
On the Undecidability of
Asynchronous Session Subtyping‹

Julien Lange and Nobuko Yoshida

Imperial College London, UK

Abstract. Asynchronous session subtyping has been studied extensively
in [9, 10, 28–31] and applied in [23, 32, 33, 35]. An open question was
whether this subtyping relation is decidable. This paper settles the ques-
tion in the negative. To prove this result, we first introduce a new sub-
class of two-party communicating finite-state machines (CFSMs), called
asynchronous duplex (ADs), which we show to be Turing complete. Sec-
ondly, we give a compatibility relation over CFSMs, which is sound and
complete wrt. safety for ADs, and is equivalent to the asynchronous
subtyping. Then we show that the halting problem reduces to check-
ing whether two CFSMs are in the relation. In addition, we show the
compatibility relation to be decidable for three sub-classes of ADs.

1 Introduction

Session types [22,24,34] specify the expected interaction patterns of concurrent
systems and can be used to automatically determine whether communicating
processes interact correctly with other processes. A crucial theory in session types
is subtyping which makes the typing discipline more flexible and therefore easier
to integrate in real programming languages and systems [1]. The first subtyping
relations for session types targeted synchronous communications [6,7,18,19], by
allowing subtypes to make fewer selections and offer more branches. More recent
relations treat asynchronous (buffered) communications [9, 10, 12, 13, 16, 28–31].
They include synchronous subtyping and additionally allow an optimisation by
message permutations where outputs can be performed in advance without af-
fecting correctness with respect to the delayed inputs (there are two buffers per
session). Only the relative order of outputs (resp. inputs) needs to be preserved
to avoid communication mismatches. The asynchronous subtyping is important
in parallel and distributed session-based implementations [23, 32, 33, 35], as it
reduces message synchronisations without safety violation.

Theoretically, the asynchronous subtyping has been shown to be precise, in
the sense that: (i) if T is a subtype of U , then a process of type T may be used
whenever a process of type U is required and (ii) if T is not a subtype of U ,
then there is a system, requiring a process of type U , for which using a process
of type T leads to an error (e.g., deadlock). The subtyping is also denotationally

‹ See [27] for a full version of this paper (with proofs and additional examples).

0 1

23

?req

!ok

?data

0

1

2

3 4

?req
!ko

?data

!ok

?data

0 1

23 4

!req

!data?ko

?err ?ok

0

1

2

3 4

!req
?ko

!data

?ok

!data

M 1
s ďa Ms — Mc ďa M 1

c

Fig. 1. Asynchronous subtyping and compatibility: examples.

precise taking the standard interpretation of type T as the set of processes typed
by T [9, 16].

An open question in [9, 10, 28–31] was whether the asynchronous subtyping
relation is decidable, i.e., is there an algorithm to decide whether two types are in
the relation. The answer to that question was thought to be positive, see [10, § 7]
and § 6.

Asynchronous subtyping, informally. In this work, we consider session
types in the form of CFSMs [4], along the lines of [3, 14, 15, 25]. This enables
us to characterise the asynchronous subtyping in CFSMs and reduce the unde-
cidability problem to the Turing completeness of CFSMs. Consider a system of
CFSMs consisting of machines Ms (server) and Mc (client) in Figure 1, which
communicate via two unbounded queues, one in each direction. A transition !a
represents the (asynchronous) emission of a message a, while ?a represents the
receptions of a message a from a buffer. For instance, the transition labelled by
!req in Mc says that the client sends a request to the server Ms, later the server
can consume this message from its buffer by firing the transition labelled by
?req . We say that the system pMs,Mcq, i.e., the parallel composition of Ms and
Mc, is safe if (i) the pair never reaches a deadlock and (ii) whenever a message
is sent by one party, it will eventually be received by the other.

The key property of session subtyping is that, e.g., if the system pMs,M
1
cq is

safe and Mc is a subtype of M 1
c, the system pMs,Mcq is also safe. We write ďa

for the asynchronous subtyping relation, which intuitively requires that, if, e.g.,
McďaM

1
c, then Mc is ready to receive no fewer messages than M 1

c and it may
not send more messages than M 1

c. For instance, Mc can receive all the messages
that M 1

c can handle, plus the message err . Observe that Mc is an optimised
version of M 1

c wrt. asynchrony: the output action !data is performed in advance
of the branching. Thus in the system pMs,Mcq, when both machines are in state
2 (respectively), both queues contain messages. Instead, in the system pMs,M

1
cq,

it is never the case that both queues are non-empty. Note that anticipating the
sending of data in Mc does not affect safety as it is sent in both branches of M 1

c.

Our approach. Using CFSMs, we give the first automata characterisation of
asynchronous subtyping and the first proof of its undecidability. To do this, we

2

introduce a new sub-class of CFSMs, called asynchronous duplex (AD) which let
us study directly the relationship between safety and asynchronous subtyping in
CFSMs. Our development consists of the following steps:

Step 1. In § 2, we define a new sub-class of (two-party) CFSMs, called asyn-
chronous duplex (AD), which strictly includes half-duplex (HD) systems [8].
Step 2. In § 3, we introduce a compatibility relation (—) for CFSMs which
is sound and complete wrt. safety in AD CFSMs, i.e., an AD system has no
deadlocks nor orphan messages if and only if its machines are —-related.
Step 3. Adapting the result of [17], we show in § 4 that AD systems are Turing
complete, hence membership of — is generally undecidable.
Step 4. In § 5, we show that the —-relation for CFSMs is equivalent to the
asynchronous subtyping for session types, thus establishing that the latter is
also undecidable.

Throughout the paper, we also show that our approach naturally encompasses
the correspondence between synchronous subtyping and safety in HD systems.

In § 4.1, we show that the —-relation is decidable for three sub-classes of
CFSMs (HD, alternating [21], and non-branching) which are useful to specify
real-world protocols. In § 6, we discuss related works and conclude.

2 A new class of CFSMs: Asynchronous duplex systems

This section develops Step 1 by defining a new sub-class of CFSMs, called
asynchronous duplex, which characterises machines that can only simultaneously
write on their respective channels if they can only do so for finitely many consec-
utive send actions before executing a receive action. In § 2.1, we recall definitions
about CFSMs, then we give the definition of safety. In § 2.2, we introduce the
sub-class of AD systems and give a few examples of such systems.

2.1 CFSMs and their properties

Let A be a (finite) alphabet, ranged over by a, b, etc. We let ω, π, and ϕ range
over words in A˚ and write ¨ for the concatenation operator. The set of actions
is Act “ t!, ?u ˆ A, ranged over by `, !a represents the emission of a message
a, while ?a represents the reception of a. We let ψ range over Act˚ and define

dirp!aq
def
“ ! and dirp?aq

def
“ ?.

Since our ultimate goal is to relate CFSMs and session types, we only consider
deterministic communicating finite-state machines, without mixed states (i.e.,
states that can fire both send and receive actions) as in [14,15].

Definition 2.1 (Communicating machine). A (communicating) machine M
is a tuple pQ, q0, δq where Q is the (finite) set of states, q0 P Q is the ini-
tial state, and δ P Q ˆ Act ˆ Q is the transition relation such that @q, q1, q2 P
Q : @`, `1 P Act : (1) pq, `, q1q, pq, `1, q2q P δ ùñ dirp`q “ dirp`1q, and (2)
pq, `, q1q, pq, `, q2q P δ ùñ q1 “ q2.

3

We write q
`
ÝÑ q1 for pq, `, q1q P δ, omit the label ` when unnecessary, and

write ÝÑ˚ for the reflexive transitive closure of ÝÑ.

Given M “ pQ, q0, δq, we say that q P Q is final, written q Û, iff @q1 P Q :
@` P Act : pq, `, q1q R δ. A state q P Q is sending (resp. receiving) iff q is not final
and @q1 P Q : @` P Act : pq, `, q1q P δ : dirp`q “ ! (resp. dirp`q “ ?). The dual of
M , written M , is M where each sending transition pq, !a, q1q P δ is replaced by
pq, ?a, q1q, and vice-versa for receive transitions, e.g., Ms “M 1

c in Figure 1.

We write q0
`1¨¨¨`k
ÝÝÝÝÑ qk iff there are q1, . . . , qk´1 P Q such that qi´1

`i
ÝÑ qi for

1 ď i ď k. Given a list of messages ω “ a1 ¨ ¨ ¨ ak (k ě 0), we write ?ω for the

list ?a1 ¨ ¨ ¨?ak and !ω for !a1 ¨ ¨ ¨!ak. We write q
!
ÝÑ˚ q1 iff Dω P A˚ : q

!ω
ÝÑ q1 and

q
?
ÝÑ˚ q1 iff Dω P A˚ : q

?ω
ÝÑ q1 (note that ω may be empty, in which case q “ q1).

Definition 2.2 (System). A system S “ pM1,M2q is a pair of machines Mi “

pQi, q0i , δiq with i P t1, 2u.

Hereafter, we fix S “ pM1,M2q and assume Mi “ pQi, q0i , δiq for i P t1, 2u

such that Q1 X Q2 “ H. Hence, for q, q1 P Qi, we can write q
`
ÝÑ q1 to refer

unambiguously to δi.
We let λ range over the set tij!a | i ‰ j P t1, 2uu Y tij?a | i ‰ j P t1, 2uu

and φ range over (possibly empty) sequences of λ1 ¨ ¨ ¨λk.

Definition 2.3 (Reachable configuration). A configuration of S is a tu-
ple s “ pq1, ω1, q2, ω2q such that qi P Qi, and ωi P A˚. A configuration s1 “

pq11, ω
1
1, q

1
2, ω

1
2q is reachable from s “ pq1, ω1, q2, ω2q, written s

λ
ùñ s1, iff

1. qi
!a
ÝÑ q1i, ω

1
i “ ωi ¨ a, qj “ q1j, and ωj “ ω1j, λ “ ij!a, for i ‰ j P t1, 2u, or

2. qi
?a
ÝÑ q1i, ωj “ a ¨ ω1j, qj “ q1j, and ωi “ ω1i, λ “ ji?a, for i ‰ j P t1, 2u.

We write s ùñ s1 when the label is irrelevant and ùñ˚ for the reflexive and tran-
sitive closure of ùñ.

In Definition 2.3, (1) says that machine Mi puts a message on queue i, to be
received by machine Mj , while (2) says that machine Mi consumes a message
from queue j, which was sent by Mj .

Given a system S, we write s0 for its initial configuration pq01 , ε, q02 , εq and

let RS pSq
def
“ ts | s0 ùñ

˚ su.

Definition 2.4 (Safety). A configuration s “ pq1, ω1, q2, ω2q is a deadlock iff
ω1 “ ω2 “ ε, qi is a receiving state, and qj is either receiving or final for
i ‰ j P t1, 2u. System S satisfies eventual reception iff @s “ pq1, ω1, q2, ω2q P

RS pSq : @i ‰ j P t1, 2u : ωi P a ¨ A˚ ùñ @q1j P Qj : qj
!
ÝÑ˚ q1j ùñ q1j

!
ÝÑ˚

?a
ÝÑ.

S is safe iff (i) for all s P RS pSq, s is not a deadlock, and (ii) S satisfies
eventual reception (i.e., every sent message is eventually received).

Lemma 2.1 below shows that safety implies progress and that a configuration
with at least one empty buffer is always reachable.

4

0

12

!a

!a

?b
0

1

!b?a

0

12

!b

?d

!a

?c

0

12

!d

?b

!c

?a

M1 M2 M̂1 M̂2

Fig. 2. Examples of AD (left) and non-AD (right) systems.

Lemma 2.1. If S is safe, then for all s “ pq1, ω1, q2, ω2q P RS pSq

1. Either (i) q1 and q2 are final and ω1 “ ω2 “ ε, or (ii) Ds1 P RS pSq : s ùñ s1.
2. Ds1, s2 P RS pSq : s ùñ˚ s1 “ pq1, ε, q

1
2, ω2 ¨ ω

1
2q ^ s ùñ

˚ s2 “ pq21 , ω1 ¨ ω
2
1 , q2, εq.

2.2 Asynchronous duplex systems

We define asynchronous duplex systems, a sub-class of two-party CFSMs. Below
we introduce a predicate which guarantees that when a machine is in a given
state, it cannot send infinitely many messages without executing receive actions
periodically. This predicate mirrors one of the premises of the defining rules
of the asynchronous subtyping (ďa), cf. Lemma 5.1. Given M “ pQ, q0, δq and
q P Q, we define finpqq ðñ finpq,Hq, where

finpq,Rq
def
“

$

’

&

’

%

true if q
?a
ÝÑ

@q1 P tq1 | q
!a
ÝÑ q1u : finpq1, RY tquq if q

!a
ÝÑ ^ q R R

false otherwise

Definition 2.5 (Asynchronous duplex). A system S “ pM1,M2q is Asyn-
chronous Duplex (AD) if for each s “ pq1, ω1, q2, ω2q P RS pSq : ω1 ‰ ε ^ ω2 ‰

ε ùñ finpq1q ^ finpq2q.

AD systems are a strict extension of half-duplex systems [8]: S is half-duplex
(HD) if for all pq1, ω1, q2, ω2q P RS pSq : ω1 “ ε _ ω2 “ ε. AD requires that for
any reachable configuration either (i) at most one channel is non-empty (i.e., it is
a half-duplex configuration) or (ii) each machine is in a state where the predicate
finp q holds, i.e., each machine will reach a receiving state after firing finitely
many send actions. The AD restriction is reasonable for real-word systems. It
intuitively amounts to say that if two parties are simultaneously sending data to
each other, they should both ensure that they will periodically check what the
other party has been sending.

Example 2.1. Consider the machines in Figure 2. The system pM1,M2q is AD:
finp q holds for each state in M1 and M2. The system pM̂1, M̂2q is not AD. For
instance, the configuration p0, a, 0, bq is reachable but we have finp0q for both
initial states of M̂1 and M̂2. Observe that both systems are safe, cf. Definition 2.4.

5

3 A compatibility relation for CFSMs

This section develops Step 2: we introduce a binary relation — on CFSMs which
is sound and complete wrt. safety (cf. Definition 2.4) for AD systems. That is
M1—M2 holds if and only if pM1,M2) is a safe asynchronous duplex system.

Definition 3.1 (Compatibility). Let Mi “ pQi, q0i , δiq for i P t1, 2u such that
Q1 XQ2 “ H, and let p P Q1, q P Q2, and π P A˚.

The compatibility relation is defined as follows: π § p—0 q always holds, and
if k ě 0, then π § p—k`1 q holds iff

1. if pÛ then π “ ε and q Û

2. if p
?a
ÝÑ then

(a) if π “ ε then, q
!b
ÝÑ and @b P A : q

!b
ÝÑ q1 ùñ pp

?b
ÝÑ p1 ^ ε § p1—k q

1q,

(b) if π “ b ¨ π1 then, Dp1 P Q1 : p
?b
ÝÑ p1 ^ π1 § p1—k q

3. if p
!a
ÝÑ p1 then either

(a) π “ ε and Dq1 P Q2 : q
?a
ÝÑ q1 ^ ε § p1—k q

1, or

(b) finppq, finpqq, and @q1 P Q2 : @π1 P A˚ : q
!π1

ÝÝÑ q1, there exist π2 P A˚

and q2 P Q2 such that q1
!π2

ÝÝÑ
?a
ÝÑ q2 and π ¨ π1 ¨ π2 § p1—k q

2

Define π § p— q
def
“ @k P N : π § p—k q and M1—M2

def
“ ε § q01 — q02 .

The relation M1—M2 checks that the two machines are compatible by exe-
cutingM1 while recording whatM2 asynchronously sends toM1 in the π message
list. The definition first differentiates the type of state p:

Final. Case (1) says that if M1 is in a final state, then M2 must also be in a
final state and π must be empty (i.e., M1 has emptied its input buffer).
Receiving. Case (2) says that if M1 is in a receiving state, then either π is
empty and M1 must be ready to receive any message sent by M2, cf. case (2a);
otherwise, case (2b) must apply: M1 must consume the head of the message list
π, this models the FIFO consumption of messages sent by M2.
Sending. Case (3) says that if M1 is ready to send a, then either M2 must be
able to receive a directly, cf. case (3a). Otherwise, finppq and finpqq must hold
so that case (3b) applies. M2 may delay the reception of a by sending messages
(which are recorded in π1 ¨ π2). Whichever sending path M2 chooses, it must
always eventually receive a.

We write —s for the synchronous compatibility relation, i.e., Definition 3.1 with-
out cases (2b) and (3b).

Example 3.1. (1) Recall the machines from Figure 1, we have Ms—Mc, in par-
ticular: ε § 0— 0 and data § 2— 0. The latter relation represents the fact that Mc

and Ms have exchanged the messages req and ko, but Ms has yet to process the
reception of data. Observe that we also have M 1

s—M
1
c and M 1

s—sM
1
c.

(2) Consider the systems in Figure 2. We have M1—M2 and M̂1ffi M̂2. The
latter does not hold since both initial states are sending states, but the predicate
finp q does not hold for either state, e.g., we have finp0, t0uq in M̂1.

6

Soundness of —. We show the soundness of the —-relation wrt. safety. More
precisely we show that if M1—M2 holds, then the system pM1,M2q is a safe
AD system. We first give two auxiliary definitions which are convenient to relate
safety with the definition of —. Fixing M “ pQ, q0, δq, the predicate Apq, ωq
asserts when a list of messages ω is “accepted” from a state q P Q, which implies
eventual reception of the messages in ω. The function W pq, ωq is used to connect
a configuration to a triple in the —-relation.

Definition 3.2. Let q P Q and ω P A˚, we define

Apq, ωq ðñ

#

@q1 : q
!
ÝÑ˚ q1 : Dq̂ : q1

!
ÝÑ˚

?a
ÝÑ q̂ ^Apq̂, ω1q if ω “ a ¨ ω1

true if ω “ ε

Given q P Q and ω P A˚, the predicate Apq, ωq is true iff the list of messages
ω can always be consumed entirely from state q, for all paths reachable from q
by send actions. Note the similarity with case (3b) of Definition 3.1.

Definition 3.3. Let q P Q and ω P A˚, W pq, ωq Ď A˚ ˆQ is the set such that

pπ, q̂q P W pq, ωq ðñ

#

pϕ, q̂q P W pq1, ω1q if ω “ a ¨ ω1, q
!π1
¨?a

ÝÝÝÝÑ q1, π “ π1 ¨ ϕ
π “ ε^ q̂ “ q if ω “ ε

Each pair pπ, q̂q in W pq, ωq represents a state q̂ P Q reachable directly after
having consumed the list of messages ω, while π is the list of messages that are
sent along a path between q and q̂. For example, consider Mc from Figure 1.
We have Ap0, ko ¨ ko ¨ errq and W p0, ko ¨ ko ¨ errq “ tpreq ¨ data ¨ req ¨ data, 3qu;
instead, Ap0, ok ¨ koq and Ap4, koq.

Lemma 3.1. Let M “ pQ, q0, δq, q P Q and ω P A˚. If Apq, ωq and @pϕ, q1q P
W pq, ωq : Apq1, aq then Apq, ω ¨ aq.

Lemma 3.1, shown by induction on the size of ω, is useful in the proof of the
main soundness lemma below.

Lemma 3.2. Let S “ pM1,M2q. If M1—M2, then for all s “ pp, ω1, q, ω2q P

RS pSq the following holds: (1) s is not a deadlock, (2) Apq, ω1q, (3) @pϕ, q1q P
W pq, ω1q : ω2 ¨ ϕ § p— q1, and (4) App, ω2q.

Lemma 3.2 states that for any configuration s: (1) s is not a deadlock; (2)
M2 can consume the list ω1 from state q; (3) for each state q1, reached after
consuming ω1, the relation ω2 ¨ ϕ § p— q1 holds, where ϕ contains the messages
that M2 sent while consuming ω1; and (4) M1 can consume the list ω2 from state
p. The proof of Lemma 3.2 is by induction on the length of an execution from
s0 to s, then by case analysis on the last action fired to reach s. Lemma 3.1 is

used for the case s0 ùñ
˚ 12!a
ùùñ s, i.e., to show that Apq, ω1 ¨ aq holds.

Lemma 3.3. Let S “ pM1,M2q. If for all s “ pq1, ω1, q2, ω2q P RS pSq :
Apq1, ω1q and Apq2, ω2q, then S satisfies eventual reception.

7

Lemma 3.3 simply shows a correspondence between eventual reception and
Definition 3.2. The proof essentially shows that if Apqi, ωjq holds, then we can
always reach a configuration where the list ωj has been entirely consumed.

Finally, we state our final soundness results. Theorem 3.1 is a consequence of
Lemmas 2.1, 3.2, 3.3, and 3.4. Theorem 3.2 essentially follows from Theorem 3.1
and the fact that —s Ď —.

Theorem 3.1. If M1—M2, then pM1,M2q is a safe AD system.

Theorem 3.2. If M1—sM2, then pM1,M2q is a safe HD system.

Completeness of —. Our completeness result shows that for any safe asyn-
chronous duplex system S “ pM1,M2q, M1—M2 holds. Below we show that
any reachable configuration of S whose first queue is empty can be mapped to
a triple that is in the relation of Definition 3.1.

Lemma 3.4. Let S be safe and AD, then @pp, ε, q, ωq P RS pSq : ω § p— q.

The proof of Lemma 3.4 is by induction on the kth approximation of —, i.e.,
assuming that ω § p—k q holds, we show that ω § p—k`1 q holds. The proof is a
rather straightforward case analysis on the type of p and whether or not ω “ ε.

Theorem 3.3. If pM1,M2q is a safe AD system, then M1—M2.

Proof. Take pq01 , ε, q02 , εq P RS pSq, ε § q01 — q02 holds by Lemma 3.4. ˝

Following a similar (but simpler) argument, we have Theorem 3.4 below.

Theorem 3.4. If pM1,M2q is a safe HD system, then M1—sM2.

Theorem 3.5. If M1—M2 (resp. M1—sM2), then M2—M1 (resp. M2—sM1).

Proof. We show the — part. By Theorem 3.1, pM1,M2q is safe, hence by defini-
tion of safety, pM2,M1q is also safe. Thus by Theorem 3.3, we have M2—M1. ˝

4 Undecidability of the —-relation

This section addresses Step 3: we show that the problem of checking M1—M2

is undecidable. We show that AD systems are Turing complete, then show that
the halting problem reduces to deciding whether or not a system is safe.

Preliminaries. We adapt the relevant part of the proof of Finkel and McKen-
zie [17] to demonstrate that the problem of deciding whether two machines are
—-related is undecidable. For this we need to show that there is indeed a Turing
machine encoding that is an AD system.

Definition 4.1 (Turing machine [17]). A Turing machine (T.M.) is a tuple
TM “ pV,A, Γ, t0, B, γq where V is the set of states, A is the input alphabet,
Γ is the tape alphabet, t0 P V is the initial state, B is the blank symbol, and
γ : V ˆ Γ Ñ V ˆ Γ ˆ tleft , rightu is the (partial) transition function.

8

Assume TM accepts an input ω P A˚ iff TM halts on ω, and if TM does not
halt on ω, then TM eventually moves its tape head arbitrarily far to the right.

Definition 4.2 (Configuration of a T.M. [17]). A configuration of the Tur-
ing machine TM is a word ω1tω2# with ω1ω2 P A˚, t P V , and # R Γ .

The word ω1tω2# represents TM in state t P V with the tape content set to
ω1ω2 and the rest blank, and TM ’s head positioned under the first symbol to
the right of ω1. Symbol # is a symbol used to mark the end of the tape.

T.M. encoding. We present an AD system which encodes a Turing machine
TM “ pV,A, Γ, t0, B, γq with initial tape ω into a system of two CFSMs as in [17].

We explain the T.M. encoding. The two channels represent the tape of the
Turing machine, with a marker # separating the two ends of the tape. Each
machine represents the control of the Turing machine as well as a transmitter
from a channel to another. The head is represented by writing the current control
state t P V on the channel. Whenever a machine receives a message that is
t P V , then it proceeds with one execution step of the Turing machine. Any
other symbol is simply consumed from one channel and sent on the other.

The only difference wrt. [17] is that we construct machines which are deter-
ministic and which do not contain mixed states, cf. Definition 2.1. We also do not
require the machines to be identical hence we encode the initial tape content as
a sequence of transitions in the first machine. These slight modifications do not
affect the rest of Finkel and McKenzie’s proof in [17]. The system consists of two
CFSMs Ai “ pQi, q0i , δiq, i P t1, 2u over the alphabet A Y t#u. The definitions
of δi are given below, the sets Qi are induced by δi. The transition relation δ1
consists in a sequence of transitions from the initial state q01 to a central state
q and a number of elementary cycles around state q, cf. Figure 3; while δ2 is like
δ1 without the initial sequence of transitions and q “ q02 . The initial sequence
of transitions in δ1 is of the form:

q01
!t0
ÝÝÑ q1

!a1
ÝÝÑ ¨ ¨ ¨ qk

!ak
ÝÝÑ q such that a1 ¨ ¨ ¨ ak “ ω ¨#

Both δ1 and δ2 contain six types of elementary cycles given in Figure 3. For
each type of cycle, we illustrate the behaviour of the system from the point view
of machine A2 by giving the type of configuration this cycle applies to as well
the configuration obtained after A2 has finished executing the cycle.

When computing each δi and Qi from the description above, we assume that
each “anonymous” state maintain its own identity, while “named” states, i.e., q,
rt, rx and rtx from Figure 3, are to be identified and redundant transitions to be
removed. This ensures that each machine so obtained is deterministic. Besides
this determinisation, the only changes from [17] concerns the copying cycles. (1)
Each copying cycle is expanded to receive (then send) two symbols so to ensure
the absence of mixed states once merged with left head motion cycles. (2) We
add a cycle which only re-emits # symbols (to make up for absence of it in the
first reception of the copying cycles). (3) We add another blank insertion cycle
to deal with the special case where the head is followed by the # symbol.

9

Blank insertion cycles (1). For each t P
V , there is a cycle of the form:

q

rt

?t

?#

!t

!B
!#

pq1, t ¨# ¨ ω1, q, ω2q

ùñ
˚
pq1, ω1, q, ω2 ¨ t ¨ B ¨#q

Right head motion cycles. For each
pt, a, t1, bq P V ˆ Γ ˆ V ˆ Γ such that
γpt, aq “ pt1, b, rightq, there is a cycle of
the form:

q

rt

?t

?a

!b
!t 1

pq1, t ¨ a ¨ ω1, q, ω2q

ùñ
˚
pq1, ω1, q, ω2 ¨ b ¨ t

1
q

Blank insertion cycles (2). For each x P Γ and t P V there is a cycle of the form:

q

rx rtx

?x

?t ?#
!x

!t!B!#

pq1, x ¨ t ¨# ¨ ω1, q, ω2q ùñ
˚
pq1, ω1, q, ω2 ¨ x ¨ t ¨ B ¨#q

Left head motion cycles. For each px, t, a, t1, bq P Γ ˆ V ˆ Γ ˆ V ˆ Γ such that
γpt, aq “ pt1, b, leftq, there is a cycle of the form:

q

rx rtx

?x

?t ?a

!t 1

!x!b

pq1, x ¨ t ¨ a ¨ ω1, q, ω2q ùñ
˚
pq1, ω1, q, ω2 ¨ t

1
¨ x ¨ bq

Copying cycles. For all x P Γ and y P
Γ Y t#u, there is a cycle of the form:

q

rx

?x

?y
!x

!y

pq1, x ¨ y ¨ ω1, q, ω2q

ùñ
˚
pq1, ω1, q, ω2 ¨ x ¨ yq

Marker transmission cycle. There
is one cycle specified by:

q

?#

!#

pq1,# ¨ ω1, q, ω2q

ùñ
˚
pq1, ω1, q, ω2 ¨#q

Fig. 3. Definition of δi (elementary cycles).

Definition 4.3 (Turing machine encoding [17]). Given a Turing machine
TM and an initial tape content ω, we write SpTM , ωq for the system pA1, A2q

with each Ai constructed as described above.

The rest follows the proof of [17]. Here we recall informally the final result:
any execution of a Turing machine TM with initial word ω can be simulated by
SpTM , ωq, and vice-versa.

Lemma 4.1. For any TM and word ω, SpTM , ωq “ pA1, A2q is AD.

Proof. Take Ai “ pQi, q0i , δiq, we show @q P Qi : finpqq, which implies that the
system is AD. If there was q P Qi such that finpqq, there would a cycle of send
actions only, the construction of Ai clearly prevents this (see Figure 3). ˝

Theorem 4.1 (Undecidability of —). Given two machines M1 and M2, it
is generally undecidable whether M1—M2 holds.

10

The proof of Theorem 4.1 shows that the following statements are equivalent:
(1) TM accepts ω, (2) SpTM , ωq “ pA1, A2q is not safe, and (3) pA1—A2q.
We show (1) ñ (2) by Lemma 2.1, (2) ñ (1) from the definition of safety, and
(2) ô (3) by Theorems 3.1 and 3.3 and the fact that pA1, A2q is AD.

4.1 Decidable sub-classes of CFSMs

We now identify three sub-classes of CFSMs for which the—-relation is decidable.
We say that M1—M2 is decidable iff it is decidable whether or not M1—M2

holds. The first sub-class is HD systems: HD is a decidable property and safety
is decidable within that class [8], hence — is decidable in HD and it is equivalent
to —s within HD. The second sub-class is taken from the CFSMs literature and
the third is limited to systems that contain at least one machine that has no
branching. We define the last two sub-classes below.

The following definition is convenient to formalise our decidability results.
Given Mi “ pQi, q0i , δiq for i P t1, 2u, the derivation tree of a triple π § p— q is a
tree whose nodes are labelled by elements of A˚ˆQ1ˆQ2 such that the children
of a node are exactly the triple generated by applying one step of Definition 3.1.

For example, consider the machines M1 and M2 from Figure 2, we have a
tree which consists of a unique (infinite) branch:
ε § 0— 0 ÝÑ b § 1— 0 ÝÑ bb § 2— 0 ÝÑ b § 0— 0 ÝÑ bb § 1— 0 ÝÑ bbb § 2— 0 ¨ ¨ ¨

Lemma 4.2. The derivation tree of π § p— q is finitely branching.

Lemma 4.2 follows from the fact that each machine is finitely branching and
the predicate finp q guarantees finiteness for case (3b) of Definition 3.1.

Alternating machines. Alternating machines were introduced in [21] where
it is shown that the progress problem (corresponding to our notion of safety)
is decidable for such systems. A machine is alternating if each of its sending
transition is followed by a receiving transition, e.g., Ms and M 1

s in Figure 1 are
alternating, as well as the specification of the alternating-bit protocol in [21].
Observe that alternating machines form AD systems.

Theorem 4.2. If M1 and M2 are alternating, then M1—M2 is decidable.

The proof simply shows that the π part of the relation (cf. Definition 3.1) is
bounded by 1, by induction on the depth of the derivation tree.

Non-branching machines. Given M “ pQ, q0, δq we say that M is non-
branching if each of its state has at most one successor, i.e., if @q P Q : |δpqq| ď 1.
For example, M 1

s in Figure 1 is non-branching. Non-branching machines are used
notably in [33, 35] to specify parallel programs which can be optimised through
asynchronous message permutations.

Theorem 4.3. Let M1 and M2 be two machines such that at least one of them
is non-branching, then M1—M2 is decidable.

11

The proof relies on the fact that (i) the derivation tree is finitely branching
(Lemma 4.2), hence there is a semi-algorithm to checker whether pM1—M2q

and (ii) over any infinite branches we can find two nodes of the form c “

πn § p— q and c1 “ πm § p— q, with n ď m. If n is large enough, this implies that
the relation holds (i.e., the branch is indeed infinite).

5 Correspondence between compatibility and subtyping

We show a precise correspondence between the asynchronous subtyping for ses-
sion types and the —-relation for CFSMs, i.e., Step 4. We first recall the syntax
of session types and as well as the definition of asynchronous subtyping.

Session types and subtyping. The syntax of session types is given by

T, U :“ end | ‘iPI !ai. Ti | &iPI?ai. Ti | recx.T | x

where I ‰ H is finite and ai ‰ aj for i ‰ j. Type end indicates the end of a
session. Type ‘iPI !ai. Ti specifies an internal choice, indicating that the program
chooses to send one of the ai messages, then behaves as Ti. Type &iPI?ai. Ti
specifies an external choice, saying that the program waits to receive one of
the ai messages, then behaves as Ti. Types recx.T and x are used to specify
recursive behaviours. We only consider closed types, i.e., without free variables.

Since our goal is to relate a binary relation defined on CFSMs to a binary
relation on session types, we first introduce transformations from one to another.

Definition 5.1. Given a type T , we write MpT q for the CFSM induced by T .
Given a CFSM M , we write T pMq for the type constructed from M .

We assume the existence of two algorithms such that T “ T pMpT qq and
M “ MpT pMqq for any type T and machine M . These algorithms are rather
trivial since each session type induces a finite automaton, see [15] for instance.

We write T for the dual of type T , i.e., end “ end, x “ x, recx.T “ recx.T ,
‘iPI !ai. Ti “ &iPI?ai. T i, and &iPI?ai. Ti “ ‘iPI !ai. T i.

Hereafter, we write ďa for the relation in [9] (abstracting away from carried
types) which we recall below. An asynchronous context [9] is defined by

A :“ r sn | &iPI?ai.Ai

We write Ar snPN to denote a context with holes indexed by elements of N and
ArTnsnPN to denote the same context when the hole r sn has been filled with Tn.

The predicate & P T holds if it can be derived from the following rules:

& P &iPI?ai. Ti

@i P I : & P Ti
& P ‘iPI !ai. Ti

& P T
& P recx.T

& P T holds whenever T always eventually performs a receive action, i.e., it
cannot loop on send actions only. It is the counterpart of the predicate finp q

for CFSMs, cf. Lemma 5.1.

12

Definition 5.2 (ďa [9]). The asynchronous subtyping, ďa, is the largest rela-
tion that contains the rules:1

@i P I : Tiďa Ui

‘iPI !ai. Tiďa‘iPIYJ !ai. Ui
[sel]

@i P I : Tiďa Ui

&iPIYJ?ai. Tiďa &iPI?ai. Ui
[bra]

@i P I : Tiďa ArUni snPN & P Ti

‘iPI !ai. Tiďa Ar‘iPIYJn !ai. U
n
i s
nPN

[async]
endďa end

[end]

The double line in the rules indicates that the rules should be interpreted coin-
ductively. We are assuming an equi-recursive view of types.

Rule [sel] lets the subtype make fewer selections than its supertype, while rule
[bra] allows the subtype to offer more branches. Rule [async] allows safe permu-
tations of actions, by which a protocol can be refined to maximise asynchrony
without violating safety. Note that the synchronous subtyping ďs [11, 19, 20]
is defined as Definition 5.2 without rule [async], hence ďs Ď ďa. In Figure 1,
T pM 1

sqďs T pMsq, T pM 1
sqďa T pMsq, and T pMcqďa T pM 1

cq.
The correspondence between — (Definition 3.1) and ďa (Definition 5.2) can

be understood as follows. Case (1) of Definition 3.1 corresponds to rule [end].
Case (2a) corresponds to rule [bra]. Case (3a) corresponds to rule [sel]. Cases (2b)
and (3b) together correspond to rule [async].

Correspondences. We show that — on CFSMs and ďa on session types are
equivalent, and, as a consequence, deciding whether two types are ďa-related is
undecidable. We first introduce a few auxiliary lemmas and definitions.

Lemma 5.1. Let M “ pQ, q0, δq and T be a session type.

1. For each q P Q, if finpqq, then & P T pQ, q, δq.
2. If & P T and MpT q “ pQ̂, q, δ̂q, then finpqq.

3. If T “ Ar‘iPI !ai. Uni snPN then & P T .

Lemma 5.1 states the relationship between & P T and finp q (cf. § 2.2).
We write π P A if π is a branch in the context A. Formally, given A and

π P A˚, we define the predicate π P A as follows:

π P A ðñ

#

π “ ε if A “ r s
π “ aj ¨ πj if A “ &iPI?ai.Ai, πj P Aj , with j P I

The next lemma shows that the ďa-relation implies the —-relation.

Lemma 5.2. Let T and U be two session types, such that MpT q “ pQT , qT0 , δ
T q

and MpUq “ pQU , qU0 , δ
U q, then T ďa ArU s ùñ @π P A : π § qT0 — q

U
0 .

1 Note that in [9] rule [async] has a redundant additional premise, & P A, which is
only used to make the application of the rules deterministic.

13

The proof of Lemma 5.2 is by coinduction on the derivation of π § p— q. We
use Lemma 5.1 to show that premise of rule [async] implies that finpqT0 q and
finpqU0 q hold when necessary.

The next lemma shows that the —-relation implies the ďa-relation.

Lemma 5.3. Let Mi “ pQi, q0i , δiq, i P t1, 2u and π “ a1 ¨ ¨ ¨ ak P A˚, for all
p P Q1 and q P Q2, π § p— q ùñ T pQ1, p, δ1q ďa ?a1 ¨ ¨ ¨?ak .rT pQ2, q, δ2qs.

The proof of Lemma 5.3 is by coinduction on the rules of Definition 5.2, using
Lemma 5.1 to match the requirements of the respective relations.

We are now ready to state the final equivalence result.

Theorem 5.1. The relations — and ďa are equivalent in the following sense:

1. Let T1 and T2 be two session types, then T1ďa T2 ùñ MpT1q—MpT2q.
2. Let M1 and M2 be two machines, then M1—M2 ùñ T pM1qďa T pM2q.

Proof. (1) follows from Lemma 5.2, with T1 “ T , T2 “ U , and A “ r s. (2)
follows from Lemma 5.3, with π “ ε, p “ q01 , and q “ q02 . ˝

A consequence of the correspondence between the two relations is that the
—-relation is transitive in the following sense:

Theorem 5.2. If M1—M and M —M2, then M1—M2.

Proof. By Theorem 5.1 we have (1) M1—M ðñ M1ďaM (2) M —M2 ðñ

M ďaM2. Since ďa is transitive [10], we have M1ďaM2. Thus, using Theo-
rem 5.1 again, we have M1ďaM2 ðñ M1—M2. ˝

As a consequence of Theorem 4.1 and Theorem 5.1, we have the undecidabil-
ity of the asynchronous subtyping:

Theorem 5.3 (Undecidability of ďa). Given two session types T1 and T2, it
is generally undecidable whether T1ďa T2 holds.

We state the equivalence between —s and ďs, and the transitivity of —s.

Theorem 5.4. The relations —s and ďs are equivalent in the following sense:

1. Let T1 and T2 be two session types, then T1ďs T2 ùñ MpT1q—sMpT2q.
2. Let M1 and M2 be two machines, then M1—sM2 ùñ T pM1qďs T pM2q.

Theorem 5.5. If M1—sM and M —sM2, then M1—sM2.

Theorem 5.1 together with the soundness and completeness of — wrt. safety
in AD systems (Theorems 3.1 and 3.3) imply a tight relationship between ďa and
session types corresponding to AD systems. A similar correspondence between
ďs and HD systems exists, by Theorems 3.2, 3.4, and 5.4.

14

6 Conclusions and related work

We have introduced a new sub-class of CFSMs (AD), which includes HD, and a
compatibility relation — (resp. —s) that is sound and complete wrt. safety within
AD (resp. HD) and equivalent to asynchronous (resp. synchronous) subtyping.
Our results in § 4.1 suggest that — is a convenient basis for designing safety
checking algorithms for some sub-classes of CFSMs. Given the results in the
present paper, we plan to study bounded approximations of — that can be used
for session typed applications. Such approximations would make asynchronous
subtyping available for real-world programs and thus facilitate the integration
of flexible session typing.

Related work. The first (synchronous) subtyping for session types in the π-
calculus was introduced in [19] and shown to be decidable in [20]. Its complexity
was further studied in [26] which encodes synchronous subtyping as a model
checking problem. The first version of asynchronous subtyping was introduced
in [31] for multiparty session types and further studied in [28–30] for binary
session types in the higher-order π-calculus. These works and [10] stated or con-
jectured the decidability of the relations. The technical report [5] (announced
after the submission of the present paper) independently studied the undecid-
ability of these relations. Note that the subtyping relation in [28,30] only differs
from the one in [9, 10] by the omission of the premise & P Ti in rule [async].
This subtyping is not sound wrt. our definition of safety as it does not guaran-
tee eventual reception [9, 10]. We conjecture that it is sound and complete wrt.
progress (either both machines are in a final state or one can eventually make a
move) in (the full class of) CFSMs, hence it is also undecidable since progress
corresponds to rejection of a word by a Turing machine, cf. § 4.

The operational and denotational preciseness of (synchronous and asyn-
chronous) subtyping for session types was studied in [9, 10] where the authors
give soundness and completeness of each subtyping through the set of π-calculus
processes a type T can type. In this paper, we study the soundness and com-
pleteness of — (resp. —s) in CFSMs through AD (resp. HD) systems.

CFSMs have long been known to be Turing complete [4, 17] even when re-
stricted to deterministic machines without mixed states [21]. The first paper to
relate formally CFSMs and session types was [14], which was followed by a se-
ries of work using CFSMs as session types [3, 15, 25]. The article [2] shows, in a
similar fashion to [17], that the compliance of contracts based on asynchronous
session types is undecidable. Here, we show that the encoding of [17] is indeed
AD and that safety is equivalent to word acceptance by a Turing machine.

Acknowledgements. We thank A. Scalas, B. Toninho and G. Zavattaro for
their comments on earlier versions of this paper, in particular G. Zavattaro for
identifying the need for additional blank insertion cycles (in Fig. 3). This work is
partially supported by EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1,
EP/N027833/1 and EP/N028201/1; and by EU FP7 612985 (UPSCALE).

15

References

1. D. Ancona, V. Bono, M. Bravetti, J. Campos, G. Castagna, P. Deniélou, S. J.
Gay, N. Gesbert, E. Giachino, R. Hu, E. B. Johnsen, F. Martins, V. Mascardi,
F. Montesi, R. Neykova, N. Ng, L. Padovani, V. T. Vasconcelos, and N. Yoshida.
Behavioral types in programming languages. Foundations and Trends in Program-
ming Languages, 3(2-3):95–230, 2016.

2. M. Bartoletti, A. Scalas, E. Tuosto, and R. Zunino. Honesty by Typing. Logical
Methods in Computer Science, Volume 12, Issue 4, Dec. 2016.

3. L. Bocchi, J. Lange, and N. Yoshida. Meeting deadlines together. In CONCUR
2015, pages 283–296, 2015.

4. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

5. M. Bravetti, M. Carbone, and G. Zavattaro. Undecidability of asynchronous session
subtyping. CoRR, abs/1611.05026, 2016.

6. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP 2007, pages 2–17, 2007.

7. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst., 34(2):8, 2012.

8. G. Cécé and A. Finkel. Verification of programs with half-duplex communication.
Inf. Comput., 202(2):166–190, 2005.

9. T.-C. Chen, M. Dezani-Ciancaglini, A. Scalas, and N. Yoshida. On the preciseness
of subtyping in session types. LMCS, 2016. to appear.

10. T.-C. Chen, M. Dezani-Ciancaglini, and N. Yoshida. On the preciseness of sub-
typing in session types. In PPDP 2014, pages 146–135. ACM Press, 2014.

11. R. Demangeon and K. Honda. Full abstraction in a subtyped pi-calculus with
linear types. In CONCUR 2011, pages 280–296, 2011.

12. R. Demangeon and N. Yoshida. On the expressiveness of multiparty sessions. In
P. Harsha and G. Ramalingam, editors, FSTTCS 2015, volume 45 of LIPIcs, pages
560–574. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

13. P. Deniélou and N. Yoshida. Buffered communication analysis in distributed mul-
tiparty sessions. In CONCUR 2010, pages 343–357, 2010.

14. P. Deniélou and N. Yoshida. Multiparty session types meet communicating au-
tomata. In ESOP 2012, pages 194–213, 2012.

15. P. Deniélou and N. Yoshida. Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In ICALP 2013, pages 174–
186, 2013.

16. M. Dezani-Ciancaglini, S. Ghilezan, S. Jaksic, J. Pantovic, and N. Yoshida. De-
notational and operational preciseness of subtyping: A roadmap. In Theory and
Practice of Formal Methods - Essays Dedicated to Frank de Boer on the Occasion
of His 60th Birthday, pages 155–172, 2016.

17. A. Finkel and P. McKenzie. Verifying identical communicating processes is unde-
cidable. Theor. Comput. Sci., 174(1-2):217–230, 1997.

18. S. J. Gay. Subtyping supports safe session substitution. In A List of Successes
That Can Change the World - Essays Dedicated to Philip Wadler on the Occasion
of His 60th Birthday, pages 95–108, 2016.

19. S. J. Gay and M. Hole. Types and subtypes for client-server interactions. In ESOP
1999, pages 74–90, 1999.

20. S. J. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Inf.,
42(2-3):191–225, 2005.

16

21. M. G. Gouda, E. G. Manning, and Y. Yu. On the progress of communications
between two finite state machines. Information and Control, 63(3):200–216, 1984.

22. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In ESOP 1998, pages
122–138, 1998.

23. R. Hu and N. Yoshida. Hybrid session verification through endpoint API genera-
tion. In FASE 2016, pages 401–418, 2016.

24. H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Zavat-
taro. Foundations of session types and behavioural contracts. ACM Comput.
Surv., 49(1):3, 2016.

25. J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to graphical
choreographies. In POPL 2015, pages 221–232, 2015.

26. J. Lange and N. Yoshida. Characteristic formulae for session types. In TACAS,
pages 833–850, 2016.

27. J. Lange and N. Yoshida. On the undecidability of asynchronous session subtyp-
ing (with appendices). Technical Report 2016/9, Imperial College London, 2016.
https://www.doc.ic.ac.uk/research/technicalreports/2016/DTRS16-9.pdf.

28. D. Mostrous. Session Types in Concurrent Calculi: Higher-Order Processes and
Objects. PhD thesis, Imperial College London, November 2009.

29. D. Mostrous and N. Yoshida. Session-based communication optimisation for
higher-order mobile processes. In TLCA 2009, pages 203–218, 2009.

30. D. Mostrous and N. Yoshida. Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput., 241:227–263, 2015.

31. D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in partially
commutative asynchronous sessions. In ESOP 2009, pages 316–332, 2009.

32. N. Ng, J. G. de Figueiredo Coutinho, and N. Yoshida. Protocols by default - safe
MPI code generation based on session types. In CC 2015, pages 212–232, 2015.

33. N. Ng, N. Yoshida, and K. Honda. Multiparty session C: safe parallel programming
with message optimisation. In TOOLS 2012, pages 202–218, 2012.

34. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In PARLE 1994, pages 398–413, 1994.

35. N. Yoshida, V. T. Vasconcelos, H. Paulino, and K. Honda. Session-based com-
pilation framework for multicore programming. In FMCO 2008, pages 226–246,
2008.

17

https://www.doc.ic.ac.uk/research/technicalreports/2016/DTRS16-9.pdf

	On the Undecidability of Asynchronous Session Subtyping

