
Practical interruptible conversations
Distributed dynamic verification with session types and Python

Raymond Hu1, Rumyana Neykova1, Nobuko Yoshida1

Romain Demangeon1, and Kohei Honda2

1 Imperial College London
2 Queen Mary, University of London

Abstract. The rigorous and comprehensive verification of communication-based
software is an important engineering challenge in distributed systems. Drawn
from our industrial collaborations [33,28] on Scribble, a choreography descrip-
tion language based on multiparty session types, this paper proposes a dynamic
verification framework for structured interruptible conversation programming.
We first present our extension of Scribble to support the specification of asyn-
chronously interruptible conversations. We then implement a concise API for
conversation programming with interrupts in Python that enables session types
properties to be dynamically verified for distributed processes. Our framework
ensures the global safety of a system in the presence of asynchronous interrupts
through independent runtime monitoring of each endpoint, checking the confor-
mance of the local execution trace to the specified protocol. The usability of our
framework for describing and verifying choreographic communications has been
tested by integration into the large scientific cyberinfrastructure developed by the
Ocean Observatories Initiative. Asynchronous interrupts have proven expressive
enough to represent and verify their main classes of communication patterns, in-
cluding asynchronous streaming and various timeout-based protocols, without re-
quiring additional synchronisation mechanisms. Benchmarks show conversation
programming and monitoring can be realised with little overhead.

1 Introduction

The main engineering challenges in distributed systems include finding suitable speci-
fications that model the range of states exhibited by a system, and ensuring that these
specifications are followed by the implementation. In message passing applications, rig-
orous specification and verification of communication protocols is particularly crucial:
a protocol is the interface to which concurrent components should be independently
implementable while ensuring their composition will form a correct system as a whole.
Multiparty Session Types (MPST) [17,6] is a type theory for communication-oriented
programming, originating from works on types for the π-calculus, towards tackling this
challenge. In the original MPST setting, protocols are expressed as types and static type
checking verifies that the system of processes engaged in a communication session (also
referred to as a conversation) conforms to a globally agreed protocol. The properties en-
joyed by well-typed processes are communication safety (no unexpected messages or
races during the execution of the conversation) and deadlock-freedom.

Global Protocol

Local
Specification

Local
Specification

Local
Specification

Project

Specification
(Scribble)

Implementation
(Python)

Source Code

Verification
(Dynamic)

 Safe Network

ProjectP r o j e c t i o n

Source Code Source Code

Conversation
Layer

Conversation
Layer

Conversation
Layer

Monitor Monitor Monitor

Fig. 1. Scribble methodology from global specification to local runtime verification

In this paper, we present the design and implementation of a framework for dy-
namic verification of protocols based on MPST, developed from our collaboration with
industry partners [33,28] on the application of MPST theory. In this ongoing work, we
are motivated to adapt MPST to dynamic verification for several reasons. First, session
type checking is typically designed for languages with first-class communication and
concurrency primitives, whereas our collaborations use mainstream engineering lan-
guages, such as Python and Java, that lack the features required to make static session
typing tractable. Distributed systems are also often heterogeneous in nature, meaning
that different languages and techniques (e.g. the control flow of an event-driven pro-
gram is tricky to verify statically) may be used in the implementation of one system.
Dynamic verification by communication monitoring allows us to verify MPST safety
properties directly for mainstream languages in a more scalable way. Second, a system
may use third-party components or services for which the source code is unavailable
for type checking. Third, certain protocol specification features, such as assertions on
specific message values, can be precisely evaluated at runtime, while static treatments
would usually be more conservative.

Framework overview. Figure 1 illustrates the methodology of our framework. The
development of a communication-oriented application starts with the specification of
the intended interactions (the choreography) as a global protocol using the Scribble
protocol description language [34], an engineering incarnation of the formal MPST
type language. The core features of Scribble include multicast message passing and
constructs for branching, recursive and parallel conversations. These features support
the specification of a wide range of protocols, from domains such as standard Internet
applications [18], parallel algorithms [27] and Web services [12].

Our toolchain validates that the global protocol satisfies certain well-formedness
properties, such as coherent branches (no ambiguity between participants about which
branch to follow) and deadlock-freedom (between parallel flows). From a well-formed
global protocol, the toolchain mechanically generates (projects) Scribble local proto-
cols for each participant (role) defined in the protocol. A local protocol is essentially a

2

view of the global protocol from the perspective of one role, and provides a more direct
specification for endpoint implementation than the global protocol.

When a conversation is initiated at runtime, the monitor at each endpoint gener-
ates a finite state machine (FSM) representation of the local communication behaviour
from the local protocol for its role. In our implementation, the FSM generation is an
extension of the correspondence between MPST and communication automata in [13]
to support interruptible sessions (discussed below) and optimised to avoid parallel state
explosion. The monitor tracks the communication actions performed by the endpoint,
and the messages that arrive from the other endpoints, against the transitions permitted
by the FSM. Each monitor thus works to protect both the endpoint from illegal actions
by the environment, and the network from bad endpoints. In this way, our framework is
able to ensure from the local verification of each endpoint that the global progress of the
system as a whole conforms to the original global protocol [7], and that unsafe actions
by a bad endpoint cannot corrupt the protocol state of other compliant endpoints.

This MPST monitoring framework has been integrated into the Python-based run-
time platform developed by the Ocean Observatories Initiative (OOI) [28]. The OOI is
a project to establish a cyberinfrastructure for the delivery, management and analysis of
scientific data from a large network of ocean sensor systems. Their architecture relies on
the combination of high-level protocol specifications of network services (expressed as
Scribble protocols [29]) and distributed runtime monitoring to regulate the behaviour of
third-party applications within the system [31]. Although this work is in collaboration
with the OOI, our implementation can be used orthogonally as a standalone monitoring
framework for distributed Python applications.
Contributions and summary. This paper demonstrates the application of multiparty
session types, through the Scribble protocol language, to industry practice by presenting
(1) the first implementation of MPST-based dynamic protocol verification (as outlined
above) that offers the same safety guarantees as static session type checking, and (2) a
use case motivated extension of Scribble to support the first construct for the verification
of asynchronous communication interrupts in multiparty sessions.

We developed the extension of Scribble with asynchronous interrupts to support a
range of OOI use cases that feature protocol structures in which one flow of interactions
can be asynchronously interrupted by another. Examples include various service calls
(request-reply) with timeout, and publish-subscribe applications where the consumer
can request to pause, resume and stop externally controlled sensor feeds. Although the
existing features of Scribble (i.e. those previously established in MPST theory) are suf-
ficiently expressive for many communication patterns, we observed that these important
structures could not be directly or naturally represented without interrupts.

We outline the structure of this paper, summarising the contributions of each part:

§ 2 presents a use case for the extension of Scribble with asynchronous interrupts. This
is a new feature in MPST, giving the first general mechanism for nested, multi-
party session interrupts. We explain why implementing this feature is a challenge
in session types. The previous works on exceptions in session types are purely the-
oretical, and are either restricted to binary session types (i.e. not multiparty) [11],
do not support nesting and continuations [11,10], or rely on additional implicit syn-
chronisation [9]. A formal proof of the correctness of our design is given in § 5.

3

§ 3 discusses the Python implementation of our MPST monitoring framework that we
have integrated into the OOI project, and demonstrates the global-to-local projec-
tion of Scribble protocols, endpoint implementation, and local FSM generation.
§ 3.1 describes a concise API for conversation programming in Python. The API
decorates conversation messages with the runtime session information required by
the monitors to perform the dynamic verification. § 3.2 discusses the monitor im-
plementation, how asynchronous interrupts are handled, and the key architectural
requirements of our framework.

§ 4 evaluates the performance of our monitor implementation through a collection of
benchmarks. The results show that conversation programming and monitoring can
be realised with low overhead.

The source code of our Scribble toolchain, conversation runtime and monitor, per-
formance benchmarks and further resources are available from the project page [35].
Acknowledgements. We thank Gary Brown and the Scribble team for discussions and
collaborations. This work has been partially sponsored by the Ocean Observatories Ini-
tiative, VMWare, Cognizant and EPSRC EP/K034413/1, EP/K011715/1, EP/G015635/1
and EP/G015481/1.

2 Communication protocols with asynchronous interrupts

This section expands on why and how we extend Scribble to support the specification
and verification of asynchronous session interrupts, henceforth referred to as just inter-
rupts. Our running example is based on an OOI project use case, which we have distilled
to focus on session interrupts. Using this example, we outline the technical challenges
of extending Scribble with interrupts.
Resource Access Control (RAC) use case. As is common practice in industry, the cy-
berinfrastructure team of the OOI project [28] manages communication protocol speci-
fications through a combination of informal sequence diagrams and prose descriptions.
Figure 2 (left) gives an abridged version of a sequence diagram given in the OOI doc-
umentation for the Resource Access Control use case [29], regarding access control
of users to sensor devices in the ION Cyberinfrastucture for data acquisition. In the
ION setting, a User interacts with a sensor device via its Agent proxy (which interacts
with the device via a separate protocol outside of this example). ION Controller agents
manage concerns such as authentication of users and metering of service usage.

For brevity, we omit from the diagram some of the data types to be carried in the
messages and focus on the structure of the protocol. The depicted interaction can be
summarised as follows. The protocol starts at the top of the left-hand diagram. User
sends Controller a request message to use a sensor for a certain amount of time (the int
in parentheses), and Controller sends a start to Agent. The protocol then enters a phase
(denoted by the horizontal line) that we label (1), in which Agent streams data messages
(acquired from the sensor) to User. The vertical dots signify that Agent produces the
stream of data freely under its own control, i.e. without application-level control from
User. User and Controller, however, have the option at any point in phase (1) to move
the protocol to the phase labelled (2), below.

4

U C A

req(int)

start

data

data(2)
.
.
.

.

.

.

(1)

U C A

pause

resume

(1)

stop

timeout timeout

(2)

1 global protocol ResourceAccessControl(role User as U,
2 role Controller as C, role Agent as A) {
3 req(duration:int) from U to C;
4 // U requests the device for some duration
5 start() from C to A;
6 interruptible { // U, C and A in scope
7 rec X {
8 interruptible { // U and A in scope
9 rec Y {

10 data() from A to U;
11 continue Y;
12 }
13 } with { // Interrupts A in Y
14 pause() by U;
15 }
16 resume() from U to A;
17 continue X;
18 }
19 } with { // Interrupts A and C/U in X
20 stop() by U; // Any time within the duration
21 timeout() by C; // Duration is up
22 }
23 }

Fig. 2. Sequence diagram (left) and Scribble protocol (right) for the RAC use case

Phase (2) comprises three alternatives, separated by dashed lines. In the upper case,
User interrupts the stream from Agent by sending Agent a pause message. At some
subsequent point, User sends a resume and the protocol returns to phase (1). In the mid-
dle case, User interrupts the stream, sending both Agent and Controller a stop message.
This is the case where User does not want any more sensor data, and ends the protocol
for all three participants. Finally, in the lower case, Controller interrupts the stream by
sending a timeout message to User and Agent. This is the case where, from Controller’s
view, the session has exceeded the requested duration, so Controller interrupts the other
two participants to end the protocol. Note this diagram actually intends that stop (and
timeout) can arise anytime after (1), e.g. between pause and resume (a notational am-
biguity that is compensated by additional prose comments in the specification).
Interruptible multiparty session types. Figure 2 (right) shows a Scribble protocol
that formally captures the structure of interaction in the Resource Access Control use
case and demonstrates the uses of our new extension for asynchronous interrupts. Be-
sides the formal foundations, we find the Scribble specification is more explicit and
precise, particularly regarding the combination of compound constructs such as choice
and recursion, than the sequence diagram format, and provides firmer implementation
guidelines for the programmer (demonstrated in § 3.1).

A Scribble protocol starts with a header declaring the protocol name (in Figure 2,
ResourceAccessControl) and role names for the participants (three roles, aliased in the
scope of this protocol definition as U, C and A). Lines 3 and 5 straightforwardly corre-
spond to the first two communications in the sequence diagram. The Scribble syntax

5

for message signatures, e.g. req(duration:int), means a message with operator (i.e.
header, or label) req, carrying a payload int annotated as duration. The start() mes-
sage signature means operator start with an empty payload.

We now come to “phase” (1) of the sequence diagram. The new interruptible

construct captures the informal usage of protocol phases in disciplined manner, making
explicit the interrupt messages and the scope in which they apply. Although the syntax
has been designed to be readable and familiar to programmers, interruptible is an
advanced construct that encapsulates several aspects of asynchronous interaction, which
we discuss at the end of this section.

The intended communication protocol in our example is clarified in Scribble as
two nested interruptible statements. The outer statement, on lines 6–22, corresponds
to the options for User and Controller to end the protocol via the stop and timeout

interrupts. An interruptible consists of a main body of protocol actions, here lines 7–
18, and a set of interrupt message signatures, lines 19–22. The statement stipulates that
each participant behaves by either (a) following the protocol specified in the body until
finished for their role, or (b) raising or detecting a specified interrupt at any point during
(a) and exiting the statement. Thus, the outer interruptible states that U can interrupt
the body (and end the protocol) by a stop() message, and C by a timeout().

The body of the outer interruptible is a labelled recursion statement with label X.
The continue X; inside the recursion (line 17) causes the flow of the protocol to return
to the top of the recursion (line 7). This recursion corresponds to the loop implied
by the sequence diagram that allows User to pause and resume repeatedly. Since the
recursion body always leads to the continue, Scribble protocols of this form state that
the loop should be driven indefinitely by one role, until one of the interrupts is raised
by another role. This communication pattern cannot be expressed in multiparty session
types without interruptible.

The body of the X-recursion is the inner interruptible, which corresponds to the
option for User to pause the stream. The stream itself is specified by the Y-recursion, in
which A continuously sends data() messages to U. The inner interruptible specifies
that U may interrupt the Y-recursion by a pause() message, which is followed by the
resume() message from U before the protocol returns to the top of the X-recursion.
Challenges of asynchronous interrupts in MPST. The following summarises our ob-
servations from the extension and usage of MPST with asynchronous interrupts. We find

1 // Well-formed, but incorrect semantics:
2 // the recursion cannot be stopped
3 par {
4 rec Y {
5 data() from A to U;
6 continue Y; }
7 } and {
8 // Does not stop the recursion
9 pause() from U to A;

10 }
11 resume() from U to A;

1 // Naive mixed-choice is not well-formed
2 choice at A {
3 // A should make the choice..
4 rec Y {
5 data() from A to U;
6 continue Y; }
7 } or {
8 // ..not U
9 pause() from U to A;

10 }
11 resume() from U to A;

Fig. 3. Naive, incorrect interruptible encoding attempts using parallel (left) and choice (right)

6

Conversation API operation Purpose
create(protocol name, invitation config.yml) Initiate conversation, send invitations
join(self, role, principal name) Accept invitation
send(role, op, payload) Send message with operation and payload
recv(role) Receive message from role
recv async(self, role, callback) Asynchronous receive
scope(msg) Create a conversation scope
close() Close the connection to the conversation

Fig. 4. The core Python Conversation API operations

the basic operational meaning of interruptible, as illustrated in the above example, is
readily understood by architects and developers, which is a primary consideration in the
design of Scribble. The challenges in this extension are in the design of the supporting
runtime and verification techniques to preserve the desired safety properties in the pres-
ence of interruptible. The challenges stem from the fact that interruptible com-
bines several tricky, from a session typing view, aspects of communication behaviours
that session type systems traditionally aim to prohibit, in order to prevent communica-
tion races and thereby ensure the desired safety properties.

A key aspect, due to asynchrony, is that an interrupt may occur in parallel to the ac-
tions of the roles being interrupted (e.g. pause by U to A while A is streaming data to U).
Although standard MPST (and Scribble) support parallel protocol flows, the interesting
point here is that the nature of an interrupt is to preclude further actions in another par-
allel flow under the control of a different role, whereas the basic MPST parallel does
not permit such interference. Figure 3 (left) is a naively incorrect attempt to express this
aspect without interruptible: the second parallel path is never able to intefere with the
first to actually stop the recursion.

Another aspect is that of mixed choice in the protocol, in terms of both communi-
cation direction (e.g. U may choose to either receive the next data or send a stop), and
between different roles (e.g. U and C independently, and possibly concurrently, interrupt
the protocol) due to multiparty. Moreover, the implicit interrupt choice is truly optional
in the sense that it may never be selected at runtime. The basic choice in standard MPST
(e.g. as defined in [17,13]) is inadequate because it is designed to safely identify a single
role as the decision maker, who communicates exactly one of a set of message choices
unambiguously to all relevant roles. Figure 3 (right) demonstrates a naive mixed choice
that is not well-formed (it breaks the unique sender condition in [13]).

Due to the asynchronous setting, it is also important that interruptible does not
require implicit synchronisations to preserve communication safety. The underlying
mechanisms are formalised and the correctness of our extension is proved in § 5.

3 Runtime verification

This section discusses implementation details of our monitoring framework and the ac-
companying Python API (Conversation API) for writing monitorable, distributed MPST
programs. This work is the first implementation of the theory in [7] in practice, and is

7

the first (theory or practice) to support a general, asynchronous MPST interrupt mech-
anism in the protocol language and API for endpoint implementation.

We first outline the verification methodology of our framework to clarify the pur-
pose of the main components. Developers write endpoint programs in native Python
using the Conversation API, an MPST-based message passing library that supports the
core MPST primitives for communication programming. The execution of these op-
erations at each endpoint is performed by the local conversation library runtime. The
full runtime includes infrastructure for inline monitoring of conversation actions, while
the lightweight version is used with an outline (i.e. externally hosted) monitor. In both
cases, the API enables MPST verification of message exchanges by the monitor by em-
bedding a small amount of MPST meta data (e.g. conversation identifier, message kind
and operator, source and destination roles), based on the actions and current state of
the endpoint, into the message payload. For each conversation initiated or joined by an
endpoint, the monitor generates an FSM from the local protocol for the role of the end-
point. The monitor uses the FSM to track the progress of this conversation according to
the protocol, validating each message (via the meta data) as it is sent or received.

3.1 Conversation API

The Python Conversation API offers a high-level interface for safe conversation pro-
gramming, mapping the interaction primitives of session types to lower-level commu-
nication actions on concrete transports. Our current implementation is built over an
AMQP [2] transport. In summary, the API provides the functionality for (1) session
initiation and joining, (2) basic send/receive and (3) conversation scope management
for handling interrupt messages. Figure 4 lists the core API operations. The invitation
operations (create and join) have not been captured in standard MPST systems, but
have formal counterparts in the literature in formalisms such as [11].

We demonstrate the usage of the API in a Python implementation of the local proto-
col projected for the User role. Figure 5 gives the local protocol and its implementation.
Conversation initiation. First, the create method of the Conversation API (line 5,
right) initiates a new conversation instance of the ResourceAccessControl (Figure 2)
protocol, and returns a token that can be used to join the conversation locally. The
config.yml file specifies which network principals will play which roles in this session
and the runtime sends invitation messages to each. The join method confirms that the
endpoint is joining the conversation as the principal alice playing the role User, and
returns a conversation channel object for performing the subsequent communication
operations. Once the invitations are sent and accepted (via Conversation.join), the
conversation is established and the intended message exchanges can proceed. As a result
of the initiation procedure, the runtime at every participant has a mapping (conversation
table) between each role and their AMQP addresses.
Conversation message passing. Following its local protocol, the User program sends
a request to the controller, stating the duration for which it requires access to agent.
The send method called on the conversation channel c takes, in this order, the des-
tination role, message operator and payload values as arguments. This information is
embedded into the message payload as part of the conversation meta data, and is later

8

1 local protocol ResourceAccessControl
2 at User as U (role Controller as C,
3 role Agent as A) {
4 req(duration:int) to C;
5 interruptible {
6 rec X {
7 interruptible {
8 rec Y {
9 data() from A;

10 continue Y;
11 }
12 } with {
13 pause() by U;
14 }
15 resume() to A;
16 continue X;
17 }
18 } with {
19 stop() by U;
20 timeout() by C;
21 }
22 }

1 class UserApp(BaseApp):
2 user, controller, agent =
3 [’User’, ’Controller’, ’Agent’]
4 def start(self):
5 conv = Conversation.create(
6 ’RACProtocol’, ’config.yml’)
7 c = conv.join(user, ’alice’)
8 # request 1 hour access
9 c.send(controller, ’req’, 123)

10 with c.scope(’timeout’, ’stop’)
11 as c1:
12 while not self.limit_reached():
13 with c1.scope(’pause’) as c2:
14 while not buffer.full:
15 resource = c2.recv(controller)
16 buffer.append(resource)
17 c2.send_interrupt(’pause’)
18 # sleep before resume
19 c1.send(agent, ’resume’)
20 if self.should_stop():
21 c1.send_interrupt(’stop’)
22 c.close()

Fig. 5. Scribble local protocol (left) and Python implementation (right) for the User role

used by the monitor in the runtime verification. The recv method can take the source
role as a single argument, or additionally the operator of the desired message. Send is
asynchronous, meaning that the operation does not block on the corresponding receive;
however, the basic receive does block until the complete message has been received.
For asynchronous, non-blocking receives, the API provides recv async to be used in an
event-driven style.

Interrupt handling via conversation scopes. This example demonstrates a way of
handling conversation interrupts by combining conversation scopes with the Python
with statement (an enhanced try-finally construct). We use with to conveniently cap-
ture interruptible conversation flows and the nesting of interruptible scopes, as well
as automatic close of interrupted channels in the standard manner, as follows. The
API provides the c.scope() method, as in line 10, to create and enter the scope of
an interruptible Scribble block (here, the outer interruptible of the RAC protocol).
The timeout and stop arguments associate these message signatures as interrupts to
this scope. The conversation channel c1 returned by scope is a wrapper of the parent
channel c that (1) records the current scope of every message sent in its meta data, (2)
ensures every send and receive operation is guarded by a check on the local interrupt
queue, and (3) tracks the nesting of scope contexts through nested with statements. The
interruptible scope of c1 is given by the enclosing with (lines 10–21); if, e.g., a timeout

is received within this scope, the control flow will exit the with to line 22. The inner
with (lines 13–17), corresponding to the inner interruptible block, is associated with the
pause interrupt. When an interrupt, e.g. pause in line 17, is thrown (send interrupt) to
the other conversation participants, the local and receiver runtimes each raise an internal
exception that is either handled or propagated up, depending on the interrupts declared
at the current scope level, to direct the interrupted control flow accordingly. The de-
lineation of interruptible scopes by the global protocol, and its projection to each local

9

Fig. 6. Monitor workflow for (1) invitation and (2) in-
conversation messages

C!req(int)
new scope

A?data

A!pauseA!resume

{C, A}!stopC?timeout

Fig. 7. Nested FSM generated from the
User local protocol

protocol, thus allows interrupted control flows to be coordinated between distributed
participants in a structured manner.

The scope wrapper channels are closed (via the with) after throwing or handling an
interrupt message. For example, using c1 (outside its parent scope) after a timeout is
received will be flagged as an error. By identifying the scope of every message from its
meta data, the conversation runtime (and monitor) is able to compensate for the inher-
ent discrepancies in protocol synchronisation, due to asynchronous interrupts between
distributed endpoints, by safely discarding out-of-scope messages. In our example, the
User runtime discards data messages that arrive after pause is thrown. To prevent the
loss of such messages in the application logic when the stream is resumed, we could
extend the protocol to simply carry the id of the last received resource in the payload
of the resume (in line 21). The API can also make the discarded data available to the
programmer through secondary (non-monitored) operations.

An alternative event-driven implementation using receive asyc and callbacks (that
can, however, be safely monitored against the same local protocol) is given in [35].

3.2 Monitoring architecture

Inline and outline monitoring. In order to guarantee global safety, our monitoring
framework imposes complete mediation of communications: no communication action
should have an effect unless the message is mediated by the monitor. This principle
requires that all outgoing messages from a principal before reaching the destination, and
all incoming messages before reaching the principal, are routed through the monitor.

The monitor implementation (and the accompanying theory [7]) is compatible with
a range of monitor configurations. At one end of the spectrum is inline monitoring,
where the monitor is embedded into the endpoint code. Then there are various config-
urations for outline monitoring, where the monitor is positioned externally to its com-
ponent. In the OOI project, our focus has been to integrate our framework for inline
monitoring due to the architecture of the OOI message interceptor stack [31].
Monitor implementation. Figure 6 depicts the main components and internal work-
flow of our prototype monitor. The lower part relates to conversation initiation. The

10

invitation message carries (a reference to) the local protocol for the invitee and the
conversation id (global protocols can also be exchanged if the monitor has the fa-
cility for projection.) The monitor generates the FSM from the local protocol fol-
lowing [13]. Our implementation differs from [13] in the treatment of parallel sub-
protocols (i.e. unordered message sequences), and additionally supports interrupts. For
efficiency, we extend [13] to generate a nested FSM for each conversation thread, avoid-
ing the potential state explosion that comes from constructing their product. This allows
FSM generation in polynomial time and space in the length of the local protocol. The
(nested) FSMs are stored in a hash table with conversation id as the key. Transition func-
tions are similarly hashed, each entry having the shape: (current state, transition) 7→
(next state, assertion, var), where transition is a triple (label,sender,receiver) and var
is the variable binder for the message payload. Due to standard MPST well-formedness
(message label distinction), any nested FSM is uniquely identifiable from any unordered
message, i.e. message-to-transition matching in a conversation FSM is deterministic.

The upper part of Figure 6 relates to in-conversation messages, which carry the
conversation id (matching an entry in the FSM hash table), sender and receiver fields,
and the message label and payload. This information allows the monitor to retrieve
the corresponding FSM (by matching the message signature to the FSM’s transition
function). Assertions associated to communication actions are evaluated by invoking an
external logic engine; a monitor can be configured to use various logic engines, such as
for the validation of assertions, automata-based specifications (e.g. security automata),
or other stateful properties. Our current implementation uses a basic Python predicate
evaluator, which is sufficient for the use case protocols we have developed so far.
Monitoring interrupts. FSM generation for interruptible local protocols again makes
use of nested FSMs. Each interruptible induces a nested FSM given by the main
interruptible block, as illustrated in Figure 7 for the User local protocol. The monitor
internally augments the nested FSM with a scope id, derived from the signature of the
interruptible block, and an interrupt table, which records the interrupt message signa-
tures that may be thrown or received in this scope. Interrupt messages are marked via
the same meta data field used to designate invitation and in-conversation messages, and
are are validated in a similar way except that they are checked against the interrupt ta-
ble. However, if an interrupt arrives that does not have a match in the interrupt table
of the immediate FSM(s), the check searches upwards through the parent FSMs; the
interrupt is invalid if it cannot be matched after reaching the outermost FSM is reached.

4 Evaluation

Our dynamic MPST verification framework has been implemented and integrated into
the current release of the Ocean Observatories infrastructure [30]. This section reports
on our integration efforts and the performance of our framework.

4.1 Experience: OOI integration

The current release of OOI is based on a Service-Oriented Architecture, with all of
the distributed system services accessible by RPC. As part of their efforts to move to

11

x = Registry.save("some data")

def save(data):

return RPCClient.request("Registry", "save", data)

#follows generic Scribble protocol
def request(svc addr, op, args*):

c = create and join("RPCProtocol")
invite and send(svc addr, c, op, args*)
return c.receive()

core conversation primitives:
? create, join, create and join: creation
? invite, invite and send: initial request
? send, receive: in-conversation messages

Application Code

Local Proxy

RPC Library

Conversation Layer

event-based scheduling ION channels

Fig. 8. Translation of an RPC command into lower-level conversation calls

agent-based systems in the next release, and to support distributed governance for more
than just individual RPC calls, we engineered the following step-by-step transition. The
first step was to add our Scribble monitor to the message interceptor stack of their mid-
dleware [31]. The second was to propose our conversation programming interface to
the OOI developers. To facilitate the use of session types without obstructing the exist-
ing application code, we preserved the interface of the RPC libraries but replaced the
underlying machinery with the distributed runtime for session types (as shown in Fig-
ure 8, the RPC library is now realised on top of the Conversation Layer). As wrappers
to the conversation primitives, all RPC calls are now automatically verified by the inline
MPST monitors. This approach was feasible because no changes were required to ex-
isting application code, but at the same time, developers now have the option to use the
Conversation API directly for conversations more complex than RPC. The next step in
this ongoing integration work involves porting higher-level and more complex OOI ap-
plication protocols, such as distributed agent negotiation [29], to Scribble specifications
and Conversation API implementations.

4.2 Benchmarks

The potential performance overhead that the Conversation Layer and monitoring could
introduce to the system is an important consideration. The following performance mea-
surements for the current prototype show that our framework can be realised at reason-
able cost. Table 1 presents the execution time comparing RPC calls using the original
OOI RPC library implementation and the conversation-based RPC with and without
monitor verification. On average, 13% overhead is recorded for conversations of 10
consecutive RPCs, mostly due to the FSM generation from the textual local Scribble
protocol (our implementation currently uses Python ANTLR); the cost of message vali-
dation itself is negligible in comparison. We plan to experiment with optimisations such
as pre-generating or caching FSMs to reduce the monitor initialisation time.

12

10 RPCs (s)
RPC Lib 0.103
No Monitor 0.108 +4%
Monitor 0.122 +13%

Table 1. Original OOI RPC
vs. conversation-based RPC

Rec NoM Mon
States (s) (s)
10 0.92 0.95 +3.2%
100 8.13 8.22 +1.1%
1000 80.31 80.53 +0.8%

Par NoM Mon
States (s) (s)
10 0.45 0.49 +8%
100 4.05 4.22 +4.1%
1000 40.16 41.24 +2.7%

Table 2. Conversation execution time for an increasing
number of sequential and parallel states

The second benchmark gives an idea of how well our framework scales beyond ba-
sic RPC patterns. Table 2 shows that the overall verification architecture (Conversation
Layer and inline monitor) scales reasonably with increasing session length (number of
message exchanges) and increasing parallel states (nested FSM size): “Rec States” is
the number of states passed through sequentially by a simple recursive protocol (used
to parameterise the length of the conversation), and “Par States” the number of parallel
states in a parallel protocol. Two benchmark cases are compared. The main case “Mon-
itor” (Mon) is fully monitored, i.e. FSM generation and message validation are enabled
for both the client and server. The base case for comparison “No Monitor” (NoM) has
the client and server in the same configuration, but monitors are disabled (messages
do not go through the interceptor stack). As above, we found that the overhead intro-
duced by the monitor when executing conversations of increasing number of recursive
and parallel states is again mostly due to the cost of the initial FSM generation. We
also note that the relative overhead decreases as the session length increases, because
the one-time FSM generation cost becomes less prominent. For dense FSMs, the worse
case scenario results in linear overhead growth wrt. the number of parallel branches.

In both of the above tables, the presented figures are the mean time for the client
and server, connected by a single-broker AMQP network, to complete one conversation
after repeating the benchmark 100 times for each parameter configuration. The client
and server Python processes (including the conversation runtime and monitor) and the
AMQP broker were each run on separate machines (Intel Core2 Duo 2.80 GHz, 4 GB
memory, 64-bit Ubuntu 11.04, kernel 2.6.38). Latency between each node was mea-
sured to be 0.24 ms on average (ping 64 bytes). The full source code of the benchmark
protocols and applications and the raw data are available from the project page [35].

4.3 Use cases

We conclude our evaluation with some remarks on use cases we have examined. Table 3
features a list of protocols, sourced from both the research community and our industry
use cases, that we have written in Scribble and used to test our monitor implementation
on more realistic protocol specifications. A natural question for our methodology, being
based on explicit specification of protocols, is the overhead imposed on developers wrt.
writing protocols, given that a primary motivation for the development of Scribble is to
reduce the design and testing effort for distributed systems. Among these use cases, we
found the average Scribble global protocol is roughly 10 LOC, with the longest one at
26 LOC, suggesting that Scribble is reasonably concise.

13

Global Scribble FSM Memory Generation Time
Use Cases from research papers (LOC) (B) (s)
A vehicle subsystem protocol [21] 8 840 0.006
Map web-service protocol [15] 10 1040 0.010
A bidding protocol [24] 26 1544 0.020
Amazon search service [16] 12 1088 0.010
SQL service [32] 8 1936 0.009
Online shopping system [14] 10 1024 0.008
Travel booking system [14] 16 1440 0.013

Use Cases from OOI and Savara
A purchasing protocol [20] 11 1088 0.010
A banking example [29] 16 1564 0.013
Negotiation protocol [29] 20 1320 0.014
RPC with timeout [29] 11 1016 0.013
Resource Access Control [29] 21 1854 0.018

Table 3. Use case protocols implemented in Scribble

The main factors that may affect the performance and scalability of our monitor
implementation, and which depend on the shape of a protocol, are (i) the time required
for the generation of FSMs and (ii) the memory overhead that may be induced by the
generation of nested FSMs in case of parallel blocks and interrupts. Table 3 measures
these factors for each of the listed protocols. The time required for FSM generation
remains under 20 ms, measuring on average to be around 10 ms. The memory overhead
also remains within reasonable boundaries (under 1.5 KB), indicating that FSM caching
is a feasible optimisation approach. The full Scribble protocols can be found at [35].

From our experience of running our conversation monitoring framework within the
OOI system, we expect that, in many large distributed systems, the cost of a decen-
tralised monitoring infrastructure would be largely overshadowed by the raw cost of
communication (latency, routing) and other services running at the same time. Consid-
ering the presented results, we thus believe the important benefits in terms of safety
and management of high-level applications come at a reasonable cost and would be a
realistic mechanism in many distributed systems.

5 Interruptible session type theory and related work

5.1 Session type theory for interrupts

In this subsection, we sketch the underlying session type theory with interrupts and
its correctness result, session fidelity, justifying our design choices. We build over the
multiparty session theory [17], adding syntax and semantics for interrupts. In our theory,
global types correspond to session specifications whereas local types are used to express
monitored behaviours of processes [7]. We show that interruptible blocks can be treated
through the use of scopes, a new formal construct that realises, through an explicit
identifier, the domain of interrupts. Our scope-based session types can handle nested

14

interrupts and multiparty continuations to interruptible blocks, allowing us to model
truly asynchronous exceptions implemented in this paper (these features have not been
modelled in existing MPST theories for exceptions [11,10,9]). The full definitions and
proofs are available from [35].

Global types (G) below correspond to Scribble protocols. Scopes are made explicit
by the use of scope variables S, corresponding to the dynamic scope generation present
in the implementation in § 3.1. Roles in types are denoted by r, and labels with l.

G ::= r→r′ :{li.Gi}i∈I | G|G | {|G|}S〈l by r〉;G′ | µx.G | x | end | Eend
T ::= r!{li.Ti}i∈I | r?{li.Ti}i∈I | T |T
| {|T |}S / 〈r!l〉;T ′ | {|T |}S . 〈r?l〉;T ′ | µx.T | x | end | Eend

The main primitive is the interaction with directed choice: r→r′ :{li.Gi}i∈I is a com-
munication between the sender r and the receiver r′ which involves a choice between
several labels li, the corresponding continuations are denoted by the Gi. Parallel com-
position G1|G2 allows the execution of interactions not linked by causality.

Our types feature a new interrupt mechanism by explicit interruptible scopes: we
write {|G|}S〈l by r〉;G′ to denote a creation of an interruptible block identified by scope
S, containing protocol G, that can be interrupted by a message l from r and contin-
ued after completion (either normal or exceptional) with protocol G′. This construct
corresponds to the interruptible of Scribble, presented in § 2. Note that we allow
interruptible scopes to be nested. This syntax (and the related properties) can be easily
extended to multiple messages from different roles. We use Eend (resp. end) to denote
the exceptional (resp. normal) termination of a scope.

The local type syntax (T) given above follows the same pattern, but the main differ-
ence is that the interruptible operation is divided into two sides, one / side for the roles
which can send an interrupt {|T |}S / 〈r!l〉;T ′, and the . side for the roles which should
expect to receive an interrupt message {|T |}S . 〈r?l〉;T ′.

GResCont = U→C : req;C→A : start{| µX .{|µY.A→U :data;Y |}S2〈pause by U〉;
U→A : resume;X |}S1〈stop by U, timeout by C〉;end

Above we describe a global type which corresponds to the Scribble protocol in Fig-
ure 2. The explicit naming of the scopes, S1 and S2, correspond to the dynamic scope
generations in § 3.1, and are required to formalise the semantics of local types.

We define the relation G ; G′ as:
r→r′ :{li.Gi}i∈I ; Gi {|G|}S〈l by r〉;G0 ; {|Eend|}S〈l by r〉;G0

G ; G′ implies {|G|}S〈l by r〉;G0 ; {|G′|}S〈l by r〉;G0 G ; G′ implies G | G0 ; G′ | G0

and say G′ is a derivative of G if G ;∗ G′. We define configurations ∆ ,Σ as a pair of a
mapping from a session channel to a local type and a collection of queues (a mapping
from a session channel to a vector of the values). Configurations model the behaviour of
a network of monitored agents. We say a configuration ∆ ,Σ corresponds to a collection
of global types G1, . . . ,Gl whenever Σ is empty and the environment ∆ is a projection
of G1, . . . ,Gl . The reduction semantics of the configuration (∆ ,Σ → ∆ ′,Σ ′) is defined
using the contexts with the scopes. Formal definitions can be found in [35].

The correctness of our theory is ensured by Theorem 1, which states a local en-
forcement implies global correctness: if a network of monitored agents (modelled as

15

a configuration) corresponds to a collection of well-formed specifications and makes
some steps by firing messages, then the network can perform reductions (consuming
these messages) and eventually reaches a state that corresponds to a collection of well-
formed specifications, obtained from the previous one. This property guarantees that
the network is always linked to the specification, and proves, with the previous dy-
namic monitoring process theory [7], that the introduction of interruptible blocks to the
syntax and semantics yields a sound theory. The proofs can be found in [35].

Theorem 1 (Session fidelity). If ∆ corresponds to G1, . . . ,Gn and ∆0,ε→∗ ∆ ,Σ , there
exists ∆ ,Σ →∗ ∆ ′,ε such that ∆ ′ corresponds to G′1, . . . ,G

′
n which are derivatives of

G1, . . . ,Gn.

5.2 Related work

Distributed runtime verification. The work in [3] explores runtime monitoring based
on session types as a test framework for multi-agent systems (MAS). A global session
type is specified as cyclic Prolog terms in Jason (a MAS development platform). Their
global types are less expressive in comparison with the language presented in this paper
(due to restricted arity on forks and the lack of session interrupts). Their monitor is
centralised (thus no projection facilities are discussed), and neither formalisation, global
safety property nor proof of correctness is given in [3].

Other works, notably from the multi-agent community, have studied distributed en-
forcement of global properties through monitoring. A distributed architecture for local
enforcement of global laws is presented by Zhang et al. [36], where monitors enforce
laws expressed as event-condition-action. In [26], monitors may trigger sanctions if
agents do not fulfil their obligations within given deadlines. Unlike such frameworks,
where all agents belonging to a group obey the same set of laws, our approach asks
agents to follow personalised laws based on the role they play in each session.

In runtime verification for Web services, the works [24,25] propose FSM-based
monitoring using a rule-based declarative language for specifications. These systems
typically position monitors to protect the safety of service interfaces, but do not aim to
enforce global network properties. Cambronero et al. [8] transform a subset of Web Ser-
vices Choreography Description Language into timed-automata and prove their trans-
formation is correct with respect to timed traces. Their approach is model-based, static
and centralised, and does not treat either the runtime verification or interrupts. Baresi et
al. [5] develop a runtime monitoring tool for BPEL with assertions. A major difference
is that BPEL approaches do not treat or prove global safety. BPEL is expressive, but
does not support distribution and is designed to work in a centralised manner. Kruger et
al. [22] propose a runtime monitoring framework, projecting MSCs to FSM-based dis-
tributed monitors. They use aspect-oriented programming techniques to inject monitors
into the implementation of the components. Our outline monitoring verifies conversa-
tion protocols and does not require such monitoring-specific augmentation of programs.
Gan [14] follows a similar but centralised approach of [22]. As a language for proto-
col specification, a main advantage of Scribble (i.e. MPST) over alternatives, such as
message sequence charts (MSC), CDL and BPML, is that MPST has both a formal ba-
sis and an in-built mechanism (projection) for decentralisation, and is easily integrated
with the language framework as demonstrated for Python in this paper.

16

Language-based monitoring tools. Jass [19] is a precompiler tool for monitoring
the dynamic behaviour of sequential objects and the ordering of method invocations
by annotating Java programs with specifications that can be checked at runtime. Other
approaches to runtime verification of program execution by monitors generated from
language-based specifications include: aspect-oriented programming [23]; other works
that use process calculi formalisms, such as CSP [19]; monitors based on FSM skeletons
associated to various forms of underlying patterns [1,4]; and the analysis of dynamic
parametric traces [4]. Our monitor framework has been influenced by these works and
shares similarities with some of the presented RV techniques. However, the target pro-
gram domain and focus of our work are different. Our framework is specifically de-
signed for decentralised monitoring of distributed programs with diverse participants
and interleaving sessions, as opposed to monitoring the execution of a single program
and verifying its local properties. The basis of our design and implementation is the
theory of multiparty session types, over which we have developed practically motivated
extensions to the type language and the methodology for runtime verification.

6 Conclusion

We have implemented the first dynamic verification of distributed communications
based on multiparty session types and shown that a new feature for interruptible con-
versations is effective in the runtime verification of message exchanges in a large cy-
berinfrastructure [28] and Web services [33,34]. Our implementation automates dis-
tributed monitoring by generating FSMs from local protocol projections. We sketched
the formalisation of asynchronous interruptions with conversation scopes, and proved
the correctness of our design through the session fidelity theorem. Future work includes
the incorporation of more elaborate handling of error cases into monitors and automatic
generation of service code stubs. Although our implementation work is ongoing through
industry collaborations, the results already confirm the feasibility of our approach. We
believe this work contributes towards methodologies for better specification and more
rigorous governance of network conversations in distributed systems.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching with free variables to
aspectj. SIGPLAN Not., 40(10):345–364, Oct. 2005.

2. Advanced Message Queuing protocols (AMQP) homepage. http://jira.amqp.org/

confluence/display/AMQP/Advanced+Message+Queuing+Protocol.
3. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-monitoring

mass from multiparty global session types in Jason. In DALT’12. Springer, 2012.
4. P. Avgustinov, J. Tibble, and O. de Moor. Making trace monitors feasible. SIGPLAN Not.,

42(10):589–608, Oct. 2007.
5. L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services. In ICSOC ’04,

pages 193–202, 2004.
6. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,

volume 5201 of LNCS, pages 418–433. Springer, 2008.

17

http://jira.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol
http://jira.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol

7. L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring networks
through multiparty session types. In FMOODS, volume 7892 of LNCS, pages 50–65.
Springer, 2013.

8. M.-E. Cambronero et al. Validation and verification of web services choreographies by using
timed automata. J. Log. Algebr. Program., 80(1):25–49, 2011.

9. S. Capecchi, E. Giachino, and N. Yoshida. Global escape in multiparty session. In
FSTTCS’10, volume 8 of LIPICS, pages 338–351, 2010.

10. M. Carbone. Session-based choreography with exceptions. Electr. Notes Theor. Comput.
Sci., 241:35–55, 2009.

11. M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions in session types.
In CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.

12. W3C WS-CDL. http://www.w3.org/2002/ws/chor/.
13. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In

ESOP, LNCS. Springer, 2012.
14. Y. Gan et al. Runtime monitoring of web service conversations. In CASCON ’07, pages

42–57. ACM, 2007.
15. C. Ghezzi and S. Guinea. Run-time monitoring in service-oriented architectures. In Test and

Analysis of Web Services, pages 237–264. Springer, 2007.
16. S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and R. Villemaire. Runtime verification of web

service interface contracts. Computer, 43(3):59–66, Mar. 2010.
17. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In

POPL’08, pages 273–284. ACM, 2008.
18. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful sessions in

Java. In ECOOP’10, volume 6183 of LNCS, pages 329–353. Springer-Verlag, 2010.
19. Jass Home Page. http://modernjass.sourceforge.net/.
20. Jboss Savara project. http://www.jboss.org/savara/downloads.
21. I. H. Krüger, M. Meisinger, and M. Menarini. Runtime verification of interactions: from

mscs to aspects. In RV’07, RV’07, pages 63–74, Berlin, Heidelberg, 2007. Springer-Verlag.
22. I. H. Krüger, M. Meisinger, and M. Menarini. Interaction-based runtime verification for

systems of systems integration. J. Log. Comput., 20(3):725–742, 2010.
23. LAVANA project. http://www.cs.um.edu.mt/svrg/Tools/LARVA/.
24. Z. Li, J. Han, and Y. Jin. Pattern-based specification and validation of web services interac-

tion properties. In ICSOC’05, pages 73–86, 2005.
25. Z. Li, Y. Jin, and J. Han. A runtime monitoring and validation framework for web service

interactions. In ASWEC’06. IEEE, 2006.
26. N. H. Minsky and V. Ungureanu. Law-governed interaction: a coordination and control

mechanism for heterogeneous distributed systems. TOSEM, 9:273–305, July 2000.
27. N. Ng, N. Yoshida, and K. Honda. Multiparty Session C: Safe Parallel Programming with

Message Optimisation. In TOOLS, volume 7304 of LNCS, pages 202–218. Springer, 2012.
28. Ocean Observatories Initative. http://www.oceanobservatories.org/.
29. OOI. https://confluence.oceanobservatories.org/display/CIDev/Identify+

required+Scribble+extensions+for+advanced+scenarios+of+R3+COI.
30. OOI codebase. https://github.com/ooici/pyon.
31. OOI COI governance framework. https://confluence.oceanobservatories.org/

display/syseng/CIAD+COI+OV+Governance+Framework.
32. G. Salaün. Analysis and verification of service interaction protocols - a brief survey. In

TAV-WEB, volume 35 of EPTCS, pages 75–86, 2010.
33. JBoss Savara Project. http://www.jboss.org/savara.
34. Scribble Project homepage. http://www.scribble.org.
35. Full version of this paper. http://www.doc.ic.ac.uk/~rn710/mon.
36. W. Zhang, C. Serban, and N. Minsky. Establishing global properties of multi-agent systems

via local laws. In E4MAS’06, pages 170–183, 2007.

18

http://www.w3.org/2002/ws/chor/
http://modernjass.sourceforge.net/
http://www.jboss.org/savara/downloads
http://www.cs.um.edu.mt/svrg/Tools/LARVA/
http://www.oceanobservatories.org/
https://confluence.oceanobservatories.org/display/CIDev/Identify+required+Scribble+extensions+for+advanced+scenarios+of+R3+COI
https://confluence.oceanobservatories.org/display/CIDev/Identify+required+Scribble+extensions+for+advanced+scenarios+of+R3+COI
https://github.com/ooici/pyon
 https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Governance+Framework
 https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Governance+Framework
http://www.jboss.org/savara
http://www.scribble.org
http://www.doc.ic.ac.uk/~rn710/mon

	Practical interruptible conversations
	Introduction
	Communication protocols with asynchronous interrupts
	Runtime verification
	Conversation API
	Monitoring architecture

	Evaluation
	Experience: OOI integration
	Benchmarks
	Use cases

	Interruptible session type theory and related work
	Session type theory for interrupts
	Related work

	Conclusion

