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Abstract Many parallel and distributed message-passing

programs are written in a parametric way over avail-

able resources, in particular the number of nodes and

their topologies, so that a single parallel program can

scale over different environments. This article presents

a parameterised protocol description language, Pabble,
which can guarantee safety and progress in a large class

of practical, complex parameterised message-passing pro-

grams through static checking. Pabble can describe an

overall interaction topology, using a concise and expres-

sive notation, designed for a variable number of partic-

ipants arranged in multiple dimensions. These parame-

terised protocols in turn automatically generate local

protocols for type checking parameterised MPI pro-

grams for communication safety and deadlock freedom.

In spite of undecidability of endpoint projection and

type checking in the underlying parameterised session

type theory, our method guarantees the termination of

endpoint projection and type checking.

1 Introduction

Message-passing is becoming a dominant programming

model, as witnessed in application programs from high

performance computing scaling over thousands of cores
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or cloud-based scalable backends of popular web ser-

vices. These are environments where services are dy-

namically provided, through choreography of interac-

tions among numerous distributed components. Assur-

ing safety of concurrent software in these environments

is a vital concern: many message-passing libraries, pro-

grams and systems are shared and long-lived, and some

process sensitive data, so that safety violations such as

deadlocks and incompatible messaging patterns or data

payloads between senders and receivers can have catas-

trophic and unexpected consequences [13].

Our proposal for safety assurance for message-passing

programs is based on multiparty session types [16]. The

methodology considers the specification of a global in-

teraction protocol among multiple participants, from

which we can derive a local protocol for an individual

participant. Once each program is type-checked against

its local protocol, a set of typed programs is guaranteed

to run without deadlock or communication mismatches.

We based our work on [23], where the authors proposed

a programming framework for message-passing parallel

algorithms, centring on explicit, formal description of

global protocols, and examined its effectiveness through

an implementation of a toolchain for the C language.

The toolchain uses a language Scribble [15,27] for de-

scribing the multiparty session types in a Java-like syn-

tax. A simple example of a protocol in Scribble which

represents a ring topology between four workers is given

below:

1 global protocol Ring(role Worker1, role Worker2, role

Worker3, role Worker4){

2 rec LOOP {

3 Data(int) from Worker1 to Worker2;

4 Data(int) from Worker2 to Worker3;

5 Data(int) from Worker3 to Worker4;

6 Data(int) from Worker4 to Worker1;

7 continue LOOP;

8 }

9 }

A Scribble protocol starts from the keyword global

protocol, followed by the protocol name, Ring. The

role declarations are then passed as parameters of the

protocol, which are Worker1 through to Worker4. The

Ring protocol describes a series of communications in

which Worker1 passes a message of type Data(int) to

Worker4 by forwarding through Worker2 and Worker3

in that order, and receives a message from Worker4. It is

easy to notice that explicitly describing all interactions

among distinct roles is verbose and inflexible: for ex-

ample, when extending the protocol with an additional

role Worker5, we must rewrite the whole protocol. On

the other hand, we observe that these worker roles have

identical communication patterns which can be logi-

cally grouped together: Workeri+1 receives a message
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from Workeri and the last Worker sends a message to

Worker1. In order to capture these replicable patterns,

we introduce an extension of Scribble with dependent

types called Parameterised Scribble (Pabble). In Pab-
ble, multiple participants can be grouped in the same

role and indexed. This greatly enhances the expressive

power and modularity of the protocols. Here ‘parame-

terised’ refers to the number of participants in a role

that can be changed by parameters.

The following shows our ring example in the syntax

of Pabble.

1 global protocol Ring(role Worker[1..N]) {

2 rec LOOP {

3 Data(int) from Worker[i:1..N-1] to Worker[i+1];

4 Data(int) from Worker[N] to Worker[1];

5 continue LOOP;

6 }

7 }

role Worker[1..N] declares workers from 1 to an ar-

bitrary integer N. The Worker roles can be identified

individually by their indices, for example, Worker[1]

refers to the first and Worker[N] refers to the last. In

the body of the protocol, the sender, Worker[i:1..N

-1], declares multiple Workers, bound by the bound

variable i, and iterates from 1 to N-1. The receivers,

Worker[i+1], are calculated on their indices for each

instances of the bound variable i. The second line is a

message sent back from Worker[N] to Worker[1].

1 local protocol Ring at Worker[1..N](role Worker[1..N

]) {

2 rec LOOP {

3 if Worker[i:2..N] Data(int) from Worker[i-1];

4 if Worker[i:1..N-1] Data(int) to Worker[i+1];

5 if Worker[1] Data(int) from Worker[N];

6 if Worker[N] Data(int) to Worker[1];

7 continue LOOP;

8 }

9 }

The above code shows the local protocol of Ring, pro-

jected with respect to the parameterised Worker role.

The projection for a parameterised role, such as Worker

[1..N], will give a parameterised local protocol. It rep-

resents multiple endpoints in the same logical grouping.

Challenges The main technical challenge for the design

and implementation of parameterised session types is to

develop a method to automatically project a parame-

terised global protocol to a parameterised local protocol

ensuring termination and correctness of the algorithm.

Unfortunately, as in the indexed dependent type

theory in the λ-calculus [5,33], the underlying param-

eterised session type theory [12] has shown that the

projection and type checking with general indices are

undecidable. Hence there is a tension between termina-

tion and expressiveness to enable concise specifications

for complex parameterised protocols.

Our main approach to overcome these challenges is

to make the theory more practical by extending Scribble
with index notation originating from a widely used text

book for modelling concurrent Java [19]. For example,

notations Worker[i:1..N-1] and Worker[j+i] in the

Ring protocol are from [19]. Interestingly, this compact

notation is not only expressive enough to represent rep-

resentative topologies ranging from parallel algorithms

to distributed web services, but also offers a solution

to cope with the undecidability of parameterised mul-

tiparty session types.

1.1 Overview

Fig. 1 shows the relationships between the three layers:

global protocols, local protocols and implementations.

(1) A programmer first designs a global protocol using

Pabble. (2) Then our Pabble tool automatically projects

the global protocol into its local protocols. (3) The pro-

grammer then either implement the parallel application

using the local protocol as specification, or type-check

existing parallel applications against the local protocol.

If the communication interaction patterns in the im-

plementations follow the local protocols generated from

the global protocol, this method automatically ensures

deadlock-free and type-safe communication in the im-

plementation. In this work we focus on the design and

implementation of the language for describing parallel

message-passing based interaction as global and local

protocols in (1) and (2), and outline how a Pabble local

type checker for MPI (3) can be implemented.

This article presents a full version of the work pub-

lished in [22] which had a particular focus on modelling

and expressing communication topologies in parallel ap-

plications. Apart from including the detailed proofs for

the well-formedness conditions and a number of addi-

tional examples, we include use cases from web ser-

vices and large scale distributed cyber-infrastructures

to show the flexibility of the Pabble language for com-

pact parametric protocols outside the field of high per-

formance parallel applications. We also expand the re-

lated work for a more thorough survey and discussion

on formal verification with MPI-based parallel applica-

tions.

The contributions of this article are:

– The first design and implementation of parameterised

session types in a global protocol language (Pab-
ble) (§ 2.2). The protocols can represent complex

topologies with arbitrary number of participants,
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Fig. 1: Pabble programming workflow.

enhancing expressiveness and modularity for prac-

tical message-passing parallel programs.

– The projection algorithm (§ 2.5) for Pabble to check

the well-formedness of parameterised global proto-

cols (§ 2.3) and to generate parameterised local pro-

tocols from well-formed parameterised global proto-

cols (§ 2.4). A correctness and termination proof of

the projection algorithm is also presented (§ 2.7).

– A number of Pabble use cases in parallel program-

ming and web services in § 3.

Additional use cases of Pabble such as common interac-

tion patterns for high performance computing described

in Dwarfs [4] can be found on the project web page [24].

We also outline a methodology for type checking source

code written with MPI against Pabble protocols in § 4.

2 Pabble: Parameterised Scribble

Scribble [27] is a developer friendly notation for speci-

fying application-level protocols based on the theory of

multiparty session types [6,16]. This section introduces

an evolution of Scribble with parameterised multiparty

session types (Pabble), defines its endpoint projection

and proves its correctness.

2.1 The Pabble protocol language

The core elements of a Pabble protocol are interaction

statements, choices and iterations. These are features

common also to the Scribble language, which Pabble is

extended from. Hence, Scribble protocols are compatible

with Pabble, but the most expressive features such as

role parameterisation can only be found in Pabble.
Interaction statements describe the messages passed

between distributed participants of the protocol. For

example, in the Ring protocol below, Data(int)from

Worker[1] to Worker[2]; is an interaction statement

which sends a message from participant (called a role)

Worker[1] to another participant Worker[4]. The par-

ticipant are declared in the protocol as arguments of the

protocol, role Worker[1..4]. The subscripting nota-

tion of the roles are for indexing the participants, and

will be explained in details the next section. The mes-

sage has a label, Data, which may be omitted from the

interaction statement. The message also contains a type

name as parameters to the label, e.g. int, called a pay-

load type. The payload type represents the data type of

the message being sent.

1 global protocol Ring(role Worker[1..4]){

2 rec LOOP {

3 Data(int) from Worker[1] to Worker[2];

4 Data(int) from Worker[2] to Worker[3];

5 Data(int) from Worker[3] to Worker[4];

6 Data(int) from Worker[4] to Worker[1];

7 continue LOOP;

8 }

9 }

Choice statements are written as

1 choice at role {

2 Choice0() from role to roleOther;

3 } or {

4 Choice1() from role to roleOther;

5 }

where each of the branches is an alternative interaction

sub-pattern which the participants can collectively se-

lect. The deciding role sends a label (e.g. Choice0) to

other roles involved with the choice to notify them of

the branch taken.

Iterations (loops) in the interaction patterns are writ-

ten as recursion blocks (rec Label { }), with continue

Label; statement to jump back to beginning of recur-

sion.

2.2 Syntax of Pabble

2.2.1 Global protocols

Fig. 2 lists the core syntax of Pabble, which consists

of two protocol declarations, global and local. A global

protocol is declared with the protocol name (str denotes

a string) with role and group parameters followed by

the body G. Role R is a name with argument expres-

sions. The argument expressions are ranges or arith-

metic expressions h, and the number of arguments cor-

responds to the dimension of the array of roles: for ex-

ample, Worker[1..4][1..2] denotes a 2-D array with

size 4 and 2 in the two dimensions respectively, forming

a 4-by-2 array of roles.
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Global Pabble
global protocol str(para) { G }

Parameter

para ::= role Rd, . . . , group str={ Rd, . . . }, . . . Role and group declaration

Global protocol body

G ::= l(T ) from R to R; Interaction
| choice at R { G1 } or . . . or { GN } Choice
| foreach (b) { G } Foreach
| allreduce opc(T ) ; Reduction
| rec l { G } Recursion
| continue l; Continue
| G G Sequential composition

Payload type

T ::= int | float | . . . Data types

Expression

e ::= e op e | num Binary expressions, integers
| i, j, k, ... | N Variables, constants

op ::= opc | - | / | % | << | >> | log | . . . Binary operations
opc ::= + | * | . . . Commutative operations

Role

Rd ::= str Role declaration
| str[e..e]...[e..e] Parameterised role declaration

R ::= str Roles
| str[h]...[h] Parameterised roles
| All All group role

b ::= i : e..e Role parameters (binding range)
h ::= b | e Role parameters (expressions)

Local Pabble
local protocol str at Rd(para) { L }

Local protocol body

L ::= [ if R ] l(T ) from R; (Conditional) Receive
| [ if R ] l(T ) to R; (Conditional) Send
| choice at R { L1 } or . . . or { LN } Choice
| foreach (b) { L } Foreach
| allreduce opc(T ) ; Reduction
| rec l { L } Recursion
| continue l; Continue
| L L Sequential composition

Fig. 2: Pabble syntax.

Declared roles can be grouped by specifying a named

group using the keyword group, followed by the group

name and the set of roles. For example,

group EvenWorker={Worker[2][2], Worker[4][2]}

creates a group which consists of two Workers. A spe-

cial built-in group, All, is defined as all processes in

a session. We can encode collective operators such as

many-to-many and many-to-one communication with

All, which will be explained later.

Apart from specifying ranges explicitly, ranges can

also be specified using expressions. Expression e con-

sists of the usual operators for numbers, logarithm,

left and right logical shifts (<<, >>), numbers, vari-

ables (i, j, k), and constants (M, N). Constants are ei-

ther bound outside the protocol declaration or are left

free (unbound) to represent an arbitrary number. As

in [19], when the constants are bound, they are de-

clared by numbers outside the protocol, e.g. const N

= 100 or lower and upper bounds, e.g. const N =

1..1000. We also allow leaving the declaration free (un-

bound), e.g. const N, as a shorthand to represent an

arbitrary constant with lower and upper bounds 0 and

max respectively, i.e. const N = 0..max, where max is a

special value representing the maximum possible value

or practically unbounded. Binding range expression b

takes the form of i : e1..en which means i is ranged

from e1 to en. Binding variables always bind to a range

expression and not individual values. We shall explain

the use of binding range expressions later in more de-

tails.
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In a global protocol G, l(T ) from R1 to R2 is called

an interaction statement, which represents passing a

message with label l and type T from one role R1 to

another role R2. R1 is a sender role and R2 is a receiver

role. choice at R {G1} or . . . or {Gn} means the role

R will select one of the global types G1,. . . ,Gn. rec l

{G} is recursion with the label l which declares a label

for continue l statement. foreach(b){G} denotes a

for-loop whose iteration is specified by b. For example,

foreach(i : 1..n){G} represents the iteration from 1

to n of G where G is parameterised by i.

Finally, allreduce opc(T ) means all processes per-

form a distributed reduction of value with type T with

the operator opc (like MPI_Allreduce in MPI). It takes

a mandatory predefined operator opc where opc must

be a commutative and associative arithmetic operation.

Pabble currently supports sum and product.

We allow using simple expressions (e.g. Worker[i

:0..2*N-1]) to parameterise ranges. In addition, in-

dices can also be calculated by expressions on bound

variables (e.g. Worker[i+1]) to refer to relative posi-

tions of roles.

These restrictions on indices such as bound variables

and relative indices calculations ensure termination of

the projection algorithm and type checking. The bind-

ing conditions are discussed in the next subsection.

2.2.2 Local protocols

Local protocol L consists of the same syntax of the

global type except the input from R (receive) and the

output to R (send). The main declaration

local protocol str at Re(. . . ){L}

means the protocol is located at role Re. We call Re

the endpoint role. In Pabble, multiple local protocol

instances can reside in the same parameterised local

protocol. This is because each local protocol is a local

specification for a participant of the interaction. Where

there are multiple participants with a similar interac-

tion structure that fulfil the same role in the protocol,

such as the Workers from our Ring example from the

introduction, the participants are grouped together as

a single parameterised role. The local protocol for a

collection of participants can be specified in a single

parameterised local protocol, using conditional state-

ments on the role indices to capture edge cases. For

example, in a general case of a pipeline interaction, all

participants receives from a neighbour and send to an-

other neighbour, except the first participant which ini-

tiates the pipeline and is only a sender and the last

participant which ends the pipeline and does not send.

In these cases we use conditional statements to guard

the input or output statements. To express conditional

statements in local protocols, if R may be prepended

to input or output statement. if R input/output state-

ment will be ignored if the local role does not match R.

More complicated matches can be performed with a pa-

rameterised role, where the role parameter range of the

condition is matched against the parameter of the local

role. For example, if Worker[1..3] will match Worker

[2] but not Worker[4]. It is also possible to bind a

variable to the range in the condition, e.g. if Worker[

i:1..3], and i can be used in the same statement.

2.3 Well-formedness conditions: index binding

As Pabble protocols include expressions in parameters,

a valid Pabble protocol is subject to a few well-formedness

conditions. Below we show the conditions which en-

sure indices used in roles are correctly bounded. We

use fv/bv to denote the set of free/bound variables de-

fined as fv(i) = {i}, fv(N) = fv(num) = ∅ and fv(i :

e1 . . . en) = ∪fv(ej) and fv(foreach(b){G}) = (fv(b) ∪
fv(G)) \ bv(b) and bv(i : e1 . . . en) = {i}. Others are

inductively defined.

1. In a global protocol role declaration, global protocol

, indices outside of declared range are invalid, for

example, a role Worker[0] is invalid if the role is

declared role Worker[1..3].

2. Let foreach(b1){ foreach(b2){ . . . foreach(bn){

G}}} with n ≥ 0:

(a) Suppose an interaction statement l(T ) from R1

to R2; appears in G. Let R1 = Role1[h1] . . . [hn]

and R2 = Role2[e′1] . . . [e′m] (we assume n = 0

(resp. m = 0) if R1 (resp. R2) is either a single

participant or group).

(1) n = m (i.e. the dimensions of the parame-

ters are the same)

(2) fv(hj) ⊆ ∪bv(bi) (i.e. the free variables in

the sender roles are bound by the for-loops).

(3) fv(e′j) ⊆ (∪bv(bi))∪bv(hj) (i.e. the free vari-

ables in the receiver roles are bound by ei-

ther the for-loops or sender roles);

(b) Suppose a choice statement choice at R { G1

} or { G2 } appears in G. Then R is a sin-

gle participant, i.e. either Role or Role[e] with

fv(e) ⊆ (∪bv(bi)).

Condition 2(a)(1) ensures the number of sender param-

eters matches the number of receiver parameters. For

example, the following is invalid:

l(T ) from R[i:1..N-1][j:1..N] to R[i+1];

Condition 2(a)(2) ensures variables used by a sender

are declared by the enclosing for-loops.
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Condition 2(a)(3) makes sure the receiver parameter at

the j-th position is bound by the for-loops or the sender

parameter at the j-th position (and not binders at other

positions). For example, the following is valid:

l(T ) from R[i:1..N-1][j:1..N] to R[i+1][j];

But with the index swapped, it becomes invalid:

l(T ) from R[i:1..N-1][j:1..N] to R[j][i+1];

Condition 2(b) is similar for the case of choice state-

ments where R should be a single participant to satisfy

the unique sender condition in [9,11].

2.4 Well-formedness conditions: constants

In Pabble protocols, constants can be defined by

(1) A single numeric value (const N=4); or

(2) Lower and upper bound constraints not involving

max (const N=1..1000).

Lower and upper bound constraints are designed for

runtime constants, e.g. the number of processes spawned

in a scalable protocol, which is unknown at design time

and will be defined and immutable once the execution

begins. To ensure Pabble protocols are communication-

safe in all possible values of constants, we must ensure

that all parameterised role indices stay within their de-

clared range. Such conditions prevent sending or receiv-

ing from an invalid (non-existent) role which will lead

to communication mismatch at runtime.

In case (1), the check is trivial. In case (2), we re-

quire a general algorithm to check the validity between

multiple constraints appeared in the regions. First, we

formulate the constraints of the values of the constants

as a series of linear inequalities. We then combine the

linear inequalities and determine the feasible region us-

ing standard linear programming. The feasible region

represents the pool of possible values in any combi-

nation of the constraints. The following explains how

to determine whether the protocol will be valid for all

combinations of constants:

1 const M = 1..3;

2 const N = 2..5;

3 global protocol P(role R[1.. N ]) {

4 T from R[i:1.. M ] to R[i+1];

5 }

The basic constraints from the constants are:

1 ≤ M, M ≤ 3, 2 ≤ N and N ≤ 5

We then calculate the range of R[i+1] as R[2..M+1].

Since the objective is to ensure that the role parameters

in the protocol body (i.e. 1..M and 2..M+1) stay within

the bounds of 1..N, we define a constraint set to be:

1 ≤ 1 & M ≤ N and 1 ≤ 2 & M +1 ≤ N

which are lower and upper bound inequalities of the

two ranges. From them, we obtain this inequality as a

result:

M +1 ≤ N

By comparing this against the basic constraints on the

constants, we can check that not all outcomes belong to

the regions and thus this is not a communication-safe

protocol (an example of a unsafe case is M = 3 and N

= 2). On the other hand, if we alter Line 4 to T from R

[i:1..N-1] to R[i+1];, the constraints are uncondi-

tionally true and so we can guarantee all combinations

of constants M and N will not cause communication er-

rors.

Arbitrary constants In addition to constant values and

lower and upper bound constants, we also consider the

use cases when the value of a constant can be any ar-

bitrary value in the set of natural numbers. This is an

extension of case (2) with the max keyword, where we

write const N = 0..max to represent a range without

upper bound.

In order to check that role indices are valid with

unbounded ranges, we enforce two simple restrictions.

First, only one constant can be defined with max in

one global protocol. Secondly, when the index is un-

bounded, its range calculation only uses addition or

subtraction on integers (e.g. i+1).

A protocol with an invalid use of arbitrary constants

is shown below:

1 const N = 1..max;

2 global protocol Invalid(role R[1..N]) {

3 T from R[i:1..N-1] to R[i+1];

4 T from R[j:1..N] to R[j+1];

5 }

If N is instantiated to 1, then the role is declared

to be R[1..1]. In the first interaction statement, R[i

:1..1-1] is invalid, as R[0] is not in the range of R

[1..0]. In the second statement R[j+1] is also invalid,

as it evaluates to R[N+1] and is out of range R[1..N].

On the other hand, the following protocol is valid

since the indices always stay between 0 and N.

1 const N = 1..max;

2 global protocol Valid(role R[0..N]) {

3 T from R[i:0..N-1] to R[i+1];

4 T from R[j:1..N] to R[j-1]; }

We have shown in [24], most of representative topolo-

gies with the arbitrary number of participants can be

represented under these conditions.
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2.5 Endpoint projection

In the next step, a Pabble protocol should be projected

to a local protocol, which is a simplified Pabble protocol

as viewed from the perspective of a given endpoint. The

projection algorithm is explained below. To begin with,

the header of the global protocol

global protocol name(param) { G }

is projected onto

local protocol name at Re(param) { L }

where the protocol name name and parameters param

are preserved and the endpoint role Re is declared.

Table 1 shows the projection of the body of global

protocol G onto R at endpoint role Re. The projection

rules will be applied from top to bottom in the table,

if a global protocol matches multiple rules, then there

will be more than one line of projected protocol for a

single global protocol. In Rules 1–4, we show the rule

for the single argument as the same rule is applied to n-

arguments. Each rule is applied if R meets the condition

in the second column under the constraints given by the

constant declarations. Rules 1 and 2 show the projec-

tion of the interaction statement when R appears in

the receiver and the sender position respectively. Since

R is a single participant, it should satisfy R = Re (i.e.

the role is the endpoint role). The projection simply

removes the reference to role R from the original inter-

action statement.

Rules 3 and 4 show the projection of an interaction

statement if role R is a parameterised single partici-

pant where R is an element of the endpoint role Re.

For example, if Re = Worker[1..3], R can be either

Worker[1], Worker[2] or Worker[3]. In addition to re-

moving the reference of role R in the receive and send

statements, we also prepend the conditions which the

role applies. The order of which the projection rules are

applied ensure that an interaction statement will be lo-

calised to receive then send. In general, both receive-

send or send-receive in the projected local protocol are

correct, as long as the projection algorithm is consis-

tent and the well-formedness conditions of the global

protocol are satisfied. The global protocol will ensure,

by session typing, that a send will have a matching re-

ceive at the same stage of the protocol.

Rule 5 is for All-to-All communication. Any role R

will send a message with type U to all other participants

and will receive some value with type U from all other

participants. Since all participants start by first sending

a message to all, no participant will block waiting to

receive in the first phase, so no deadlock occurs.

Rules 6 and 7 are the projection rules for the case

that we project onto a group. We need to check that a

group is a subset of the endpoint role Re with respect

to the group declarations in the global protocol. Then

the rules can be understood as Rules 3 and 4.

Rules 8 and 9 show the projection of interaction

statements with parameterised roles using relative in-

dexing (we show only one argument: the algorithm can

be extended easily to multiple arguments using the same

methods). Rule 8 uses two auxiliary transformations of

expressions, apply and inv. Table 2 lists their exam-

ples. apply takes two arguments, a range with binding

variable (b) and an expression using the binding vari-

able (e). The expression is applied to both ends of the

range to transform the relative expression into a well

defined range. inv calculates the inverse of a given ex-

pression, for example, the inverse of i+1 is i-1 and the

inverse of i*2+1 is (i-1)/2. In cases when an inverse

expression cannot be derived, such as i%2, the expres-

sion will be calculated by expanding to all values in

the range and instantiating every value bound by its

binding variable (e.g. i).

A concrete example is given as follows, to project

the statement

U from W[i:1..3] to W[(i+1)%2];

the statement will be expanded to

U from W[1] to W[0];

U from W[2] to W[1];

U from W[3] to W[0];

before applying the projection rules. In order to per-

form the range expansion above, the beginning and the

end of the range must be known at projection time. For

this reason, the projection algorithm returns failure if

a statement uses parameterised roles with such expres-

sions and the range of the expressions is defined with

arbitrary constants (see § 2.4). Otherwise, the expres-

sions might expand infinitely and not terminate. This

is the only situation which projection may fail, given a

well-formed global protocol. The condition R[b] ⊆ Re

of Rule 9 means the range of b is within the range of the

endpoint role Re. For example, W[i:1..2] ⊆ W[1..3].

If a projection role matches the choice role (R in

choice at R) (Rule 10), then it means a selection

statement, whose action is selecting a branching by

sending a label. The child or-blocks (L1. . .LN ) are re-

cursively projected; whereas if a projection role does

not match the choice role (Rule 11), then the choice

statement represents a branch statement, which is the

dual of the selection. For recursion (Rule 12), continue

(Rule 13) and foreach (Rule 14) statements are just

kept in the projected endpoint protocol.
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Conditions Global protocol Local protocol projected onto R at Re

1. Receive R = Re U from R′ to R U from R′

2. Send R = Re U from R to R′ U to R′

3. Receive (parametric) R ∈ Re U from R′ to R if R U from R′

4. Send (parametric) R ∈ Re U from R to R′ if R U to R′

5. All to All U from All to All U to All ; U from All

6. Group R ⊆ Re U from R′ to R if R U from R′

7. Group R ⊆ Re U from R to R′ if R U to R′

8. Relative role R[e] ⊆ Re U from R′[b] to R[e] if R[apply(b, e)] U from R′[inv(e)]
9. Relative role R[b] ⊆ Re U from R[b] to R′[e] if R[b] U to R′[e]

10. Choice sender R = Re or R ∈ Re
choice at R { G1 }

or ... or { GN }

choice at R { L1 }

or ... or { LN }

11. Choice receiver
choice at R′ { G1}

or ... or { GN}

choice at R′ { L1}

or ... or { LN}

12. Recursion rec l { G } rec l { L }
13. Continue continue l continue l

14. Foreach foreach (b) { G } foreach (b) { L }
15. All reduce allreduce opc(T ) allreduce opc(T )

Table 1: Projection of G onto R at the end-point role Re.
L and Li correspond to the projection of G and Gi onto R.

Range (b) Expr. (e) apply( b, e) inv( e)

i:1..N i+1 i:2..N+1 i-1

i:1..3 i*2 i:2,4,6 i/2

i:1..3 i i:1..3 i

i:0..3 1<<i i:1,2,4,8 log(i, 2)

i:1..3 i%2 i:1,0,1 Invalid

Table 2: Examples of apply() and inv().

2.6 Collective operations

In addition to point-to-point message-passing, collec-

tive operations can also be concisely represented by

Pabble. Endpoint message-passing statements are inter-

preted differently depending on the declarations (i.e. pa-

rameters) in the global type. Fig. 3–6 lists the four basic

messaging patterns and the interpretations of their pro-

jections: point-to-point, scatter (distribution), gather

(collection) and all-to-all (symmetric distribution and

collection). As shown in the Fig.s, the combination of

projected local statements and the type (i.e. single par-

ticipant or group role) of the local role being projected

are unique and can identify the communication pattern

in the global protocol.

2.7 Correctness and termination of the projection

The parameterised session theory which Pabble is based

on [12] has shown that, in the general case, projection

and type checking are undecidable. Our first challenge

for Pabble’s design is to ensure the termination of well-

formed checking and projection, without sacrificing the

expressiveness. The theorems and proofs can be found

in this section.

Theorem 1 (termination) Given global protocol G,

the well-formed checking terminates; and given a well-

formed global type G and an endpoint role Re, projec-

tion G on Re always terminates.

Proof By the definition of the well-formedness condi-

tions in § 2.3, if a free variable appears in the range po-

sition, it is bound by either for-loops or the sender role

in the interaction statement. In the case of the for-loop,

we can apply the same reduction rules of the for-loop of

the global types from § 2 and apply the equality rules in

[12, Figure 15]. Hence one can check, given Re and R,

all of the conditions (in the second column) in Table 1

are decidable. For the projection, the only non-trivial

projection rule is Rule 8. The termination of this rule is

ensured by the termination of apply(b,e) and inv( e).

If inv(e) is not defined, we first check e has the finite

range and use Rule 3 and 4 by expanding the interac-

tion statements to all values in the range (as explained

in § 2.5). Hence the projection algorithm always termi-

nates.

Note that the above theorem implies the termina-

tion of type checking (see Theorem 4.4 in [12]).

One of benefits of using Pabble is that it provides the

expressiveness required to be able represent collective

interactions in MPI. The correctness of projections of

these protocols is ensured by the projection rule of the

groups in [10]. The special case of U from All to All

follows the asynchronous subtyping rules in [21]. The

correctness property which relates to ranges of Pabble
follows:

Theorem 2 (range) The indices of roles appearing in

a local protocol body do not exceed the lower and upper

bounds stated in the global protocol ProtocolName(para)
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Point-to-Point

A1

A2

A3

B1

B2

B3

Pabble role declarations: role A[1..M], role B[1..N]

Pabble statement Projection of A Projection of B
U from A to B; U to B; U from A;

U from A[i] to B[j]; if A[i] U to B[j]; if B[j] U from A[i];

U from A[i:1..N] to B[i+1]; if A[i:1..N] U to B[i+1]; if B[i:2..N+1] U from A[i-1];

Fig. 3: Point-to-point communication and Pabble representation.

Scatter pattern

A

B[i]
C2

C1

C3

Pabble role declarations: role A, role B[1..N], group C

Pabble statement Projection of A/B Projection of C
U from A to C; U to C; if C U from A;

U from B[i] to C; if B[i] U to C; if C U from B[i];

Fig. 4: Scatter pattern and Pabble representation.

Pabble role declarations: group A, role B, role C[1..N]

Pabble statement Projection of A Projection of B/C
U from A to B; if A U to B; U from A;

U from A to C[i]; if A U to C[i]; if C[i] U from A;

Gather pattern

B

C[i]
A2

A1

A3

Fig. 5: Gather pattern and Pabble representation.

All-to-all pattern

A1

A2

A3

B1

B2

B3

Pabble role declarations: group A, group B

Pabble statement Projection of A Projection of B
U from A to B; if A U to B; if B U from A;

U from All to All; U to All; U from All; U to All; U from All;

Fig. 6: All-to-all pattern and Pabble representation.

in global protocol ProtocolName(para){G} or the

constant declarations (const N = n..m).

Proof If the range relies on case (2), the correctness is

ensured by linear programming. Other cases are straight-

forward since each condition in Table 1 checks whether

roles conform to the bounds in the global protocol.

3 Pabble examples

In § 2.5. we describe how to obtain a local Pabble pro-

tocol by projection from a Pabble protocol. The local

protocol can then be used as a blueprint to implement

parallel programs. In this section we run through two

examples of local protocol projection, using a Ring pro-

tocol in §3.1 and a MapReduce protocol in §3.2, show-

ing projection of protocols involving point-to-point and

multicast collective applications respectively.

Then we present Pabble use cases in Web services

in §3.3 and Remote Procedure Call (RPC) composition

in §3.4, showing the capabilities of Pabble as a general-

purpose parameterised protocol description language.

Finally we show an implementation of a parallel lin-

ear equation solver §3.5 in MPI following a wraparound

mesh protocol designed in Pabble, demonstrating how

Pabble can be used in practical programming. Addi-

tional Pabble examples from the Dwarfs [4] evaluation

metric is available from our web page [24].

3.1 Projection example: Ring protocol

1 global protocol Ring(role Worker[1..N]) {

2 rec LOOP {

3 Data(int) from Worker[i:1..N-1] to Worker[i+1];

4 Data(int) from Worker[N] to Worker[1];

5 continue LOOP;

6 }

7 }

We now run through the projection of the Ring proto-

col in § 1 as an example. Local protocols are generated

from the global protocols. From the perspective of a

projection tool, to write a protocol for an endpoint, we

start with local protocol followed by the name of the

protocol and the endpoint role it is projected for. Since
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the only role of the Ring protocol is Worker which is a

parameterised role, we use the full definition of the pa-

rameterised role, Worker[1..N]. Then we list the roles

used in the protocol inside a pair of parentheses, simi-

lar to function arguments in a function definition in C.

Note that if the projection role is in the list, we exclude

it because the local protocol itself is in the perspective

of that role; however, since parameterised roles can be

used on multiple endpoint roles, we allow parameterised

roles to appear in the list of roles in the protocol. The

first line of the projected protocol is thus given as fol-

lows:

1 local protocol Ring at Worker[1..N](role Worker[1..N

])

We then copy the recursion statement to the local

protocol, which will be present in all projected proto-

cols.

2 rec LOOP {

Next, we take the first interaction statement from

Ring protocol and project it with respect to Worker,

applying the rules listed in Table 1. As the first state-

ment involves a parameterised destination role, we ap-

ply Rule 7 to extract the receive portion of the inter-

action statement. The apply() function is applied to i

:1..N-1 and the relative expression i+1 to obtain 2..N

for the role condition. The inv() of relative expression

i+1 is i-1, which will form the index of the sender role.

3 if Worker[i:2..N] Data(int) from Worker[i-1] ;

Since Worker also matches the source parameterised

role, Rule 8 is applied to get the send portion of the

interaction statement.

4 if Worker[i:1..N-1] Data(int) to Worker[i+1];

Then we move on to the second statement of the global

protocol, which is Data(int)from Worker[N] to Worker

[1];. Similar to the previous statement, we apply Rule

3 and Rule 4 to obtain the respective receive and send

statements in the local protocol.

5 if Worker[1] Data(int) from Worker[N];

6 if Worker[N] Data(int) to Worker[1];

Finally we apply Rule 13 to trivially copy the continue

statement to the local protocol.

7 continue LOOP; }

The resulting local protocol is the following, as shown

in § 1.

1 rec LOOP {

2 if Worker[i:2..N] Data(int) from Worker[i-1];

3 if Worker[i:1..N-1] Data(int) to Worker[i+1];

4 if Worker[1] Data(int) from Worker[N];

5 if Worker[N] Data(int) to Worker[1];

6 continue LOOP;

7 }

8 }

3.2 Projection example: MapReduce protocol

The following example shows another parameterised

protocol, which represents the map-reduce pattern of

work distribution and reduction. This example uses a

common parallel programming idiom, collective oper-

ations. In contrast to the previous example, there are

more than one declared role in the protocol, and one of

the role is an ordinary non-parameterised role.

1 global protocol MapReduce(role Master, role Worker

[1..N], group Workers={Worker[1..N]}){

2 Map(int) from Master to Workers;

3 Reduce(int) from Workers to Master;

4 }

Listing 1: MapReduce global protocol.

In this protocol, the statements involve two roles,

one of which is an ordinary role Master (in the sense

that it is non-parameterised), and the other is a pa-

rameterised role Worker[i:1..N]. The Worker param-

eterised role represents a group of related roles, but do

not expand to multiple explicit message-passing state-

ments. We further declare a group role Workers which

include all the Worker roles as members. The state-

ment in Line 2 is a scatter operation by which the

Master distributes a message of type Map(int) to each

of the named endpoints in Workers group, Worker[1]

to Worker[N]. The statement in Line 3 is a gather op-

eration, the reverse of the scatter, which the Master

role collects messages of type Reduce(int) from the

members of the Workers group. Fig. 7 depicts the in-

teractions in the protocol.

Listing 2 shows the local protocol of MapReduce

at the Master role. Since Master is a non-parametric

participant, Rule 2 and 1 are applied to get Line 2 and

3 respectively. This results in a protocol body without

conditional interactions.

1 local protocol MapReduce at Master(role Master, role

Worker[1..N], group Workers={Worker[1..N]}) {

2 Map(int) to Workers;

3 Reduce(int) from Workers;

4 }

Listing 2: Master endpoint from MapReduce

protocol.

The local protocol of Worker for MapReduce is sim-

ilarly derived by applying the projection rules. Since

Workers is a group role and a subset of Worker[1..N],

Rule 6 and 7 are applied to get Line 2 and 3.

1 local protocol MapReduce at Worker[1..N](role Master,

role Worker[1..N], group Workers={Worker[1..N

]}) {

2 if Workers Map(int) from Master;
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Worker[. . . ]

Worker[1]

Worker[N]

Workers

Master
Map

Master
Reduce

Fig. 7: Topology of the MapReduce protocol.

3 if Workers Reduce(int) to Master;

4 }

Listing 3: Worker endpoint from MapReduce

protocol.

3.3 Use case: Web services

Pabble is inspired by applications in the domain of par-

allel programming, but the parametric nature of Pabble
as a protocol language allows us to express interactions

with more flexibility while keeping the protocols suc-

cinct.

Quote-Request protocol specification (C-UC-002) is

the most complex use case in [3] published by W3C

Web Services Choreography Working Group [2].

1 global protocol WebService (role Buyer, role Supplier

[1..S], role Manufacturer[1..M]) {

2 Quote() from Buyer to Supplier[1..S];

3 rec RENEGOTIATE_MANUFACTURER {

4 foreach (j:1..M) {

5 Item() from Supplier[i:1..S] to Manufacturer[j

];

6 Quote() from Manufacturer[j] to Supplier[1..S];

7 }

8 // Gather

9 Quote() from Supplier[1..S] to Buyer;

10 foreach (i:1..S) { // (3)

11 rec RETRY_NEGOTIATION {

12 choice at Buyer {

13 // Buyer accepts quote and place orders (4a)

14 ok() from Buyer to Supplier[i];

15 } or {

16 // Buyer modifies quotes and send back to

supplier (4b)

17 modify(Quote) from Buyer to Supplier[i];

18 choice at Supplier[i] {

19 // Supplier agrees

20 // to modified quote (5a)

21 ok() from Supplier[i] to Buyer;

22 } or {

23 // Supplier modifies quote again (5b)

24 retry(Quote) from Supplier[i] to Buyer;

25 // Retry Supplier[i]-Buyer negotiation

26 continue RETRY_NEGOTIATION;

27 } or {

Buyer

Supplier[S]

.

.

.

Supplier[2]

Supplier[1]

Manufacturer[M]

.

.

.

Manufacturer[2]

Manufacturer[1]

Fig. 8: Web Services Quote-Request interaction.

28 // Reject (5c)

29 reject() from Supplier[i] to Buyer;

30 } or {

31 // Supplier renegotiate with Manufacturers

for quote (5d)

32 renegotiate() from Supplier[i] to Buyer;

33 continue RENEGOTIATE_MANUFACTURER;

34 }

35 }

36 } // Try NEXTSUPPLIER

37 }

38 } }

Listing 4: Web Services use case

1 local protocol WebService at Buyer (role Supplier[1..

S], role Manufacturer[1..M]) {

2 Quote() to Supplier[1..S];

3 rec RENEGOTIATE_MANUFACTURER {

4 Quote() from Supplier[1..S];

5 foreach (i:1..S) {

6 rec RETRY_NEGOTIATION {

7 choice at Buyer {

8 ok() to Supplier[i];

9 } or {

10 modify(quoteType) to Supplier[i];

11 choice at Supplier[i] {

12 ok() from Supplier[i];

13 } or {

14 retry(quoteType) from Supplier[i];

15 continue RETRY_NEGOTIATION;

16 } or {

17 reject() from Supplier[i];

18 } or {

19 renegotiate() from Supplier[i];

20 continue RENEGOTIATE_MANUFACTURER;

21 }

22 } // choice at Buyer

23 }

24 }

25 } }

Listing 5: Buyer endpoint of WebService.

It describes the interaction between a buyer who

interacts with multiple suppliers who in turn interact

with multiple manufacturers in order to get a quote for

some goods or services.

The basic steps of the interaction is as follows:

1. A buyer requests a quote from a set of suppliers

2. All suppliers forward the quote request of the items

to their manufacturers
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3. The suppliers interact with their manufacturers to

build the quotes for the buyer, which is then sent

back to the buyer

4. (a) Either the buyer agrees with the quotes and place

the orders

(b) Or the buyer modify the quote and send back to

the suppliers

5. In the case the supplier received an updated quote

request (4b)

(a) Either the supplier respond to updated quote re-

quest by agreeing to it and sending a confirma-

tion message back to buyer

(b) Or the supplier respond to the update quote re-

quest by modifying it and sending back to buyer

and the buyer goes back to step 4

(c) Or the supplier respond to the update quote re-

quest by rejecting it

(d) Or the supplier renegotiate with the manufac-

turers, in which case we return to step 3

Fig. 8 shows the interactions between different com-

ponents in the Quote-Request use case. We set the

generic number S for Suppliers and M for Manufactur-

ers. The interactions are described as a Pabble global

protocol in Listing 4. In the protocol, we omitted the

implicit requestIdType from the payload type in all of

the messages which keeps track of states of each role in

the stateless web transport.

The Buyer initiates the quote request on Line 2, when

it broadcasts a Quote() message to all Suppliers. Then

on Line 4–7 each of the Supps forward the quote re-

quests to their respective Manufacturers, and get a reply

from each of them by a series of gather and scatter

interactions. Next, the Suppliers reply to the Buyer on

Line 9, and the Buyer then decides between accepting

the offer straight away (Line 14, outcome 4a), or send-

ing a modified quote request (Line 17, outcome 4b).

If a Supp received a modified quote, it decides between

accepting the modified quote (Line 21, outcome 5a),

rejecting the modified quote straight away (Line 29,

outcome 5c) or modifying the quote and renegotiating

with Buyer (Line 24, outcome 5b). It is also possible that

the Supplier renegotiates with its Manufacturers again, so

it notifies the Buyer and returns back to the initial ne-

gotiation phase (Line 32, outcome 5d). The projected

endpoint protocol for Buyer is Listing 5.

3.4 Use case: RPC Composition

We present a use case from the Ocean Observatories

Initiative project [1]. The use case describes a high-

level Remote Procedural Call (RPC) request/response

protocol between layers of proxy services. An applica-

Service 1
Proxy
Service 2

Proxy
Service i Service N

Fig. 9: RPC request/response chaining.

tion sends a request to a high-level service, and the

service is expected to reply to the application with a

result. If the service does not provide the requested ser-

vice, then this high-level service will issue a request to a

lower level service which can process the request. This

request-response protocol is chained between services

in each level until a low-level service is reached.

Fig. 9 describes the chaining of RPC-style request/re-

sponse protocol. A request is routed to the most rele-

vant service provider through multiple proxy services,

hidden from higher level services. The request routes

through a multi-hop path from the requester to the re-

sources. The reply is routed in reverse through the same

participant proxy services back to the requester.

We represent this series of interactions using a Pab-
ble protocol outlined below. The participants, Service

[1..N], represents a proxy service in each of the lev-

els. Service[1] is the requester and Service[N] is the

actual service provider. A Request() message is sent

from a Service to the Service in the level directly

below, until it reached Service[N] which will process

the request and reply to the higher level service with a

Response(). Using a foreach loop with decrementing

indices, the Response() is cascaded to the originating

service, Service[1]. The Pabble protocol is shown in

Listing 6.

1 global protocol RPCChaining(role Service[1..N]) {

2 foreach (i:1..N-1) {

3 Request() from Service[i] to Service[i+1];

4 }

5 // Request() processed by Service[N] to give

Response()

6 foreach (i:N..2) {

7 Response() from Service[i] to Service[i-1];

8 }

9 }

Listing 6: RPC request/response chaining

As the request and response phase are symmetric

and involve the same participants, we are able to com-

pact the multi-layer protocol to only using two foreach

loops, each with one parameterised interaction state-

ment. N can be an arbitrary constant to allow maxi-

mum flexibility in the protocol. This simple and con-
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cise representation of complex RPC chaining protocol

is possible because of the index notation in Pabble.

3.5 Implementation example: Linear equation solver

Listing 9 shows an example implementation outline for

a linear equation solver using a wraparound mesh, which

follows the Pabble protocol in Listing 7. The topology is

illustrated in Fig. 10. The example is given in Message-

Passing Interface (MPI), the standardised API for de-

veloping message-passing applications in parallel com-

puting.

1 global protocol Solver(role W[1..N][1..N], group Col

={W[1..N][1]}) {

2 rec CONVERGE {

3 Ring(double) from W[i:1..N][j:1..N-1] to W[i][j

+1];

4 Ring(double) from W[i:1..N][N] to W[i][1];

5

6 // Vertical propagation - Group-to-Group

7 (double) from Col to Col;

8 continue CONVERGE;

9 }

10 }

Listing 7: Linear equation solver protocol.

The protocol above describes a wraparound mesh

that performs a ring propagation between W (for worker)

in the same row (Line 3–4), and the result of each W row

is distributed to all Ws in the first column (i.e. W[*][1]

) using a group-to-group distribution on Line 7. The

global protocol is then automatically projected into its

local protocol shown in Listing 8 below. Developers can

then implement the application using its local protocol

as a guide.

1 local protocol Solver at W(role W[1..N][1..N], group

Col={ W[1..N][1] }) {

2 rec CONVERGE {

3 if W[i:1..N][j:2..N] Ring(double) from W[i][j-1];

4 if W[i:1..N][j:1..N-1] Ring(double) to W[i][j+1];

5 if W[i:1..N][1] Ring(double) from W[i][N];

6 if W[i:1..N][N] Ring(double) to W[i][1];

7

8 // Vertical propagation - Group-to-Group

9 if Col (double) from Col;

10 if Col (double) to Col;

11 continue CONVERGE;

12 }

13 }

Listing 8: Linear equation solver local protocol.

Note the similarity of the local protocol and the

structure of the MPI implementation in Listing 9. In

particular, the conditional send and receive in MPI can

directly correspond to the role conditions in the local

protocol which was derived from the global protocol by

projection.

W[1][1] W[1][2] W[1][N]

W[2][1] W[2][2] W[2][N]

W[N][1] W[N][2] W[N][N]

Fig. 10: N2-node wraparound mesh topology.

1 MPI_Init(&argc, &argv); // Start of protocol

2 MPI_Comm_rank(MPI_COMM_WORLD, &rank); // Process ID

3 MPI_Comm_size(MPI_COMM_WORLD, &size); // # of Process

4 MPI_Comm Col; int N = (int)sqrt(size);

5 ...

6 /* Calculate condition for W[i:1..N][j:2..N] */

7 if (2 <= rank%N+1 && rank%N+1 <= N)

8 MPI_Recv(buf, cnt, MPI_DOUBLE, rank-1/*W[i][j-1]*/,

Ring, MPI_COMM_WORLD);

9 /* Calculate condition for W[i:1..N][j:1..N-1] */

10 if (1 <= rank%N+1 && rank%N+1 <= N-1)

11 MPI_Send(buf, cnt, MPI_DOUBLE, rank+1/*W[i][j+1]*/,

Ring, MPI_COMM_WORLD);

12 /* Calculate condition for W[i:2..N][j:1..N] */

13 if (2 <= rank/N+1 && rank/N+1 <= N)

14 MPI_Send(buf, cnt, MPI_DOUBLE, rank-N*1/*W[i-1][j]*/

, Ring, MPI_COMM_WORLD);

15 /* Calculate condition for W[i:1..N-1][j:1..N] */

16 if (1 <= rank/N+1 && rank/N+1 <= N-1)

17 MPI_Send(buf, cnt, MPI_DOUBLE, rank+N*1/*W[i+1][j]*/

, Ring, MPI_COMM_WORLD);

18

19 /* Distribute vertically: Group-to-Group on ’Col’

group communicator */

20 if (rank%N+1 == 1)

21 MPI_Allgather(buf_col, cnt_col, MPI_DOUBLE,

22 buf_col, cnt_col, MPI_DOUBLE, Col);

23 ...

24 MPI_Finalize(); // End of protocol

Listing 9: MPI implementation for Solver protocol

4 Type checking

Given the local protocol and the implementation, we

propose a session type checker to verify the conformance

of the implementation against the projected local pro-

tocol. Conformance of endpoint programs against the

projected protocol will yield communication-safe paral-

lel programs.

Pabble local protocols have similar structure to that

of MPI programs. Both Pabble protocols and MPI pro-

grams are designed such that a single source code rep-

resenting multiple endpoints, a result of the Single Pro-

gram Multiple Data (SPMD) parallel programming model.
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The core communication primitives of MPI can corre-

spond to Pabble statements, as demonstrated in List-

ing 9. In addition, collective operations such as broad-

cast (MPI_Bcast) or all-reduce (MPI_Allreduce) can be

supported by the collective operation correspondence in

§ 2.5.

Challenges for a complete MPI type checker In [23],

Ng et al. introduced a session type checker for a non-

parameterised protocol language and a simple session

programming API. We face a number of challenges when

building a complete type checker using the same method-

ology for Pabble, which is a dependent protocol lan-

guage and MPI, which is a standard parameterised im-

plementation API. The Pabble language with its well-

formedness checks reduces the undecidability issues in

the role representation by using integer instead of gen-

eral indices. The type checking process will compare the

protocol against a simplified, canonical local protocol

extracted from the implementation, which still posts a

challenge in the process of protocol extraction. In par-

ticular, inferring source and destination processes from

parametric source code is non-trivial. MPI uses process

IDs (or ranks) to identify processes, and it is valid to

perform numeric operations on the ranks to efficiently

calculate target processes. This allows ways of exploit-

ing the C language features while remaining a valid

program. For example, instead of using a conventional

conditional statement, an MPI function call of this form

may be used:

MPI_Send(buf, cnt, MPI_INT, rank%2? rank+1: rank-1, ...)

where the process ID, rank, is being used as a boolean,

thus a straightforward analysis of rank usages would

not be sufficient. In order to correctly calculate target

processes of the interactions, it will be necessary to sim-

ulate rank calculations by techniques such as symbolic

execution or combinations of runtime techniques.

5 Conclusion

This article introduced a new global protocol descrip-

tion language, Pabble, and applied it to ensure deadlock-

free and type-safe communications in parallel programs.

Local protocols projected from a parameterised global

protocol and we outlined a methodology to specify and

type check MPI parallel programs for safe parallel pro-

grams. Our global protocols and local protocols bring

the expressiveness of Scribble to new levels, overcom-

ing the issue of the underlying parameterised multi-

party session type theory [12] by a careful design choice

for indices based on [19]. Combining with the multi-

role theory from [10], Pabble can represent and type-

check representative MPI collective operators. We are

not aware of any prior framework which is uniformly

applicable to a safety guarantee for message-passing

parallel programs which run over complex topologies,

through static, low-cost type checking as compared to

model checking.

Through our examples presented in this article, we

have showed that the Pabble language is not limited to

high performance parallel applications. The examples,

including web services and RPC, cover a broad category

of interaction-centric scalable distributed applications.

Our simple, formally-based language provides an ap-

proach for designing services and applications with safe

interaction patterns.

6 Related work

6.1 Formal verification for parallel applications

Formal verification for message-passing parallel program-

ming has been actively studied in the area of MPI par-

allel applications. A recent survey [13] summarises a

wide range of model checking-based verification meth-

ods for MPI. Among them, ISP [31] is a dynamic ver-

ifier which applies model-checking techniques to iden-

tify potential communication deadlocks in MPI. Their

tool uses a fixed test harness and in order to reduce

the state space of possible thread interleavings of an

execution, the tool exploits an independence between

thread actions. Later in [32], the authors improved its

scheduling policy to gain efficiency of the verification.

While their approach aims to cover common deadlock

patterns in MPI programs, it is still limited to a fi-

nite number of tests. Our approach does not rely on

external testing, and all session typable programs are

guaranteed communication-safe and deadlock-free by a

low-cost static code generation and type checking.

TASS [29] is another tool that combines symbolic

execution [28] and model checking techniques to verify

safety properties of MPI programs. The tool takes a

C/MPI application and an input n ≥ 1 which restricts

the input space, then constructs an abstract model with

n processes and checks its functional equivalence and

deadlocks by executing the model of the application.

TASS does not verify properties for an unbounded num-

ber of communication participants nor treat parame-

terisation, whereas we can work with message-passing

programs where the number of participants is unknown

at compile time, if they are written in well-formed, pro-

jectable Pabble.
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6.2 Formally based MPI languages

Pilot [8] is a parallel programming library built on stan-

dard MPI to provide a simplified parallel programming

abstraction based upon CSP. The communication is

synchronous and channels are untyped to facilitate reuse

for different types. The implementation includes an anal-

yser to detect communication deadlock at runtime. Our

proposed typechecker is static and is able to detect and

prevent deadlocks before execution.

Interprocedural control flow graph (ICFG) [30] and

parallel control flow graph (pCFG) [7] are techniques

to analyse MPI parallel programs for potential mes-

sage leak errors. Their approach extends a traditional

data-flow analysis by connecting control-flow graphs of

concurrent processes to their communication edges in

order to derive the communication pattern and topol-

ogy of a parallel program. They take a bottom-up en-

gineering based approach, in contrast to our formally

based, top-down global protocol approach, which can

give a high-level understanding of the overall commu-

nication by design, in addition to the communication

safety assurance by multiparty session types.

6.3 Parameterised multiparty session types

Previous work from Ng et al. [23] introduces a C pro-

gramming framework based on multiparty session types

(MPSTs), but it does not treat parameterisation. Hence

the user needs to explicitly describe all interactions in

the protocol, and the type checker does not work if

the number of participants is unknown at compile time.

Pabble’s theoretical basis is developed in [12] where pa-

rameterised MPSTs are formalised using the dependent

type theory of Gödel’s System T . The main aim in [12]

is to investigate the decidability and expressiveness of

parameterisations of participants. Type checking in [12]

is undecidable when the indices are not limited to de-

cidable arithmetic subsets or the number of the loop in

the parameterised types is infinite. The design of Pabble
is inspired by the LTSA tool from a concurrency mod-

elling text book used for the undergraduate teaching

in the authors’ university over two decades [19]. The

notations for parameterisations from the LTSA tool

offers not only practical restrictions to cope with the

undecidability of parameterised MPSTs [12], but also

concise representations for parameterised parallel lan-

guages. Our work is the first to apply parameterised

MPSTs in a practical environment and one foremost

aim of our framework with Pabble and parameterised

notation is to be developer friendly [27] without com-

promising the strong formal basis of session types.

6.4 Dependent typing systems

Liquid Type [26] is a dependent typing system to au-

tomatically infer memory safety properties from pro-

gram source code without using verbose annotations.

The work [25] introduced an analyser for the C language

in the low-level imperative environment based on Liq-

uid Types and refinement types. The recent work on

Liquid Types [18] applied the tool with SMT solvers

to assist parallelisation of code regions by determin-

ing statically whether parallel threads will run on dis-

joint shared memory without races. Our work applies

dependent session types to guarantee different kinds of

safety, communication safety and deadlock freedom, in

explicit message-passing based distributed and paral-

lel programming rather than shared memory concur-

rency. It is an interesting future topic to integrate with

model-checking tools to handle projectability with more

complex indices in addition to functional correctness of

session programs.

6.5 Session-based approaches to parallel programming

A recent work [14,20] aims to use session types for de-

ductive verification of MPI programs. A new type lan-

guage is designed specifically for MPI and they used

VCC, a concurrent C verifier tool to verify correctness

of MPI against the type language. While the Pabble lan-

guage was designed with influences from parallel pro-

gramming APIs and parallel programming use cases,

the language was designed to be an independent high-

level abstraction over distributed interactions. As a re-

sult, our language makes no assumption about the ex-

ecution environment (e.g. collective loops in MPI), and

allows Pabble to represent general protocols from dis-

tributed systems or Web services with distinct roles as

shown in the examples.

7 Future work

Future works include extending Pabble and the underly-

ing theory with support for modelling process creation

and destroy, such as dynamic multirole approach de-

scribed in [10].

A number of enhancements are planned for Pabble
including support for annotations which can comple-

ment the protocol description to specify assertions. The

type checking process can use the extra constraints or

conditions provided to combine with model checkers to

also assure functional correctness of the overall appli-

cation. Annotations will also enable integration with

runtime monitoring described in [17] for a combined
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static and dynamic approach to communication correct

application using Pabble.

An approach to generate distributed parallel appli-

cation is in the works, using a combination of Pabble
protocol, which describes the interaction aspects of the

application, and computation code, which describes the

sequential computation behaviour of the application.
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