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Abstract. Decentralised linked data gives users rights over their data
while being accessible to other domains. The RDF (Resource Descrip-
tion Framework) and SPARQL have been the standard specifications for
managing linked data for several years. Recent research and development
introduce scalable, centralised and distributed RDF store engines with
the SPARQL. However, writing SPARQL federated queries may grow
more complex as the number of domain participants increases, present-
ing challenges such as source discovery, completeness and performance.
This paper presents a SPARQL Query Template (SQT) that applies
Multiparty Session Types (MPST) to determine the order of federated
queries. We also guarantee protocol conformance between MPST and
SPARQL relational algebra.
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1 Introduction

The RDF (Resource Description Framework) and SPARQL 1.1! are the two
W3C recommended standards for querying and manipulating linked data on the
Web. Since SPARQL’s introduction in 2008, significant research and technologi-
cal advancements have supported RDF and SPARQL specifications. Many RDF
repositories, such as DBpedia, UniProt (Universal Protein Resource) and Rhea,
are publicly available to provide information from diverse domains [1-6]. DBpe-
dia, for example, contains around 900 million triplets as of January 20212 and
maintains a distributed infrastructure that extracts approximately 5500 triplets
per second and 21 billion triples per release. In real-world applications, RDF
datasets are often partitioned and built upon distributed environments [7].
There has been rigorous work on handling massive RDF datasets. One way
to manage the datasets is by partitioning and distributing them under the same
RDF engine or by decentralising them on domain-specific repositories. The lat-
est distributed RDF engine implemented with a custom communication protocol
has shown superior performance compared to other centralised or MapReduce-
based engines [7-16]. In addition, SPARQL 1.1 federated query allows merging

! nttps://www.w3.org/TR/sparqlil-overview/
2 https://www.dbpedia.org/resources/latest-core/
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data across decentralised repositories and heterogeneous RDF engines. Federated
query processors have been improved in many aspects, including querying doc-
uments, query planner optimisation and sensitive data access policies [17-23].
A federated query execution framework depends on source selection as it de-
termines which endpoints are relevant to evaluate a given query. The Source
selection is a separate step before execution, aiming to reduce the number of
requests to the RDF server, optimise resource allocations and minimise network
overhead, improving overall query execution time.

Well-specified communication is crucial for distributed RDF engines and fed-
erated queries, leading to significant performance increases. For communication-
focused programming, a framework of Multiparty Session Types (MPST) pro-
vides a typed process that abstracts communication between multiple partici-
pants into a global protocol (type) [24]. The theory formalise endpoint projec-
tion of the global description in the Web Services Choreography Description
Language®, but it can accommodate other diverse specifications [25]. We aim to
integrate this typed theory with SPARQL. This theory matches common issues
in the software development process and is essential for a collaborative team
of engineers writing SPARQL. A global type (protocol) gives engineers a global
view of federated query communication between RDF repositories. The engineers
can validate their SPARQL federated query following a global protocol.

We highlight current SPARQL issues as follows. (1) Source discovery: Writing
a SPARQL query that involves many RDF repositories and complex query joins
can be burdensome; and (2) Performance and completeness: Query execution
time depends on the performance of SPARQL runtime and federated communi-
cation cost. More importantly, the query must return a complete result.

This paper introduces a novel SPARQL Query Template (SQT) generator
that leverages the benefits of Multiparty Session Types [24,26,27]. The theory
notably gives some clarity to complex processes. The SQT generates federated
query body syntax that includes the RDF URL source address and guarantees
conformance with the projection of a given global type. Moreover, by using a
global type to describe communication patterns, we can identify and prevent
overhead communications, speed up query execution and ensure the complete-
ness of the results.

In the remainder, Section 2 gives preliminaries of RDF, MPST and SPARQL
relational algebra through examples. Section 3 illustrates a use case that moti-
vates this work. We explain in detail how SQT produces query templates from
a global type. Section 4 explains how local types conform to relational algebra.
Section 5 evaluates different network communication costs associated with differ-
ent implementations. Finally, Section 6 discusses current limitations and future
works of current work.

3 https://www.w3.org/2002/ws/chor/
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2 Preliminaries and Examples

This section introduces RDF notations, SPARQL relational algebra and MPST
through simple examples.

2.1 RDF and SPARQL

Our basic definitions of RDF and SPARQL follow [28,29]. In addition, we add
a representation of RDF graph [16] and conjunctive query [7].

Definition 1 (RDF Triple). RDEF terms (t) are consist of IRIs (I), literals
(L) and blank nodes (B). These terms form a triple or 3-tuple, (ts,tp,to) €
(IUB) x (I) x (IUBUL), where s, p and o denote subject, predicate and object
of the triple, B = {s, p,o0}.

A set of RDF triples indicates a semantic relationship between terms and
can be represented as a directed graph [16]. We can construct and label multiple
graphs into a dataset. However, for convenience, this paper focuses on a single
graph in a dataset.

Definition 2 (RDF Dataset). Dataset (D) is a set of triples. The semantic
relationship on triples can be described as a directed labelled graph. A graph
consists of vertices (V) and directed edges (E), denoted by D = {V, E}. Vertices
V' denotes a set of resource nodes ts Ut, € V. Edges E is a set of directed edges

connecting the nodes in V. To simplify, the directed edge t4 2) t, s expressed by
(ts,tp, to).

Alice foaf:Person Bob

foafiname rdf:type foaf:name

foaf:knows

Po P1

Fig.1: RDF Dataset

Example 1. To illustrate, we define a dataset carrying a relation between Alice
and Bob, presented as vertices and directed edges as shown in Fig. 1.

D ={V,E)
V ={Alice, Bob, foaf:Person, pg, p1 }
E ={(po, foaf:knows, p1) , (po, rdf:type, foaf:Person) ,
(p1, rdf:type, foaf:Person) , (po, foaf:name, Alice) , (p;, foaf:name, Bob) }



4 A. Hernawan and N. Yoshida

Definition 3 (SPARQL Query Template). The SPARQL Query Template
(SQT) syntax is denoted as follows:

Q, Ql n=A (triple pattern or atom)
| S.Q/ (service federation)
| QA Ql (group of basic graph pattern)

The SPARQL relational algebra formally defines a query language semantics
[7,28,29]. A query’s result or solution is a tuple containing variables from queries
matched against the RDF dataset. This paper recursively constructs queries
from graph patterns, including triple patterns, basic graph patterns and service
federation.

Definition 4 (Triple Pattern or Atom). Triple pattern or atom (A) forms
(ts,tp, to) € TUBUV) x (IUV) x TUBULUYV) where (V) refers to variables.
The variables occurring in an atom are denoted by vars(A). The triple pattern
evaluates RDF triples in D by selection function (o) with constant terms ty, and
by mapping function (7) that maps terms t; to the variables v;:

A =Ty, (04, (D)) (j,kep and ieN)
vars(A) = {tgltg NV} (t, € TUBUL) and t; € TUBULUYV))
Ezxample 2. A query for finding a person’s name on dataset D is defined as:
{?x foaf:name 7y}
This query translates to the relational operation:

(z, foafimame, y) = 74 yet, 1, (01, =foafmame (D))

The process begins with searching any triples in a dataset that match the selec-
tion’s predicate, ¢, = foaf:name € I. Here, we have two variables ?x and 7y in
subject and object respectively. Subject t, € IUBUV and object t, € IUBULUV
intersect with V' and will be included in vars(A) = {ts,t}.

Definition 5 (Basic Graph Pattern). The basic graph pattern is a group of
triple patterns. It can be expressed syntactically as a conjunctive query Q from
finite set atoms, where vars(Q) denotes variables occurring in the basic graph
pattern.

Qu=A1N---NA, and vars(Q) = vars(A1) U---Uwvars(Ay)

Multiple triple patterns stacked together will construct a basic graph pattern
[7]. The basic graph pattern variables are the union of all triple pattern variables.
These graph patterns can be evaluated in a local or remote dataset, formalised
in Definition 6 [29]. The definition of set variables also applies equally to remote
datasets.
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Definition 6 (Service Federation). The SPARQL service (S) is a query
evaluation on a remote dataset. Query evaluation (Q on remote service S is
denoted as (S.Q) while local query evaluation is denoted as (Q).

The SPARQL query @ is evaluated over dataset D and then returns solution
mapping that represents matched variables on triples in a dataset [29]. The solu-
tion mapping function is defined in Def. 7. We assume all variables are bounded
and no error returns from the graph pattern.

Definition 7 (Solution Mapping Function). A solution mapping (7) par-
tially maps variables V' from terms I U B U L. Suppose {v;,...,v,} €V and
{iy...,zn} Covars(Q) for n € N. Then we denote by {v;/x;,...,vn/xn} map-
ping function 7 such that the solution contains a set of dom(¢) = {v;|z;}.

Ty, = x;  (v; € dom(m)) and 7wy =10 (dom(m)=0)

Ezample 3. Assume there are two datasets. The local dataset contains triples of
persons. The remote dataset contains people’s relations with each other. The first
graph pattern is evaluated locally and the second pattern is service federation,
which is evaluated on a remote dataset as shown in Fig. 2. The local graph
pattern finds subject terms with type foaf:Person and map into variable 7x € I.
Then, a service federation pattern finds the person 7y € I that is acquainted
with ?x. A complete query syntax is presented in Fig. 3.

Tz,y

Ql /\S.QQ
/ \

(z, rdf:type, foaf:Person) S. (z, foaf:knows, y)

Fig. 2: SPARQL relational algebra

1 SELECT ?x ?y /* return variables */

2 WHERE {

3 ?x rdf:type foaf:Person . /* graph pattern is evaluated on local dataset */
4 SERVICE <https://remote>{

5 ?x foaf:knows ?y . /* graph pattern is evaluated on remote dataset */

6 }

7}

Fig.3: SPARQL 1.1 Query

2.2 Multiparty Session Types

Global types (protocol) ¢ provides a blueprint describing communication be-
tween participants as a pair of a sender and a receiver [24,26,27]. In Definition
8, message type formalises protocol where p sends to q a value with type U.
Similarly, branching type formalises participant p chooses a label [; from q for
some i € I. The termination type denotes communication is finished and no
further process.
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Definition 8 (Global and Local Types). The global type
are denoted as follows:

and local type T

= | P—q | P—q (termination, message, branching)
T :=end ‘ ql[U]; T ‘ p? [U; T
| q@{ll : Ti}iGI | p&{ll : Ti}iGI

We require that p # q, I # 0, and i # j whenever i # j, for alli,j € I.

(termination, send, receive)

(internal choice, external choice)

Local type T defines a process for a single participant following a global
type (& [24,26,27]. Termination type (end) denotes the end of a process. Send
type q![U]; T, sends a message to q with payload U. Receive type p![U]; T, waits
for a message from p with payload U. External choice p&{l; : T;},.; waits for
selection label I; from local type to p to continues. Internal choice q®{l; : T;}
formalises a label selection [; at q and continues.

iel

Definition 9 (Participants). We define the set of participants of a global type
as follows:

pt(end) =0
ptlp —q ) ={p,a} Upt(()
ptlp —+q ) ={p.at UU,c,pt(&))

A set of participants in message type is their sender p and receiver q which are
defined in a global type. Similarly, for branching type, a set of participants is the
label sender p and label receiver q. A branching type has multiple continuations

and the set of participants is a union from all branches. A termination type
does not have continuation and does not involve any participants.

Definition 10 (Projection). The projection of a global type
ipant r is defined as follows:

onto a partic-

[ r = end
QUG Tr r=p
P9 [r={p/ULGTr r=q
[r r ¢ {p.q}
q®{li : Gilr}i T=p
pP—q lr= ¢ p&f{li: Gilr},c; r=q
rliEI fr I‘¢{p,q}

A global type can be projected into a local type of participant
does not transform during the projection. The

T:. The termination type

[ r =

projection of message type becomes a send type where r = p, r is a sender
and becomes a receive type where r = q, r is a receiver. The branching type is
projected to an external choice where r = p and into an ¢nternal choice where
r = q. Projection of branching type to the third participant r, neither p nor q,
must specified to have the same continuation for any branch label.
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Definition 11 (Global Type Reduction). Evaluating p — q in global type
s defined as follows:

(message reduction)

(P—a J\p—aq=

(pass message reduction)

(r—s J\p—=aq=r —s: UG \p—q)
if{r,s} N {p,q} = 0 and {p,q} C

(branching reduction)

(P —a )\p 2 q= forl =1,

(pass branching reduction)
l
(r—s J\p—=aq=r1 s P—q
if {r,s} N{p,a} =0 andVi e I: {p,q} C

Message reduction p — q reduces the global type ¢ with message type p —

q and continues to the next protocol . Branching reduction p — q reduces
multiple label selection p — q by choosing one label /; then continue
with ;. Pass reduction applies when participants of reduction {p, q} do not meet

{r, s} such as reduction p > qonr — s orp—>qonr-—s
The reduction continues through the rest of the global type until it meets the
same participant.

3 Overview

Many research institutes [1-6] provide open RDF datasets. These datasets are
often used towards drug discovery. Researchers use them to work with genomic,
metabolomic, molecular structures, reaction pathways and screening drug can-
didates. The information resides in different domains and locations. Data in-
tegration and retrieval are the keys to comprehensive analyses. The SPARQL
federated query techniques allow engineers to query remote datasets like a single
unified database.

We use UniProt query example number 454 to cover all discussions in this pa-
per. The use case describes a query of retrieving drug targets for human enzymes
involved in sterol metabolism. The example uses three SPARQL endpoints,
Rhea®, UniProt® and Wikidata’. The query can be run directly at UniProt
query editor. Alternatively, it can be executed in Rhea or Wikidata but requires

* https://sparql.uniprot.org/.well-known/sparql-examples/?of fset=40
® https://sparql.rhea-db.org/sparql
5 https://sparql.uniprot.org/sparql
" https://query.wikidata.org/sparql
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Treaction,protein Name,treatedLabel

QI A S-Qwikidata

/ \

S.thea A Q TtreatedLabel
Treaction TproteinName J(Dwikidata)
U(Drhea) J(Duniprot)

Quniprot = S-thea /\ Qlocal /\ S~Qwikidata
T'uniprot = rhea?[U];local?[U]; wikidata?[U];end

Fig. 4: The relational algebra of retrieving drug targets for human enzymes in-
volved in sterol metabolism

some rewriting at the federated query part. We aim to make it less tiring to
write a federated query by modelling this in a global type.

We present a query relational algebra and its local type representation in
Fig. 4. The query involves three participants: rhea, uniprot and wikidata.
Query Quniprot is evaluated at uniprot. Conjunctive query Quniprot consists of
two service federations and a local graph pattern. The query evaluation follows
the sequence: Rhea, UniProt and Wikidata. First, uniprot evaluates federated
query at rhea and retrieves reactions involving some molecules. Then, it joins
the result with a local query at uniprot to find human enzymes that catalyse
reactions. Finally, uniprot finds the interaction of enzymes from previous results
with drug descriptions in wikidata. It is important to note that query Quaiprot
and local type T'yniprot are specifications for uniprot only. Other participants
will need a different query algebra and a local type definition. The global type
provides a global view and ensures accurate and consistent results across all
participants during query execution.

4 Implementation of SQT Workflow

This section explains the workflow used to generate the SPARQL Query Tem-
plate. The top-down diagram in Fig. 5 shows the process from global type to
query template. We define global type (- with four participants: rhea, uniprot,
wikidata and local. The local participant physically does not exist. Instead,
local acts as rhea, uniprot or wikidata.

We begin with building a global type (7, in Example 4, using the Scribble
script defined in Fig. 6. Suppose a script Payload() from p to q; the partic-
ipant q expects a message return from p. This is defined as p — q : [U] where
payload U contains free tuples of terms ¢g. Here, p is a participant who owns a
dataset and executes query @ either in a local or remote environment.
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A Global Type

ProjectiV/ \
Local Type rhea uniprot wikidata local

SQT generation

Query rhea uniprot wikidata

Fig. 5: Top-down view of global type for UniProt query number 45. The r stand
for rhea, u for uniprot, w for wikidata and 1 stand for local

The global type is implemented in Scribble script in Fig. 6. Lines 4-8 repre-
sents ('rnea & choice of local acts as rhea, lines 18-22, (/ypjprot Where local as
uniprot and lines 32-36, (Zyixiqata Where local as wikidata. Implementation of
rhea evaluates query locally shown in line 10 and federated query in line 11. The
definition of global type (- is required to be projectable. Otherwise, it cannot
produce any local types T" and queries Q.

We introduce a broadcast type with the global type definition. The broadcast
type formed as a sequence of branching type and uses one label that same as
the previously selected branch. In Definition 12, participant p broadcast a
to q is expressed by selecting a label /; to a finite set number of participant

a=1{a;,,---q,}

Definition 12 (Broadcast Type). A broadcast type is sending or selecting
the same label to multiple participants. A complete set of global type syntax with
broadcast type is given as follows:

= ’ P —q (termination, message)
‘ P~ q (branching)
_ def
p—rq =P q prq
pP—q, (broadcast message)
_ def
p—rq =P q P
P—q, (broadcast branching)

Uﬂthq: {Q1,C127-~-7qn} ’I’LEN

The broadcast reduction evaluates communication between participants of a
broadcast type in global type (- or continues to go through the next types when
participants involved in broadcast type differ from the reduction criteria. Reduc-
ing branching type p b q, or p Ly q, in global type (- can happen individually
in a different order, but a broadcast reduction must reduce all q together.
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Definition 13 (Broadcast Reduction). FEuvaluating a broadcast type in a
global type G is defined as follows:

(message reduction)

A T Al (V*r\/'f
(pra:[U:G)\p—=aq=C

(pass message reduction)

(5 UG \p>a=r 5 U(G\p>9)
if{r,s}n{p,at =0 and{p,q} C &

(branching reduction)

p g LGl \pbaxc, 1=l

(pass branching reduction)
r—s:{l: G/}/{,\p—%q%r > 8 {7,:(,7', P ],»q}/”
if{r,s}n{p,at =0 andVie I:{p,q} C &,

Theorem 1 (Broadcast). If G/\p EN q = G’ then G\p 4 a; \p iN Q- \p 4

"’

q, = G" wheren € N and g ={q,,9,,---,9,}-
Proof. By induction on n and .
Ezxample 4. We formalise a global type for UniProt query number 45 as follows:

I = {rhea,uniprot,wikidata}
( =local — rhea{l; : local — uniprot{l; : local — wikidata{l; : G;}}}icr

('thea = local — rhea: [U];uniprot — rhea: [U];
wikidata — rhea: [U];end

(luniprot = rhea — uniprot : [U];local — uniprot : [U];
wikidata — uniprot : [U];end

(Jyikidata = Thea — wikidata : [U];uniprot — wikidata : [U];
local — wikidata : [U];end

Below is a global type reduction for local by choosing label I; = I:
(/'\ local 4 {rhea, uniprot, wikidata} = (7,

Algorithm 1 translates a global type to a query template, following transla-
tion on Table 1. The algorithm has two inputs, the projection of global protocol
¢ | p and target participant q where a query will be executed. Suppose we
use a global type ¢ in Example 4 to build a query template for uniprot. This
global type (- has three branches for different continuations: G'rnea, Guniprot and
(yikidata- Initially, we set p = uniprot for - | p and participant ¢ = uniprot.
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1 global protocol FederatedQuery(role Local, role Rhea, role UniProt,role Wikidata){
2 choice at Local{

3 /* Local tells everyone that it chooses to act as Rhea */

4 Rhea() from Local to Rhea;

5 choice at Local{

6 Rhea() from Local to UniProt;

7 choice at Localq{

8 Rhea() from Local to Wikidata;

9

/* Rhea */
10 Select(reaction) from Local to Rhea;
11 Select (protein,proteinFullName) from UniProt to Rhea;
12 Select(chemical,chemicallLabel,treatedlLabel) from Wikidata to Rhea;
13 }
14 }
15 }
16 or {
17 /* Local tells everyone that it chooses to act as UniProt */
18 UniProt() from Local to Rhea;
19 choice at Local{
20 UniProt() from Local to UniProt;
21 choice at Local{
22 UniProt() from Local to Wikidata;
23 /* UniProt */
24 Select(reaction) from Rhea to UniProt;
25 Select (protein,proteinFullName) from Local to UniProt;
26 Select(chemical,chemicallLabel,treatedLabel) from Wikidata to UniProt;
27 }
28 }
29 }
30 or {
31 /* Local tells everyone that it chooses to act as Wikidata */
32 Wikidata() from Local to Rhea;
33 choice at Local{
34 Wikidata() from Local to UniProt;
35 choice at Local{
36 Wikidata() from Local to Wikidata;
37 /* Wikidata */
38 Select(reaction) from Rhea to Wikidata;
39 Select (protein,proteinFullName) from UniProt to Wikidata;
40 Select(chemical,chemicallLabel,treatedLabel) from Local to Wikidata;
41 }
42 ¥
43 }
4}

Fig. 6: Scribble script of global type for UniProt query number 45

Next, global type (& reduced by selecting a branch for uniprot, \local L s
where | = q and § = {rhea, uniprot,wikidata}. Selecting label I; = [ continues
with (7, shows the role of local which can either become rhea following with
(irhea, Uniprot with Gupiprot, or wikidata with Cyixigata-

The Algorithm 1 at line number 2 evaluates (+; [ p whether it is an empty
(end) or continues to be translated. In the case of p = q, a message type in
G | p=1r?U] and r is a local then translates a message type to a query Q.
This query will be executed locally at p. On the other hand, the message type is
translated to service federation Sp.Q0, when p is neither local or current target
participant q. In summary, Guniprot | uniprot translates to a local query in
uniprot and Guiprot | Thea explains that uniprot sends and evaluates a query
to rhea.
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Table 1: Translation of local type and SPARQL relational algebra

Local type (T, =G | q) SPARQL algebra (Q,)
fend] - 0
[p?[U];¢ Tal  p # Local = Sp [ TPINC T d]
[p?[U];& Ta]  p = Local = QaA[G T 4]
[p!U];G 1 4] = [G T 4]
[p®{li : G T a}ieq] = [G T qlier
[p&ef{li - o T abie/l = G T alier

Table 1 only considers a message type to be translated directly into a query.
The end type is translated to nothing and represents the end of a query. However,
internal choice and external choice, defined in Table 1, do not have a query
translation. Instead, it continues to translate the following local types. Although
it does not have query translation, it plays an essential part in the reduction
process by deciding what is local participant role will be.

In a simple federation query where uniprot calls federation service to both
rhea and wikidata. Here, rhea and wikidata send their result directly to
uniprot and do not expect to receive a result from calling another federation
service. Both local types Tynea and Tyixidata define rheal[U] which does not trans-
late to any queries. The algorithm continues to read recursively and reduces the
local type from all participants until it is finished.

In a nested service federation, each local type for three participants, including
rhea, uniprot and wikidata may have called a federation service to other partic-
ipants. For example, wikidata expects a federation service result from uniprot,

Algorithm 1 Construct SPARQL Query Template

1: function SQT(( | p,q) > begin with p = ¢ where p,q € pt(&) \ {local}
2 while (' local 4 §) [p#end;l=qdo > § = pt(¢) \ {local}
3 if T, = r?[U] then >p#r;r € pt(()
4: if r = local then
5: Qq + [x?[U]] > local query Q
6: else
7 S (Qq) + SQT(C [ r,q) > federated query S.Q
8: end if
9: end if
10: Qe =QqNS:.Qq N NSr.Qq > Conjunctive query

11: end while
12: return Q)
13: end function
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Tyikidata = uniprot?[U]. Meanwhile, uniprot is waiting federation service result
from rhea before it can be sent to wikidata, Tyugipror = rhea?[U];wikidatal[U].
The SQT algorithm requires definitions from all participant’s local types in order
to generate a complete query template. The algorithm begins by generating a
local query and service federation for target participant q then calling a related
local type to generate a query in federated service.

5 Evaluation

We conduct experiments in the docker environment. We build a small-scale en-
vironment with three Apache Fuseki containers and a triple dataset to imitate
Rhea, UniProt and Wikidata. For statistics rhea contains 2051 triples, uniprot
129902 triples and wikidata 6592 triples. We record the elapsed projection time,
constructing SQT and performance differences between variants of federated
query communication that follow the current use case.

Ezample 5. We formalise the general structure of a global protocol (type) for a
current evaluation as follows:

\ local Lg= where l € pt(G)\ {local}

We prepare global type ¢ following Example 5. We assign varying numbers
of participants to global type : 10, 30, and 60. Table 2 shows the elapsed time
for constructing SQT. The projection column shows the time needed to generate
all local types. It shows that increasing the number of participants will result in
a longer elapsed time.

We prepared three global types following Example 5 for service federation
performance. We define each global type to have three specifications for rhea,
uniprot and wikidata. We have nine different test cases in total. Global type

calls two remote service federations from one participant, following Example
4. However, global types and call nested service federations. Global type

is given in Example 6.

Ezample 6. Based on the global type in Example 5, we define ('ynipror such that
uniprot can only call rhea service federation through wikidata. The complete

Table 2: Construction time for single query

Time (second)

Projection SQT
Number of participants in (total) (average)
10 participants 0.445 0.321
30 participants 2.720 0.724

60 participants 30.624 1.429
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continuation of global type (-; for nested service federation defined as follows:

1 = {rhea, uniprot,wikidata}
('rhea = local — rhea: [U];uniprot — rhea: [U];
wikidata — uniprot : [U];end
Cluniprot = rhea — wikidata : [U];wikidata — uniprot : [U];
local — uniprot : [U];wikidata — uniprot : [U];end
(Yuixidata = Thea — wikidata : [U];uniprot — rhea: [U];
local — wikidata : [U];end

We define a simplified notation in Table 3, 1 for local, r for rhea, u for
uniprot and w for wikidata. We show federated query elapsed time with differ-
ent communication sequences. Suppose we take the first case in Table 3 which
is generating a query template for rhea, Q. = Qr A Su.Qr N S;.Qr. Based on
Algorithm 1 and an input data [(¢/; \ 1 = r,u,w) | r], global type (/; is re-
duced by telling every participant that local will acts as rhea under reduction
of (/1 \ local rhse {rhea, uniprot,wikidata}. This syntactically will produce
('rhea- Global type is projected to rhea, (ipea | Thea = Tinea, before being
translated into a query with Table 1.

The first query template in Table 3 has an overhead communication exchange
between participants, as shown in Fig. 7a and local type definitions. Based on the
query execution sequence in Fig. 4, a result from rhea must join with uniprot
to retrieve reactions and related human enzymes. Next, a result must join with
wikidata to find interactions between those previous enzymes and drug descrip-
tions. Ideally, uniprot sends the join result directly to wikidata but local type
T, = r![U];end defines a communication that uniprot can send only to rhea.
The communication uniprot to wikidata passes through rhea first and contin-

Table 3: Query elapsed time from different global protocol

Elapsed time

Query Template (second)

LG\l D r,uw) [ 1] = Qr ASu-Qr ASa-Qr 23.160
2. [(G\NL S ryu,w) [u] = SeQuA QuA SaQu 12.255
3. [(G\NLT S ryu,w) [ W] = Sr.Qu A Su-Qu A Qu 11.334
4. [(Go\1 S ryu,w) [ 1] = Qr A Su(Qr A Sa-Qx) 24.500
5. [(Go\1 B ryu,w) | u] = Sal(Sr-Qu) A Qu A Su-Qu 14.824
6. [(G2\1 = ryu,w) [ W] = Sc(Qu A Su-Qu) A Qu 13.076
7. [(CG\1 S ryu,w) [ 1] = Qr A Su(SaQr AQr) 23.084
8 [(G5\1 3 r,u,w) [u] = Sr-Qu A Qu A Se(Si-Qu) 19.786
9. [(C5\1 5 ryu,w) [ W] = Sul(Sr-Qu A Qu) AQy 4.241
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rhea:r uniprot : u | |wikidata: w] |wikidata : w | |uniprot : u rhea:r

(a) Case 1: local (1) act as rhea (b) Case 9 : local (1) act as wikidata
T =1?[U};u?[U];w?[U];end T: = ul[U];end

T. =r![U];end Ty, = r?[U];w![U];end

Ty =r![U];end Ty =u?[U];17?[U];end

Fig. 7: Federated service implementation between two global protocols

ues to wikidata together with federated query S,.Q. Finally, wikidata sends
result back to rhea. This causes a longer execution time because uniprot cannot
send directly to wikidata and must pass rhea first.

In contrast, case number 9 makes the most efficient communication as shown
in Fig. 7b, as the join result is sent directly to the next target participant without
an intermediary. According to local type T, = u![U];end, rhea sends directly to
uniprot. Next, uniprot sends a query result to wikidata as a final destination,
T, = r?[U];w![U];end.

6 Conclusion

The current SQT (SPARQL Query Template) algorithm is a convenient and
faster way of generating queries than writing them manually. The use of global
types helps identify RDF sources by checking the interaction between partici-
pants. Global types ensure that executing queries on all projections will provide
a complete result set. Moreover, the communication sequence described in global
types can also be used to check for any overhead communication during a feder-
ated query. These benefits can significantly reduce network costs and ultimately
make federated queries faster. In addition, we introduce a broadcast reduction
for global types and prove its soundness against the original semantics of global

types.
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