
Programming Language Implementations with
Multiparty Session Types ‹

Nobuko Yoshidar0000´0002´3925´8557s

University of Oxford, UK

Abstract. Session types provide a typing discipline for communication
systems, and a number of programming languages are integrated with
session types. This paper provides a survey of programming language
implementations which use the structuring mechanism from multiparty
session types (MPST). The theory of MPST guarantees that processes
following a predefined communication protocol (a multiparty session) are
free from communication errors and deadlocks. We discuss the top-down,
bottom-up and hybrid MPST frameworks, and compare their positive
and negative aspects, through a Rust MPST implementation framework,
Rumpsteak. We also survey MPST implementations with dynamic (run-
time) verification which target active object programming languages.

1 Introduction

Since the first implementation work which integrates session types [68,27] into
the mainstream programming language, Java [32], the session types community
has been actively engaged with implementations or integration of session types
into various programming languages and tools. This survey focuses on the pro-
gramming language implementations and tools based on multiparty session types
(MPST) [28,29].

Initially, session types had a main open problem, repeatedly posed by indus-
try partners and researchers: whether the original binary session types [68,27] can
be extended to multiparty (i.e. more than two parties). This is a natural ques-
tion since most of business and distributed protocols and parallel computations
are written in multiparty communications. The hint to discover a multiparty
session type theory had come from an abstract version of “choreography” de-
veloped in W3C Web Service Choreography Description Language (WS-CDL)
group [10]. Since the idea was first published in [28], it has been studied and used
from many different theoretical and practical aspects in the research community,
such as the automata theory, model checking, runtime verification, linear logic,
workflows, contracts and mechanisation. With RedHat, multiparty session types

‹ This research was funded in whole, or in part, by EPSRC EP/T006544/2,
EP/K011715/1, EP/K034413/1, EP/L00058X/1, EP/N027833/2, EP/N028201/1,
EP/T014709/2, EP/V000462/1, EP/X015955/1, NCSS/EPSRC VeTSS and Hori-
zon EU TaRDIS 101093006.

2 N. Yoshida

have opened their way to industry with the new JBoss Scribble Project (a lan-
guage to describe multiparty session types). In the U.S., Ocean Observatories
Initiative (OOI) [64] deployed dynamic runtime checking using Scribble for his-
torically large cyberinfrastructures. A new industry-led application domain of
MPST is microservices– Estafet commercialised a tool which generates Go code
for microservices from Scribble [17].

After nearly 15 years from the birth of MPST, as far as we have known,
MPST is integrated over 16 different programming languages. Moreover, for
some languages, several MPST tools exist: for example, research came up with
various MPST tools integrated in Java, and that has led to different MPST-
flavoured Java versions or related technologies such as Scribble.

Among the wide range of formal methods for verifying communicating sys-
tems, the MPST framework offers a direct link to programming primitives that
digest the structures and dynamics of multiple communicating components.
Specifically:

1. Multiparty session types offer clean abstractions of communicating behaviour
as a protocol, defining a fundamental Application Programming Interface
(API) of components, aiding modular development and well-structured en-
gineering;

2. Multiparty session types give a scalable automatic verification method with-
out state-space explosion problems, extensible to check more advanced/gen-
eral properties, applying model-checking tools; and

3. Multiparty session types offer a foundation for more refined verification
methods, such as the elaboration of components’ type signature with as-
sertions and monitoring and tracing behaviours of the systems.

The key element of MPST is a global type, which globally (i.e. in a bird’s eye
view) describes how message exchanges in a conversation (or session) proceed
among its participants (end-points). To obtain the local protocol which an end-
point should obey from a global protocol, we project the local portion of a global
protocol onto each end-point, giving the end-point’s interface with respect to that
protocol. This local interface generalises the familiar notion of API, which can
be regarded as the server-side projection of a two-party call-return protocol. One
can then use, at each end-point, these projected local protocols to concurrently
build and test an end-point system conforming to the local protocols so that the
original global protocols are obeyed in the interactions among these systems.

The first part of this paper outlines three different MPST frameworks using
a MPST Rust toolchain, Rumpsteak, as an example. The second part gives
a summary of all MPST programming language implementations since 2008
and compares them through several criteria. The first part of this paper is an
extended version of a short paper which appeared in [12]. A part of a survey
of the top-down framework explained in § 3.1 is an expansion from [41, § 6.2],
including the recent MPST implementations published after [41].

Programming Language Implementations with Multiparty Session Types 3

G

L1 L2 Ln

L1
1 L1

2 L1
n

A1 A2 An

P1 P2 Pn

Projection

Local optimisation
(asynchronous sub-
typing)

¨ ¨ ¨

API generation

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

Global type ðñ Protocol

Local types ðñ CFSMs

Subtyped ðñ Optimised
Local Types CFSMs

APIs

Processes ðñ Programs

Fig. 1: Top-down MPST methodology: Highlight is supplied/done by user.

2 Multiparty Session Type Frameworks

This section explains the three frameworks of the multiparty session types (MPST),
which combine the asynchronous message optimisation. We use the Rust frame-
work, Rumpsteak [13], for the illustration as the toolchain implements the three
frameworks. We start from the most standard and commonly used top-down
framework, which can ensure correctness by construction.

2.1 Top-Down Multiparty Session Type Framework

Workflow. Fig. 1 presents the top-down MPST methodology. As the first step,
we write a global type G to describe the interactions between all roles, and project
it onto each role to obtain an endpoint local type Li; then we apply asynchronous
subtyping [21] to optimise each Li to obtain L1

i (denoted by L1
iďLi); and finally,

we type-check each process Pi by L1
i. Hence the group of processes P1...Pn created

in this way are free from communication errors such as deadlocks.

In the Rumpsteak tool-chain (its stages correspond to the right-hand side
in Fig. 1), a global type is written as a protocol, each local type is represented
as a communicating finite state machine (CFSM) [5] (we denote a CFSM by
M). The highlight denotes the part supplied by the user. More specifically, the
implementation is conducted by the following steps: in

Step 1 we write a protocol to describe the interactions, and project it onto each
role to obtain an endpoint communicating finite state machine (CFSM) Mi;

Step 2 we optimise each Mi to obtain M 1
i ;

Step 3 we generate an API Ai from each M 1
i ; and

Step 4 we use each Ai to create an asynchronous Rust process Pi.

4 N. Yoshida

G “ µt.A Ñ B :

"

addpi32q.B Ñ C :

"

addpi32q.C Ñ A : taddpi32q.tu

subpi32q.C Ñ A : tsubpi32q.tu

**

LB “ µt.A?addpi32q.tC!addpi32q.t ‘ C!subpi32q.tu

L1
B “ µt.tC!addpi32q.A?addpi32q.t ‘ C!subpi32q.A?addpi32q.tu

Fig. 2: Global type (top) and the original LB and optimised L1
B local types (bot-

tom) for the ring-choice protocol

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

I (projected) I 1 (optimised)

0 1

C!addpi32q

A?addpi32q

C!subpi32q

MB (projected)

0 1

C!addpi32q

A?addpi32q

C!subpi32q

M 1
B (optimised)

Fig. 3: Ring protocol: (Left) Projected and optimised interactions; (Right) Pro-
jected and optimised session CFSMs.

End-Point Projection. For illustration, we use a ring protocol extended with
choice (ring-choice) whose global type G is given in Fig. 2 (top). Role B chooses
between sending an add or a sub message to role C, which must in turn send
the same label to role A. We then project G into each role to obtain a set of
local types. Fig. 2 (bottom) gives a local type of role B (denoted by LB) where !
and ? denote send and receive respectively, and ‘ denotes the output (internal)
choice.

In the implementation, for [Step 1], Rumpsteak uses νScr [63,75], which
is a new lightweight and extensible Scribble toolchain implemented in OCaml.
The Scribble language [26,73] is widely used to describe multiparty protocols,
agnostic to target languages. Then the tool generates a CFSM for each role. The
generated CFSM for role B (denoted by MB) is given in Fig. 3 (right).

Asynchronous Message-Reordering Optimisation. A protocol G is syn-
chronous—i.e., näıvely projecting it onto B produces an overly synchronised
local type LB. If A is slow to send its value to B then the entire interaction is
blocked (as shown in I in Fig. 3). Instead, assuming each process begins with
its own initial value, B could send its value to C in the meantime, allowing C to
begin its next iteration (as shown in I 1 in Fig. 3).

Therefore, in [Step 2], we transform LB into the optimal L1
B in Fig. 2.

Importantly, we ensure that (1) no data dependencies exist between interactions,
allowing their order to be changed; and (2) L1

B is an asynchronous subtype [21]
of LB (L1

BďLB), allowing it to safely be used as a substitution while preserving
deadlock-freedom. The CFSM representations of LB and L1

B are given in MB

and M 1
B in Fig. 3, respectively. While the asynchronous subtyping is proven

Programming Language Implementations with Multiparty Session Types 5

undecidable [45], Rumpsteak implements the sound decidable algorithm which
calculates approximately whether M 1

B is a subtype of MB [13].

Code Generation. While in the theory, we do not have this step, Rumpsteak

includes a code generator to produce an API in [Step 3]. Listing 1 shows the
API AB corresponding to the CFSMM 1

B, from which we have elided other partic-
ipants. To ensure that our API remains readable by developers and to eliminate
extensive boilerplate code, we make use of Rust procedural macros [69]. By dec-
orating types with #[...], these macros perform additional compile-time code
generation. For each role, we generate a struct storing its communication chan-
nels with other roles. For example, B (line 3) contains unidirectional channels
from A and to C as per the protocol. We use #[derive(Role)] to retrieve channels
from the struct.

We build a set of generic primitives to construct a simple API—reducing the
amount of generated code and avoiding arbitrarily named types. For instance,
the Receive primitive (line 22) takes a role, label and continuation as generic
parameters. For readability, we elide two additional parameters used to store
channels at runtime with #[session].

Each choice generates an enum, as seen in RingBChoice (line 21), allowing pro-
cesses to pattern match when branching to determine which label was received.
Methods allowing the enum to be used with Branch or Select primitives are also
generated with #[session]. An enum is required since Rust’s lack of variadic
generics means choice cannot be easily implemented as a primitive. We show
how the RingBChoice type can be used with selection in the Ring type (line 18).

Our API requires only one session type for each role, internally sending a
Label enum (line 9) over reusable channels. We create a type for each label
(lines 14 and 15) and use #[derive(Message)] to generate methods for converting
to and from the Label enum.

Process Implementation. In theory, this final step has been done by imple-
menting an end-point process Pi and type-checking it against a local type Li.
In Rumpsteak, we use the API to implement a Rust process. Using the API
AB, we give a possible implementation of the process PB, shown in Listing 2, for
[Step 4]. Linear usage of channels is checked by Rust’s affine type system to
prevent channels from being used multiple times. When a primitive is executed,
it consumes itself, preventing reuse, and returns its continuation.

To warn the programmer when a session is discarded without use, we ensure
this statically by harnessing the type checker. Developers are prevented from
constructing primitives directly using visibility modifiers and must instead use
try session (line 5). Its closure argument accepts the input session type and
returns the terminal type End. If a session is discarded, breaking linearity, then
the developer will have no End to return and the type checker will complain.
Even so, we can implement processes with infinitely recursive types (containing
no End) such as RingB.

6 N. Yoshida

1 #[derive(Role)]
2 #[message(Label)]
3 struct B {
4 #[route(A)] a: Receiver,
5 #[route(C)] c: Sender,
6 }
7

8 #[derive(Message)]
9 enum Label {

10 Add(Add),
11 Sub(Sub),
12 }
13

14 struct Add(i32);
15 struct Sub(i32);
16

17 #[session]
18 type RingB = Select<C, RingBChoice>;
19

20 #[session]
21 enum RingBChoice {
22 Add(Add, Receive<A, Add, RingB>),
23 Sub(Sub, Receive<A, Add, RingB>),
24 }

Listing 1: Rust session type API
for M 1

B (AB)

1 async fn ring_b(
2 role: &mut B,
3 mut input: i32,
4) -> Result<Infallible> {
5 try_session(
6 role,
7 |mut s: RingB<'_, _>| async {
8 loop {
9 let x = input * 2;

10 s = if x > 0 {
11 let s = s.select(Add(x)).await?;
12 let (Add(y), s) = s.receive().await?;
13 input = y + x;
14 s
15 } else {
16 let s = s.select(Sub(x)).await?;
17 let (Add(y), s) = s.receive().await?;
18 input = y - x;
19 s
20 };
21 }
22 },
23).await
24 }

Listing 2: Possible Rust implementation for
process B (PB) using AB

We use an infinite loop (line 8) which is assigned Infallible: Rust’s never
(or bottom) type. Infallible can be implicitly cast to any other type, including
End, allowing the closure to pass the type checker as before.

We allow roles to be reused across sessions since the channels they contain
can be expensive to create. Crucially, to prevent communication mismatches
between different sessions, try session takes a mutable reference to the role.
The same role, therefore, cannot be used multiple times at once because Rust’s
borrow checker enforces this requirement for mutable references.

2.2 Bottom-Up Multiparty Session Type Framework

A bottom-up framework applies the global analysis to check a set of local types
or CFSMs satisfy a certain safety property such as communication safety or
deadlock-freedom. For this, we require to use an additional general-purpose
verification tool such as the k-multiparty compatibility tool (KMC) [46] or the
mCRL2 [50].

Fig. 4 depicts the two ways to perform the bottom-up strategies. In the left
hand side, the user writes local types or CFSMs and generates APIs; and in
the right hand side, each CFSM is generated from the API. In this approach,
the user does not start from a global protocol, but starts from a set of local
types/CFSMs or APIs.

The theory which corresponds to the bottom-up approach is given in [66].
This theory develops both synchronous and asynchronous semantics, but the
model checking tool (mCRL2) is only usable for the synchronous version. This is

Programming Language Implementations with Multiparty Session Types 7

CFSMs

API
generation

Type-check

Programs

L1 L2 ¨ ¨ ¨ Ln

A1 A2 ¨ ¨ ¨ An

P1 P2 ¨ ¨ ¨ Pn

CFSMs

inference

APIs

Type-check

Programs

L1 L2 ¨ ¨ ¨ Ln

A1 A2 ¨ ¨ ¨ An

P1 P2 ¨ ¨ ¨ Pn

Fig. 4: Bottom-up MPST methodology: The tool globally analyses whether the
set tLiuiPI satisfies a property. (Left) The user writes CFSMs and the tool gen-
erates APIs; (Right) the CFMSs are inferred from user-written APIs. Highlight
is supplied/done by the user.

because checking a safety property in asynchronous CFSMs with infinite FIFO
queues is undecidable.

To realise the bottom-up approach (right) in the Rumpsteak implementation,
we first serialise each API Ai to obtain a CFSMM 1

i . Next, we useKMC on the set
of CFSMs M 1

1...n. If they are indeed compatible, then the processes P1...n, which
implement their respective APIs, are free from communication-mistmatch and
deadlocks. KMC takes a set of CFSMs for all participants and verifies deadlock
freedom. To perform the serialisation of an API to a CFSM, we provide a Rust
function serialize<S>() -> Fsm (this is a simplified version). It takes a session
type API as a generic type parameter S and returns its corresponding CFSM.
This CFSM can be printed in a variety of formats and passed into the KMC tool
for verification.

Top-Down vs Bottom-Up Frameworks. The benefit of the bottom up ap-
proach is that the user does not have to write down a global type. On the other
hand, the bottom-up approach has a number of disadvantages:

Complexity KMC and mCRL2 conduct a global analysis of a set of CFSMs.
The complexity of global verification is high–in general, the complexity of a
safety property checking by mCRL2 is exponential w.r.t. the size of CFSMs.
Checking k-multiparty compatibility is PPRIME [46]. From the implementa-
tion side, analysing the endpoint CFSMs for all participants in the protocol
at once is challenging to do scalablely. The asynchronous subtyping checks
the optimisation of a single participant’s CFSM in isolation, performing a
local analysis of a single participant. Hence the top-down framework has
much less complexity. See [13, Theorem 9] for detailed complexity analysis;

Expressiveness while KMC allows a bounded verification for asynchronous
CFSMs, mCRL2 is not applicable to asynchronous CFSMs.

Implementations it is often very tedious to implement a tool which can infer
CFSMs or local types from a user-written real-world program [59]. In Rump-

steak, the inference is doable from a specialised API which takes a similar
form to a CFSM; and

8 N. Yoshida

G

L1 L2 ¨ ¨ ¨ Ln

L1
1 L1

2 ¨ ¨ ¨ L1
n

A1 A2 ¨ ¨ ¨ An

P1 P2 ¨ ¨ ¨ Pn

Projection

Local subtyping
check

CFSMs inference

Type check

Protocol

CFSMs

Optimised
CFSMs

APIs

Programs

Fig. 5: Hybrid MPST methodology: Highlight is supplied/done by user.

Debugging when a KMC or mCRL2 analysis fails, it is difficult to determine
how a programmer should update a complex protocol to make it free from
deadlocks. Safety by construction, as used in the top-down approach, is easier
to work with since verification is done locally on each participant.

2.3 Hybrid Multiparty Session Type Framework

The third framework, hybrid, approach (Fig. 5) is a combination of these two
approaches. In this workflow, a global type G is provided by the developer and
projected to obtain the CFSMs M1...n as before. Rather than the developers
proposing the optimised CFSMsM 1

1...n directly, they simply write the APIs A1...n

(as in the bottom-up approach). These are serialised to M 1
1...n which can (as in

the top-down approach) be checked for safety against M1...n using asynchronous
subtyping. In essence, the hybrid approach uses the same theory as the top-
down approach, but presents a more programmer-friendly interface that uses
serialisation rather than code generation.

The paper [13] gives more detailed complexity analysis and benchmark results
which compare the local optimisation (in the top-down and hybrid frameworks)
and the global analysis (in the bottom-up approach).

3 Multiparty Session Type Language Implementations

This section gives a survey of the programming language implementations based
on multiparty session types (MPST). The previous section has discussed the
static top-down, bottom-up and and hybrid approaches. The term “static” means
that we verify safety of a program at the compile time. There is another ap-
proach, called dynamic where a program conformance against a specification

Programming Language Implementations with Multiparty Session Types 9

(session type) is checked at runtime. The dynamic approach is often called run-
time verification, and this framework also fits well for active object and actor
languages. We discuss (1) the static top-down approach (§ 3.1); (2) the dynamic
top-down approach (§ 3.2); and (3) the static bottom-up approach (§ 3.3). In
(3), we also include the bottom-up tools which use behavioural types.

3.1 Static Top-Down Multiparty Session Type Framework

Table 1 gives a summary of the programming language implementations based
on MPST, ordered by date of publication, focusing on statically typed languages.

The table is composed as follows, row by row:

Languages lists the programming languages introduced or used.
Mainstream language states if the language is broadly used among develop-

ers or not.
Linearity checking describes whether the linear usage of channels is not checked,

checked at compile-time (static) or checked at runtime (dynamic).
Exhaustive choices check indicates whether the implementation can stati-

cally enforce the correct handling of potential input types. ✗ denotes im-
plementations that do not support pattern-matching to carry out choices
(branching) which are encoded into switch statements on enum types.

Formalism defines the theoretical foundations of the implementations, such
as (1) the end point calculus (the π-calculus (noted as π-cal.), FJ [33]) or
Mini-MPI; (2) the (global) types formalism without any endpoint calculi
(no typing system is given, and no subject reduction theorem is proved); (3)
the formalism based on CFSMs or (4) no formalism is given (no theory is
developed).

Communication safety outlines the presence or the absence of session type-
soundness demonstration. The languages, marked as △, provide the type
safety only at type or CFSM level. ✗‚ means that the theoretical formalism
does not provide linear types, therefore only type safety of base values is
proved.

Deadlock-freedom is a property guaranteeing that all components are pro-
gressing or ultimately terminate (which correspond to deadlock-freedom in
MPST). The languages marked by △ proved deadlock-freedom only at the
type level. ✓‚ implies the absence of a formal link with the local config-
urations reduced from the projection of a global type. [24] did not prove
that any typing context reduced from a projection of a well-formed global
type satisfies a safety property. Hence, deadlock-freedom is not provided for
processes initially typed by a given global type.

Liveness is a property which ensure that all actions are eventually communi-
cated with other parties (unless killed by an exception in those which treat
failures [41,3]).

Notice that the termination property is a subset of safety but not deadlock-
freedom. For example, the ring protocol given in the previous section does not
terminate but deadlock-free and live. See [66].

10 N. Yoshida

Most of the MPST implementations [31,65,55,6,39,51,76,71,13,41,20,9,3,4]
follow the API generation methodology from Scribble introduced by [30], which
was explained in § 2.1. One of the main benefits of this methodology [30] is that
it empowers IDEs to provide auto-completion for developers. See [51, Fig. 6] for
an example.

Notice that the implementations denoted by “dynamic” in the row of “linear-
ity check” are not completely static: they dynamically check linearity of channels
at runtime.

The tool [58] automatically generates paralleled endpoint MPI-C programs,
using the aspect oriented tool which takes a sequential kernel and a MPST
protocol as the input. Another MPI-C implementation [47] uses a global type
extended with the indexed dependent types to statically type check the MPI
code without the end-point projection (hence two cells are marked as N/A).

The earlier tool [40] implements static type-checking of communication pro-
tocols by linking Java classes and their respective typestate definitions generated
from Scribble. Objects declaring a typestate should be used linearly, but a lin-
ear usage of channels is not statically enforced. Rust implementations in [41,13]
can check linearity using the built-in affinity type checking from Rust.

The functional language implementation [35] uses type-level embedding of
multiparty channels in OCaml. Their library relies on OCaml-specific parametric
polymorphism for variant types to ensure type-safety and the implementation
uses a non-trivial, comprehensive encoding of polymorphic variant types and
lenses. The survey [39] gives the detailed explanations about the advantages of
functional languages to handle linearity of session channels.

Recent works [51,76,71,24,9,3] use the call-back style API generations to stat-
ically guarantee channel linearity. The recent Scala tool [11] guarantees channel
linearity by a new API generation based on the pomsets theory (instead of the
FSM-based generation [30] explained in § 2.1), exploring a facility provided by
the matched types in Scala 3.

Built on the actor language framework Ensemble, the work [24] builds Ensem-
bleS which generates a skeleton code based on the StMungo tool [40]. Static ses-
sion typechecking is supported by modifying the original Ensemble typechecker
to ensure that each communication action is permitted by the actor’s declared
session type. Notice that other actor programming languages based on MPST
use dynamic verification, and they are discussed in § 3.2.

Other Implementations based on Top-Down Multiparty Session Types.
There are several implementations which use the top-down MPST framework,
targeting domain-specific applications. The early works in [61,16] implement pro-
totypes of the MPST π-calculus with symmetric sums and dynamic roles in C
and Standard ML, respectively.

Apart from the MPI-C implementations [58,47] mentioned above, the MPST
is not only effective to provide the specifications of concurrent and distributed
message passing programming languages, but also it is useful to provide the
guidance to parallelise processes onto the HPC architectures. The earliest work

Programming Language Implementations with Multiparty Session Types 11

[60] [58] [47] [30,31] [40] [65] [55] [6] [39] [35]

Language C MPI-C MPI-C Java Java Scala F# Go PureScript OCaml

Mainstream
language

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linearity
check

✗ ✗ N/A dynamic ✗ dynamic dynamic dynamic static static

Exhaustive
choices check

✓ ✗ N/A ✗ ✗ ✓ ✗ ✗ ✓ ✓

Formalism ✗ ✗ mini-MPI types FJ π-cal. ✗ types ✗ π-cal.

Comm.
safety

✗ ✗ ✓ △ ✓ ✓ ✗ △ ✗ ✗‚

Deadlock
freedom

✗ ✗ ✗ △ ✗ ✓ ✗ △ ✗ ✗

Liveness ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[51] [76] [24] [71] [13] [41] [11] [20] [9] [3] [4]

Language TypeScript F* EnsembleS Scala Rust Rust Scala TypeScript Go Scala Java

Mainstream
language

✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linearity
check

static static dynamic static static static dynamic static static static static

Exhaustive
choices check

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Formalism types types π-cal. π-cal. types π-cal. ✗ CFSMs types π-cal. ✗

Comm.
safety

△ △ ✓ ✓ △ ✓ ✗ △ △ ✓ ✗

Deadlock
freedom

△ △ ✓‚ ✓ △ ✓ ✗ △ △ ✓ ✗

Liveness ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ △ ✓ ✗

Table 1: MPST top-down implementations

is [74] which maps the double-buffering algorithm specified as a MPST protocol
to a multicore architecture. The tool [62] uses Scribble protocols to generate the
deadlock-free MPI code to run on the specialised FPGA EURECA architecture.
The work [53] designs a typing system inspired by global types for specifying the
communication protocols among modern Systems-on-a-Chip (SoC). The alge-
braic protocol programming of MPST in Haskell is used for compiling sequential
functional code into the low-level parallel C code in [8]. The work [7] proposes
a cost theory which can predict the cost of message passing by analysing the
MPST protocols annotated by the size of data and distance, and compared the
difference between the predicted cost and the real execution of the benchmarks
in the literature.

The work [25] uses the multiparty session types to implement workflows for
healthcare protocols. Recent works in [49,48] develop the concurrent robotics
framework where specifications extended from the multiparty session types are
compiled into the robotics framework, PGCD [1], which can coordinate physical
robots moving around in 3D space. The tool ensures not only deadlock-freedom
but also collision-freedom of the concurrent robotics systems.

12 N. Yoshida

Another emergent topic of MPST is a mechanisation: the Zooid is a domain-
specific language for certified asynchronous multiparty session types, embedded
in Coq, with fully mechanised metatheory for global and local types. MPGV [36]
is a strictly more expressive extension of GV (Wadler’s ’Good Variation’) [72] to
multiparty session types. All results such as type safety and global progress in [36]
are mechanised in Coq. A recent work in [70] implements a mechanised proof
to proposes the sound and complete inductive endpoint projection algorithm
against co-inductive endpoint projection, and proves its correctness by Coq.

3.2 Dynamic Top-Down Multiparty Session Type Framework

The static top-down approaches are suitable for the programming languages with
the static type checking. The first application of MPST to the real-world systems
was the runtime monitor of the cyberinfrustracture of the Ocean Observatories
Initiative [64]. Since their architecture is built on Python, we have developed
several dynamic checking systems based on MPST for Python. In essence, the
tool monitors sending and receiving messages written in the specialised session
APIs (called conversation APIs) against the CFSMs to check the local confor-
mance. Along this line, the first work was a development of a monitoring tool in
Python with the extensions to interrupts [15].

This Python framework was extended to the multiparty session-actor frame-
work in [57]. In the previous work for runtime monitoring discussed above, each
end-point process is monitored by a single monitor, which checks messages to
conform to its local type. In the actor model, processes (actors) are event-driven:
upon processing a message from a mailbox, an actor can send messages and
spawn a set of new actors; and change its behaviour upon receiving the next
message. The key point of the framework in [57] that actors are independent en-
tities that can take part in multiple interleaved sessions. This enables (1) actors
can be involved in multiple sessions (conversations) simultaneously; (2) actors
can play multiple roles (one role per each multiparty session); and (3) actors can
influence another session by receiving a message from a different session. This
Python framework is later extended to the timed MPST in [54].

Later the MPST actor-based framework is applied to Erlang by Folwer [18].
His toolkit handles an extended version of Scribble with subsessions [14], which
enables to invite new participants midway of the running session. The work
[56] develops the sound recovery of supervision trees in Erlang using the causal
analysis of the MPST protocols, and builds runtime monitoring.

Another important thread of work in the context of active objects is an ap-
plication of MPST to the actor domain specific language, ABS [37]. The work
[22] implements a framework in ABS where local atomic segments are verified
statically, but global interactions among local objects are monitored dynamically
against a global type. The work investigates various performance overhead re-
lated to object communications, synchronisation between peers, and scheduling.

Programming Language Implementations with Multiparty Session Types 13

The implementation faithfully follows a theoretical work [38] which designs the
MPST theory targeting a core ABS with futures.1

Recent work in [23] proposes the runtime monitoring framework called Dis-
courje (as an extension of Courje) for monitoring more advanced MPST proto-
cols.

3.3 Bottom-Up Behavioural Type Framework

The bottom-up approach uses a general-purpose model checking tool for verify-
ing the properties directly against a set of CFSMs or local types. The first work
which uses the bottom-up approach is [59]. This work infers the CFSMs directly
from Go source code, and builds a global type so that the constructed global
protocol gives the guidance for amending the unsafe code. It uses the GMC Syn
tool [44] for synthesising a generalised global type from multiparty compatible
CFSMs. However, the tool handles a very limited subset of Go program. The
work in [42,43] uses a more general-purpose model-checking tool, mCRL2 [50],
to verify properties of Go code such as safety, deadlock-freedom, liveness and
termination, inferring behavioural types from Go source code. This tool was ex-
tended to verify shared memory concurrency in Go in [19]. In general, inferring
behavioural types from source code requires non-trivial engineering efforts, and
is not straightforward. The work [67] uses mCLR2 to directly verify message-
passing behavioural types of a Scala-based DSL to check safety properties. This
toolchain corresponds to the l.h.s. in Fig. 4.

The work in [66] extends the MPST theory to adapt the bottom-up approach
and develops the verification tool for the MPST π-calculus based on mCRL2.
Since this approach does not have to start from the global type, it can type more
processes than the top-down approach in [29], but has several disadvantages, see
§ 2.2. The tool in [66] was extended to verify crash-failure semantics of the MPST
π-calculus in [2].

Similarly to Rumpsteak, the Rust toolchain in [41] also includes the bottom-
up approach based on the KMC-checker. The OCaml tool in [34] infers local
types directly from OCaml source code using the OCaml built-in type inference
system, and takes the bottom-up approach applying the KMC-checker to verify
safety properties. The tools which use the KMC-checker and Rumpsteak which
uses the asynchronous subtyping algorithm are only static behavioural typed
programming language tools which can verify asynchronous optimised message-
passing programs.

4 Conclusion

This paper gives a short survey of the programming language implementations
based on multiparty session types (MPST). There are important related im-
plementations which are not included in this paper—for examples, many works

1 The work in [22] is categorised as “dynamic verification” as its workflow is close to
the approaches by Erlang and Python discussed in this subsection.

14 N. Yoshida

using model checking tools of session types, and choreography programming lan-
guages [52]. The author wishes to be informed if there is any omission in this
survey.

From the author’s viewpoint, the most practical innovative idea is the API
generation from local CFSMs introduced by [30], which has been adapted to
many different mainstream languages. This method is not only engineering use-
ful (for example, integrating with IDEs for the auto-completion), but also the-
oretically important to motivate the researchers to seek the links between the
MPST theory and the CFSM theory [75].

One of the most important future work is a deep adaptation of MPST to
active object framework. An effective integration of futures and await primitives
into MPST needs to be investigated. The challenge is to examine a trade-off
between low-level preemptive concurrency and fully distributed actors, using
the guidance from the MPST specification.

The practical development of MPST is still an infant, and its commercialisa-
tion is far beyond the state-of-the-art. We hope that more unforeseen, inventive
ideas for ”session types in practice” will be emerged from researchers and devel-
opers of parallel computing, concurrent and distributed systems.

Acknowledgements We deeply thank the AOL reviewers for helpful and de-
tailed comments, pointing out several missing literature.

References

1. Banusic, G.B., Majumdar, R., Pirron, M., Schmuck, A., Zufferey, D.: PGCD: robot
programming and verification with geometry, concurrency, and dynamics. In: Liu,
X., Tabuada, P., Pajic, M., Bushnell, L. (eds.) Proceedings of the 10th ACM/IEEE
International Conference on Cyber-Physical Systems, ICCPS 2019, Montreal, QC,
Canada, April 16-18, 2019. pp. 57–66. ACM (2019)

2. Barwell, A., Scalas, A., Yoshida, N., Zhou, F.: Generalised Multiparty Session
Types with Crash-Stop Failures. In: 33rd International Conference on Concurrency
Theory. LIPIcs, vol. 243, pp. 35:1–35:25. Dagstuhl (2022)

3. Barwell, A.D., Hou, P., Yoshida, N., Zhou, F.: Designing Asynchronous Mul-
tiparty Protocols with Crash-Stop Failures. In: 37th European Conference on
Object-Oriented Programming. LIPIcs, Schloss Dagstuhl–Leibniz-Zentrum f”ur In-
formatik (2023), to appear

4. Bouma, J., de Gouw, S., Jongmans, S.S.: Multiparty session typing in Java, de-
ductively. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 19–27. Springer Nature Switzerland,
Cham (2023)

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

6. Castro-Perez, D., Hu, R., Jongmans, S.S., Ng, N., Yoshida, N.: Distributed pro-
gramming using role-parametric session types in Go: Statically-typed endpoint
apis for dynamically-instantiated communication structures. Proc. ACM Program.
Lang. 3(POPL), 29:1–29:30 (Jan 2019). https://doi.org/10.1145/3290342

https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/3290342

Programming Language Implementations with Multiparty Session Types 15

7. Castro-Perez, D., Yoshida, N.: CAMP: Cost-Aware Multiparty Session Protocol.
In: OOPSLA 2020: Conference on Object-Oriented Programming Systems, Lan-
guages and Applications. PACMPL, vol. 4, pp. 155:1–155:30. ACM (2020)

8. Castro-Perez, D., Yoshida, N.: Compiling First-Order Functions to Session-Typed
Parallel Code. In: 29th International Conference on Compiler Construction. pp.
143–154. CC 2020, ACM (2020)

9. Castro-Perez, D., Yoshida, N.: Dynamically updatable multiparty session
protocols. In: 37th European Conference on Object-Oriented Programming
(ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2023), to appear

10. W3C Web Services Choreography. http://www.w3.org/2002/ws/chor/

11. Cledou, G., Edixhoven, L., Jongmans, S.S., Proença, J.: API Generation for Mul-
tiparty Session Types, Revisited and Revised Using Scala 3. In: Ali, K., Vitek,
J. (eds.) 36th European Conference on Object-Oriented Programming (ECOOP
2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 222, pp. 27:1–
27:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2022). https://doi.org/10.4230/LIPIcs.ECOOP.2022.27, https://drops.dagstuhl.
de/opus/volltexte/2022/16255

12. Cutner, Z., Yoshida, N.: Safe Session-Based Asynchronous Coordination in Rust.
In: 23rd International Conference on Coordination Models and Languages. LNCS,
vol. 12717, pp. 89–80. Springer (2021)

13. Cutner, Z., Yoshida, N., Vassor, M.: Deadlock-Free Asynchronous Message Re-
ordering in Rust with Multiparty Session Types. In: 27th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. vol. abs/2112.12693.
ACM (2022)

14. Demangeon, R., Honda, K.: Nested Protocols in Session Types. In: 23rd Interna-
tional Conference on Concurrency Theory. LNCS, vol. 7454, pp. 272–286. Springer
(2012)

15. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical inter-
ruptible conversations: distributed dynamic verification with multiparty session
types and python. Formal Methods in System Design 46(3), 197–225 (2015).
https://doi.org/10.1007/s10703-014-0218-8

16. Deniélou, P., Yoshida, N.: Dynamic multirole session types. In: Ball, T., Sagiv, M.
(eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011.
pp. 435–446. ACM (2011). https://doi.org/10.1145/1926385.1926435

17. Estafet: Managing distributed systems using Scribble. https://www.youtube.com/
watch?v= qB2jV5SKwA (2017)

18. Fowler, S.: An Erlang Implementation of Multiparty Session Actors. Elec-
tronic Proceedings in Theoretical Computer Science 223, 36–50 (aug 2016).
https://doi.org/10.4204/eptcs.223.3, https://doi.org/10.4204%2Feptcs.223.3

19. Gabet, J., Yoshida, N.: Static Race Detection and Mutex Safety and Liveness for
Go Programs. In: 34th European Conference on Object-Oriented Programming.
LIPIcs, vol. 166, pp. 4:1–4:30. Schloss Dagstuhl–Leibniz-Zentrum f”ur Informatik
(2020)

20. Gheri, L., Lanese, I., Sayers, N., Tuosto, E., Yoshida, N.: Design-by-Contract for
Flexible Multiparty Session Protocols. In: 36th European Conference on Object-
Oriented Programming. LIPIcs, vol. 222, pp. 8:1–8:28. Schloss Dagstuhl–Leibniz-
Zentrum fur Informatik (2022)

http://www.w3.org/2002/ws/chor/
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://drops.dagstuhl.de/opus/volltexte/2022/16255
https://drops.dagstuhl.de/opus/volltexte/2022/16255
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1145/1926385.1926435
https://www.youtube.com/watch?v=_qB2jV5SKwA
https://www.youtube.com/watch?v=_qB2jV5SKwA
https://doi.org/10.4204/eptcs.223.3
https://doi.org/10.4204%2Feptcs.223.3

16 N. Yoshida

21. Ghilezan, S., Pantović, J., Prokić, I., Scalas, A., Yoshida, N.: Precise Subtyping
for Asynchronous Multiparty Sessions. ACM Transactions on Computational Logic
(2023). https://doi.org/10.1145/3568422

22. Hähnle, R., Haubner, A.W., Kamburjan, E.: Locally Static, Globally Dy-
namic Session Types for Active Objects. In: de Boer, F.S., Mauro, J.
(eds.) Recent Developments in the Design and Implementation of Program-
ming Languages. OpenAccess Series in Informatics (OASIcs), vol. 86, pp.
1:1–1:24. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2020). https://doi.org/10.4230/OASIcs.Gabbrielli.1, https://drops.dagstuhl.de/
opus/volltexte/2020/13223

23. Hamers, R., Jongmans, S.: Discourje: Runtime verification of communication pro-
tocols in clojure. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 26th International Conference, TACAS
2020, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 12078, pp. 266–284. Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5 15

24. Harvey, P., Fowler, S., Dardha, O., J. Gay, S.: Multiparty Session Types
for Safe Runtime Adaptation in an Actor Language. In: Møller, A., Srid-
haran, M. (eds.) 35th European Conference on Object-Oriented Program-
ming (ECOOP 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 194, p. 30. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ECOOP.2021.12,
https://2021.ecoop.org/details/ecoop-2021-ecoop-research-papers/12/
Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-an-Actor-Language

25. Henriksen, A.S., Nielsen, L., Hildebrandt, T.T., Yoshida, N., Henglein, F.: Trust-
worthy Pervasive Healthcare Services via Multiparty Session Types. In: Second
International Symposium on Foundations of Health Information Engineering and
Systems. LNCS, vol. 7789, pp. 124–141. Springer (2012)

26. Honda, K., Mukhamedov, A., Brown, G., Chen, T.C., Yoshida, N.: Scribbling in-
teractions with a formal foundation. In: ICDCIT. LNCS, vol. 6536, pp. 55–75.
Springer (2011)

27. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: ESOP. LNCS, vol. 1381,
pp. 22–138. Springer (1998). https://doi.org/10.1007/BFb0053567

28. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL. pp. 273–284. ACM Press (2008). https://doi.org/10.1145/1328438.1328472

29. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types.
JACM 63, 1–67 (2016)

30. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: FASE. LNCS, vol. 9633, pp. 401–418. Springer (2016)

31. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
FASE. LNCS, vol. 10202, pp. 116–133. Springer (2017)

32. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming in Java.
In: ECOOP’08. LNCS, vol. 5142, pp. 516–541. Springer (2008)

33. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a Minimal Core Calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001), http://doi.acm.org/10.
1145/503502.503505

34. Imai, K., Lange, J., Neykova, R.: Kmclib: Automated inference and verification
of session types from ocaml programs. In: Fisman, D., Rosu, G. (eds.) Tools and

https://doi.org/10.1145/3568422
https://doi.org/10.4230/OASIcs.Gabbrielli.1
https://drops.dagstuhl.de/opus/volltexte/2020/13223
https://drops.dagstuhl.de/opus/volltexte/2020/13223
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://2021.ecoop.org/details/ecoop-2021-ecoop-research-papers/12/Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-an-Actor-Language
https://2021.ecoop.org/details/ecoop-2021-ecoop-research-papers/12/Multiparty-Session-Types-for-Safe-Runtime-Adaptation-in-an-Actor-Language
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
http://doi.acm.org/10.1145/503502.503505
http://doi.acm.org/10.1145/503502.503505

Programming Language Implementations with Multiparty Session Types 17

Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 13243, pp. 379–386.
Springer (2022). https://doi.org/10.1007/978-3-030-99524-9 20

35. Imai, K., Neykova, R., Yoshida, N., Yuen, S.: Multiparty Session Programming
With Global Protocol Combinators. In: Hirschfeld, R., Pape, T. (eds.) 34th
European Conference on Object-Oriented Programming (ECOOP 2020). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 166, pp. 9:1–9:30.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020).
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9, https://drops.dagstuhl.de/opus/
volltexte/2020/13166

36. Jacobs, J., Balzer, S., Krebbers, R.: Multiparty GV: Functional Multiparty Session
Types with Certified Deadlock Freedom. Proc. ACM Program. Lang. 6(ICFP) (aug
2022). https://doi.org/10.1145/3547638, https://doi.org/10.1145/3547638

37. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. pp. 142–
164. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

38. Kamburjan, E., Din, C.C., Chen, T.C.: Session-based compositional analysis for
actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.)
Formal Methods and Software Engineering. pp. 296–312. Springer International
Publishing, Cham (2016)

39. King, J., Ng, N., Yoshida, N.: Multiparty Session Type-safe Web Development
with Static Linearity. In: Programming Language Approaches to Concurrency and
Communication-cEntric Software. vol. 291, pp. 35–46. Open Publishing Associa-
tion (2019)

40. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking Proto-
cols with Mungo and StMungo. In: Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming. p.
146–159. PPDP ’16, Association for Computing Machinery, New York, NY,
USA (2016). https://doi.org/10.1145/2967973.2968595, https://doi.org/10.1145/
2967973.2968595

41. Lagaillardie, N., Neykova, R., Yoshida, N.: Stay Safe under Panic: Affine Rust
Programming with Multiparty Session Types. In: 36th European Conference on
Object-Oriented Programming. LIPIcs, vol. 222, pp. 4:1–4:29. Schloss Dagstuhl–
Leibniz-Zentrum f”ur Informatik (2022)

42. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off Go: Liveness and Safety for
Channel-based Programming. In: 44th ACM SIGPLAN Symposium on Principles
of Programming Languages. pp. 748–761. ACM (2017)

43. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A Static Verification Framework for
Message Passing in Go using Behavioural Types. In: 40th International Conference
on Software Engineering. pp. 1137–1148. ACM (2018)

44. Lange, J., Tuosto, E., Yoshida, N.: From communicating ma-
chines to graphical choreographies. In: POPL. pp. 221–232 (2015).
https://doi.org/10.1145/2676726.2676964

45. Lange, J., Yoshida, N.: On the Undecidability of Asynchronous Session Subtyp-
ing. In: 20th International Conference on Foundations of Software Science and
Computation Structures. LNCS, vol. 10203, pp. 441–457. Springer (2017)

https://doi.org/10.1007/978-3-030-99524-9_20
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://drops.dagstuhl.de/opus/volltexte/2020/13166
https://drops.dagstuhl.de/opus/volltexte/2020/13166
https://doi.org/10.1145/3547638
https://doi.org/10.1145/3547638
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2676726.2676964

18 N. Yoshida

46. Lange, J., Yoshida, N.: Verifying Asynchronous Interactions via Communicating
Session Automata. In: 31st International Conference on Computer-Aided Verifica-
tion. LNCS (2019)

47. López, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconcelos, V.T.,
Yoshida, N.: Protocol-Based Verification of Message-Passing Parallel Programs. In:
2015 ACM International Conference on Object Oriented Programming Systems
Languages and Applications / SPLASH ’15. pp. 280–298. ACM (2015)

48. Majumdar, R., Pirron, M., Yoshida, N., Zufferey, D.: Motion session types for
robotic interactions. In: Proceedings of the 33rd European Conference on Object-
Oriented Programming (ECOOP ’19). LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2019)

49. Majumdar, R., Yoshida, N., Zufferey, D.: Multiparty Motion Coordination: From
Choreographies to Robotics Programs. In: OOPSLA 2020: Conference on Object-
Oriented Programming Systems, Languages and Applications. PACMPL, vol. 4,
pp. 134:1–134:30. ACM (2020)

50. MCRL2 home page, https://www.mcrl2.org/web/user manual/index.html

51. Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Communication-Safe Web Program-
ming in TypeScript with Routed Multiparty Session Types. In: International Con-
ference on Compiler Construction. pp. 94–106. CC (2021)

52. Montesi, F.: Introduction to Choreographies. CUP (2023)

53. de Muijnck-Hughes, J., Vanderbauwhede, W.: A Typing Discipline for Hardware
Interfaces. In: Donaldson, A.F. (ed.) 33rd European Conference on Object-Oriented
Programming (ECOOP 2019). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 134, pp. 6:1–6:27. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ECOOP.2019.6, http:
//drops.dagstuhl.de/opus/volltexte/2019/10798

54. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput. 29(5), 877–910 (2017)

55. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A Session Type Provider:
Compile-time API Generation for Distributed Protocols with Interaction Refine-
ments in F#. In: 27th International Conference on Compiler Construction. pp.
128–138. ACM (2018)

56. Neykova, R., Yoshida, N.: Let it recover: Multiparty protocol-induced recovery. In:
Compiler Construction. pp. 98–108. ACM (2017)

57. Neykova, R., Yoshida, N.: Multiparty session actors. Logical Methods in Computer
Science 13(1) (2017). https://doi.org/10.23638/LMCS-13(1:17)2017

58. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default - safe
MPI code generation based on session types. In: Compiler Construction. LNCS,
vol. 9031, pp. 212–232. Springer (2015)

59. Ng, N., Yoshida, N.: Static Deadlock Detection for Concurrent Go by Global Ses-
sion Graph Synthesis. In: 25th International Conference on Compiler Construction.
pp. 174–184. ACM (2016)

60. Ng, N., Yoshida, N., Honda, K.: Multiparty Session C: Safe parallel programming
with message optimisation. In: TOOLS. LNCS, vol. 7304, pp. 202–218. Springer
(2012)

61. Nielsen, L., Yoshida, N., Honda, K.: Multiparty symmetric sum types. In: Fröschle,
S.B., Valencia, F.D. (eds.) Proceedings 17th International Workshop on Expres-
siveness in Concurrency, EXPRESS’10, Paris, France, August 30th, 2010. EPTCS,
vol. 41, pp. 121–135 (2010). https://doi.org/10.4204/EPTCS.41.9

https://www.mcrl2.org/web/user_manual/index.html
https://doi.org/10.4230/LIPIcs.ECOOP.2019.6
http://drops.dagstuhl.de/opus/volltexte/2019/10798
http://drops.dagstuhl.de/opus/volltexte/2019/10798
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.4204/EPTCS.41.9

Programming Language Implementations with Multiparty Session Types 19

62. Niu, X., Ng, N., Yuki, T., Wang, S., Yoshida, N., Luk, W.: EURECA Compilation:
Automatic Optimisation of Cycle-Reconfigurable Circuits. In: 26th International
Conference on Field Programmable Logic and Applications. pp. 1–4. IEEE (2016)

63. nuScr home page, http://nuscr.dev/nuscr/
64. Ocean Observatories Initiative home page, https://oceanobservatories.org/
65. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multi-

party sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74,
pp. 24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017).
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

66. Scalas, A., Yoshida, N.: Less is more: Multiparty session types re-
visited. Proc. ACM Program. Lang. 3(POPL), 30:1–30:29 (Jan 2019).
https://doi.org/10.1145/3290343

67. Scalas, A., Yoshida, N., Benussi, E.: Verifying message-passing programs with de-
pendent behavioural types. In: Programming Language Design and Implementa-
tion. pp. 502–516. ACM (2019)

68. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and
its Typing System. In: PARLE’94. LNCS, vol. 817, pp. 398–413 (1994).
https://doi.org/10.1007/3540581847118

69. The Rust Project Developers: Procedural Macros. https://doc.rust-lang.org/
reference/procedural-macros.html

70. Tirore, D., Bengtson, J., Carbone, M.: A Sound and Complete Projection for
Global Types. In: ITP 2023. LIPIcs, Schloss Dagstuhl (2023)

71. Viering, M., Hu, R., Eugster, P., Ziarek, L.: A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. Proceed-
ings of the ACM on Programming Languages 5(OOPSLA), 1–30 (Oct 2021).
https://doi.org/10.1145/3485501

72. Wadler, P.: Propositions as sessions. JFP 24(2-3), 384–418 (2014).
https://doi.org/10.1017/S095679681400001X, http://dx.doi.org/10.1017/
S095679681400001X

73. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The Scribble Protocol Language. In:
TGC. LNCS, vol. 8358, pp. 22–41. Springer (2013)

74. Yoshida, N., Vasconcelos, V.T., Paulino, H., Honda, K.: Session-Based Compilation
Framework for Multicore Programming. In: 7th International Symposium Formal
Methods for Components and Objects. LNCS, vol. 5751, pp. 226–246. Springer
(2008)

75. Yoshida, N., Zhou, F., Ferreira, F.: Communicating Finite State Machines and an
Extensible Toolchain for Multiparty Session Types. In: 23rd International Sym-
posium on Fundamentals of Computation Theory. LNCS, vol. 12867, pp. 18–35.
Springer (2021)

76. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically Verified Refine-
ments for Multiparty Protocols. Proc. ACM Program. Lang. 4(OOPSLA) (Nov
2020). https://doi.org/10.1145/3428216

http://nuscr.dev/nuscr/
https://oceanobservatories.org/
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3290343
https://doi.org/10.1007/3540581847118
https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://doi.org/10.1145/3485501
https://doi.org/10.1017/S095679681400001X
http://dx.doi.org/10.1017/S095679681400001X
http://dx.doi.org/10.1017/S095679681400001X
https://doi.org/10.1145/3428216

	Programming Language Implementations with Multiparty Session Types

