usual session processes for selecting and branch-
ing [11]. Process V u is the application which substitutes name u on the abstraction V .
Typing ensures that V is not a name. Recursion µX.P binds the recursive variable X in
P. Constructs for inaction 0, parallel composition P1 | P2, and name restriction (νn)P
are standard. Session name restriction (ν s)P simultaneously binds endpoints s and s in
P. Functions fv(P) and fn(P) denote the sets of free variables and names. We assume
V in u!〈V〉.P does not include free recursive variables X. If fv(P) = ∅, we call P closed.

Operational Semantics. The operational semantics of HOπ is defined in terms of a re-
duction relation, denoted −→ and given in Fig. 3 (top). We briefly describe the rules.
Rule [App] defines name application. Rule [Pass] defines a shared interaction at n (with
n = n) or a session interaction. Rule [Sel] is the standard rule for labelled choice/se-
lection.Other rules are standard π-calculus rules. Reduction is closed under structural
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(λx.P)u −→ P{u/x} [App] n!〈V〉.P | n?(x).Q −→ P | Q{V/x} [Pass]

n / l j.Q | n . {li : Pi}i∈I −→ Q | P j ( j ∈ I) [Sel] P −→ P′⇒ (νn)P −→ (νn)P′ [Res]

P −→ P′ ⇒ P | Q −→ P′ | Q [Par] P ≡ Q −→ Q′ ≡ P′ ⇒ P −→ P′ [Cong]

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3 (νn)0 ≡ 0
P | (νn)Q ≡ (νn)(P | Q) (n < fn(P)) µX.P ≡ P{µX.P/X} P ≡ Q if P ≡α Q

Fig. 3: Operational Semantics of HOπ.

congruence, noted ≡ (cf. Fig. 3, bottom). We assume the expected extension of ≡ to
values V . We write −→∗ for a multi-step reduction.

Subcalculi. As motivated in the introduction, we define two subcalculi of HOπ:

• The core higher-order session calculus, denoted HO, lacks recursion and name pass-
ing; its formal syntax is obtained from Fig. 2 by excluding constructs in grey .

• The session π-calculus, denoted π, lacks higher-order communication but includes re-
cursion; its formal syntax is obtained from Fig. 2 by excluding constructs in boxes .

Let C ∈ {HOπ,HO,π}. We write C−sh to denote the calculus C without shared names:
we delete a,b from n. In § 7 we shall demonstrate that HOπ, HO, and π have the same
expressivity, and that C is strictly more expressive than C−sh.

4 Session Types for HOπ

We define a session type system for HOπ and state type soundness (Thm. 1), its main
property. Our system distills the key features of [22,23] and so it is simpler.

The syntax of types of HOπ follows. We write � to denote the process type.

U ::= C | L C ::= S | 〈S 〉 | 〈L〉 L ::= C→� | C(�
S ::= !〈U〉;S | ?(U);S | ⊕ {li : S i}i∈I | &{li : S i}i∈I | µt.S | t | end

Value type U includes first-order types C and higher-order types L. Types C→� and
C(� denote shared and linear higher-order types, respectively. Session types, denoted
by S , follow the standard binary session type syntax [11], with the extension that carried
types U may be higher-order. Shared channel types are denoted 〈S 〉 and 〈L〉. Types of
HO exclude C from value types U; the types of π exclude L and 〈L〉 . From each
C ∈ {HOπ,HO,π}, C−sh excludes shared name types (〈S 〉 and 〈L〉), from name type C.

We write S dual S ′ if S is the dual of S ′. Intuitively, session type duality is obtained
by dualising ! by ?, ? by !, ⊕ by &, and & by ⊕, including the fixed point construction.
We use the co-inductive definition of duality given in [2].

We consider shared, linear, and session environments, denoted Γ, Λ, and ∆, resp.:

Γ ::= ∅ | Γ · x : C→� | Γ ·u : 〈S 〉 | Γ ·u : 〈L〉 | Γ ·X : ∆
Λ ::= ∅ | Λ · x :C(�
∆ ::= ∅ | ∆ ·u :S
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(Prom)
Γ;∅;∅ ` V .C(�

Γ;∅;∅ ` V .C→�

(EProm)
Γ;Λ · x : C(�;∆ ` P .�

Γ · x : C→�;Λ;∆ ` P .�

(Abs)
Γ;Λ;∆1 ` P .� Γ;∅;∆2 ` x .C

Γ\x;Λ;∆1\∆2 ` λx.P .C(�
(App)

U = C(�∨C→�
Γ;Λ;∆1 ` V .U Γ;∅;∆2 ` u .C

Γ;Λ;∆1 ·∆2 ` V u .�

(Send)
u : S ∈ ∆1 ·∆2

Γ;Λ1;∆1 ` P .� Γ;Λ2;∆2 ` V .U

Γ;Λ1 ·Λ2; ((∆1 ·∆2) \u : S ) ·u :!〈U〉;S ` u!〈V〉.P .�

(Rcv)
Γ;Λ1;∆1 ·u : S ` P .� Γ;Λ2;∆2 ` x .U

Γ\x;Λ1 ·Λ2;∆1\∆2 ·u :?(U);S ` u?(x).P .�
(Req)

Γ;∅;∅ ` u .U1 Γ;Λ;∆1 ` P .�
Γ;∅;∆2 ` V .U2

(U1 = 〈S 〉∧U2 = S )∨ (U1 = 〈L〉∧U2 = L)

Γ;Λ;∆1 ·∆2 ` u!〈V〉.P .�

(Acc)
Γ;∅;∅ ` u .U1 Γ;Λ1;∆1 ` P .�

Γ;Λ2;∆2 ` x .U2
(U1 = 〈S 〉∧U2 = S )∨ (U1 = 〈L〉∧U2 = L)

Γ\x;Λ1\Λ2;∆1\∆2 ` u?(x).P .�

Fig. 4: Selected Typing Rules for HOπ.

Γ maps variables and shared names to value types, and recursive variables to session
environments; it admits weakening, contraction, and exchange principles. Λ maps vari-
ables to linear higher-order types; ∆ maps session names to session types. Both Λ and
∆ are only subject to exchange. Domains of Γ,Λ and ∆ are assumed pairwise distinct.
∆1 ·∆2 is the disjoint union of ∆1 and ∆2. We focus on balanced session environments:

Definition 1 (Balanced). We say that a session environment ∆ is balanced if whenever
s : S 1, s : S 2 ∈ ∆ then S 1 dual S 2.

Given the above intuitions for environments, the typing judgements for values V and
processes P are self-explanatory. They are denoted Γ;Λ;∆ ` V .U and Γ;Λ;∆ ` P .�.

Fig. 4 gives selected typing rules; see [15] for a full account. The shared type C→�
is derived using rule (Prom) only if the value has a linear type with an empty linear
environment. Rule (EProm) allows us to freely use a shared type variable as linear. Ab-
straction values are typed with rule (Abs). Application typing is governed by rule (App):
we expect the type C of an application name u to match the type of the application vari-
able x (i.e., C(� or C→�). In rule (Send), the type U of value V should appear as
a prefix in the session type !〈U〉;S of u. Rule (Rcv) is its dual. Rules (Req) and (Acc)
type interaction along shared names; the type of the sent/received object (S and L, resp.)
should match the type of the sent/received subject (〈S 〉 and 〈L〉, resp.).

Definition 2. We define the relation −→ on session environments as:

∆ · s :!〈U〉;S 1 · s :?(U);S 2 −→ ∆ · s : S 1 · s : S 2

∆ · s : ⊕{li : S i}i∈I · s : &{li : S ′i }i∈I −→ ∆ · s : S k · s : S ′k (k ∈ I)

We state type soundness for HOπ; it implies type soundness for HO, π, and C−sh.

Theorem 1 (Type Soundness). Suppose Γ;∅;∆ ` P.� with ∆ balanced. Then P −→ P′

implies Γ;∅;∆′ ` P′ .� and ∆ = ∆′ or ∆ −→ ∆′ with ∆′ balanced.
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5 Behavioural Theory for HOπ

We first define reduction-closed, barbed congruence (�, Def. 7) as the reference equiv-
alence relation for HOπ processes. We then define two characterisations of �: charac-
teristic and higher-order bisimilarities (denoted ≈C and ≈H, cf. Defs. 8 and 9).

5.1 Reduction-Closed, Barbed Congruence (�)

We consider typed relations< that relate closed terms whose session environments are
balanced and confluent:

Definition 3 (Session Environment Confluence). Let −→∗ denote multi-step reduc-
tion as in Def. 2. We denote ∆1
 ∆2 if there exists ∆ such that ∆1 −→

∗ ∆ and ∆2 −→
∗ ∆.

Definition 4 (Typed Relation). We say that Γ;∅;∆1 ` P.� < Γ;∅;∆2 ` Q.� is a typed
relation whenever P and Q are closed; ∆1 and ∆2 are balanced; and ∆1
 ∆2. We write
Γ;∆1 ` P< ∆2 ` Q for the typed relation Γ;∅;∆1 ` P .� < Γ;∅;∆2 ` Q .�.

As usual, a barb ↓n is an observable on an output prefix with subject n [20]. A weak
barb ⇓n is a barb after zero or more reduction steps. Typed barbs ↓n (resp. ⇓n) occur
on typed processes Γ;∅;∆ ` P . �. When n is a session name we require that its dual
endpoint n is not present in the session environment ∆:

Definition 5 (Barbs). Let P be a closed process. We define:

1. P ↓n if P ≡ (ν m̃)(n!〈V〉.P2 | P3),n < m̃.
2. Γ;∆ ` P ↓n if Γ;∅;∆ ` P .� with P ↓n and n < dom(∆).

Γ;∆ ` P ⇓n if P −→∗ P′ and Γ;∆′ ` P′ ↓n.

To define a congruence relation, we introduce the family C of contexts:

Definition 6 (Context). A context C is defined as:

C ::= − | u!〈V〉.C | u?(x).C | u!〈λx.C〉.P | (νn)C | (λx.C)u | µX.C

| C | P | P | C | u / l.C | u . {l1 : P1, · · · , li : C, · · · , ln : Pn}

Notation C[P] replaces the hole − in C with P.

We define reduction-closed, barbed congruence [12].

Definition 7 (Barbed Congruence). Typed relation Γ;∆1 ` P< ∆2 ` Q is a reduction-
closed, barbed congruence whenever:

1. If P −→ P′ then there exist Q′,∆′1, ∆′2 such that Q −→∗ Q′ and Γ;∆′1 ` P′ < ∆′2 ` Q′;
2. If Γ;∆1 ` P ↓n then Γ;∆2 ` Q ⇓n;
3. For all C, there exist ∆′′1 ,∆

′′
2 such that Γ;∆′′1 ` C[P]< ∆′′2 ` C[Q];

4. The symmetric cases of 1 and 2.

The largest such relation is denoted with �.
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5.2 Two Equivalence Relations: ≈C and ≈H

A Typed Labelled Transition System. In [14] we have characterised reduction-closed,
barbed congruence for HOπ via a typed relation called characteristic bisimilarity. Its
definition uses a typed labelled transition system (LTS) informed by session types.

Given a label ` (a visible action or τ), we write Γ;∅;∆ ` P
`
7−→ ∆′ ` P′ to denote (strong)

transitions. Weak transitions are as expected: we write �=⇒ for the reflexive, transitive

closure of
τ
7−→,

`
�=⇒ for �=⇒

`
7−→ �=⇒, and

ˆ̀
�=⇒ for

`
�=⇒ if ` , τ and �=⇒ otherwise. Intu-

itively, the transitions of a typed process should be enabled by its associated typing:

if P
`
7−→ P′ and (Γ,∆)

`
7−→ (Γ,∆′) then Γ;∅;∆ ` P

`
7−→ ∆′ ` P′.

As an example of how types enable transitions, consider the rule for input:

s < dom(∆) Γ;Λ′;∆′ ` V .U V = m∨V ≡ [(U)]c∨V ≡ λx. t?(y).(y x) with t fresh

(Γ;Λ;∆ · s :?(U);S )
s?〈V〉
7−→ (Γ;Λ ·Λ′;∆ ·∆′ · s : S )

This rule states that a session environment can input a value if such a value is typed
with an input prefix and is either a name m, a characteristic value [(U)]c, or a trigger
value (the abstraction λx. t?(y).(y x)). A characteristic value is the simplest process that
inhabits a type (here, the type U carried by the input prefix). The above rule is used to
limit the input actions that can be observed from a session input prefix. For more details
on the typed LTS and the characteristic process definition see [14]. Moreover, we define
a (first-order) trigger process:

t⇐ V :U def
= t?(x).(ν s)([[?(U);end]]s | s!〈V〉.0) (1)

The trigger process t⇐ V :U is is defined as a process input prefixed on a fresh name t:
it applies a value on the characteristic process [[?(U);end]]s (see [14] for details).

Characterising�. We define characteristic and higher-order bisimilarities. While higher-
order bisimilarity is a new equality, characteristic bisimilarity was introduced in [14].

Definition 8 (Characteristic Bisimilarity). A typed relation< is called a characteris-
tic bisimulation if for all Γ;∆1 ` P1 < ∆2 ` Q1

1. Whenever Γ;∆1 ` P1
(ν m̃1)n!〈V1:U〉
7−→ ∆′1 ` P2, there exist Q2, V2, ∆′2 such that

Γ;∆2 ` Q1
(ν m̃2)n!〈V2:U〉

�=⇒ ∆′2 ` Q2 and, for fresh t,

Γ;∆′′1 ` (ν m̃1)(P2 | t⇐ V1 :U1)< ∆′′2 ` (ν m̃2)(Q2 | t⇐ V2 :U2)

2. For all Γ;∆1 ` P1
`
7−→ ∆′1 ` P2 such that ` is not an output, there exist Q2, ∆′2 such

that Γ;∆2 ` Q1
ˆ̀

�=⇒ ∆′2 ` Q2 and Γ;∆′1 ` P2 < ∆′2 ` Q2; and
3. The symmetric cases of 1 and 2.

The largest such bisimulation is called characteristic bisimilarity and denoted by ≈C.
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Interestingly, for reasoning about HOπ processes we can also exploit the simpler
higher-order bisimilarity. We replace triggers as in (1) with higher-order triggers:

t←↩ V def= t?(x).(ν s)(x s | s!〈V〉.0) (2)

We may then define:

Definition 9 (Higher-Order Bisimilarity). Higher-order bisimilarity, denoted by ≈H,
is defined by replacing Clause (1) in Def. 8 with the following clause:

Whenever Γ;∆1 ` P1
(ν m̃1)n!〈V1〉
7−→ ∆′1 ` P2 then there exist Q2, V2, ∆′2 such that

Γ;∆2 ` Q1
(ν m̃2)n!〈V2〉
�=⇒ ∆′2 ` Q2 and, for fresh t,

Γ;∆′′1 ` (ν m̃1)(P2 | t←↩ V1)< ∆′′2 ` (ν m̃2)(Q2 | t←↩ V2)

We state the following important result, which attests the significance of ≈H:

Theorem 2. Typed relations �, ≈H, and ≈C coincide for HOπ processes.

Proof. Coincidence of � and ≈C was established in [14]. Coincidence of ≈H with � and
≈C is a new result: see [15] for details. ut

Remark 1 (Comparison between ≈H and ≈C). The key difference between ≈H and ≈C

is in the trigger process considered. Because of the application in (2), ≈H cannot be
used to reason about processes in π. In contrast, ≈C is more general: it can uniformly
input characteristic, first- or higher-order values. This convenience comes at a price:
the definition of (1) requires information on the type of V; in contrast, the higher-order
trigger (2) is more generic and simple, as it works independently of the given type.

An up-to technique. Processes that do not use shared names are deterministic. The fol-
lowing up-to technique, based on determinacy properties, will be useful in proofs (§ 7).
Recall that Γ;∆ ` P

τ
7−→ ∆′ ` P′ denotes an internal (typed) transition.

Notation 1 (Deterministic Transitions) We distinguish two kinds of τ-transitions: ses-

sion transitions, noted Γ;∆ ` P
τs
7−→ ∆′ ` P′, and β-transitions, noted Γ;∆ ` P

τβ
7−→ ∆′ ` P′.

Intuitively,
τs
7−→ results from a session communication (i.e., synchronization between two

dual endpoints), while
τβ
7−→ results from an application. We write Γ;∆ ` P

τd
7−→ ∆′ ` P′ to

denote a session transition or a β-transition. See [15] for definitions of
τβ
7−→ and

τs
7−→.

We have the following determinacy property; see [15] for details.

Lemma 1 (τ-Inertness). (1) Let Γ;∆ ` P
τd
7−→ ∆′ ` P′ be a deterministic transition, with

balanced ∆. Then Γ;∆ ` P � ∆′ ` P′ with ∆ −→∗ ∆′ balanced. (2) Let P be an HOπ−sh

process. Assume Γ;∅;∆ ` P.�. Then P −→∗ P′ implies Γ;∆ ` P � ∆′ ` P′ with ∆ −→∗ ∆′.

We use Lem. 1 to prove Thm. 6, the negative result stated in § 7.4. This property
also enables us to define the following up-to technique, useful in full abstraction proofs.

We write
τd
�=⇒ to denote a (possibly empty) sequence of deterministic steps

τd
7−→.
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Lemma 2 (Up-to Deterministic Transition). Let Γ;∆1 ` P1 < ∆2 ` Q1 such that if
whenever:

1. ∀(ν m̃1)n!〈V1〉 such that Γ;∆1 ` P1
(ν m̃1)n!〈V1〉
7−→ ∆3 ` P3 implies that ∃Q2,V2 such that

Γ;∆2 ` Q1
(ν m̃2)n!〈V2〉
�=⇒ ∆′2 ` Q2 and Γ;∆3 ` P3

τd
�=⇒ ∆′1 ` P2 and for fresh t:

Γ;∆′′1 ` (ν m̃1)(P2 | t←↩ V1)< ∆′′2 ` (ν m̃2)(Q2 | t←↩ V2).

2. ∀` , (ν m̃)n!〈V〉 such that Γ;∆1 ` P1
`
7−→ ∆3 ` P3 implies that ∃Q2

such that Γ;∆1 `Q1
ˆ̀
�=⇒∆′2 `Q2 and Γ;∆3 ` P3

τd
�=⇒ ∆′1 ` P2 and Γ;∆′1 ` P2< ∆′2 `Q2.

3. The symmetric cases of 1 and 2.

Then< ⊆ ≈H.

6 Criteria for Typed Encodings

We define the formal notion of encoding by extending to a typed setting existing criteria
for untyped processes (as in, e.g., [24,26,27,10,16,8,41,30]). We first define a typed
calculus parametrised by a syntax, operational semantics, and typing. Based on this
definition, in § 7 and § 8 we define concrete instances of (higher-order) typed calculi.

Definition 10 (Typed Calculus). A typed calculus L is a tuple 〈C,T ,
τ
7−→,≈,`〉 where

C and T are sets of processes and types, respectively; also,
τ
7−→, ≈, and ` denote a

transition system, a typed equivalence, and a typing system for C, respectively.

As we explain later, we write
τ
7−→ to denote an operational semantics defined in

terms of τ-transitions (to characterise reductions). Our notion of encoding considers
mappings on both processes and types; these are denoted [[·]] and (〈·〉), respectively:

Definition 11 (Typed Encoding). Consider typed calculi L1 = 〈C1,T1,
τ
7−→1,≈1,`1〉

and L2 = 〈C2,T2,
τ
7−→2,≈2,`2〉. Given mappings [[·]] : C1 → C2 and (〈·〉) : T1 → T2, we

write
〈
[[·]], (〈·〉)

〉
:L1→L2 to denote the typed encoding of L1 into L2.

Mapping (〈·〉) extends to typing environments, e.g., (〈∆ · u : S 〉) = (〈∆〉) · u : (〈S 〉). We
introduce syntactic criteria for typed encodings. Let σ denote a substitution of names
for names (a renaming, as usual). Given environments ∆ and Γ, we write σ(∆) and σ(Γ)
to denote the effect of applying σ on the domains of ∆ and Γ (clearly, σ(Γ) concerns
only shared names in Γ: process and recursive variables in Γ are not affected by σ).

Definition 12 (Syntax Preservation). We say that typed encoding
〈
[[·]], (〈·〉)

〉
:L1→L2

is syntax preserving if it is:

1. Homomorphic wrt parallel, if (〈Γ〉);∅; (〈∆1 ·∆2〉) `2 [[P1 | P2]] .�
then (〈Γ〉);∅; (〈∆1〉) · (〈∆2〉) `2 [[P1]] | [[P2]] .�.

2. Compositional wrt restriction, if (〈Γ〉);∅; (〈∆〉) `2 [[(νn)P]] .�
then (〈Γ〉);∅; (〈∆〉) `2 (νn)[[P]] .�.
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3. Name invariant, if (〈σ(Γ)〉);∅; (〈σ(∆)〉) `2 [[σ(P)]] .� then
σ((〈Γ〉));∅;σ((〈∆〉)) `2 σ([[P]]) .�, for any injective renaming of names σ.

Homomorphism wrt parallel (used in, e.g., [26,27]) expresses that encodings should
preserve the distributed topology of source processes. This criterion is appropriate for
both encodability and non encodability results; in our setting, it is induced by rules for
typed composition. Compositionality wrt restriction is also supported by typing and is
useful in our encodability results (§ 7). The name invariance criterion follows [10,16].

We now state type preservation, a static criterion on the mapping (〈·〉) : T1 → T2:
it ensures that type operators are preserved. The source and target languages that we
consider here share five (session) type operators: input, output, recursion (binary oper-
ators); selection and branching (n-ary operators). Type preservation enables us to focus
on mappings (〈·〉) that always translate a type operator into itself. This is key to retain
the meaning of structured protocols: as session types operators abstract communication
behaviour, type preserving encodings help us maintain behaviour across translations.

Definition 13 (Type Preservation). The typed encoding
〈
[[·]], (〈·〉)

〉
: L1 → L2 is type

preserving if for every k-ary type operator op in T1 it holds that

(〈op(T1, · · · ,Tk)〉) = op((〈T1〉), · · · , (〈Tk〉))

Example 1. Following the discussion in § 2, let (〈·〉)u be a mapping on session types such
that (〈!〈U〉;S 〉)u =?((〈U〉)u); (〈S 〉)u and (〈?(U);S 〉)u =!〈(〈U〉)u〉; (〈S 〉)u (other type operators
are translated homomorphically). That is, (〈·〉)u translates the output type operator into an
input type operator (and viceversa). Therefore, (〈·〉)u does not satisfy type preservation.

Next we define semantic criteria for typed encodings:

Definition 14 (Semantic Preservation). Consider two typed calculi L1 and L2, de-
fined as L1 = 〈C1,T1,

τ
7−→1,≈1,`1〉 and L2 = 〈C2,T2,

τ
7−→2,≈2,`2〉. We say that the en-

coding
〈
[[·]], (〈·〉)

〉
:L1→L2 is semantic preserving if it satisfies the properties below.

1. Type Soundness: if Γ;∅;∆ `1 P .� then (〈Γ〉);∅; (〈∆〉) `2 [[P]] .�, for any P in C1.
2. Barb Preserving: if Γ;∆ `1 P ↓n then (〈Γ〉); (〈∆〉) `2 [[P]] ⇓n.
3. Operational Correspondence: If Γ;∅;∆ `1 P .� then

(a) Completeness: If Γ;∆ `1 P
τ
7−→1 ∆

′ `1 P′ then ∃Q,∆′′ s.t.
(i) (〈Γ〉); (〈∆〉) `2 [[P]] �=⇒2 (〈∆′′〉) `2 Q and (ii) (〈Γ〉); (〈∆′′〉) `2 Q≈2(〈∆′〉) `2 [[P′]].

(b) Soundness: If (〈Γ〉); (〈∆〉) `2 [[P]] �=⇒2 (〈∆′〉) `2 Q then ∃P′,∆′′ s.t.
(i) Γ;∆ `1 P

τ
7−→1 ∆

′′ `1 P′ and (ii) (〈Γ〉); (〈∆′′〉) `2 [[P′]]≈2(〈∆′〉) `2 Q.
4. Full Abstraction: Γ;∆ `1 P ≈1 ∆

′ `1 Q if and only if (〈Γ〉); (〈∆〉) `2 [[P]] ≈2 (〈∆′〉) `2 [[Q]].

Together with type preservation (Def. 13), type soundness is a distinguishing cri-
terion in our notion of encoding. Barb preservation, related to success sensitiveness
in [10], is convenient in our developments as all considered calculi have the same no-
tion of barb. Operational correspondence, standardly divided into completeness and
soundness, is also based on [10]; it relies on τ-transitions (reductions). Completeness
ensures that a step of the source process is mimicked by a step of its associated encod-
ing; soundness is its converse. Above, operational correspondence is stated in generic
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terms. It is worth stressing that the operational correspondence statements for our en-
codings are tailored to the specifics of each encoding, and so they are actually stronger
than the criteria given above (see Props. 3, 6, 10, 13 and [15] for details). Finally, fol-
lowing [32,27,45], we consider full abstraction as an encodability criterion: this leads
to stronger encodability results.

We introduce precise and minimal encodings. While we state strong positive en-
codability results in terms of precise encodings, to prove the non-encodability result in
§ 7.4, we appeal to the weaker minimal encodings.

Definition 15 (Typed Encodings: Precise and Minimal). We say that the typed en-
coding

〈
[[·]], (〈·〉)

〉
: L1 → L2 is precise, if it is syntax, type, and semantic preserving

(Defs. 12, 13, 14). We say that the encoding is minimal, if it is syntax preserving
(Def. 12), barb preserving (Def. 14-2), and operationally complete (Def. 14-3(a)).

The following property will come in handy in § 8:

Proposition 1. Let
〈
[[·]]1, (〈·〉)1〉 :L1→L2 and

〈
[[·]]2, (〈·〉)2〉 :L2→L3 be two precise en-

codings. Then their composition, denoted
〈
[[·]]2 ◦ [[·]]1, (〈·〉)2 ◦ (〈·〉)1〉 :L1→L3, is precise.

7 Expressiveness Results

We first present two precise encodings: (1) higher-order communication with recursion
and name-passing (HOπ) into higher-order communication without name-passing nor
recursion (HO) (§ 7.1); and (2) HOπ into the first-order calculus with name-passing
with recursion (π) (§ 7.2). We then compare these encodings (§ 7.3). Moreover, in § 7.4
we state our impossibility result for shared/linear names. We consider the typed calculi
(cf. Def. 10):

LHOπ = 〈HOπ,T1,
τ
7−→,≈H,`〉 LHO = 〈HO,T2,

τ
7−→,≈H,`〉 Lπ = 〈π,T3,

τ
7−→,≈C,`〉

where: T1, T2, and T3 are sets of types of HOπ, HO, and π, respectively. The typing `
is defined in § 4. The LTSs follow the intuitions given in § 5.2. Moreover, ≈H is as in
Def. 9, and ≈C is as in Def. 8.

7.1 From HOπ to HO

HO is expressive enough to precisely encode HOπ. As discussed above, the main chal-
lenges are to encode (1) name passing and (2) recursion, for which we only use abstrac-
tion passing. As explained in § 2, for (1), we pass an abstraction which enables to use
the name upon application. For (2), we copy a process upon reception; passing around
linear abstractions is delicate because they cannot be copied. To handle linearity, we de-
fine the following auxiliary mapping

⌊⌊
·
⌋⌋
σ from processes with free names to processes

without free names (but with free variables instead):

Definition 16 (Auxiliary Mapping). Let || · || : 2N −→Vω denote a map of sequences
of lexicographically ordered names to sequences of variables, defined inductively as:
||ε|| = ε and ||n · m̃|| = xn · ||m̃||. Also, let σ be a set of session names. Fig. 5 defines an
auxiliary mapping

⌊⌊
·
⌋⌋
σ : HO→ HO.
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⌊⌊
0
⌋⌋
σ
def
= 0

⌊⌊
n!〈λx.Q〉.P

⌋⌋
σ
def
= u!〈λx.

⌊⌊
Q
⌋⌋
σ〉.

⌊⌊
P
⌋⌋
σ

⌊⌊
(νn)P

⌋⌋
σ
def
= (νn)

⌊⌊
P
⌋⌋
σ·n⌊⌊

P | Q
⌋⌋
σ
def
=

⌊⌊
P
⌋⌋
σ |

⌊⌊
Q
⌋⌋
σ

⌊⌊
xn

⌋⌋
σ
def
= xu

⌊⌊
(λx.Q)n

⌋⌋
σ
def
= (λx.

⌊⌊
Q
⌋⌋
σ)u⌊⌊

n?(x).P
⌋⌋
σ
def
= u?(x).

⌊⌊
P
⌋⌋
σ

⌊⌊
n / l.P

⌋⌋
σ
def
= u / l.

⌊⌊
P
⌋⌋
σ

⌊⌊
n . {li : Pi}i∈I

⌋⌋
σ
def
= u . {li :

⌊⌊
Pi

⌋⌋
σ}i∈I

In all cases: u = n if n ∈ σ; otherwise u = xn.

Fig. 5: Auxiliary mapping used to encode HOπ into HO (Def. 16).

Types: ⌊
S
⌋1 def

= (?((〈S 〉)1(�);end)(�
⌊
〈S 〉

⌋1 def
= (?(〈(〈S 〉)1〉→�);end)(�⌊

〈L〉
⌋1 def

= (?(〈(〈L〉)1〉→�);end)(�
⌊
C(�

⌋1 def
= (〈C〉)1(�

⌊
C→�

⌋1 def
= (〈C〉)1→�

(〈〈S 〉〉)1 def= 〈(〈S 〉)1〉 (〈〈L〉〉)1 def= 〈(〈L〉)1〉

(〈!〈U〉;S 〉)1 def= !〈
⌊
U

⌋1
〉; (〈S 〉)1 (〈?(U);S 〉)1 def= ?(

⌊
U

⌋1); (〈S 〉)1

(〈⊕{li : S i}i∈I〉)1 def= ⊕{li : (〈S i〉)1}i∈I (〈&{li : S i}i∈I〉)1 def= &{li : (〈S i〉)1}i∈I

(〈t〉)1 def= t (〈µt.S 〉)1 def= µt.(〈S 〉)1 (〈end〉)1 def= end

Terms:
[[u!〈w〉.P]]1

f
def
= u!〈λz. z?(x).(xw)〉.[[P]]1

f [[u?(x :C).Q]]1
f
def
= u?(y).(ν s)(y s | s!〈λx. [[Q]]1

f 〉.0)

[[u!〈λx.Q〉.P]]1
f
def
= u!〈λx. [[Q]]1

f 〉.[[P]]1
f [[u?(x : L).P]]1

f
def
= u?(x).[[P]]1

f

[[s / l.P]]1
f
def
= s / l.[[P]]1

f [[s . {li:Pi}i∈I]]1
f
def
= s . {li : [[Pi]]1

f }i∈I

[[0]]1
f
def
= 0 [[(νn)P]]1

f
def
= (νn)[[P]]1

f

[[xu]]1
f
def
= xu [[(λx.Q)u]]1

f
def
= (λx. [[Q]]1

f )u

[[P | Q]]1
f
def
= [[P]]1

f | [[Q]]1
f

[[µX.P]]1
f
def
= (ν s)(s!〈λ(||ñ||,y). y?(zX).

⌊⌊
[[P]]1

f ,{X→ñ}
⌋⌋
∅〉.0 | s?(zX).[[P]]1

f ,{X→ñ}) (ñ = fn(P))

[[X]]1
f
def
= (ν s)(zX (ñ, s) | s!

〈
λ(||ñ||,y).zX (||ñ||,y)

〉
.0) (ñ = f (X))

Above fn(P) denotes a lexicographically ordered sequence of free names in P. The input bound
variable x is annotated by a type to distinguish first- and higher-order cases.

Fig. 6: Encoding of HOπ into HO (Def. 17).

Let P be an HOπ process with fn(P) = {n1, · · · ,nk}. Intuitively, our encoding [[·]]1
f

exploits the abstraction λx1, · · · , xk.
⌊⌊

[[P]]1
f
⌋⌋
∅, where ||n j|| = x j, for all j ∈ {1, . . . ,k}:

Definition 17 (Typed Encoding of HOπ into HO). Let f be a map from process vari-
ables to sequences of name variables. The typed encoding

〈
[[·]]1

f , (〈·〉)
1〉 : LHOπ →LHO

is given in Fig. 6. Mapping (〈·〉)1 on types homomorphically extends to environments
∆ and Γ, with (〈Γ · X : ∆1〉)1 = (〈Γ〉)1 · zX : (S 1, . . . ,S m,S ∗)→� where S ∗ is defined as
µt.?((S 1, . . . ,S m, t)→�);end provided that ∆1 = {ni : S i}1≤i≤m.
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Note that ∆ in X : ∆ is mapped to a non-tail recursive session type with variable zX .
Non-tail recursive session types were studied in [3,2]; to our knowledge, this is the first
application in the context of higher-order session types. For simplicity, we use polyadic
name abstractions. A precise encoding of polyadicity into HO is given in § 8.

Key elements in Fig. 6 are encodings of name passing ([[u!〈w〉.P]]1
f and [[u?(x).P]]1

f )
and recursion ([[µX.P]]1

f and [[X]]1
f ). As motivated in § 2, a name w is passed as an input-

guarded abstraction; on the receiver side, the encoding i) receives the abstraction; ii)
applies to it a fresh endpoint s; iii) uses the dual endpoint s to send the continuation P
as an abstraction. Thus, name substitution is achieved via name application. As for re-
cursion, to encode µX.P we first record a mapping from recursive variable X to process
variable zX . Then, using

⌊⌊
·
⌋⌋
σ in Def. 16, we encode the recursion body P as a name

abstraction in which free names of P are converted into name variables. (Notice that P
is first encoded into HO and then transformed using mapping

⌊⌊
·
⌋⌋
σ.) Subsequently, this

higher-order value is embedded in an input-guarded “duplicator” process. We encode
X in such a way that it simulates recursion unfolding by invoking the duplicator in a
by-need fashion. That is, upon reception, the HO abstraction encoding P is duplicated:
one copy is used to reconstitute the original recursion body P (through the application
of fn(P)); another copy is used to re-invoke the duplicator when needed. We illustrate
the encoding by means of an example.

Example 2 (The Encoding [[·]]1
f At Work). Let P = µX.a!〈m〉.X be an HOπ process. Its

encoding into HO is given next; notice that f = ∅ and f ′ = X→ xaxm.

[[P]]1
f = (ν s1)(s1?(x).[[a!〈m〉.X]]1

f ′ | s1!〈λ(xa, xm,z).z?(x).
⌊⌊

[[a!〈m〉.X]]1
f ′
⌋⌋
∅〉.0)

[[a!〈m〉.X]]1
f ′ = a!〈λz.z?(x).(xm)〉.(ν s2)(x (a,m, s2) | s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0)⌊⌊

[[a!〈m〉.X]]1
f ′
⌋⌋
∅ = xa!〈λz.z?(x).(x xm)〉.(ν s2)(x (xa, xm, s2) |

s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0)

That is, by writing V to denote the process

λ(xa, xm,z).z?(x).xa!〈λz.z?(x).(x xm)〉.(ν s2)(x (xa, xm, s2) | s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0)

we would have

[[P]]1
f = (ν s1)(s1?(x).a!〈λz.z?(x).(xm)〉.(ν s2)(x (a,m, s2) |

s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0) | s1!〈V〉.0)

Next we illustrate the behaviour of [[P]]1
f ; below ` stands for a!〈λz.z?(x).(xm)〉.

[[P]]1
f ≡ (ν s1)(s1!〈V〉.0 | s1?(x).a!〈λz.z?(x).(xm)〉.(ν s2)(s2!〈λ(xa, xm,z).

x (xa, xm,z)〉.0) | x (a,m, s2))
τ
7−→ a!〈λz.z?(x).(xm)〉.(ν s2)(s2!〈V〉.0 | s2?(x).a!〈λz.z?(x).(xm)〉.

(ν s3)(s3!〈λ(xa, xm,z). x (xa, xm,z)〉.0) | x (a,m, s3))
≡α a!〈λz.z?(x).(xm)〉.(ν s1)(s1!〈V〉.0 | s1?(x).a!〈λz.z?(x).(xm)〉.

(ν s2)(s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0) | x (a,m, s2))

≡ a!〈λz.z?(x).(xm)〉.[[µX.a!〈m〉.X]]1
f

`
7−→ [[µX.a!〈m〉.X]]1

f .
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We now describe the properties of the encoding. Directly from Fig. 6 we may state:

Proposition 2 (HOπ into HO: Type Preservation). The encoding fromLHOπ intoLHO
(cf. Def. 17) is type preserving.

Now, we state operational correspondence with respect to reductions; the full state-
ment (and proof) can be found in [15].

Proposition 3 (HOπ into HO: Operational Correspondence - Excerpt). Let P be an
HOπ process such that Γ;∅;∆ ` P .�.

1. Completeness: Suppose Γ;∆ ` P
τ
7−→ ∆′ ` P′. Then we have:

a) If P′ ≡ (ν m̃)(P1 | P2{m/x}) then ∃R s.t.
(〈Γ〉)1; (〈∆〉)1 ` [[P]]1

f
τ
7−→ (〈∆〉)1 ` (ν m̃)([[P1]]1

f | R), and

(〈Γ〉)1; (〈∆〉)1 ` (ν m̃)([[P1]]1
f | R)

τβ
7−→

τs
7−→

τβ
7−→ (〈∆〉)1 ` (ν m̃)([[P1]]1

f | [[P2]]1
f {

m/x}).
b) If P′ ≡ (ν m̃)(P1 | P2{λy.Q/x}) then

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

τ
7−→ (〈∆1〉)1 ` (ν m̃)([[P1]]1

f | [[P2]]1
f {
λy. [[Q]]1

∅/x}).
c) If P′ 6≡ (ν m̃)(P1 | P2{m/x})∧P′ 6≡ (ν m̃)(P1 | P2{λy.Q/x}) then

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

τ
7−→ (〈∆′1〉)

1 ` [[P′]]1
f .

2. Soundness: Suppose (〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

τ
7−→ (〈∆′〉)1 ` Q. Then ∆′ = ∆ and either

a) ∃P′ s.t. Γ;∆ ` P
τ
7−→ ∆ ` P′, and Q = [[P′]]1

f .

b) ∃P1,P2, x,m,Q′ s.t. Γ;∆ ` P
τ
7−→ ∆ ` (ν m̃)(P1 | P2{m/x}), and

(〈Γ〉)1; (〈∆〉)1 ` Q
τβ
7−→

τs
7−→

τβ
7−→ (〈∆〉)1 ` [[P1]]1

f | [[P2{m/x}]]1
f

Observe how we can explicitly distinguish the role of finite, deterministic reductions

(
τs
7−→ and

τβ
7−→, defined in Not. 1) in both soundness and completeness statements.

The typed operational correspondence given above is an important component in
the proof of full abstraction, which we state next.

Proposition 4 (HOπ into HO: Full Abstraction). Let P1,Q1 be HOπ processes.
Γ;∆1 ` P1 ≈

H ∆2 ` Q1 if and only if (〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1
f ≈
H (〈∆2〉)1 ` [[Q1]]1

f .

We may state the main result of this section. See [15] for details.

Theorem 3 (Precise Encoding of HOπ into HO). The encoding from LHOπ into LHO
(cf. Def. 17) is precise.

7.2 From HOπ to π

We now discuss the precise encodability of HOπ into π; the non trivial issue is encoding
higher-order communication, which is present in HOπ but not in π. We closely follow
Sangiorgi’s encoding [33,36], which represents the exchange of a process with the ex-
change of a fresh trigger name. Trigger names may then be used to activate copies
of the process, which becomes a persistent resource represented by an input-guarded



On the Relative Expressiveness of Higher-Order Session Processes 17

Types:
(〈!〈S(�〉;S 1〉)2 def= !

〈
〈?((〈S 〉)2);end〉

〉
; (〈S 1〉)2 (〈?(S(�);S 1〉)2 def= ?

(
〈?((〈S 〉)2);end〉

)
; (〈S 1〉)2

Terms:

[[u!〈λx.Q〉.P]]2 def=

{
(νa)(u!〈a〉.([[P]]2 | ∗ a?(y).y?(x).[[Q]]2) ) (s < fn(Q))

(νa)(u!〈a〉.([[P]]2 | a?(y).y?(x).[[Q]]2) ) (otherwise)

[[u?(x).P]]2 def= u?(x).[[P]]2

[[xu]]2 def= (ν s)(x!〈s〉.s!〈u〉.0)

[[(λx.P)u]]2 def= (ν s)(s?(x).[[P]]2 | s!〈u〉.0)

Notice: ∗P means µX.(P | X). Elided mappings are homomorphic.

Fig. 7: Encoding of HOπ into π (Def. 18).

replication. We cast this strategy in the setting of session-typed communications. In the
presence of session names (which are linear and cannot be replicated), our approach
uses replicated names as triggers for shared resources and non-replicated names for
linear resources (cf. [[u!〈λx.Q〉.P]]2).

Definition 18 (Typed Encoding of HOπ into π). The typed encoding
〈
[[·]]2, (〈·〉)2〉 :

LHOπ→Lπ is defined in Fig. 7.

Observe how [[(λx.P)u]]2 naturally induces a name substitution. We describe key
properties of this encoding. First, type preservation and operational correspondence:

Proposition 5 (HOπ into π: Type Preservation). The encoding from LHOπ into Lπ
(cf. Def. 18) is type preserving.

Proposition 6 (HOπ into π: Operational Correspondence - Excerpt). Let P be an
HOπ process such that Γ;∅;∆ ` P .�.

1. Completeness: Suppose Γ;∆ ` P
`
7−→ ∆′ ` P′. Then either:

a) If ` = τ then one of the following holds:
- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 τ

7−→

` (〈∆′〉)2(ν m̃)([[P1]]2 | (νa)([[P2]]2{a/x} | ∗ a?(y).y?(x).[[Q]]2)), for some P1,P2,Q;
- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 τ

7−→ (〈∆′〉)2 ` (ν m̃)([[P1]]2 | (ν s)([[P2]]2{s/x} | s?(y).y?(x).[[Q]]2)),
for some P1,P2,Q;

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 τ
7−→ (〈∆′〉)2 ` [[P′]]2

b) If ` = τβ then (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 τs
7−→ (〈∆′〉)2 ` [[P′]]2.

2. Suppose (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 τ
7−→ (〈∆′〉)2 ` R.

Then ∃P′ such that P
τ
7−→ P′ and (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′〉)2 ` R.

Exploiting the above properties (type preservation, typed operational correspon-
dence), we can show that our typed encoding is fully abstract and precise.

Proposition 7 (HOπ to π: Full Abstraction). Let P1,Q1 be HOπ processes. Γ;∆1 `

P1 ≈
H ∆2 ` Q1 if and only if (〈Γ〉)2; (〈∆1〉)2 ` [[P1]]2 ≈C (〈∆2〉)2 ` [[Q1]]2.

Theorem 4 (Precise Encoding of HOπ into π). The encoding from LHOπ into Lπ
(cf. Def. 18) is precise.
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7.3 Comparing Precise Encodings

The precise encodings in § 7.1 and § 7.2 confirm that HO and π constitute two important
sources of expressiveness in HOπ. This naturally begs the question: which of the two
sub-calculi is more tightly related to HOπ? We argue, both empirically and formally,
that when compared to π, HO is more economical and satisfies tighter correspondences.

Empirical Comparison: Reduction Steps. We first contrast the way in which (a) the
encoding from HOπ to HO (§ 7.1) translates processes with name passing; (b) the en-
coding from HOπ to π (§ 7.2) translates processes with abstraction passing. Consider
the HOπ processes:

P1 = s!〈a〉.0 | s?(x).(x!〈s1〉.0 | . . . | x!〈sn〉.0) P2 = s!〈λx.P〉.0 | s?(x).(x s1 | . . . | x sn)

P1 features pure name passing (no abstraction-passing), whereas P2 involves pure
abstraction passing (no name passing). In both cases, the intended communication on s
leads to n usages of the communication object (name a in P1, abstraction λx.P in P2).
Consider now the reduction steps from P1 and P2:

P1
τ
7−→ a!〈s1〉.0 | . . . | a!〈sn〉.0

P2
τ
7−→ (λx.P) s1 | . . . | (λx.P) sn

τβ
7−→

τβ
7−→ · · ·

τβ
7−→︸            ︷︷            ︸

n

P{s1/x} | . . . | P{s1/x}

By considering the encoding of P1 into HO we obtain:

[[P1]]1
f = s!〈λz.z?(y).ya〉.0 |

s?(x).(ν t)(x t | t!〈λx. (x!〈λz.z?(y).y s1〉.0 | . . . | x!〈λz.z?(y).y sn〉.0)〉.0)
τs
7−→

τβ
7−→ (ν t)(t?(y).ya | t!〈λx. (x!〈λz.z?(y).y s1〉.0 | . . . | x!〈λz.z?(y).y sn〉.0)〉.0)

τs
7−→

τβ
7−→ a!〈λz.z?(y).y s1〉.0 | . . . | a!〈λz.z?(y).y sn〉.0

Now, we encode P2 into π:

[[P2]]2 = (νb)(s!〈b〉.0 | ∗ b?(y).y?(x).P) |
s?(x).((ν s)(x!〈s〉.s!〈s1〉.0) | . . . | (ν s)(x!〈s〉.s!〈sn〉.0))

τs
7−→

τs
7−→

τs
7−→ (νb)(∗b?(y).y?(x).P | P{s1/x} | . . . | (ν s)(b!〈s〉.s!〈sn〉.0))

�=⇒2∗(n−1) (νb)(∗b?(y).y?(x).P | P{s1/x} | . . . | P{sn/x})

Clearly, encoding P1 into HO is more economical than encoding P2 into π. Not only
moving to a pure higher-order setting requires less reduction steps than in the first-
order concurrency of π; in the presence of shared names, moving to a first-order setting
brings the need of setting up and handling replicated processes which will eventually
lead to garbage (stuck) processes (cf. ∗b?(y).y?(x).P above). In contrast, the mecha-
nism present in HO works efficiently regardless of the linear or shared properties of
the name that is “packed” into the abstraction. The use of β-transitions guarantees lo-
cal synchronizations, which are arguably more economical than point-to-point, session
synchronizations.
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It is useful to move our comparison to a purely linear setting. Consider processes:

Q1 = s′!〈s〉.0 | s′?(x).x!〈a〉.0
τ
7−→ s!〈a〉.0 Q2 = s!〈λx.P〉.0 | s?(x).xa

τ
7−→

τ
7−→ P{a/x}

Q1 is a π process; Q2 is an HO processs. If we consider their encodings into HO and π,
respectively, we obtain:

[[Q1]]1
f = s′!〈λz.z?(y).y s〉.0 | s′?(x).(ν t)(x t | t!〈λx. x!〈λz.z?(y).ya〉.0〉.0)

τs
7−→

τβ
7−→ (ν t)(t?(y).y s | t!〈λx. x!〈λz.z?(y).ya〉.0〉.0)
τs
7−→ λx. x!〈λz.z?(y).ya〉.0 s

τβ
7−→ s!〈λz.z?(y).ya〉.0

[[Q2]]2 = (ν t)(s!〈t〉.0 | t?(y).y?(x).P) | s?(x).(ν s)(x!〈s〉.s!〈a〉.0)
τs
7−→

τs
7−→ (ν s)(s?(x).P | s!〈a〉.0)

τs
7−→ P{a/x}

In this case, the encoding [[·]]2 is more efficient, as it induces less reduction steps. There-
fore, considering a fragment of HOπ without shared communications (linearity only)
has consequences in terms of reduction steps. Notice that we prove that linear commu-
nications do not suffice to encode shared communications (§ 7.4).

Formal Comparison: Labelled Transition Correspondence. We now formally establish
differences between [[·]]1

f and [[·]]2. To this end, we introduce an extra encodability cri-
terion: a form of operational correspondence for visible actions. Below we write `1, `2

to denote actions different from τ and
`
7−→ to denote an LTS. As actions from different

calculi may be different, we also consider a mapping on action labels, denoted {{·}}:

Definition 19 (Labelled Correspondence / Tight Encodings). Consider typed calculi

L1 and L2, defined as L1 = 〈C1,T1,
`1
7−→1,≈1,`1〉 and L2 = 〈C2,T2,

`2
7−→2,≈2,`2〉. The

encoding
〈
[[·]], (〈·〉)

〉
:L1→L2 satisfies labelled operational correspondence if it satisfies:

1. If Γ;∆ `1 P
`1
7−→1 ∆

′ `1 P′ then ∃Q, ∆′′, `2 s.t. (i) (〈Γ〉); (〈∆〉) `2 [[P]]
`2
�=⇒2 (〈∆′′〉) `2 Q;

(ii) `2 = {{`1}}; (iii) (〈Γ〉); (〈∆′′〉) `2 Q≈2(〈∆′〉) `2 [[P′]].

2. If (〈Γ〉); (〈∆〉) `2 [[P]]
`2
�=⇒2 (〈∆′〉) `2 Q then ∃P′, ∆′′, `1 s.t. (i) Γ;∆ `1 P

`1
7−→1 ∆

′′ `1 P′;
(ii) `2 = {{`1}}; (iii) (〈Γ〉); (〈∆′′〉) `2 [[P′]]≈2(〈∆′〉) `2 Q.

A tight encoding is a typed encoding which is precise (Def. 15) and that also satisfies
labelled operational correspondence as above.

We may formally state that HOπ and HO are more closely related than HOπ and π:

Theorem 5 (HO Tightly Encodes HOπ). While the encoding of HOπ into HO (Def. 17)
is tight, the encoding of HOπ into π (Def. 18) is not tight.

To substantiate the above claim, we show that the encoding [[·]]1
f enjoys labelled

operational correspondence, whereas [[·]]2 does not. Consider the following mapping:

{{(ν m̃1)n!〈m〉}}1 def= (ν m̃1)n!〈λz. z?(x).xm〉 {{n?〈m〉}}1 def= n?〈λz. z?(x).xm〉

{{(ν m̃)n!〈λx.P〉}}1 def= (ν m̃)n!〈λx. [[P]]1
∅
〉 {{n?〈λx.P〉}}1 def= n?〈λx. [[P]]1

∅
〉

{{n⊕ l}}1 def= n⊕ l {{n&l}}1 def= n&l
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Then the following result, a complement of Prop. 3, holds:

Proposition 8 (Labelled Transition Correspondence, HOπ into HO). Let P be an
HOπ process. If Γ;∅;∆ ` P .� then:

1. Suppose Γ;∆ ` P
`1
7−→ ∆′ ` P′. Then we have:

a) If `1 ∈ {(ν m̃)n!〈m〉, (ν m̃)n!〈λx.Q〉, s⊕ l, s&l} then ∃`2 s.t.

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` [[P′]]1

f and `2 = {{`1}}
1.

b) If `1 = n?〈λy.Q〉 and P′ = P0{λy.Q/x} then ∃`2 s.t.

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` [[P0]]1

f {
λy. [[Q]]1

∅/x} and `2 = {{`1}}
1.

c) If `1 = n?〈m〉 and P′ = P0{m/x} then ∃`2, R s.t. (〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` R,

with `2 = {{`1}}
1, and (〈Γ〉)1; (〈∆′〉)1 ` R

τβ
7−→

τs
7−→

τβ
7−→ (〈∆′〉)1 ` [[P0]]1

f {
m/x}.

2. Suppose (〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` Q. Then we have:

a) If `2 ∈ {(ν m̃)n!〈λz. z?(x).(xm)〉, (ν m̃)n!〈λx.R〉, s⊕ l, s&l} then ∃`1,P′ s.t.

Γ;∆ ` P
`1
7−→ ∆′ ` P′, `1 = {{`2}}

1, and Q = [[P′]]1
f .

b) If `2 = n?〈λy.R〉 then either:
(i) ∃`1, x,P′,P′′ s.t.

Γ;∆ ` P
`1
7−→ ∆′ ` P′{λy.P′′/x}, `1 = {{`2}}

1, [[P′′]]1
∅

= R, and Q = [[P′]]1
f .

(ii) R ≡ y?(x).(xm) and ∃`1,z,P′ s.t. Γ;∆ ` P
`1
7−→ ∆′ ` P′{m/z},

`1 = {{`2}}
1, and (〈Γ〉)1; (〈∆′〉)1 ` Q

τβ
7−→

τs
7−→

τβ
7−→ (〈∆′′〉)1 ` [[P′{m/z}]]1

f

The analog of Prop. 8 does not hold for the encoding of HOπ into π. Consider the
HOπ process:

Γ;∅;∆ ` s!〈λx.P〉.0 .�
s!〈λx.P〉
7−→ ∅ ` 0 67−→

with λx.P being a linear value. We translate it into a π process:

(〈Γ〉)2;∅; (〈∆〉)2 ` (νa)(s!〈a〉.0 | a?(y).y?(x).P) .�
s!〈a〉
7−→ ∆′ ` a?(y).y?(x).P .�

a?〈V〉
7−→ . . .

The resulting processes have a mismatch both in the typing environment (∆′ , (〈∅〉)2)
and in the actions that they can subsequently observe: the first process cannot perform
any action, while the second process can perform actions of the encoding of λx.P.

7.4 A Negative Result

As most session calculi, HOπ includes communication on both shared and linear names.
The former enables non determinism, unrestricted behaviour; the latter allows to rep-
resent deterministic, linear communication structures. The expressiveness of shared
names is also illustrated by our encoding from HOπ into π (Fig. 7). This result begs
the question: can we represent shared name interaction using session name interaction?
It turns out that shared names add expressiveness to HOπ: we prove the non existence
of a minimal encoding (cf. Def. 15) of shared name interaction into linear interaction.
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Theorem 6. There is no minimal encoding from π to HOπ−sh. Hence, for any C1,C2 ∈

{HOπ,HO,π}, there is no minimal encoding from LC1 into LC−sh
2

.

By Def. 17 and 18 and Prop. 3 and 4, we have:

Corollary 1. Let C1,C2 ∈ {HOπ,HO,π}. There is a precise encoding of LC−sh
1

in LC−sh
2

.

8 Extensions: Higher-Order Abstractions and Polyadicity

Here we extend HOπ in two directions: (i) HOπ+ extends HOπ with higher-order appli-
cations/abstractions; (ii) HO π̃ extends HOπ with polyadicity. In both cases, we detail
the required modifications in syntax and types. Using encoding composability (Prop. 1),
the two extensions may be combined into HO π̃+: the polyadic extension of HOπ+.

HOπ with Higher-Order Abstractions (HOπ+) and with Polyadicity (HO π̃). We first
introduce HOπ+, the extension of HOπ with higher-order abstractions and applications.
This is the calculus that we studied in [14]. The syntax of HOπ+ is obtained from
Fig. 2 by extending V u to V W, where W is a higher-order value. As for the reduction
semantics, we keep the rules in Fig. 3, except for [App] which is replaced by

(λx.P)V −→ P{V/x}

The syntax of types is modified as follows: L ::= U→� | U(�. These types can be
easily accommodated in the type system in § 4: we replace C by U in [Abs] and C by
U′ in [App]. Subject reduction (Thm. 1) holds for HOπ+ (cf. [14])

The calculus HO π̃ extends HOπ with polyadic name passing ñ and λx̃.Q in the
syntax of values V . The operational semantics is kept unchanged, with the expected use
of the simultaneous substitution {Ṽ/x̃}. The type syntax is extended to:

L ::= C̃→� | C̃(� S ::= !〈Ũ〉;S | ?(Ũ);S | · · ·

As in [22,23], the type system for HO π̃ disallows a shared name that directly carries
polyadic shared names.

By combining HOπ+ and HO π̃ into a single calculus we obtain HO π̃+: the extension
of HOπ allows both higher-order abstractions/aplications and polyadicity.

Precise Encodings of HOπ+ and HO π̃ into HOπ. We give encodings of HOπ+ into HOπ
and into HO π̃, and show that they are precise. We use encoding composition (Prop. 1)
to encode HO π̃+ into HO and π. We consider the following typed calculi (cf. Def. 10):

- LHOπ+ = 〈HOπ+,T4,
`
7−→,≈H,`〉, where T4 is a set of types of HOπ+; the typing ` is

defined in § 4 with extended rules [Abs] and [App].

- LHO π̃ = 〈HO π̃,T5,
`
7−→,≈H,`〉, where T5 is the set of types of HO π̃; the typing ` is

defined in in § 4 with polyadic types.

First, the typed encoding
〈
[[·]]3, (〈·〉)3〉 : HOπ+→ HOπ is defined in Fig. 8. It satisfies

the following properties:
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Types :

(〈L→�〉)3 def= ?((〈L〉)3);end→� (〈!〈L→�〉;S 〉)3 def= !〈(〈L→�〉)3〉; (〈S 〉)3

(〈L(�〉)3 def= ?((〈L〉)3);end(� (〈?(L→�);S 〉)3 def= ?((〈L→�〉)3); (〈S 〉)3

Terms :

{{x}}3 def= x

{{λx : L.P}}3 def= λz.z?(x).[[P]]3

[[(x : L)V]]3 def= (ν s)(x s | s!〈{{V}}3〉.0)

[[u!〈λx : L.Q〉.P]]3 def= u!〈{{λx.Q}}3〉.[[P]]3

[[(λx : L.P)V]]3 def= (ν s)(s?(x).[[P]]3 | s!〈{{V}}3〉.0)
Mappings for elided processes and types are homomorphic.

Fig. 8: Encoding of HOπ+ into HOπ.

Proposition 9 (HOπ+ into HOπ: Type Preservation). The encoding from LHOπ+ into
LHOπ (cf. Fig. 8) is type preserving.

Proposition 10 (Operational Correspondence: From HOπ+ to HOπ- Excerpt). Let
P be an HOπ+ process such that Γ;∅;∆ ` P.

1. Completeness: Γ;∆ ` P
`
7−→ ∆′ ` P′ implies

a) If ` = τβ then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 τ
7−→ ∆′′ ` R and (〈Γ〉)3; (〈∆′〉)3 ` [[P′]]3 ≈H ∆′′ ` R,

for some R;
b) If ` = τ and ` , τβ then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 τ

7−→ (〈∆′〉)3 ` [[P′]]3.

2. Soundness: (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 τ
7−→ (〈∆′′〉)3 ` Q implies either

a) Γ;∆ ` P
τ
7−→ ∆′ ` P′ with Q ≡ [[P′]]3

b) Γ;∆ ` P
τβ
7−→ ∆′ ` P′ and (〈Γ〉)3; (〈∆′′〉)3 ` Q

τβ
7−→ (〈∆′′〉)3 ` [[P′]]3.

Proposition 11 (Full Abstraction. From HOπ+ to HOπ). Let P,Q be HOπ+ processes
with Γ;∅;∆1 ` P .� and Γ;∅;∆2 ` Q .�.
Then Γ;∆1 ` P ≈H ∆2 ` Q if and only if (〈Γ〉)3; (〈∆1〉)3 ` [[P]]3 ≈H (〈∆2〉)3 ` [[Q]]3

Using the above propositions, Thms. 3 and 4, and Prop. 1, we derive the following:

Theorem 7 (Encoding HOπ+ into HOπ). The encoding from LHOπ+ into LHOπ (cf.
Fig. 8) is precise. Hence, the encodings from LHOπ+ to LHO and Lπ are also precise.

Second, we define the typed encoding
〈
[[·]]4, (〈·〉)4〉 : HO π̃ → HOπ in Fig. 9. For

simplicity, we give the dyadic case (tuples of length 2); the general case is as expected.
The encoding of HO π̃ satisfies the following properties:

Proposition 12 (HO π̃ into HOπ: Type Preservation). The encoding from LHO π̃ into
LHOπ (cf. Fig. 9) is type preserving.

Proposition 13 (Operational Correspondence: From HO π̃ to HOπ- Excerpt). Let
Γ;∅;∆ ` P.
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Types :

(〈!〈S 1,S 2〉;S 〉)4 def
= !〈(〈S 1〉)4〉; !〈(〈S 2〉)4〉; (〈S 〉)4

(〈!
〈
L
〉
;S 〉)4 def

= !
〈
(〈L〉)4〉; (〈S 〉)4

(〈(C2,C2)→�〉)4 def
=

(
?((〈C1〉)4);?((〈C2〉)4);end

)
→�

(〈(C1,C2)(�〉)4 def
=

(
?((〈C1〉)4);?((〈C2〉)4);end

)
(�

Terms :

[[u!〈u1,u2〉.P]]4 def
= u!〈u1〉.u!〈u2〉.[[P]]4

[[u!
〈
λ(x1, x2).Q

〉
.P]]4 def

= u!
〈
λz.z?(x1).z?(x2).[[Q]]4〉.[[P]]4

[[x (u1,u2)]]4 def
= (ν s)(x s | s!〈u1〉.s!〈u2〉.0)

[[(λ(x1, x2).P) (u1,u2)]]4 def= (ν s)(s?(x1).s?(x2).[[P]]4 | s!〈u1〉.s!〈u2〉.0)

The input cases are defined as the output cases by replacing ! by ?. Elided mappings for processes
and types are homomorphic.

Fig. 9: Encoding of HO π̃ (dyadic case) into HOπ.

1. Completeness: Γ;∆ ` P
`
7−→ ∆′ ` P′ implies

a) If ` = τβ then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4
τβ
7−→

τs
7−→

τs
7−→ (〈∆′〉)4 ` [[P′]]4

b) If ` = τ then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 τ
7−→

τ
7−→

τ
7−→ (〈∆′〉)4 ` [[P′]]4

2. Soundness: (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `
7−→ (〈∆1〉)4 ` P1 implies

a) If ` = τβ then Γ;∆ ` P
τβ
7−→ ∆′ ` P′ and (〈Γ〉)4; (〈∆1〉)4 ` P1

τs
7−→

τs
7−→ (〈∆′〉)4 ` (〈P′〉)4

b) If ` = τ then Γ;∆ ` P
τ
7−→ ∆′ ` P′ and (〈Γ〉)4; (〈∆1〉)4 ` P1

τ
7−→

τ
7−→

τ
7−→ (〈∆′〉)4 ` (〈P′〉)4

Proposition 14 (Full Abstraction: From HO π̃ to HOπ). Let P,Q be HO π̃ processes
with Γ;∅;∆1 ` P .� and Γ;∅;∆2 ` Q .�. Then we have:
Γ;∆1 ` P ≈H ∆2 ` Q if and only if (〈Γ〉)4; (〈∆1〉)4 ` [[P]]4 ≈H (〈∆2〉)4 ` [[Q]]4.

Using the above propositions, Thms. 3 and 4, and Prop. 1, we derive the following:

Theorem 8 (Encoding of HO π̃ into HOπ). The encoding from LHO π̃ into LHOπ (cf.
Fig. 9) is precise. Hence, the encodings from LHO π̃ to LHO and Lπ are also precise.

By combining Thms. 7 and 8, we can extend preciseness to the super-calculus HO π̃+.

9 Concluding Remarks and Related Work

We have thoroughly studied the expressivity of the higher-order π-calculus with ses-
sions, here denoted HOπ. Unlike most previous works, we have carried out our study
in the setting of session types. Types not only delineate and enable encodings; they in-
form the techniques required to reason about such encodings. Our results cover a wide
spectrum of features intrinsic to higher-order concurrency: pure process-passing (first-
and higher-order abstractions), name-passing, polyadicity, linear/shared communica-
tion (cf. Fig. 1). Remarkably, the discipline embodied by session types turns out to be
fundamental to show that all these languages are equally expressive, up to strong typed
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bisimilarities. Indeed, although our encodings may be used in an untyped setting, ses-
sion type information is critical to establish key properties for preciseness, in particular
full abstraction.

Related Work. There is a vast literature on expressiveness for process calculi; we re-
fer to [28] and [29, § 2.3] for surveys. Our study casts known results [32] into a session
typed setting, and offers new encodability results. Our work stresses the view of “encod-
ings as protocols”, namely session protocols which enforce linear and shared disciplines
for names, a distinction little explored in previous works. This distinction enables us to
obtain refined operational correspondence results (cf. Props. 3, 6, 10, 13). We showed
that HO suffices to encode the first-order session calculus [11], here denoted π. To our
knowledge, this is a new result; its significance is stressed by the demanding encodabil-
ity criteria considered, in particular full abstraction up to typed bisimilarities (≈H/≈C,
cf. Props. 4 and 7). This encoding is relevant in a broader setting, as known encod-
ings of name-passing into higher-order calculi [36,4,19,42,44] require limitations in
source/target languages, do not consider types, and/or fail to satisfy strong encodability
criteria (see below). We also showed that HO can encode HOπ and its extension with
higher-order applications (HOπ+). Thus, all these calculi are equally expressive with
fully abstract encodings (up to ≈H/≈C). These appear to be the first results of this kind.

Early works on (relative) expressiveness appealed to different notions of encoding.
Later on, proposals of abstract frameworks which formalise the notion of encoding
and state associated syntactic/semantic criteria were put forward; recent proposals in-
clude [10,8,41,30,31]. Our formulation of precise encoding (Def. 15) builds upon exist-
ing proposals (e.g., [26,10,16]) to account for the session types associated to HOπ.

Early expressiveness studies for higher-order calculi are [39,32]; recent works in-
clude [4,16,17,42,43]. Due to the close relationship between higher-order process cal-
culi and functional calculi, encodings of (variants of) the λ-calculus into the π-calculus
(see, e.g., [33,7,46,1,37]) are also related. Sangiorgi’s encoding of the higher-order
π-calculus into the π-calculus [32] is fully abstract with respect to reduction-closed,
barbed congruence. We have shown in § 7.2 that the analogue of Sangiorgi’s encoding
for the session typed setting also satisfies full abstraction (up to ≈H/≈C, cf. Prop. 6). A
basic form of input/output types is used in [35], where the encoding in [32] is casted in
the asynchronous setting, with output and applications coalesced in a single construct.
Building upon [35], a simply typed encoding for synchronous processes is given in [36];
the reverse encoding (i.e., first-order communication into higher-order processes) is also
studied for an asynchronous, localised π-calculus (only the output capability of names
can be sent around). The work [34] studies hierarchies for calculi with internal first-
order mobility and with higher-order mobility without name-passing (similarly as the
subcalculus HO). The hierarchies are defined according to the order of types needed
in typing. Via fully abstract encodings, it is shown that that name- and process-passing
calculi with equal order of types have the same expressiveness.

Other related works are [4,19,42,17]. The paper [4] gives a fully abstract encod-
ing of the π-calculus into Homer, a higher-order calculus with explicit locations, local
names, and nested locations. The paper [19] presents a reflective calculus with a “quot-
ing” operator: names are quoted processes and represent the code of a process; name-
passing is then a way of passing the code of a process. This reflective calculus can
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encode both first- and higher-order π-calculus. Building upon [40], the work [42] stud-
ies the (non)encodability of the untyped π-calculus into a higher-order π-calculus with
a powerful name relabelling operator, which is essential to encode name-passing. The
paper [44] defines an encoding of the (untyped) π-calculus without relabeling. This en-
coding is quite different from the one in § 7.1: in [44] names are encoded using polyadic
name abstractions (called pipes); guarded replication enables infinite behaviours. While
our encoding satisfies full abstraction, the encoding in [44] does not: only divergence-
reflection and operational correspondence (soundness and completeness) properties are
established. Soundness is stated up-to pipe-bisimilarity, an equivalence tailored to the
encoding strategy; the authors of [44] describe this result as “weak”.

A core higher-order calculus is studied in [17]: it lacks restriction, name passing,
output prefix, and replication/recursion. Still, this subcalculus of HO is Turing equiv-
alent. The work [16] extends this core calculus with restriction, output prefix, and
polyadicity; it shows that synchronous communication can encode asynchronous com-
munication, and that process passing polyadicity induces an expressiveness hierarchy.
The paper [43] complements [16] by studying the expressivity of second-order pro-
cess abstractions. Polyadicity is shown to induce an expressiveness hierarchy; also, by
adapting the encoding in [32], process abstractions are encoded into name abstractions.
In contrast, here we give a fully abstract encoding of HO π̃+ into HO that preserves
session types; this improves [16,43] by enforcing linearity disciplines on process be-
haviour. The focus of [16,42,43,44] is on untyped, higher-order processes; they do not
address communication disciplined by (session) type systems.

Within session types, the works [6,5] encode binary sessions into a linearly typed π-
calculus. While [6] gives an encoding of π into a linear calculus (an extension of [1]), the
work [5] gives operational correspondence (without full abstraction) for the first- and
higher-order π-calculi into [13]. By the result of [6], HOπ+ is encodable into the linearly
typed π-calculi. The syntax of HOπ is a subset of that in [22,23]. The work [22] develops
a higher-order session calculus with process abstractions and applications; it admits the
type U = U1 → U2 . . .Un → � and its linear type U1 which corresponds to Ũ→� and
Ũ(� in a super-calculus of HOπ+ and HO π̃. Our results show that the calculus in [22] is
not only expressed but also reasoned in HO via precise encodings (with a limited form
of arrow types: C→� and C(�). The recent work [25] studies two encodings: from
PCF with an effect system into a session-typed π-calculus, and its reverse. The reverse
encoding is used to implement session channel passing in Concurrent Haskell. In future
work we plan to use the core calculi studied in this paper to implement higher-order
communication efficiently into Concurrent Haskell without losing its expressiveness.
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References

1. M. Berger, K. Honda, and N. Yoshida. Sequentiality and the π-calculus. In Proc. TLCA’01,
volume 2044 of LNCS, pages 29–45, 2001.

2. G. Bernardi, O. Dardha, S. J. Gay, and D. Kouzapas. On duality relations for session types.
In Prof. of TGC, volume 8902 of LNCS, pages 51–66. Springer, 2014.

3. V. Bono and L. Padovani. Typing copyless message passing. LMCS, 8(1), 2012.
4. M. Bundgaard, T. T. Hildebrandt, and J. C. Godskesen. A cps encoding of name-passing in

higher-order mobile embedded resources. Theor. Comput. Sci., 356(3):422–439, 2006.
5. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In Proc. of PPDP’12,

pages 139–150. ACM, 2012.
6. R. Demangeon and K. Honda. Full abstraction in a subtyped pi-calculus with linear types.

In CONCUR, volume 6901 of LNCS, pages 280–296. Springer, 2011.
7. Y. Fu. Variations on mobile processes. Theor. Comput. Sci., 221(1-2):327–368, 1999.
8. Y. Fu and H. Lu. On the expressiveness of interaction. Theor. Comput. Sci., 411(11-

13):1387–1451, 2010.
9. S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. J. Funct.

Program., 20(1):19–50, 2010.
10. D. Gorla. Towards a unified approach to encodability and separation results for process

calculi. Inf. Comput., 208(9):1031–1053, 2010.
11. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for

structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
22–138. Springer, 1998.

12. K. Honda and N. Yoshida. On reduction-based process semantics. TCS, 151(2):437–486,
1995.

13. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus. TOPLAS,
21(5):914–947, Sept. 1999.
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15. D. Kouzapas, J. A. Pérez, and N. Yoshida. Full version of this paper. Technical report,
Imperial College / Univ. of Groningen, 2015. http://arxiv.org/abs/1502.02585.

16. I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness of polyadic and
synchronous communication in higher-order process calculi. In ICALP, volume 6199, pages
442–453, 2010.
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