
Refinements for Multiparty Message-Passing
Protocols
Specification-agnostic theory and implementation

Martin Vassor #

University of Oxford, UK

Nobuko Yoshida #

University of Oxford, UK

Abstract
Multiparty message-passing protocols are notoriously difficult to design, due to interaction mismatches
that lead to errors such as deadlocks. Existing protocol specification formats have been developed to
prevent such errors (e.g. multiparty session types (MPST)). In order to further constrain protocols,
specifications can be extended with refinements, i.e. logical predicates to control the behaviour of
the protocol based on previous values exchanged. Unfortunately, existing refinement theories and
implementations are tightly coupled with specification formats.

This paper proposes a framework for multiparty message-passing protocols with refinements
and its implementation in Rust. Our work decouples correctness of refinements from the underlying
model of computation, which results in a specification-agnostic framework.

Our contributions are threefold. First, we introduce a trace system which characterises valid
refined traces, i.e. a sequence of sending and receiving actions correct with respect to refinements.
Second, we give a correct model of computation named refined communicating system (RCS), which
is an extension of communicating automata systems with refinements. We prove that RCS only
produce valid refined traces. We show how to generate RCS from mainstream protocol specification
formats, such as refined multiparty session types (RMPST) or refined choreography automata. Third,
we illustrate the flexibility of the framework by developing both a static analysis technique and
an improved model of computation for dynamic refinement evaluation. Finally, we provide a Rust
toolchain for decentralised RMPST, evaluate our implementation with a set of benchmarks from the
literature, and observe that refinement overhead is negligible.

2012 ACM Subject Classification Software and its engineering → Specification languages; Theory
of computation → Assertions; Theory of computation → Concurrency

Keywords and phrases Message-Passing Concurrency, Session Types, Specification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.35

Supplementary Material Software (Artifact): https://doi.org/10.4230/DARTS.3.2.13

Funding Work supported by: EPSRC EP/T00006544/2, EP/K011715/1, EP/K034413/1, EP/L00058X/1,
EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462, EP/X015955/1n NCSS/EPSRC
VeTSS, and Horizon EU TaRDIS 101093006.

Acknowledgements We thank B. Ekici, M. Giunti, P. Hou, A. Suresh, and F. Zhou.

1 Introduction

Message passing programming is a notoriously difficult task with new bugs arising with respect
to sequential programming, for instance deadlocks. To address this increased complexity,
various specifications have been introduced (e.g., message sequence charts [24], multiparty
session types [38, 19, 18], choreography automata [1]). In general, specifications are used to
constrain messages, in order to prevent errors such as deadlocks (via message ordering) or

© Martin Vassor and Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 35; pp. 35:1–35:46

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.vassor@cs.ox.ac.uk
https://orcid.org/0000-0002-2057-0495
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2024.35
https://doi.org/10.4230/DARTS.3.2.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Refinements for Multiparty Message-Passing Protocols

payload mismatch (by enforcing the sender and the receiver of a message to agree on the
datatype exchanged).

In this paper, we tackle an important and advanced aspect of protocol specification, logical
constraints (or contracts) on asynchronous message-passing communications. Contracts for
heterogeneous systems are predominant for correctly designing, implementing, and composing
software services, and have a long history in distributed software development as found
in Design-by-Contracts [28], Service Level Agreements, and Component-Based Software
Engineering. With contracts, software designers can define more precise (refined) and
verifiable specifications for distributed software components. Contracts have been investigated
from a variety of perspectives, using many different analysis techniques and formalisms.
Our goal is to distill an essence of those models for protocol refinements by answering the
following questions affirmatively: (i) what does it mean for an execution of contracts for
message-passing systems to be correct; (ii) how do we integrate a theory to a variety of
models; (iii) how do we analyse their correctness?; and (iv) how do we implement correct
systems in a programming language?

To explain our framework, consider a guessing game (from [41]) with three participants
where the first one (participant A) chooses a secret integer and sends it to the second
participant (B). Then, the third participant (C) tries to guess this number. Depending on
the guess, B replies with hints (more and less) until C succeeds in guessing the correct value.

The developer writing the specification for such protocol would like to ensure, in the
specification, that hints from B are consistent with the previous values exchanged. For
instance, if the secret is 5 and the guess is 10, the specification should constrain B to send
less. Figure 1 shows a communication diagram of the protocol with constraints (which we
call refinements) shown in light blue.

CBA
secret(n : int)

guess(x : int)

more

less

correct

or n < x

or n = x

choice n > x

Figure 1 Communication diagram for the
guessing game protocol with refinements.

In this paper, we develop a formal framework
for refinements, agnostic to any particular spe-
cification formalism. Its core part is composed
of a characterisation of refinement correctness:
Valid Refined Traces, and a model of computa-
tion: Refined Communicating Systems (RCS),
where communication is asynchronous and refine-
ments are centrally and dynamically evaluated.
For illustration, we use Refined Multiparty Ses-
sion Types as the main specification format for
multiparty protocols.

In addition, we demonstrate the versatility of
our framework with multiple extensions. First,
our framework can accommodate other protocol
specification formats (e.g. choreography auto-
mata [1]). Second, it is used as a baseline for

improved refinement evaluation: we present an optimised model of computation (decentralised
refinement evaluation). Finally, it is also used as a baseline for implementing static analysis
techniques: we present a simple strategy for statically removing redundant refinements.

Valid Refined Traces. The first building block is a common notion of correct executions
with respect to added refinements. We introduce valid refined traces which are consistent
traces with respect to refinements. This approach allows us to establish a general notion
of refinements, which is applicable to different logics for constraints, type theories, models
of computations, and programming languages. We consider asynchronous communications

M. Vassor and N. Yoshida 35:3

(FIFOs), distinguishing sending and receiving actions in traces.
To illustrate our approach, consider the guessing game example shown above. Each

execution of that protocol is recorded in a trace, i.e. a sequence of the individual events that
take place during the execution (c.f. Section 2.2). For instance, a possible trace of the first
four events of the protocol is the following:
A!B⟨secret, ⟨n, 5⟩⟩ : ⊤ · A?B⟨secret, ⟨n, 5⟩⟩ : ⊤ · C!B⟨guess, ⟨x, 5⟩⟩ : ⊤ · C?B⟨guess, ⟨x, 5⟩⟩ : ⊤

This trace contains four actions, and each action records an event, i.e. a message emission
(denoted with a !) or reception (denoted with a ?). For instance, A!B⟨secret, ⟨n, 5⟩⟩ : ⊤
records A sending a message to B, the payload of this message is a variable n, which has value
5. In the first four actions, we do not need any constraint, therefore actions are guarded by
⊤ which denotes a tautology predicate. The next action following this trace would be for B
to send either more, correct, or less. Choosing more or less would be inconsistent with our
protocol, since C guessed the correct number. For instance, choosing more would add the
action B!C⟨more⟩ : n > x at the end of the queue: the refinement n > x would be violated,
since x = n = 5.

Valid Refined Traces characterise consistency based on the produced trace; and we aim to
provide a model of computation constrained in a way that prevents such inconsistent choices.

Refined Communicating Systems. The second building block of our framework is
a model of computation that only produces correct traces. Communicating Systems (CS)
[5] are a model of concurrent computation, where Communicating Finite State Machines
communicate asynchronously using unbounded FIFO queues. CS are often used to model
and implement MPST [12, 13, 7]. We adapt CS to accommodate refinements, which we
call Refined Communicating Systems (RCS). The semantics is modified in order to check
refinements at every step. For this, we introduce a shared map in order to keep track of
variables and their values that are exchanged in messages (e.g. the values of x and n in the
guessing game example). This record of values is used to evaluate refinements, preventing
undesired transitions. In this paper, we show that RCS only produce valid refined traces and
we explain how to generate an RCS from a RMPST.

Refined MPST. Working with CS is cumbersome, and, in practice, we would prefer to
adapt existing specification formats. We present in depth how to integrate refinements in
Multiparty Session Types (MPST) [38, 19, 18], which are a family of type systems that aims
to prevent communication bugs.

The following refined global type (G±) is a specification of the guessing game protocol
(Figure 1), with refinements: a participant A begins by sending a secret to B; the value of
the secret is stored in the variable n. Then, C tries to guess the value (stored in variable
x), and B replies with more, less (in which case the protocol loops and C can make another
guess: µT.G denotes the recursion) or correct, at which point the protocol terminates (end
denotes the termination). The refinements specify conditions upon which the more, less, and
correct branches are possible. For instance, the protocol can take the correct branch only if
the values in the secret and the guess messages are the same, i.e. if x = n.

G± =

A → B

secret(n : int |= ⊤).µT.C → B

guess(x : int |= ⊤).B → C


more(|= x < n).T,

less(|= x > n).T,

correct(|= x = n).end





Compared to standard MPST, Refined MPST (RMPST) contain variable names (n and x)
and refinements (denoted with |= r in the payloads, meaning that to send the message, r

must hold). We present those extensions as well as the relation between RMPST and RCS.

ECOOP 2024

35:4 Refinements for Multiparty Message-Passing Protocols

Applications and Extensions. To show the versatility of our framework, we extend it:
Decentralised Refinement Evaluation: The canonical semantics for RCS we present uses

a single shared map of variables to provide a simple way to reason about refinements.
Having this global map would not be suited for a distributed implementation. We extend
our framework with an alternative semantics where each participant of a protocol has a
local map of variables. We show that if variables are not duplicated, then this alternative
model also produces valid refined traces.

Static Elision of Redundant Refinements: At places where refinements are redundant (e.g.
where it is entailed by previous refinements), we could benefit from removing those
refinements. In order to show the versatility of our framework, we show how to develop a
simple static analysis technique to remove such redundant refinements.

Refined Choreography Automata: While we mostly use RMPST as an example of protocol
specification language, we sketch another specification by (informally) presenting how to
integrate refinements in choreography automata (in Appendix G).

Rust Implementation. The last objective of our work is to implement RMPST into Rust.
We choose Rust for several reasons: its affine type system makes it easy to avoid unwanted
reuse of values, which helps to prevent a participant from duplicating actions; and thanks to
its growing popularity, there are already a few existing toolchains for session types in Rust
[27, 6, 26, 25]. Among them, we choose Rumpsteak [7] since it already uses CS to implement
MPST participants inside its toolchain. We extend Rumpsteak with refinements using the
decentralised refinement evaluation approach. We finally measure the refinement overhead in
Rumpsteak.
Contributions and Outline. Our main contribution is to unify the different points
presented above in a single framework as presented in Figure 2. We introduce a uniform
framework which is agnostic to any particular specification formalism, model, semantics and
language, defining the correctness of refinements as validity of traces. We then prove the
safety of the framework (Theorem 18). We demonstrate the versatility of our framework by
accommodating multiple protocol specifications such as (refined) multiparty session types [38,
19, 18, 42] and (refined) choreography automata [1, 16], multiple semantics such as (refined)
communicating automata [5] with centralised and decentralised semantics, and multiple
analysis techniques such as dynamic and static analyses. We provide an implementation of an
instance of the framework in Rust. Our framework is the first, to the best of our knowledge,
to achieve such versatility.

The framework is composed of the following parts (circled numbers refer to Figure 2):

① Valid Refined Traces: We introduce valid refined traces which characterise valid execu-
tions with respect to refinements.

② Refined Communicating Systems (RCS): We extend Communicating Systems to accom-
modate refinements. From a configuration of RCS, we induce a set of possible traces.
One of our main results is Theorem 18 (④), which states that all traces produced by RCS
are valid refined traces, which in turn proves the correctness of the RCS.

③ Refined Multiparty Session Types (RMPST): In Section 4, we adapt MPST (which con-
sists of global types (which describe a multiparty protocol), local types (which describe
the behaviour of a single participant), and a projection from global to local types which
extracts the behaviour of a single participant) to accommodate for refinements. We show
how to generate a RCS from a set of local types with refinements (⑤). In addition, in
Appendix G, we sketch how to accommodate refinements in choreography automata, to
illustrate the versatility of the framework (⑥).

M. Vassor and N. Yoshida 35:5

③ Section 4

① Section 2

②
Se

ct
io

n
3

⑦
Se

ct
io

n
5

④

⑤

⑥ Appendix G (Example)

⑧ Section 6
Refined Communicating

System (RCS)

Refined
Configuration

Decentralised
Configuration

Refined Decentralised
Traces

Traces
of RCS

Valid Refined Traces

Refined Local Types

Refined Global Type Refined Choreography Automata

Static
Elision

Simulates
Theorem 59

Global
Semantics

Decentralised
SemanticsSubset of

Cor. of Theorem 59

Subset of (Theorem 18)

Instantiate (Definition 22)

Projection

Project
ion

Correctness (Theorem 35)

Figure 2 Overview of the framework for RMPST developed in this work. The coloured back-
grounds show the main steps of this paper.

⑦ and ⑧ Optimisations: In Section 5 (⑦), we propose a decentralised model as an alternative
for RCS. We show trace inclusion w.r.t. RCS, which ensures refinements are correctly
checked. In Section 7, we implement this improved model in Rust. In addition, in
Section 6, we demonstrate how to develop analysis techniques using the framework. We
show how redundant refinements can, under some conditions, be statically removed (⑧).

2 Refined Traces and their Validity

This section introduces refined traces which are sequences of messages actions. We then
define their validity, introducing two definitions on traces, well-queued and well-predicated
traces. We precede this (in Section 2.1) with preliminary definitions used throughout this
paper.

2.1 Preliminaries: Predicates Language and Semantics

This first subsection introduces the basic definitions we use in this paper.
Let V be a set of variables, ranged over by x, y, . . .; and a finite set C of values (in this

work, we take 32-bit integers: Z/232Z).

ECOOP 2024

35:6 Refinements for Multiparty Message-Passing Protocols

We use associative maps from variable names to values, noted M . dom(M) denotes the
domain of a map, that is the set of variables that appear in the map. Maps are equipped
with lookup (M(x)), update (M [x7→c]) and removal (M\x) operations. M1

⊎
M2 denotes

the union of M1 and M2 if their domains are disjoint (see Appendix B.1 for the definition of
all those operators). Finally, M∅ denotes an empty map.

In order to keep our work general, we do not strictly specify the language of predicates,
nor their semantics rules. Instead, we suppose we are given a language to express refinements,
whose terms are produced by a rule R. In this paper, we intentionally leave the logic
underspecified so that it can be fine tuned by the end user. In practice, in our implementation
(Section 7), custom predicates can easily be added. In the following, we use a simple grammar
with arithmetic and relational operators as predicates. Let R be the set of refinement
expressions. We assume refinements can have free variables, and that there exist a function
fv : R→ P(V) that gives the free variables of each refinement expression. We note RW be
the set of refinements of R whose set of free variables is W ⊆ V. We assume a variable
substitution function, R{vi/xi} that substitutes every free occurrence of each variable xi for
the value vi. For any refinement expression r, r{.../fv(r)} is a closed refinement. Since our
predicates are abstract, we do not explicitly specify their semantics, nor their well-formedness.
Instead, we assume each closed refinement formula evaluates to ⊤ or ⊥. We assume there
exists a function eval(r) that evaluates the refinement r, provided that r is closed1. Finally,
we assume the existence of a closed formula ⊤ that is a tautology, i.e. eval(⊤) = ⊤.

Given a map M and a refinement r, we note M |= r if and only if the refinement
r is closed under the map M : fv(r) ⊆ dom(M), and evaluates to ⊤ after substitution:
eval(r{M(fv(r))/fv(r)}) = ⊤.

In a protocol with multiple participants, let P be a set of participants ranged over by
A, B, . . . and p, q, . . . being meta-variables over participant names. In this work, messages
contain a label, a variable, and a value. Let L be a set of labels; ℓ and its decorated variants
range over labels in L. We define M = L× (V×C) for the set of messages (as a reminder: L
is the set of labels, V the set of variables, and C the set of values).

2.2 Traces
Let us denote e⃗ = e1::. . .::en (n ≥ 0) as a FIFO, i.e., a finite sequence of elements ei (messages
exchanged in this paper). We use ε for an empty FIFO (n = 0). We define: enq(e⃗, e) def= e::e⃗;
deq(e⃗::e) def= e⃗ (deq(ε) is undefined); and next(e⃗::e) def= e (next(ε) is undefined). Notice
that deq(e⃗) is defined if and only if next(e⃗) is defined. In this paper, we consider one FIFO
channel per pair of participant. We call queues a map of all pairs of distinct participants to
their communication FIFO of a system. We note enq(p,q)(w, e), deq(p,q)(w), next(p,q)(w),
where the indices indicates which FIFO of the set is affected (see Appendix B.1 for the formal
definition). We write w∅ for the empty queue, which is the queue where w(p,q) = ε for all p
and q.

Actions are tuples consisting of a sending participant p, a direction of communication
† ∈ {!, ?} (! stands for sending, and ? stands for receiving), a receiving participant q, a message
m and a predicate r associated to the action (as a reminder: R is the set of refinements).
We require participants to be distinct (i.e. p ̸= q).

1 We do not discuss the decidability of the actual chosen logic of refinements here. For undecidable logics,
providing such function is, of course, not possible; however this is not in the scope of this work.

M. Vassor and N. Yoshida 35:7

▶ Definition 1 (Action and Trace). An action is an element of A defined as follows: A =
P× {!, ?} × P×M × R. We write α = p†q⟨m⟩ : r (p ̸= q) when ⟨p, †, q, m, r⟩ ∈ A.

Traces (denoted by τ and its decorated variants) are finite sequences of actions, defined
inductively from the rule T ::= α · T | ϵ , where α is an action. We write A⋆ for
the set of traces. ◁

▶ Example 2 (Trace). We presented a trace in Section 1.

We denote τ1 · τ2 for the concatenation of two traces. We assume an intuitive notion of the
size of trace, as well as lemmas that allow us to infer that, if the size is 0, then the trace is ϵ.

2.3 Properties of Refined Traces
In this subsection, we characterise the correctness of traces w.r.t. refinements.

There are two conditions valid traces should verify. First, the sending/reception of
messages should be consistent (as with normal MPST). Second, for every action of the trace,
predicates that guard the action should hold. We call traces that satisfy message consistency
well-queued traces, and the traces that satisfy the predicates well-predicated traces. In the
end, we consider traces that satisfy both conditions: we call those traces valid refined traces.

To start with well-queued traces, we first evaluate the impact of a trace on a queue, by
looking at the effect of each action on that queue (Definition 3).

▶ Definition 3 (Trace Ending Up with Queues, well-queued traces). A trace τ ends up with
the queue wf w.r.t. a queue wi if:

1. If τ = ϵ, wi = wf ; and
2. If τ = p!q⟨m⟩ : r · τ ′, then τ ′ ends up with wf w.r.t. enq(p,q)(wi, m); and
3. If τ = p?q⟨m⟩ : r · τ ′, then τ ′ ends up with wf w.r.t. deq(p,q)(wi) and next(p,q)(wi) = m.

A trace τ is well-queued with regards to the queue w if τ ends up with the empty queue w∅
with respect to an initial queue w.

A trace τ is valid if τ is well-queued with respect to the empty queue w∅. ◁

▶ Remark 4. In Definition 3, we say wi is the initial queue. ◁

Regarding well-predicated traces, the idea is to record the latest value of each variable in
a map; and to use that map to evaluate refinements (Definition 5).

▶ Definition 5 (Well-Predicated Traces). A trace τ is well-predicated under a map M , if
either (i) τ = ϵ; or (ii) τ = p†q⟨l, (x, c)⟩ : r · τ ′ and M [x 7→c] |= r and τ ′ is well-predicated
under M [x 7→c]. ◁

▶ Example 6 (Well-Predicated Traces). In Section 1, we presented the trace τ :
A!B⟨secret, ⟨n, 5⟩⟩ : ⊤ · A?B⟨secret, ⟨n, 5⟩⟩ : ⊤ · C!B⟨guess, ⟨x, 5⟩⟩ : ⊤ · C?B⟨guess, ⟨x, 5⟩⟩ : ⊤

To illustrate Definition 5, we propose two actions after τ : (i) τ1 = B!C⟨more, ⟨_, _⟩⟩ : x > n;
and (ii) τ2 = B!C⟨correct, ⟨_, _⟩⟩ : x = n. We can investigate whether τ · τ1 (resp. τ · τ2) is
a well-predicated trace under M∅. According to Definition 5, we have to investigate whether
τ1 (resp. τ2) is well predicated under M = {⟨n, 5⟩, ⟨x, 5⟩}.

For τ1, according to Item (ii) in Definition 5, then x > n must hold under M , which is
not the case, therefore τ · τ1 is not well-predicated.

Regarding τ2, according to Item (ii) in Definition 5, then x = n must hold under M ,
which is the case.

ECOOP 2024

35:8 Refinements for Multiparty Message-Passing Protocols

Finally, we consider traces that are both valid with respect to predicates and to messages.
We call those Valid Refined Traces. Our overall goal is to show that our framework only
produces such valid refined traces.

▶ Definition 7 (Valid Refined Traces). A refined trace τ is valid if (i) τ is well-queued with
respect to the empty queue w∅; and (ii) τ is well-predicated under the empty map M∅. ◁

3 Refined Communicating Automata

In this section, we model message-passing concurrent systems with refinements. We ensure
that this model only generates valid refined traces (c.f. Definition 7). Our model of
computation is an extension of communicating systems (CS) [5, 8], which are sets of Finite
State Machines communicating using queues. We introduce refined communicating systems
(RCS), a variant of CS which accounts for refinements and we show that all traces produced
by RCS are valid refined traces (Theorem 18).

Refined Communicating Finite State Machines. Communicating systems [5] are a
concurrent model of computation composed of a set of communicating finite state machines
(CFSM) that interact with exchanges of messages. CFSM are standard finite state machines,
where labels represent actions (i.e. sending or receiving messages). Individual FSM are then
given a concurrent semantics, which performs messages exchanges. The state of the system is
called a configuration, which records the state of the individual CFSMs as well as the content
of the message queues. In this section, we adapt communicating systems for refinements.

First, we add refinements to the transitions of CFSM, which we call refined CFSM. This
appears in the additional R in Definition 8 (we recall R is the set of refinements).

▶ Definition 8 (Refined Communicating Finite State Machine (RCFSM)). An RCFSM is a
finite transition system given by M = ⟨Q, C, q0,M, δ⟩, where Q is a set of states; C = {pq ∈
P2 | p ̸= q} is a set of channels2; q0 ∈ Q is an initial state; M is a finite alphabet of messages;
and δ ⊆ Q× (C × {!, ?} × A × R)×Q is a finite set of transitions. ◁

We write s
i†j⟨m⟩:r−−−−−→ s′ for ⟨s, ⟨ij, †, m, r⟩, s′⟩ ∈ δ. Refined communicating systems (RCS)

are analogous to their non-refined counterparts and simply consist of a tuple of RCFSM, with
one RCFSM per participant. For refined configurations, as with (non-refined) configurations,
we store the states of the individual CFSM and the content of queues. In addition, contrary
to non-refined configurations, refined configurations also contain a map in order to keep track
of the values of the variables in order to be able to evaluate refinements.

▶ Definition 9 (Refined Communicating System (RCS)). A refined communicating system is
a tuple R = ⟨Mp⟩p∈P of RCFSMs such that Mp = ⟨Qp, C, q0p,M, δp⟩. ◁

An RCS uses one RCFSM per participant i ∈ P. A configuration represents the state of
such RCS, where each participant i is in a local state si.

▶ Definition 10 (Refined Configuration). A refined configuration of an RCS R is a tuple S

as follows: S
def= ⟨⟨s1, . . . , sn⟩, w, M⟩R where each si ∈ Qi, w is a queue of messages, and M

is a map from variables names to values. Let S be the set of refined configurations. ◁

2 The original definition uses channels, which we do not use. We keep them for the sake of consistency.

M. Vassor and N. Yoshida 35:9

B1 B2 B3 B4
A?B⟨secret, ⟨n, cn⟩⟩ : ⊤ C?B⟨guess, ⟨x, cx⟩⟩ : ⊤

B!C⟨more, ⟨_, _⟩⟩ : x < n

B!C⟨less, ⟨_, _⟩⟩ : x > n

B!C⟨correct, ⟨_, _⟩⟩ : x = n

Figure 3 RCFSM of B in the G± protocol.

▶ Remark 11. Refined configurations are indexed by their RCS. This allows the configuration
to store the automaton of the participant. The semantics developed below uses those (local)
transitions to infer the global semantics. When the context is clear, we omit this index. ◁

From that, we characterise initial and final configurations. We call a configuration initial
when it is a possible configuration where no actions have been taken yet. This means that
there is no pending messages (which would imply a previous send action), nor known variables
(which would imply a previous action initialised the variable). We say a configuration is final
when there are no pending messages (otherwise, we would expect a receive action to take
place). Notice that it does not mean the system cannot take action at all.

▶ Definition 12 (Initial and Final Refined Configuration). A refined configuration
⟨⟨s1, . . . , sn⟩, w, M⟩ ∈ S is initial if and only if (i) w = w∅; (ii) M = M∅; and (iii) each si
is initial in the RCFSM.

A refined configuration S = ⟨⟨s1, . . . , sn⟩, w, M⟩ ∈ S is final if and only if w = w∅. ◁

▶ Example 13 (RCS). The RCFSM of participant B in the guessing game is shown in
Figure 3. See Figure 9 for the RCFSM of A and C. Together, they form a RCS, which initial
configuration is ⟨⟨A1, B1, C1⟩, w∅, M∅⟩.

Refined Semantics. We now define the semantics of RCS in Definition 14 with two
reduction rules GRRec and GRSnd (the initial GR stands for global refined, to distinguish
the rules from variants in the following parts of this work), which are respectively used for
receiving and sending messages. To avoid confusion with RCFSM reductions, we use a double
arrow (=⇒) to represent reductions at the refined communicating system level.

Rule GRSnd specifies that, if a participant i reduces from state si to state s′
i while

sending a message m and if the refinement predicate r attached to the action holds, then the
transition is taken at the global level. In the resulting refined configuration, the message is
enqueued in the relevant queue and the map of known variables M is updated to take into
account the new value of the carried variable c.

Rule GRRec is similar, with the additional requirement that the message received must
be the next in the participant’s queue (the third premise).

Notice that the verification of refinements is dynamic, as it is performed by the corres-
ponding premise in each of the rules, i.e. at execution time.

▶ Definition 14 (Refined Global Semantics). Given a RCS R = ⟨Mp⟩p∈P, we define:

GRRec
t = si

j?i⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i ∈ δi M [x 7→c] |= r next(j,i)(w) = ⟨ℓ, ⟨x, c⟩⟩

⟨⟨. . . , si, . . .⟩, w, M⟩R
t=⇒ ⟨⟨. . . , si

′, . . .⟩,deq(j,i)(w), M [x 7→c]⟩R

GRSnd
t = si

i!j⟨ℓ,⟨x,c⟩⟩:r−−−−−−−→ s′
i ∈ δi M [x 7→c] |= r

⟨⟨. . . , si, . . .⟩, w, M⟩R
t=⇒ ⟨⟨. . . , s′

i , . . .⟩, enq(i,j)(w, ⟨ℓ, ⟨x, c⟩⟩), M [x 7→c]⟩R ◁

ECOOP 2024

35:10 Refinements for Multiparty Message-Passing Protocols

▶ Remark 15. Global transitions are labelled with the underlying local transition. When the
local transition is not relevant, we do not show it. ◁

▶ Example 16 (Transitions of a RCS). Considering the RCS in Figure 9 in its initial
configuration Ci = ⟨⟨A1, B1, C1⟩, w∅, M∅⟩, we have that the automaton of A can fire a
transition A1

A!B⟨secret,⟨n,5⟩⟩:⊤−−−−−−−−−−−−→ A2, and M∅[n 7→5] |= ⊤, by definition of ⊤. Therefore, Ci

can take a GRSnd transition and reduce to ⟨⟨A2, B1, C1⟩, w, {⟨n, 5⟩}⟩, where w contains a
single message ⟨secret, ⟨n, 5⟩⟩ in w(A,B).

If the RCS is in the configuration C = ⟨⟨A2, B3, C2⟩, w∅, M⟩ with M = {⟨x, 5⟩, ⟨n, 5⟩},
the RCFSM of participant B offers three possible transitions: (i) B3

B!C⟨more,⟨_,_⟩⟩:x<n−−−−−−−−−−−−−−→ B2;
(ii) B3

B!C⟨less,⟨_,_⟩⟩:x>n−−−−−−−−−−−−−→ B2; and (iii) B3
B!C⟨correct,⟨_,_⟩⟩:x=n−−−−−−−−−−−−−−−→ B4. The predicates

carried in first two do not hold under M : M ̸|= x < n (resp. for x > n). Therefore, only
B3

B!C⟨correct,⟨_,_⟩⟩:x=n−−−−−−−−−−−−−−−→ B4 is feasible as a GRSnd transition in the RCS. As we will see
below (Theorem 18), this semantics prevents invalid traces.

Trace of Refined Communicating Systems. In order to show that the semantics of RCS
captures the intuition of refinements, we study the traces formed by sequences of reductions
(see Definition 47 for the formal definition of traces of RCS).

▶ Example 17 (Trace of an RCS). The trace τ · τ2 (Example 6) is a trace of the RCS of G±.

We conclude this section with our main result, which is that all traces produced by S(G)
are valid refined traces. A trace is initial (resp. final) if it is obtained from a run whose first
(resp. last) state is initial (resp. final).

▶ Theorem 18 (Traces of Refined Communicating Systems are Valid Refined Traces). For all
RCS R, for all initial and final traces τ of R, τ is a valid refined trace. ◁

The proof is in Appendix D.

4 Refined Multiparty Session Types (RMPST)

In the two previous sections, we introduced refinement validity and a variant of CS which is
correct with respect to our validity criterion. However, working with RCS is cumbersome, in
particular if we intend to prove additional properties (e.g. deadlock freedom). Fortunately,
various models for message-passing concurrent computation have been developed in the
literature, many of which can be encoded into CS. Multiparty session types (MPST) [38, 19, 18]
is an example of such model. We focus on MPST as they have proved successful for many
applications and the theory enjoy many useful properties (e.g. session fidelity, deadlock
freedom, liveness etc). However, MPST is not the only possible choice, and we sketch different
input models in Appendix G. In this section, we introduce refined multiparty session types
(RMPST), which are an extension of MPST annotated with refinement predicates and we
show how one can extend existing models to easily obtain refinements.

In Section 4.1, we first present the syntax of global and local refined multiparty session
types, adapted for refinements. In Section 4.2, we present how to obtain RCS from local
RMPST, extending a standard approach to implement MPST in CS [12] with refinements.

4.1 Syntax of RMPST
We define the syntax of RMPST. First we assume that messages carry different sorts of
payload. As a reminder, for simplicity, in our examples, we only consider int payloads.

M. Vassor and N. Yoshida 35:11

G ::= p → q{li(xi : S |= R).G}i∈I | µt.G communication, recursive type
| t | end type variable, termination

L ::= p⊕{li(xi : S |= R).L}i∈I | t | end internal choice, type variable, termination
| p&{li(xi : S |= R).L}i∈I | µt.L external choice, recursive type

S ::= int | . . . sort (payload types)

Figure 4 Syntax of Global (G) and Local (L) Types and Sorts (S).

Also, we recall the conventions from Section 2.1: P is the set of participants and L is the
set of labels. For recursion, we introduce type variables that range over {T, U, . . . }; t is a
meta-variable taken over the set of type variables. We assume all type variables appearing in
a type are distinct and we do not (syntactically) distinguish global and local type variables.
Finally, xi are meta-variables over payload variables taken from the set V.

We first define global refined multiparty session types, which are inductive data types
generated by the production G in Figure 4. The type A→ B{li(xi : Si |= ri).Gi}i∈I describes
a protocol where A chooses a label li amongst possible I and sends a message to B. The
message contains a payload of type Si, which is bound to xi when sent. Refinement predicates
we introduce guard the communication they are attached to, meaning the system can select
a choice with predicate ri only if ri holds. In that case, the message is sent and the protocol
continues with its continuation of type Gi. µT.G binds T in G, and a bound type variable
T in a type denotes a protocol recursion. Let frv(G) denotes the free recursion variables
occuring in G. Finally end describes a terminated protocol. Let parts(G) be the set of
participants that appear in G (c.f. Definition 50 for the definition of parts(G)). We write
p ∈ G for p ∈ parts(G).

▶ Example 19 (Refined Global Multiparty Session Type). The type G± presented in Section 1
is a refined global type; we have parts(G±) = {A, B, C}.

To characterise the behaviour of individual participants, we define refined local multiparty
session types, which are inductive datatypes generated by L in Figure 4. Recursion, type
variables and termination are similar in local and global types. Only the communication
specifications differs: in a local type p⊕{li(xi : Si |= ri).Li}i∈I describes an internal choice,
i.e. the participant chooses a label li and sends it to p. Conversely, p&{li(xi : Si |= ri).Li}i∈I

describes an external choice: p makes a choice amongst the possible li and the local participant
receives this choice.

Global and local MPST are related: we can project a global type onto the local types
of its participants. Below, we define a projection (partial) operator G↾p, which returns the
local type of p with respect to the global type G.

We define a projection with a merge (partial) operator, which merges multiple local types
of a participant into a single local type. This is used to merge the (possibly different) types
of the continuations present in the communication branches. The study of different variants
of merge operators is an active field (e.g. [32, Section 3]). For the sake of simplicity, in this
paper we use a naïve merge operator, which simply ensures that all types are the same.

▶ Definition 20 (Projection). Given p, q and r three distinct participants:

ECOOP 2024

35:12 Refinements for Multiparty Message-Passing Protocols

p→ q{li(xi : Si |= Ri).Gi}i∈I↾p = q⊕{li(xi : Si |= Ri).Gi↾p}i∈I

q→ p{li(xi : Si |= Ri).Gi}i∈I↾p = q&{li(xi : Si |= ⊤).Gi↾p}i∈I

q→ r{li(xi : Si |= Ri).Gi}i∈I↾p = ⊓i∈I(Gi↾p)

µt.G′↾p =
{

µt.(G′↾p) if p ∈ G′ or frv(G′) ̸= ∅
end otherwise

t↾p = t end↾p = end

where a merge operator is defined as: ⊓i∈ILi
def= L if ∀i ∈ I ·L = Li, undefined otherwise. ◁

Notice that our local RMPST accept refinements on both receiving and sending, and the
semantics developed in Section 3 accept any position for verification. When projecting a
global type G = A→ B {ℓ(x : int |= r).end} onto local types, we therefore have a choice to
project the refinement:

on the send side: G↾A = B⊕{ℓ(x : int |= r).end} and G↾B = A&{ℓ(x : int |= ⊤).end}
on the receive side: G↾A = B⊕{ℓ(x : int |= ⊤).end} and G↾B = A&{ℓ(x : int |= r).end}
or a combination of both3.

Our projection takes the first option, i.e. refinements are checked when the message is emitted,
but with any of these choices, our developments would not substantially change.

▶ Example 21 (Projection). We project G± (Section 1) onto participants A and B4:
G±↾A = B⊕{secret(n : int |= ⊤).end}
G±↾B =

A&

secret(n : int |= ⊤).µT.C&

guess(x : int |= ⊤).C⊕


more(|= x < n).T,

less(|= x > n).T,

correct(|= x = n).end





4.2 From Refined MPST to Refined Communicating System
In this subsection, we show how to generate an RCS from local RMPSTs. As shown in
Definition 20, local types are projected from global multiparty session types. Therefore, this
step allows us to complete the conversion from a global RMPST into an RCS. We adapt the
translation from local type to CFSMs presented in [13] to accommodate refinements in types.

The intuition behind the translation is to decompose a local type into the individual
steps it specifies. For this, we first need to retrieve all those steps. We define the set of types
that occur nested in another type: a type T ′ occurs in a type T (noted T ′ ∈ T) if it appears
in the continuations of T after one or multiple steps (see Definition 51).

Given this, we can proceed to the translation itself, in Definition 22. This definition says
that the states of the RCFSM of a local type T0 are composed of the (sub)types that appear
in T0, stripped of the leading µt. (the function strip removes the leading recursions variables;
this formalises [13, Item (2) in Definition 3.4]) and of recursive variables t. We define the set
of transitions of this RCFSM by taking the action each type (i.e. each state) can take, and
adding a transition with this action from the initial state to the continuation (stripped of
leading µt.). In the case that the continuation is a recursion variable t, we have to search in

3 For instance, if we want to implement a centralised server that communicates with (isolated) clients, we
may want all refinements to be asserted by the server, independently of the direction.

4 The projection onto C is similar to the recursive part of the projection onto B, with ! and ? swapped.

M. Vassor and N. Yoshida 35:13

the original type the continuation. Compared to [13, Item (2) in Definition 3.4], we simply
add the support for the refinements predicates, which appear both in the types (i.e. in the
states) and in the actions (i.e. in the transitions).

▶ Definition 22 (RCFSM of Refined Local Types (extends Definition 3.5 in [13])). Given a
global type G, the RCFSM of participant p (with local type T0 = G↾p) is the automaton
A(T0) = ⟨Q, C, strip(T0),M, δ⟩ where:

Q = {T ′ | T ′ ∈ T0 ∧ T ′ ̸= t ∧ T ′ ̸= µt.Tµ};
C = {pq | p, q ∈ G, p ̸= q}; and
δ is the smallest set of transitions such that: for all T ∈ T0 in Q, for all c ∈ C:

if T is q⊕{ℓi(xi : Si |= ri).Ti}i∈I , for all Ti:
∗ if Ti ̸= t, then ⟨T , p!q⟨ℓi , ⟨x, c⟩⟩ : r, strip(Ti)⟩ ∈ δ

∗ if Ti = t with µt.T ′ ∈ T0, then ⟨T , p!q⟨ℓi , ⟨x, c⟩⟩ : r, strip(T ′)⟩ ∈ δ

if T is q&{ℓi(xi : Si |= ri).Ti}i∈I , for all Ti:
∗ if Ti ̸= t, then ⟨T , q?p⟨ℓi , ⟨x, c⟩⟩ : r, strip(Ti)⟩ ∈ δ

∗ if Ti = t with µt.T ′ ∈ T0, then ⟨T , q?p⟨ℓi , ⟨x, c⟩⟩ : r, strip(T ′)⟩ ∈ δ

where strip(T) def= strip(T ′) if T = µt.T ′; and strip(T) def= T otherwise. ◁

Finally, we define the RCS of a type.

▶ Definition 23 (Refined Communicating System of a Type). The RCS of a type G, noted
S(G), is a tuple composed of the RCFSM of all participants S(G) def= ⟨A(G↾p)⟩p∈parts(G).
We note C(G) the initial configuration of S(G). ◁

▶ Example 24 (Refined Communicating System of G±). The communicating system of G± is
S(G±) = ⟨A(G±↾A),A(G±↾B),A(G±↾C)⟩, where the three automata are shown in Figure 9 .

The initial configuration C(G±) of this RCS S(G±) is ⟨⟨A1, B1, C1⟩, w∅, M∅⟩.

Theorem 18 applies to RCS obtained from RMPST: RCS generated from Definition 23
only produce valid refined traces, with the refined global semantics presented in Definition 14.
Notice also that, if refinements always hold, RMPST and their semantics coincide with the
semantics presented in [12].

5 Decentralised Refined Multiparty Session Types

In the previous section, we presented RCS and we showed that every trace of an RCS is
a valid refined trace. However, RCS are theoretical constructions and are not intended to
be implemented directly, as they use a global shared map of variables. In practice, a user
may want to develop more precise analysis techniques on specific classes of RCS to remove
this global map, which allows a decentralised verification of refinements, while keeping the
validity of refined traces.

The goal of this section is twofold: on the one hand, the decentralised semantics we
develop serves as a theoretical background for our implementation (Section 7). On the
other hand, it illustrates the modularity of our framework. We show that the decentralised
approach produces valid refined traces by showing refined configurations we developed in
Section 3 simulate decentralised systems. This approach is not specific to our variant: we
expect other optimisations presented in the literature could be integrated similarly.

This section is divided in the following steps: first, we define what we mean by decentralised
verification of the refinements, by adapting the semantics of RCS (Definitions 25 and 28). We

ECOOP 2024

35:14 Refinements for Multiparty Message-Passing Protocols

split the global map of variables’ values into local maps (one per participant). Then, we show
that despite being modified, the new variant still produces valid refined traces (Definition 7).
We justify this claim by proving that under some conditions, the original RCS simulates (c.f.
[30, Exercise 1.4.17, p. 26]) the decentralised variant (Theorem 59). Since trace equivalence
is coarser than simulation, this is sufficient to prove that decentralised configurations that
meet the said conditions produce valid refined traces.

The conditions we mentioned above are: (i) variables should not be duplicated; and
(ii) when evaluating a predicate, the free variables of the predicate must be in the local
map. Without the first condition, we can possibly have two distinct values assigned to
the same variable without being able to distinguish which is the most recent. The second
condition is required to verify the refinements locally (e.g. predicates that constraint an
action of A should be checked by A itself). To illustrate the importance of the first condition,
consider the type A→ B {ℓ1 (x : int).C→ D {ℓ2 (x : int).end}}. In the centralised approach,
x is aliased, while in the decentralised approach, the x exchanged between A and B is stored
in a local map, and the x exchanged between C and D is stored in another local map; both
are not aliased. To prevent different semantics, we need to prevent such difference, which is
the goal of the first condition.

Decentralised Configurations and Decentralised Semantics. First, we define de-
centralised configurations in Definition 25. Compared to Definition 10, instead of a global
map in the tuple, we associate a local map to each automata state. Those maps store the
variables each participant has access to.

▶ Definition 25 (Decentralised Configuration). A Decentralised Configuration of an RCS
S(G) = ⟨⟨Qi, Ci, q0,i,A, δi⟩⟩i∈parts(G) is a tuple ⟨⟨⟨s1, M1⟩, . . . , ⟨sn, Mn⟩⟩, w⟩S(G) where each
si ∈ Qi, each M i is a local map of variables to values, and w is a queue of messages.

Let SD be the set of decentralised configurations. We note D(G) the initial decentralised
configuration of S(G). ◁

Remark 11 also applies for decentralised configurations.

▶ Example 26 (Initial decentralised configuration of G±). In Example 13, we presented the
refined communicating system of G± and its associated refined configuration. The initial
decentralised configuration of this system is ⟨⟨A1, M∅⟩, ⟨B1, M∅⟩, ⟨C1, M∅⟩, w∅⟩. In particular,
notice that it uses the same set of refined CFSM than the refined configuration.

The global reduction rules are adapted accordingly: in the rules DRec and DSnd ("D"
stands for "decentralised"), when a message is sent or received, the corresponding local map
is updated, instead of a global map as in GRRec and GRSnd.

▶ Remark 27. Contrary to Definition 14, when a variable is sent, it is removed from
the local map of variables. Intuitively, when a participant sends a variable, it erases its
knowledge of it, to prevent aliasing issues. A direct consequence of this is that, in the
centralised implementation, the global map of variables is a superset of the local maps in
the corresponding decentralised implementation. Indeed, while a variable is in transit, it
appears neither in the sender’s map, nor in the receiver’s one. This observation will be
proved together with the simulation proof (Theorem 59). ◁

M. Vassor and N. Yoshida 35:15

▶ Definition 28 (Decentralised Global Semantics). Given an RCS R = ⟨Mp⟩p∈P

DRec
t = si

j?i⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i ∈ δi next(j,i)(w) = ⟨ℓ, ⟨x, c⟩⟩ Mi[x 7→c] |= r

⟨⟨. . . , ⟨si, M i⟩, . . .⟩, w⟩R
t=⇒ ⟨⟨. . . , ⟨si, Mi[x 7→c]⟩, . . .⟩,deq(j,i)(w)⟩R

DSnd
t = si

i!j⟨ℓ,⟨x,c⟩⟩:r−−−−−−−→ s′
i ∈ δi Mi[x 7→c] |= r

⟨⟨. . . , ⟨si, M i⟩, . . .⟩, w⟩R
t=⇒ ⟨⟨. . . , ⟨si, M i\x⟩, . . .⟩, enq(i,j)(w, ⟨ℓ, ⟨x, c⟩⟩)⟩R ◁

Conditions for Decentralised Verification and Correctness Proofs. We now focus
on proving that this decentralised semantics produces valid refined traces. As we mentioned
above, this holds under two conditions, which we define first:

▶ Definition 29 (Conditions for Decentralised Verification Simulation). Given a decentralised
configuration ⟨⟨⟨si, Mi⟩, . . .⟩, w⟩, the conditions for simulation are:

1. No duplication:
a. if ∃Mi · x ∈ dom(Mi), then ∀i, j · x ̸∈ w(i,j) and ∀j ̸= i · x ̸∈ dom(Mj).
b. if ∃⟨i, j⟩ · x ∈ w(i,j), then ∀i · x ̸∈ dom(Mi) and ∀⟨i′, j′⟩ ≠ ⟨i, j⟩ · x ̸∈ w(i′,j′).

2. Free variables are in the map: ∀i · ∀si
′ · si

i†j⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i · fv(r) ⊆ dom(Mi[x 7→c]) ◁

▶ Definition 30 (Decentralisable Type). A type G is decentralisable if the two conditions
hold for all reachable decentralised configurations from D(G). ◁

Notice that the second condition is redundant, as the condition Mi[x 7→c] |= r (in the
premises of the reduction rules) already requires that fv(r) is a subset of the variables in
Mi[x 7→c]. Even without making this condition explicit, the system would stall if a predicate
cannot be verified. For the sake of clarity, we keep it explicit in the two required conditions.

We now observe a correspondence between the (centralised) refined configuration and the
decentralised configuration of a global type G. To characterise the correspondence between
centralised and decentralised configuration, we establish a simulation relation between the
two (see Appendix E.2 and [30]). Intuitively, a simulation captures the fact that one system
(the centralised configuration in our case) can mimic all transitions of another system (the
decentralised one here).

We can now prove the main result of this section, which is that the decentralised semantics
does not induce new (unwanted) behaviours, i.e. all decentralised transitions can be mimicked
by centralised transitions, i.e. the centralised approach simulates the decentralised one.

▶ Theorem 31 (Centralised simulates Decentralised). For all decentralisable RMPST G

(Definition 30), C(G) simulates D(G). ◁

Proof. The proof is available in Appendix E.3. ◀

This result shows that any type that verifies the conditions stated in Definition 29 can be
verified in a decentralised way. The difficulty is that the conditions are about the execution:
we do not know whether a predicate will have a missing variable during the execution. With
a knowledge flow algorithm, we can infer (from the communication specifications in the
global type) which participant has access to which variables at any point in the execution
of the protocol, i.e. we can localise each variable throughout the execution of the protocol.
This algorithm (which we present in Appendix E.4) does not present major challenges.

Notice that the reverse simulation does not hold: D(G) does not simulate C(G). Indeed,
C(G) can verify a predicate whose variables are spread over different participants, i.e. where
variables would be spread across multiple Mi in the decentralised variant.

ECOOP 2024

35:16 Refinements for Multiparty Message-Passing Protocols

6 Static Elision of Redundant Refinements

In this section, we present a second optimisation, which is complimentary from the first
one. The main idea is to statically analyse a given protocol to find and remove redundant
refinements. Our approach is to consider a target transition, which we aim to remove the
refinement, if possible. Our optimisation can then be applied successively to different target
transitions one after each other. For instance, consider the following protocol Gs. We target
the second refinement, x < 10, which necessarily holds if the first one does (since x does not
change). Therefore it is redundant and can be removed.

Gs = A → B {ℓ1 (x : int |= x < 0).A → B {ℓ2 (y : int |= x < 10).end}}
However, removing refinements is not always trivial, since the communication semantics

is asynchronous. Consider for instance the following type :
A → C {ℓ1 (x : int |= x > 20).A → B {ℓ2 (x : int |= x < 0).C → B {ℓ3 (y : int |= x < 10).end}}}

A naïve approach would be to remove the refinement of the last communication (x < 10),
since the previous communication has a stronger guarantee (x < 0). However, due to the asyn-
chrony of communications, the second and third communications could be swapped at runtime,
but the refinement (x < 10) does not hold before the action A→ B {ℓ2 (x : int |= x < 0).. . .}
occurs. Therefore, in this case, removing the last refinement is incorrect. The optimisation we
present takes into account those cases, by keeping track of causal relations between actions.

This section is independent of the previous one, although this second optimisation can
help to make some protocols localisable: for instance, Gs above is not localisable. Since
the second step A→ B {ℓ2 (y : int |= x < 10).end} requires A to access x, which is at B.
However, once removed, the protocol becomes localisable, and can therefore be decentralised,
helping the first optimisation introduced in Section 5.

As with the previous section, the optimisation we present could easily be further improved.
Here, we focus on a simple case, as our goal is not to discuss the optimisation itself, but
rather to show the versatility of the framework.

We present this section in two steps: first, in Section 6.1, we focus on RCS, which form
the core of our framework; then, in Section 6.2, we apply the above result to RMPST.

6.1 Static Elision of Refinements in RCS
In a first step, we develop and prove the correctness of our analysis in RCS. The question is
therefore whether, given a RCS R with one CFSM containing a transition with refinement r,
this RCS R is equivalent (bisimilar) to an RCS where r is replaced with ⊤.

For the sake of simplicity, in this subsection, we’ll explain the static elision of refinements
in RCS using examples. Formal definitions, lemmas and their proofs are available in
Appendix F.1. We use the RCS of Gs shown in Figure 5.

If we aim to i.e. transitions which payload modify variables that do not appear free in
the refinement of the considered transition.

▶ Example 32 (Independent transitions). In S(Gs), A2
A!B⟨ℓ2 ,⟨y,_⟩⟩:x<10−−−−−−−−−−−−→ A3 depends on

the variable x ∈ fv(x < 10). This transition is self-independent. Since the payload of
A1

A!B⟨ℓ1 ,⟨x,_⟩⟩:x<0−−−−−−−−−−−−→ A2 is x, the former transition depends on the later.

▶ Remark 33. We note Tx the set of transitions σ
†⟨_,⟨x,_⟩⟩:_−−−−−−−−−−→ σ′. Given a transition t

with refinement r, if x ∈ fv(r), then t depends on all transitions of Tx. ◁

M. Vassor and N. Yoshida 35:17

A1 A2 A3
A!B⟨ℓ1 , ⟨x, _⟩⟩ : x < 0 A!B⟨ℓ2 , ⟨y, _⟩⟩ : x < 10

(a) RCFSM of A in the protocol Gs (A(Gs↾A)).

B1 B2 B3
A?B⟨ℓ1 , ⟨x, _⟩⟩ : ⊤ A?B⟨ℓ2 , ⟨y, _⟩⟩ : ⊤

(b) RCFSM of B in the protocol Gs (A(Gs↾B)).

Figure 5 RCFSM of the RCS of Gs, the running example of Section 6

Essentially, when attempting to remove a refinement from a target transition t, we can
disregard all transitions t is independent of.

The second definition we will need is about transitions being well-defined. So far, nothing
prevents us to use refinements with undefined free variables, we simply consider the refinement
does not hold (c.f. Definition 14). In this section, we specifically focus on systems where free
variables of refinements are in the map when the refinement is evaluated. When it is the
case, we call transitions with such refinements well-defined.

▶ Example 34 (Well-defined transition). Considering the RCS in Figure 5. In the RCFSM
of A, the (local) state A2 is only accessible with a transition A1

A!B⟨ℓ1 ,⟨x,_⟩⟩:x<0−−−−−−−−−−−−→ A2.
Therefore, any global state ⟨⟨A2, B{1,2,3}⟩, _, M⟩ necessarily contains a preceding transition

A1
A!B⟨ℓ1 ,⟨x,_⟩⟩:x<0−−−−−−−−−−−−→ A2. Therefore, x is always in the map M of that state.
Therefore, the transition A2

A!B⟨ℓ2 ,⟨y,_⟩⟩:x<10−−−−−−−−−−−−→ A3 is well-defined.

We can now conclude our analysis technique: consider a target transition t with refinement
r that is self-independent (it does not modify the variables of its refinement) and well-define.
If all transitions that modify the free variables of r can guarantee (via their refinement) that
the modification they do is correct with respect to r, then we can safely remove r.

▶ Theorem 35 (Correctness of refinement elision). Given an RCS R containing an RCFSM
M = ⟨Q, C, q0,A, δ⟩, and t = si

p†q⟨m⟩:r−−−−−→ si
′ ∈ δ, a well-defined self-independent transition.

Let t′ = si
p†q⟨m⟩:⊤−−−−−−→ si

′; δ′ = δ \ {t} ∪ t′; M ′ = ⟨Q, C, q0,A, δ′⟩; and R′ be R where M is
replaced with M ′. If, for each transition tw = _ _!_⟨_⟩:rw−−−−−−−→ _ in

⋃
x∈fv(r) Tx, for all map M ,

M |= rw entails M |= r, then there exists a bisimulation relating the states of R′ and R. ◁

Proof. Proving each direction of the bisimulation is direct (see the proof in Appendix F.1). ◀

▶ Example 36 (Application of Theorem 35). The following RCFSM, where x < 10 is removed,
is a valid replacement for A(Gs↾A) in S(Gs).

A1 A2 A3
A!B⟨ℓ1 , ⟨x, _⟩⟩ : x < 0 A!B⟨ℓ2 , ⟨y, _⟩⟩ : ⊤

6.2 Application to RMPST Protocols
The above subsection explains how to remove some redundant refinements in RCS. In this
subsection, we intend to do the same, focusing on RMPST instead of RCS.

Our goal is the following: we are given an RMPST G, and we would like to remove one
of its refinement (which we call the target refinement r). For the sake of simplicity, in this

ECOOP 2024

35:18 Refinements for Multiparty Message-Passing Protocols

section, we assume all labels are uniquely used (which we use to prove Lemma 74). For the
general case, we can simply uniquely rename redundant labels. Overall, the roadmap for this
subsection is to show that given the type G′, which is G where r is replaced by ⊤, G and
G′ behave similarly, i.e. the RCS the generate are bisimilar. To achieve this, we show that
Theorem 35 applies to S(G) and S(G′). Therefore, the main point is finding conditions on
RMPST that ensures hypothesis of Theorem 35 holds; we have to verify the following items:

1. all transitions our refinement depends on should entail the refinement itself;
2. the transition that carries the refinement must be well-defined (Definition 63). Since

variables cannot be removed from the map, the first occurrence of the target transition
must respect the domain condition. Therefore, for this step, we can ignore recursion.

The main difference with automata is that, in types, we have communications, which
possibly contains choices with multiple branches; and we our goal is to remove the refinement
of one of those branches. Therefore, we first introduce steps of a communication, i.e. given a
choice, what are the possible choices it can take. We then extend this to types. We show
that steps in a type correspond to transitions in the automata of that type.

▶ Example 37 (Step). The type Gy = A→ B {ℓ2 (y : int |= x < 10).end} has the step
A→ B⟨ℓ2 , y⟩ |= x < 10. Since Gy occurs in one of the branches of Gs (from the introduction
of this section), this step occurs in Gs.

Given this notion of steps occurring in a type that is analogous to transitions in the
RCFSM of that type, we can now focus on the conditions of Theorem 35. Therefore, we
have to characterise what corresponds to well-defined transitions in a type. Since transitions
(in RCS) and steps (in types) are analogous, we introduce well-define steps in a type. We
recall that, in a RCS, a transition is well-defined if the free variables of the refinement it
carries are always known when the transition is fired. Since variables are never removed from
the map, we can focus on the first occurrence of the transition. So far, we do not have a
notion of run for a type. Therefore, we first define an happens-before relation in RMPST,
and we use this relation to define well-defined steps as steps that contain a refinement which
free variable are all exchanged in a communication that happens-before the step we consider.
With those two definitions, we can finally prove that a well-defined step in a type corresponds
to a well-defined transition in the corresponding RCS.

▶ Example 38 (Well-define step in a type). Consider Gs and Gy as in Example 37. The step
A→ B⟨ℓ2 , y⟩ |= x < 10 is well-defined. Indeed, fv(x < 10) = {x}, Gs < Gy, and Gs contains
a branch that sends x and which continuation contains Gy.

We can finally proceed to the overall goal of this section: showing that the type with and
without the target refinement behave similarly. Thanks to the above lemmata, we simply
have to target a refinement with the appropriate conditions and apply Theorem 35.

▶ Theorem 39 (Static elision of redundant refinements in types). Given two a global types
G and Gs = p→ q{ℓi(xi : Si |= ri).Gi}i∈I ∈ G, such that, for one t ∈ I, p→ q⟨ℓt , xt⟩ |= rt

is a well-defined step with xt ̸∈ fv(rt). Let ℓt′ = ℓt, xt′ = xt, St′ = St, r′
t = ⊤, Gt′ = Gt,

Gs′ = p→ q{ℓi(xi : Si |= ri).Gi}i∈I\{t}∪{t′}; and G′ be G where Gs is replaced with Gs′ . If,
for all steps, r→ s⟨_, xw⟩ |= rw occurring in G (for each x ∈ fv(r)), M |= rw entails M |= r

(for all M), there exists a bisimulation between the states of S(G) and those of S(G′). ◁

Proof. We prove this by showing that Theorem 35 applies to S(G) and S(G′). The proof is
provided Appendix F.2. ◀

M. Vassor and N. Yoshida 35:19

1 (*# RefinementTypes #*)
2

3 global protocol PlusMinus
4 (role A, role B, role C)
5 {
6 Secret(n: int) from A to B;
7 rec Loop {
8 Guess(x: int) from C to B;
9 choice at B {

10 More(x: int {x < n}) from B to C;
11 continue Loop;
12 } or {
13 Less(x: int {x > n}) from B to C;
14 continue Loop;
15 } or {
16 Correct(x: int {x = n}) from B to C;
17 }}}

(a) νScr description of the guessing game protocol.

1 type PlusMinusA =
2 Send<B, 'n',
3 Secret,
4 Tautology::<Name, Value, Secret>,
5 Constant<Name, Value>, End>;
6 // ...
7 async fn a(role: &mut A)
8 -> Result<(), Box<dyn Error>> {
9 try_session(role,

10 HashMap::new(),
11 |s: PlusMinusA<'_, _>| async {
12 let s =
13 s.send(Secret(10)).await?;
14 return Ok(((), s))
15 })
16 .await
17 }

(b) Rust type and implementation of participant
A of the guessing game protocol. The handwrit-
ten code (Line 7 to Line 17) is the same than
with Vanilla Rumpsteak.

Figure 6 Implementation of the guessing game using Rumpsteak.

▶ Example 40 (Application of Theorem 39). Given Gs as in Example 37 and G′
s as follows

(notice the second refinement is replaced by ⊤), Gs and the following G′
s have the same

behaviour:
G′

s = A→ B {ℓ1 (x : int |= x < 0).A→ B {ℓ2 (y : int |= ⊤).end}}

7 Implementation

In the previous section, we introduced an instance of our framework: a system that accom-
modates refinements using a decentralised verification mechanism. In this section, we follow
up on this example with an implementation, based on Rumpsteak, of this system.

Rumpsteak [7] is a framework to write Rust programs according to an MPST specification.
The framework is divided into two parts: (i) a runtime library that provides primitives to
write asynchronous programs in Rust; and (ii) a tool (rumpsteak-generate) to generate
skeleton Rust files from specification files (i.e. from global types), in two steps.

Working with Rumpsteak takes two manual steps. The user specifies (step 1) the protocol
in a global type(written as Scribble files [39], see Figure 6a). This global type is automatically
projected using νScr [15] and the projected types are used to generate skeleton Rust files
(see Figure 6b). The generated Rust code contains Rust types that encode local types (e.g.
the type for A is shown in Line 1 in Figure 6b). The user then manually implements (step 2)
the process of each participant, following their type (Line 7), using provided communication
primitives (Line 13). Rumpsteak relies on Rust’s typechecker to ensure the consistency of
the implementation. For the sake of clarification where needed, we call Vanilla Rumpsteak
the framework without refinements (i.e. as presented in [7]), and Refined Rumpsteak the
framework modified to accommodate refinements.

In this section, we explain the main differences between Vanilla and Refined Rumpsteak:
we introduce refinements in the types used in the runtime library, we modify the program
generation step accordingly, and we introduce tools that ensure the localisation conditions

ECOOP 2024

35:20 Refinements for Multiparty Message-Passing Protocols

Global Type (Scribble) (Figure 6a) Graph of Global Type

Unrolled Graph

Localisation result

Local Types (DOT)

Rust APIs

Rumpsteak program (Figure 6b)

Executable File

scr2dot

mpst_unroll

dynamic_verify

νScr

rumpsteak-generate

Manual implementation

Compilation (type-checking)

Figure 7 Workflow of Rumpsteak. Green nodes represent steps that already existed in Vanilla
Rumpsteak and that have been adapted to accommodate for refinements, red nodes represent new
steps, and blue nodes represent unmodified steps. The three new steps (scr2dot, mpst_unroll, and
dynamic_verify) verify the conditions mentioned in Definition 29.

are met (Definition 29 in Section 5). The overall workflow is presented in Figure 7. We
conclude this section by measuring the overhead induced by the refinement w.r.t. Vanilla
Rumpsteak and the time needed for asserting the localisation conditions.

7.1 Refinement Implementation

Modifications to the Rumpsteak Library. In order to accommodate for refinements,
we have to introduce new elements in to the Rumpsteak’s encoding of local types. Consider
the local type of participant A introduced in Example 21 B⊕{secret(n : int |= ⊤).end}:
Rumpsteak now has to take into account the name of the variable sent (n), and the refinement
attached to the transition (⊤). Consider the type declaration in Line 1 to Line 5, Figure 6b.
Compared to Vanilla Rumpsteak, we introduce 'n', a const generic5, that carries the name of
the variable sent (Line 4). Regarding the refinement, we introduce Tautology::<Name, Value
, Secret>, which represent the refinement ⊤. The generic parameters are used to specify
the type of variable names (chars in our case) and values (i32) as well as the label of the
message (Secret). We modified νScr and rumpsteak-generate to generate skeleton files
(the content of the file up to Line 5). Rumpsteak provides a set of available refinements, and
additional ones can be written ad-hoc (for specific needs). To add an ad-hoc refinement,
the user simply implements the trait Predicate (which extends Default), which requires a
method check that asserts whether the predicate holds. For instance, the check function of
Tautology simply returns true.
Verification of the Conditions for Decentralised Refinement Assertion. As we
explained in Section 5, to make sure that refinements can be verified in a decentralised
way, we require to check that variables needed for the refinements are located correctly
(Definition 29). To perform this verification, we implemented new tools for the Rumpsteak
framework (in red in Figure 7).

Our tools: (i) convert the global type into a graph (scr2dot); (ii) unroll the loops once
to precisely capture variables initialisations (unroll_mpst); and (iii) localise variables on
the unrolled graph (dynamic_verify).

5 https://github.com/rust-lang/rfcs/blob/master/text/2000-const-generics.md

https://github.com/rust-lang/rfcs/blob/master/text/2000-const-generics.md

M. Vassor and N. Yoshida 35:21

The core part of this verification, dynamic_verify, finds variables locations with simple
inference rules written in Datalog. We use the crepe library [40] which provides a Datalog
DSL for Rust. We provide more details on the algorithm in Appendix E.4.
Limitations. The current implementation makes extensive use of the Rust feature const
generics9 which introduces a limited form of dependent types in Rust. It allows to use
constant values in types. As of today, only some basic types can be used as const generics,
in particular chars and the various integer types. We use such const generics to encode
informations about the variables into the types: for instance, the predicate x < 5 would have
the type LTnConst<L, 'x', 5>, where the 'x' and the 5 are const generics.

For readability, we choose to set variables to chars, meaning that in the current imple-
mentation, we can only accommodate a limited number of distinct variables. Should more be
needed, one could easily modify our implementation to replace them with u64, which allows
264 variables names. Similarly, we only consider i32 as message payloads. Should different
types of messages be needed, they could be encoded in an enum.

Finally, the static elision optimisation (Section 6) is not implemented.

7.2 Runtime and Localisation Benchmarks
We evaluate how Rumpsteak with refinements performs with respect to Rumpsteak without
refinements. First, we measure the runtime of our analysis tool which verifies the two
conditions in Definition 29 (scr2dot, unroll_mpst and dynamic_verify). Although not a
runtime cost, and while we expect this analysis to be possibly expensive, we would like to
ensure that it is still practical for test cases from the literature. Secondly, we evaluate the
runtime overhead of adding refinements with respect to Rumpsteak without refinements.
Setup and Benchmark Programs. We evaluate the performance of Rumpsteak
with refinement with benchmarks. Most of them are taken from the literature (Table 1).
This set of program contains various micro-benchmarks with a variety of combination of
properties (whether the protocol is binary or multiparty, contains recursivity or choice).

Name MP Rec Choice
① simple adder [21] no no no
② travel_agency [23] no no yes
③ ping pong [42] no yes no
④ simple auth. no yes yes
⑤ ring max yes no no
⑥ three_buyers [19] yes no yes
⑦ plus or minus yes yes yes

Table 1 The set of micro benchmarks together
with their characteristics. "MP" denotes a multi-
party protocol, "Rec" the presence of recursion, and
"Choice" the presence of choice.

Notice that protocols that contain recurs-
ivity with no choice (e.g. simple auth are
infinite). Therefore, such protocols are only
measured in the variable localisation para-
graph. Also, where it applies, protocols
were modified in order to add relevant refine-
ments; such modifications are listed below.
By default, we add Tautology predicates
(Section 7.1). The tests were performed
on a machine running Ubuntu 22.04.1 LTS
x86_64 (kernel 5.15.0-60) with an Intel i7-
6700 processor (4 cores, 8 threads running
at 4GHz maximum) and 16GB of memory6. We compare Rumpsteak with refinement vs.
Vanilla Rumpsteak. For a comparison between Vanilla Rumpsteak and other libraries, see [7,
Figure 6].
Added Refinements & Protocol Modifications. Some benchmarks from the literat-
ure were adapted in order to accommodate refinements. In addition, we introduce three

6 The micro-benchmarks are not memory intensive. The memory size is not a limiting factor. However,
the benchmarks seem to be dominated by the startup time, which includes memory access time.

ECOOP 2024

35:22 Refinements for Multiparty Message-Passing Protocols

benchmarks. Those benchmarks are close to examples from the literature, adapted to better
highlight refinements.

simple adder: This example is adjusted from the Adder ([21]) protocol, but we remove the
choice of operation in order to increase the benchmark diversity;

ping pong: In [42], some of the loops were statically unrolled, and the protocol contained a
choice to exit. Ours is equivalent to an infinite PingPong1 in [42].

simple authentication: This example is a binary example of an authentication protocol (e.g.
OAuth [31]). The added refinements enforce that access is granted if and only if the given
password is correct.

ring max: A multiparty protocol where participants receive a value from their predecessor
(except for the initial participant), and forward an other value to their successor (the final
participant forwards it to the initial one). Refinements ensure that the value forwarded is
greater than or equal to the value received.

plus or minus: An implementation of our running example.

|S| |U | |V | et (µ± σ)
① 4 4 3 5.5± 0.2
② 7 7 6 5.5± 0.2
③ 2 4 1 5.5± 0.2
④ 6 11 3 5.6± 0.2
⑤ 8 8 7 5.7± 0.2
⑥ 10 10 7 5.6± 0.2
⑦ 4 19 2 5.6± 0.2
Table 2 Benchmark of the localisa-

tion analysis (Red branch in Figure 7).
|S| denotes the number of states of the
graph of the protocol; |U | denotes the
number of states after unrolling the re-
cursion loops once; and |V | denotes the
number of variables in the protocol. |S|,
|U | and |V | are computed manually to
give an insight on how protocols com-
pare. et is the execution time, measured
by the benchmark (in ms).

p m mr

① 0.00 0.7 0.8
② 0.11 0.8 N/A
④ 0.29 0.8 N/A
⑤ 0.17 0.8 N/A
⑥ 0.68 0.7 N/A
⑦ 0.04 0.7 0.8

Table 3 Evaluation of the runtime
overhead due to the addition of refine-
ments in Rumpsteak. p is the MWU p-
value, m is the baseline median runtime
and mr is the median runtime with re-
finements when applicable (p < 0.05).
All times are in ms.

Static Analysis of Variable Locations. Table 2
shows the decentralised verification time cost for each
refined global label. As shown in Figure 7, this static
analysis is performed with three tools. The results
shown account for the whole pipeline, and were meas-
ured over 50 samples, with 10 warmup runs (excluded
from the measurements). Overall, the runtime for
variable localisation is stable (around 5.6ms). We
suspect that, for graphs with a low number of states,
the runtime is dominated by the accesses to the file.
Runtime Overhead of Refinement Feature. Our
second set of benchmarks aims to measure the over-
head of runtime refinement verification with respect
to the original Rumpsteak framework. We are expect-
ing Rumpsteak with refinements to be slower than
the original Rumpsteak, due to the additional cost
of evaluating refinements. This benchmark has two
objectives: first, to find out whether there is an actual,
statistically significant, overhead; and second, if so,
estimate this overhead. To measure this overhead, we
only consider the protocols that terminate from the
benchmark set.

To fulfil the first objective, we use a Mann-
Whitney U test (MWU). We used MWU as it is
a non-parametric test, and our runtime distributions
do not follow a normal distribution, which prevents
us to do simpler analysis. As MWU is sensitive to the
number of samples, we run each benchmark 30 times,
on both the original Rumpsteak and Rumpsteak with
refinements. We perform the MWU test on the col-
lected 30 samples, preceded by 10 iterations to warm
the system up. Our hypothesis for the MWU test are

the following:

M. Vassor and N. Yoshida 35:23

H0: The distributions of runtimes with and without refinements are identical.
H1: The distributions of runtimes with and without refinements are distincts.

The p-values obtained from the MWU test are reported in the first column of Table 3.
We also report the baseline (Rumpsteak without refinements) median run time (over the 30
runs) in the second column of the table. Most often, the overhead is not significant (p ≥ 0.05)
and H0 can not be rejected. When the overhead is statistically significant, we also report the
median runtime (over the 30 runs) of Rumpsteak with refinements in the third column. With
our set of microbenchmarks, in most cases we cannot distinguish Rumpsteak with refinement
from Rumpsteak without refinements. We suspect Rumpsteak runtime is dominated by
communications and context switching. However, as our refinements can be arbitrarily
complex, specific instances could show real slowdown due to refinement evaluation.

8 Related Work and Conclusion

Design-by-Contract for (Multiparty) Session Types. In binary session types, [37]
introduces contracts for binary sessions, and provides an analysis tool which verifies whether
a given program comply with its associated contract. The verification is done with symbolic
execution. Compared to this paper, we address multiparty sessions. Besides, our framework
is more generic (specific instances could be based on symbolic execution, but we can also
accommodate other verification methods). Bocchi et al. [4] present a variant of MPST that
allows predicates on exchanges, that must hold for a typed process to take transitions. The
main difference with our work is that their approach focuses on correctness by construction,
i.e. they accept only correct protocols, while we can accept protocols that fail, and we simply
prevent them to generate incorrect traces. More precisely, the authors statically ensure that
there is a satisfiable path, which prevents some valid runs to be accepted. For instance,
consider the following type:

A→ B {ℓ1 (x : int |= x < 10).B→ A {ℓ2 (y : int |= x > y ∧ y > 6).end}}
This type would be rejected in [4] since if A sends x = 5 (which is allowed by x < 10), then
there is no y that satisfies 5 > y ∧ y > 6. By rejecting this, they also reject all possibly valid
runs (e.g. if A sends x = 9 and B replies with y = 7). A follow-up on this work is [3] which
introduces local states, i.e. the authors allow participants to have local variables, which can
be updated during process execution. The session types reflect those elements and contain
predicates on exchanged variables and local variables.

With respect to these two papers, our criteria for the validity of refinements (expressed
as a property of the generated trace) is decoupled from the semantics of the model. This
approach allows us to be more flexible than enforcing statically the refinements, and to lower
the cost of adopting refinements, in particular to retrofit refinements into existing systems.
For instance, using our framework, one can simply use the centralised semantics at first,
which is very expressive, without having to prove the correctness of the implementation. In
a second step, users can then develop different verification or analysis techniques which can
be plugged-in transparently. For instance, switching from Vanilla Rumpsteak to Refined
Rumpsteak does not involve changes in the implementation, as the modifications do not
happen in the programming interface. Also, compared to these papers, our framework is not
bound to MPST only, and provide an actual implementation of our framework.
Design-by-Contract in Choreography Automata. Choreography Automata (CA)
are graphs that represent the global behaviour of a concurrent system. The behaviour of
individual participants is obtained by projecting well-formed CA, i.e. erasing all actions that

ECOOP 2024

35:24 Refinements for Multiparty Message-Passing Protocols

do not concern a given participant. The result is a FSM which, after determinising and
minimising, is used as a CFSM. The projection of all participants leads to a CS. Notice that
CA accept some protocols that would be rejected by MPST, and vice-versa.

Gheri et al. [16] study the verification of CA with assertions. Their work and ours are
distinct with respect to the following aspects: (i) the communication semantics; (ii) the
choices; (iii) the logic for predicates; and (iv) the implementation presented in [16] is limited
to CA without assertions (i.e., the design-by-contract approach was not implemented and
left as their future work).

Regarding Item (i), Gheri et al. [16] defines choreography automata with synchronous
communication semantics, while the one we developed in this work is asynchronous. Gheri
et al. [16, Section 7] discusses asynchronous semantics but it remains future works.

Regarding Item (ii), we are constrained by the syntax of RMPST, in which choices
can only happen between two selected participants, while choreography automata accept
protocols with choices where a (single) participant A sends to multiple receivers (B and C)
[16, Definition 4.15]. Explicit connections [22] is an extension of MPST that accommodates
with choices with multiple receivers.

Regarding Item (iii), we kept our refinement logic abstract, while it is fixed in choreography
automata, with a form of first order logic. Besides, predicates are handled differently in
both frameworks as well: Gheri et al. [16] require choreography automata to be history-
sensitive [4], a definition which serves a similar purpose to our definition of variable localisation
(Section 5 and Appendix E.4.2), which constrains our decentralised semantics. Our centralised
semantics (Definition 10) is not constrained by variable localisation. For instance, the RMPST
A→ B {ℓ1 (x : int |= ⊤).C→ D {ℓ2 (y : int |= x = y).end}} produces valid traces with our
centralised semantics, while the corresponding choreography automata would be rejected.

Besides, our work introduces a general framework that can accommodate refined CA in
addition to RMPST. We show Appendix G a possible way to do so.

Implementations of Refinements in MPST. Neykova et al. [29] develop an F# library
for static verification of MPST with refinements. They present a compiler plugin which uses
an SMT solver (Z3) to statically verify some refinements. They use a notion of similar to our
variable localisation criterion (which they call variable knowledge), and a variant of CFSM
with refinements that is similar to ours. In their work, refinements that are statically asserted
by the SMT solver are pruned in the CFSM, while the rest of refinements are kept in the
CFSM and are dynamically checked. Similarly, [41, 42] develop a framework for multiparty
session types with refinements in F⋆. They delegate the management of refinements to F⋆

type system (which internally uses an SMT solver). They define refinements on global types,
which are then projected onto local types. They show that a global type and its projection are
trace equivalent. Those two works focus on the implementation of MPST with refinements.
[29] does not focus on the theory of refinements and the theory developed in [42] is tightly
coupled to F⋆. For instance, they do not present a correctness criterion such as valid refined
traces we present. Contrary to both works, our correctness criteria (based on valid refined
traces) is decoupled from (i.e. independent of) any target type theory, programming language
or model of computation: we only require an LTS labelled with actions. Besides, the logic
used for refinements is also a parameter of our framework, and users could use alternatives,
leading to a greater expressivity of our framework.

The main syntactical difference between our RMPST and those developed in [42] is that
we attach refinements to the messages of the protocol, while [42] attach refinements to the
payload value. This is due to a different approach: correctness in [42] is related to payload
types being inhabited while our criteria of correctness (developed in Definition 7) relies on

M. Vassor and N. Yoshida 35:25

actions being allowed. In binary linear logic-based session types, [9] study the metatheory
of binary session types with arithmetic refinements. In particular, they focus on the type
equality, showing that added refinements make the type equality undecidable (they provide a
sound but incomplete algorithm for type equality). [10] also implement a library for session
types with refinements, although it only accounts for arithmetic refinements.
Other Related Works. There are various papers on the dynamic verification of MPST.
For instance [2] present a framework that allows for both static and dynamic verification of
MPST. This paper introduces a theory for (dynamically) monitoring assertions on messages
(i.e. the equivalent of our refinements). Furthermore, the authors introduce theoretical tools
(bisimulations) to relate monitored processes with correct unmonitored processes. This paper,
however, suffers a few limitations. First, it focuses on monitorable types (which intuitively
correspond to types satisfying our conditions for decentralised verification Definition 29).
Second, it focuses on dynamic verification of assertions. The paper is compatible with
statically verified processes (which allows turning off the dynamic monitoring), but it does
not present techniques for static verification in itself.

On the other hand, our paper takes a different approach, by decoupling the correctness
criterion from the verification technique. This allows us to have a more general framework
(our framework accept types that are not localisable/monitorable, although not all semantics
can accommodate those), as well as to develop static verification techniques.

In Rust, the refinement crate [11] provides refinement data types. Their approach of
refinements is similar to ours, with a Predicate trait that provides a method to perform
the predicate verification (at runtime). Refinement data types have also been implemented
in multiple languages (e.g. F⋆, Haskell [36], etc.). On the practical side, we can note the
similarities between typestates and session types [20]. [14] implements typestates in Rust
with a DSL to verify protocol conformance. While Rumpsteak does not use their library, it
internally uses similar constructs.

Regarding implementations of session types in Rust, there are several frameworks beside
Rumpsteak. [25] first integrate binary session types in Rust, but their implementation
suffers a few drawbacks (see [26, Section 3] for a detailed explanation). Sesh [26] and Ferrite
[6] are two Rust libraries for binary session types, and they implement synchronous and
asynchronous ones, respectively. MultiCrusty [27] implements synchronous MPST on top of
Sesh, with a mesh of binary sessions. Compared to MultiCrusty, Rumpsteak implements
directly MPST instead of wrapping them into binary sessions, and focuses on asynchronous
MPST. None of the aforementioned tools develops refinements. It would be an interesting
future work to apply our criteria to extend their tools with refinements.

Finally, we note the proximity between (MP)ST with refinements and dependent (MP)ST.
For instance, [33] introduce a session type calculus with label-dependency (their approach
does not explicitly account for payload value refinement). Other approaches exist, for instance,
an intuitionistic linear logic-based type theory for building value-dependent session types
[34], and separation logic-based work for reasoning about session types [17].
Future Work While, in our work, we consider MPST with payloads (some variants only
consider messages with labels), we restrict our MPST with a single payload (i.e. monadic
MPST, where each message carries a single value). The extension to polyadic MPST, where
a message can carry multiple values, is straightforward, by adapting the RCS rules (GRSnd
and GRRec, Definition 14).

We presented two optimisations, in order to illustrate the flexibility of our theoretical
framework. Regarding the decentralised verification (Section 5), there is room for an extension,
e.g. with specific domains (i.e. some class of protocols with specific refinements). Regarding

ECOOP 2024

35:26 Refinements for Multiparty Message-Passing Protocols

the static elision of redundant refinements, we envision improving the technique with use of
SMT solvers could be promising. The main difficulty lies in asynchronous communications:
one would need to consider all possible message orderings before solving constraints.

References
1 Franco Barbanera, Ivan Lanese, and Emilio Tuosto. Choreography automata. In Simon

Bliudze and Laura Bocchi, editors, Coordination Models and Languages - 22nd IFIP WG 6.1
International Conference, COORDINATION 2020, Held as Part of the 15th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta,
June 15-19, 2020, Proceedings, volume 12134 of Lecture Notes in Computer Science, pages
86–106. Springer, 2020. doi:10.1007/978-3-030-50029-0_6.

2 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida. Mon-
itoring networks through multiparty session types. Theoretical Computer Science, 669:33–58,
2017. URL: https://www.sciencedirect.com/science/article/pii/S0304397517301263,
doi:10.1016/j.tcs.2017.02.009.

3 Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. A Multiparty Multi-Session Logic.
In 7th International Symposium on Trustworthy Global Computing, volume 8191 of LNCS,
pages 111–97. Springer, 2012.

4 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A Theory of Design-by-
Contract for Distributed Multiparty Interactions. In Paul Gastin and François Laroussinie,
editors, CONCUR 2010 - Concurrency Theory, Lecture Notes in Computer Science, pages
162–176, Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-15375-4_12.

5 Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. Journal of the
ACM, 30(2):323–342, April 1983. doi:10.1145/322374.322380.

6 Ruofei Chen and Stephanie Balzer. Ferrite: A Judgmental Embedding of Session Types in Rust,
2021. (repository is found at https://github.com/ferrite-rs/ferrite). arXiv:2009.13619.

7 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message
reordering in rust with multiparty session types. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, pages 246–261,
New York, NY, USA, April 2022. Association for Computing Machinery. doi:10.1145/
3503221.3508404.

8 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communic-
ation. Information and Computation, 202(2):166–190, November 2005. URL: https:
//www.sciencedirect.com/science/article/pii/S0890540105001082, doi:10.1016/j.ic.
2005.05.006.

9 Ankush Das and Frank Pfenning. Session Types with Arithmetic Refinements. In Igor
Konnov and Laura Kovács, editors, 31st International Conference on Concurrency Theory
(CONCUR 2020), volume 171 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 13:1–13:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CONCUR.2020.13.

10 Ankush Das and Frank Pfenning. Rast: A Language for Resource-Aware Session Types.
Logical Methods in Computer Science, Volume 18, Issue 1, January 2022. URL: https:
//lmcs.episciences.org/8954, doi:10.46298/lmcs-18(1:9)2022.

11 Brady Dean and Joey Ezechiëls. refinement crate, 2021. (repository is found at https:
//github.com/2bdkid/refinement).

12 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Session Types Meet Communicating
Automata. In 21st European Symposium on Programming, volume 7211 of LNCS, pages
194–213. Springer, 2012.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In 40th International

https://doi.org/10.1007/978-3-030-50029-0_6
https://www.sciencedirect.com/science/article/pii/S0304397517301263
https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1145/322374.322380
https://github.com/ferrite-rs/ferrite
https://arxiv.org/abs/2009.13619
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/3503221.3508404
https://www.sciencedirect.com/science/article/pii/S0890540105001082
https://www.sciencedirect.com/science/article/pii/S0890540105001082
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://lmcs.episciences.org/8954
https://lmcs.episciences.org/8954
https://doi.org/10.46298/lmcs-18(1:9)2022
https://github.com/2bdkid/refinement
https://github.com/2bdkid/refinement

M. Vassor and N. Yoshida 35:27

Colloquium on Automata, Languages and Programming, volume 7966 of LNCS, pages 174–186,
Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39212-2_18.

14 José Duarte and António Ravara. Retrofitting Typestates into Rust. In 25th Brazilian Sym-
posium on Programming Languages, pages 83–91, Joinville Brazil, September 2021. ACM. URL:
https://dl.acm.org/doi/10.1145/3475061.3475082, doi:10.1145/3475061.3475082.

15 Francisco Ferreira, Fangyi Zhou, Simon Castellan, and Benito Echarren. NuScr, 2019. URL:
https://github.com/nuscr/nuscr.

16 Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-By-
Contract for Flexible Multiparty Session Protocols. In Karim Ali and Jan Vitek, editors,
36th European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 8:1–8:28, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.
de/opus/volltexte/2022/16236, doi:10.4230/LIPIcs.ECOOP.2022.8.

17 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: Session-type
based reasoning in separation logic. Proceedings of the ACM on Programming Languages,
4(POPL):1–30, January 2020. doi:10.1145/3371074.

18 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
ACM SIGPLAN Notices, 43(1):273–284, January 2008. URL: https://dl.acm.org/doi/10.
1145/1328897.1328472, doi:10.1145/1328897.1328472.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
Journal of the ACM, 63(1):9:1–9:67, March 2016. doi:10.1145/2827695.

20 Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-
safe eventful sessions in java. In Proceedings of the 24th European conference on Object-oriented
programming, ECOOP’10, pages 329–353, Berlin, Heidelberg, June 2010. Springer-Verlag.

21 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification Through Endpoint API
Generation. In Perdita Stevens and Andrzej Wąsowski, editors, Fundamental Approaches to
Software Engineering, Lecture Notes in Computer Science, pages 401–418, Berlin, Heidelberg,
2016. Springer. doi:10.1007/978-3-662-49665-7_24.

22 Raymond Hu and Nobuko Yoshida. Explicit Connection Actions in Multiparty Session
Types. In Marieke Huisman and Julia Rubin, editors, Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science, pages 116–133, Berlin, Heidelberg, 2017.
Springer. doi:10.1007/978-3-662-54494-5_7.

23 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming, Lecture Notes
in Computer Science, pages 516–541, Berlin, Heidelberg, 2008. Springer. doi:10.1007/
978-3-540-70592-5_22.

24 International Telecommunication Union. Z.120 : Message Sequence Chart (MSC), February
2011.

25 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session types
for Rust. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming,
pages 13–22, Vancouver BC Canada, August 2015. ACM. doi:10.1145/2808098.2808100.

26 Wen Kokke. Rusty Variation: Deadlock-free Sessions with Failure in Rust. Electronic
Proceedings in Theoretical Computer Science, 304:48–60, 2019. (repository is found at https:
//github.com/wenkokke/sesh). doi:10.4204/eptcs.304.4.

27 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine
Rust Programming with Multiparty Session Types. In Karim Ali and Jan Vitek, editors,
36th European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:29, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN: 1868-8969. URL: https:
//drops.dagstuhl.de/opus/volltexte/2022/16232, doi:10.4230/LIPIcs.ECOOP.2022.4.

28 Bertrand Meyer. Design by Contract. Advances in Object-Oriented Software Engineering,
pages 1–35, 1991.

ECOOP 2024

https://doi.org/10.1007/978-3-642-39212-2_18
https://dl.acm.org/doi/10.1145/3475061.3475082
https://doi.org/10.1145/3475061.3475082
https://github.com/nuscr/nuscr
https://drops.dagstuhl.de/opus/volltexte/2022/16236
https://drops.dagstuhl.de/opus/volltexte/2022/16236
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://doi.org/10.1145/3371074
https://dl.acm.org/doi/10.1145/1328897.1328472
https://dl.acm.org/doi/10.1145/1328897.1328472
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2808098.2808100
https://github.com/wenkokke/sesh
https://github.com/wenkokke/sesh
https://doi.org/10.4204/eptcs.304.4
https://drops.dagstuhl.de/opus/volltexte/2022/16232
https://drops.dagstuhl.de/opus/volltexte/2022/16232
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4

35:28 Refinements for Multiparty Message-Passing Protocols

29 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in F#. In
Proceedings of the 27th International Conference on Compiler Construction, CC 2018, pages
128–138, New York, NY, USA, February 2018. Association for Computing Machinery. URL:
https://dl.acm.org/doi/10.1145/3178372.3179495, doi:10.1145/3178372.3179495.

30 Davide Sangiorgi. An Introduction to Bisimulation and Coinduction. Cambridge University
Press, Cambridge ; New York, 2012.

31 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited.
Proceedings of the ACM on Programming Languages, 3(POPL):30:1–30:29, January 2019.
doi:10.1145/3290343.

32 Felix Stutz. Asynchronous Multiparty Session Type Implementability is De-
cidable - Lessons Learned from Message Sequence Charts. In DROPS-
IDN/v2/Document/10.4230/LIPIcs.ECOOP.2023.32. Schloss-Dagstuhl - Leibniz Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.ECOOP.2023.32.

33 Peter Thiemann and Vasco T. Vasconcelos. Label-dependent session types. Proceedings of the
ACM on Programming Languages, 4(POPL):1–29, January 2020. doi:10.1145/3371135.

34 Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic
linear type theory. In Proceedings of the 13th International ACM SIGPLAN Symposium on
Principles and Practices of Declarative Programming, pages 161–172, Odense Denmark, July
2011. ACM. doi:10.1145/2003476.2003499.

35 Martin Vassor and Nobuko Yoshida. Refinements for multiparty message-passing protocols:
Specification-agnostic theory and implementation, 2024. Full version on Arxiv.

36 Niki Vazou. Liquid Haskell: Haskell as a Theorem Prover. PhD thesis, University of California,
San Diego, USA, 2016. URL: http://www.escholarship.org/uc/item/8dm057ws.

37 Jules Villard. Heaps and Hops. PhD thesis, Laboratoire Spécification et Vérification, École
Normale Supérieure de Cachan, France, February 2011.

38 Nobuko Yoshida and Lorenzo Gheri. A Very Gentle Introduction to Multiparty Session
Types. In Dang Van Hung and Meenakshi D´Souza, editors, Distributed Computing and
Internet Technology, Lecture Notes in Computer Science, pages 73–93, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-36987-3_5.

39 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch Lafuente, editors, Trustworthy Global Computing,
pages 22–41, Cham, 2014. Springer International Publishing.

40 Erik Zhang. Crepe, 2022. URL: https://crates.io/crates/crepe.
41 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. Stat-

ically Verified Refinements for Multiparty Protocols. Proc. ACM Program. Lang., 4(OOPSLA),
November 2020. doi:10.1145/3428216.

42 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically Verified Refinements for Multiparty Protocols. arXiv:2009.06541 [cs], September
2020. arXiv: 2009.06541. URL: http://arxiv.org/abs/2009.06541.

https://dl.acm.org/doi/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3290343
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.1145/3371135
https://doi.org/10.1145/2003476.2003499
http://www.escholarship.org/uc/item/8dm057ws
https://doi.org/10.1007/978-3-030-36987-3_5
https://crates.io/crates/crepe
https://doi.org/10.1145/3428216
http://arxiv.org/abs/2009.06541

M. Vassor and N. Yoshida 35:29

A Extra examples illustrating interesting aspects of RMPST.

A.1 Usefulness of multiparty
Our guessing game running example is somewhat simple and could be implemented using
two successive binary sessions. Here, we present a slightly more complex example that uses
RMPST moore intensively. This example is based on the guessing game, with an extra
communication (a final official guess) y from C to A at the end7.

A→ B

secret(n : int).µT.C→ B

guess(x : int).B→ C


more(|= x < n).T,

less(|= x > n).T,

correct(|= x = n).Gcont





with

Gcont = C→ A {validate(y : int |= y = x).end}

A.2 List Adder
This example is more involved: A sends a list of numbers to B, and eventually B returns the
sum of all numbers. We want to have refinements to make sure the returned value is correct.
To achieve that, upon each number received, B computes the partial sum. This example
requires extra participants in order to update and store the partial sum.

µT.A→ B
{

add(n : int).Gupdate,

done().B→ A {total(tot : int |= tot = partial).end}

}
with

Gupdate = B→ C
{

partial(tmp : int |= tmp = partial + n).G′
update

}
G′

update = C→ B {update(partial : int |= partial = tmp).T}

A.3 Diffie-Hellman protocol
The Diffie-Hellman protocol is a protocol that allows two participants to securely establish a
shared secret, relying on the difficulty of the discrete logarithm [?].

In a nutshell, two participants A and B each have a private key (resp. a and b). In
addition, public values p and g are known and not secret8. During the protocol A (resp. B)
sends A = ga mod p to B (resp. B = gb mod p to A). The shared secret is then obtain on
each side with Ab = Ba. In our implementation, we have an extra participant G used for
setting-up the values. In practice, g and p can be shared beforehand or agreed-on on the fly.
The private keys can be generated from a random number generator local to each participant.
The protocol we implement is shown in Figure 8.

The RMPST of this protocol is:

G1 = G→ A {generatorA(g : int).A→ B {generatorB(h : int |= g = h).G2}}

7 Based on an idea from ECOOP reviewer C.
8 In addition, p and g must be co-prime. In our example, we only focus on the secret keys not being

disclosed, and we therefore ignore this condition.

ECOOP 2024

35:30 Refinements for Multiparty Message-Passing Protocols

BAG
generatorA(g : int)

generatorB(h : int |= g = h)
PrimeA(p : int)

PrimeB(q : int |= q = p)
PrivateA(a : int)

PrivateB(b : int)

setup

PrimeB(A : int |= A = ga%p)

PrimeB(B : int |= B = hb%q)

Secured with refinements

Figure 8 Communication diagram for the Diffie-Hellman key exchange protocol with refinements.

G2 = G→ A {PrimeA(p : int).A→ B {PrimeB(q : int |= p = q).G3}}

G3 = G→ A {PrivateA(a : int).G→ B {PrivateB(b : int).G4}}

G4 = A→ B
{

SharedA(A : int |= A = ga%p).B→ A
{

SharedB(B : int |= B = gb%q).end
}}

While this example is theoretically simple (no recursion), we implemented this example
in Rumpsteak, in order to show how to accommodate arithmetic refinements.

B Refined MPST

B.1 Preliminary definitions
▶ Definition 41 (Map). A map M is a set of pairs ⟨t, v⟩, where t is a variable and v is a
value, such that there are no two pairs with the same variable. Maps are equipped with the
following operations: lookup M(x), update M [x 7→v], domain dom(M), and removal M\x.

M(x) def=
{

v if ⟨x, v⟩ ∈M

undefined otherwise
M [x 7→v] def= (M \ {⟨x, v′⟩ | ∀v′}) ∪ {⟨x, v⟩}

dom(M) def= {x | ∃v · ⟨x, v⟩ ∈M} M\x def= M \ {⟨x, v⟩ | ∀v}

M1
⊎

M2
def=

{
M1 ∪M2 if dom(M1) ∩ dom(M2) = ∅
undefined otherwise

We write M∅ for the empty map. ◁

Given a map M and a refinement r, we note M |= r if and only if the refinement r

is closed under the map M : fv(r) ⊆ dom(M), and evaluates to truth after substitution:
eval(r{M(fv(r))/fv(r)}) = ⊤.

▶ Definition 42 (Queues). A queue w is a set of FIFOs for each pair of distinct participants
in P× P. w(p,q) denotes a FIFO from p to q in w. We define:

M. Vassor and N. Yoshida 35:31

1. enq(p,q)(w, e) def= {w(p′,q′) | p′ ̸= p ∨ q′ ̸= q} ∪ {enq(w(p,q), e)}

2. deq(p,q)(w) def= {w(p′,q′) | p′ ̸= p ∨ q′ ̸= q} ∪ {deq(w(p,q))} if deq(w(p,q)) is defined

3. next(p,q)(w) def= next(w(p,q))

We write w∅ for the empty queue, which is the queue where w(p,q) = ε for all p and q. ◁

▶ Definition 43 (Trace Ending-Up with Map). A trace τ ends up with Mτ w.r.t. an initial
map MI if and only if:

1. if τ is ϵ, then MI = Mτ ; and
2. if τ is p†q⟨l, (x, c)⟩ : r · τ ′, then τ ′ ends up with Mτ w.r.t. MI[x7→c]. ◁

B.2 Run and trace of an RCS

In order to define traces of RCSs, we first define runs (sequences of states, where the
order is consistent with the reduction rules) and explain how to obtain a trace (as defined
in Definition 1) from a run: the function trace_step extracts the action that happens
between two consecutive configurations; by running this function on all successive states of a
run, we retrieve the sequence of actions that took place, i.e. the trace of the run.

▶ Definition 44 (Run of an RCS). A run of an RCS is a sequence σ0; . . . of refined configura-
tions such that (i) for all i ∈ {1, . . . }, σi−1 =⇒ σi; (ii) σ0 is initial ; and (iii) if the sequence
is finite, then the last configuration σn is final. ◁

▶ Remark 45 (Reachable State). We say a state σ of an RCS is reachable if there is a
run of R that contains σ. This implies the run begins from an initial state (Item (ii) in
Definition 44). ◁

▶ Definition 46 (Trace of a Reduction Step).

trace_step(⟨σ1, σ2⟩)
def=


j?i⟨m⟩: r if σ1

si
j?i⟨m⟩:r−−−−−→s′

i========⇒ σ2

i!j⟨m⟩: r if σ1
si

i!j⟨m⟩:r−−−−→s′
i========⇒ σ2

undefined otherwise

◁

▶ Definition 47 (Trace of a Refined Communicating System). Given a run σ0; . . . of an RCS,
the trace of those reductions is given with the following function:

trace(σ0; σ1; . . .) =
{
trace_step(⟨σ0, σ1⟩) · trace(σ1; . . .) if trace_step(⟨σ0, σ1⟩) is defined
undefined otherwise

trace(ϵ) = ϵ trace(σ0) = ϵ

◁

▶ Remark 48 (Trace of step is invertible). trace_step is injective and therefore invertible.
For the sake of simplicity, we implicitly convert traces into runs and vice-versa. ◁

ECOOP 2024

35:32 Refinements for Multiparty Message-Passing Protocols

▶ Example 49 (Run and Trace of an RCS). A possible run of the RCS of G± is:
⟨⟨A1, B1, C1⟩, w∅, M∅⟩; ⟨⟨A2, B1, C1⟩, w1, {⟨n, 5⟩}⟩; ⟨⟨A2, B2, C1⟩, w∅, {⟨n, 5⟩}⟩;
⟨⟨A2, B2, C2⟩, w2, M⟩; ⟨⟨A2, B3, C2⟩, w∅, M⟩; ⟨⟨A2, B4, C2⟩, w3, M⟩; ⟨⟨A2, B4, C3⟩, w∅, M⟩

with the queues w1 = enq(A,B)(w∅, ⟨secret, ⟨n, 5⟩⟩); w2 = enq(C,B)(w∅, ⟨guess, ⟨x, 5⟩⟩); w3 =
enq(B,C)(w∅, ⟨correct, ⟨_, _⟩⟩); and the map M = {⟨n, 5⟩, ⟨x, 5⟩}.

This run produces the trace τ · τ2 presented in Example 6. Notice that, from the
configuration with ⟨A2, B3, C2⟩, the system cannot take any of the GRSnd transition with
⟨more, ⟨_, _⟩⟩ and ⟨less, ⟨_, _⟩⟩, as the refinement in the corresponding transition in the
RCFSM of B does not hold with M : M ̸|= x < n (resp. M ̸|= x > n) (c.f. Example 16).

B.3 Syntax
B.3.1 Roles in a global type
▶ Definition 50 (Set of Roles in a Global Type).

parts(G) =


{p, q} ∪

⋃
i∈I parts(Gi) if G = p→ q{li(xi : Si |= Ri).Gi}i∈I

parts(G′) if G = µt.G′

∅ otherwise

We note p ∈ G for p ∈ parts(G). ◁

B.3.2 Type occurring in a type
Cases (i) — (iii) of Definition 51 recursively delve into the continuations, until we match on
the exact type with case (iv).

▶ Definition 51 (Type Occurring in a Type). We say a type T ′ occurs in T (noted T ′ ∈ T) if and
only if at least one of the following conditions holds: (i) if T is p⊕{ℓi(xi : Si |= Ri).T i}i∈I ,
there exist i ∈ I such that T ′ ∈ Ti; (ii) if T is p&{ℓi(xi : Si |= Ri).T i}i∈I , there exist i ∈ I

such that T ′ ∈ Ti; (iii) if T is µt.Tµ, T ′ ∈ Tµ; or (iv) T ′ = T . ◁

▶ Definition 52 (Global Type Occurring in a Global Type). We say a type G′ occurs in G

(noted G′ ∈ G) if and only if at least one of the following conditions holds:

if T is p→ q{ℓi(xi : Si |= ri).Gi}i∈I , there exist i ∈ I such that G′ ∈ Gi

if G is µt.Gµ, G′ ∈ Gµ

G′ = T .

◁

C Section 2

C.1 Proofs of Lemmas
▶ Lemma 53 (Concatenating Well-Queued Traces). For any traces τ1 and τ2, for any queues
wi, wt and wf , if τ1 ends up with queue wt with respect to wi, and τ2 ends up with queue
wf with respect to wt, then τ1 · τ2 ends up with queue wf with respect to wi. ◁

Proof. By induction on the size of τ1. Notice that we leave wi, wt, wf and τ2 quantified;
hence the property we want to prove by induction is ∀τ2, wi, wt, wf , if τ1 ends up with queue
wt w.r.t. wi and τ2 ends up with queue wf w.r.t. wt, then τ1 · τ2 ends up with queue wf

w.r.t. wi.

M. Vassor and N. Yoshida 35:33

Base case, size of τ1 is 0: in this case, τ1 = ϵ, which trivially holds.
Base case, size of τ1 is 1: in this case, τ1 = α. We have to show that, for all τ2, if α ends

up with queue wt w.r.t. wi, and if τ2 ends up with queue wf w.r.t. wt, then α · τ2 ends
up with wf w.r.t. wi.
By case analysis on α:

If α is p?q⟨m⟩ : r, since α (i.e. α · ϵ) ends up with wt w.r.t. wi, then, from Item 2 in
Definition 3, ϵ ends up with queue wt w.r.t. deq(p,q)(wi), and next(p,q)(wi) = m.
From Item 1 in Definition 3, wt = deq(p,q)(wi).
Therefore, we have that:

τ2 ends up with wf w.r.t. wt = deq(p,q)(wi) (by hypothesis and above); and
next(p,q)(wi) = m (as shown above).

Therefore, from Item 2 in Definition 3, α · τ2 ends up with wf w.r.t. wi.
If α is p!q⟨m⟩ : r, since α (i.e. α · ϵ) ends up with wt w.r.t. wi, then, from Item 3 in

Definition 3, ϵ ends up with queue wt w.r.t. enq(p,q)(wi, m).
From Item 1 in Definition 3, wt = enq(p,q)(wi, m).
Therefore, we have that τ2 ends up with wf w.r.t. wt = enq(p,q)(wi, m) (by hypothesis
and above). Therefore, from Item 3 in Definition 3, α · τ2 ends up with wf w.r.t. wi.

Inductive case, size of τ1 is n + 1 (n ≥ 1): The induction hypothesis (IH) is: for all τ IH
1

with length less or equal to n, for all τ IH
2 , wi

IH , wt
IH , wf

IH , if τ IH
1 ends up with queue

wt
IH w.r.t wi

IH , and τ IH
2 ends up with queue wf

IH w.r.t. wt
IH , then τ IH

1 · τ IH
2 ends

up with queue wf
IH w.r.t. wi

IH .
Since the length of τ1 is n + 1 ≥ 2, τ1 = α · τ ′

1. Notice that the length of τ ′
1 is n.

Since τ1 ends up with wt w.r.t. wi, then τ ′
1 ends up with queue wt w.r.t. either

enq(p,q)(wi, m) or deq(p,q)(wi) (depending on α), let call it wα.
Therefore, by applying the induction hypothesis with τ IH

1 = τ ′
1, τ IH

2 = τ2, wi
IH = wα,

wt
IH = wt, wf

IH = wf , we have that τ ′
1 · τ2 ends up with queue wf w.r.t. wα.

By applying the induction hypothesis a second time, with τ IH
1 = α, τ IH

2 = τ ′
1 · τ2,

wi
IH = wi, wt

IH = wti , wf
IH = wf , we have that α · τ ′

1 · τ2 = τ1 · τ2 ends up with queue
wf w.r.t. wi, which concludes the inductive step. ◀

▶ Lemma 54 (Concatenating Well-Predicated Traces). For any map M , for any traces τ1 and
τ2, if τ1 is well-predicated under M and ends up with Mτ1 with respect to M , and if τ2 is
well-predicated under Mτ1 , then τ1 · τ2 is well-predicated under M . ◁

Proof. By induction on the size of τ1:

Case size of τ1 is 0: In that case, τ1 = ϵ, therefore τ1 · τ2 = τ2 and Mτ1 = M (from Item 1
in Definition 43). The result then trivially holds.

Case size of τ1 is n + 1: the induction hypothesis is: "for all M ′, τ ′
1 and τ ′

2, (H1) if the
size of τ ′

1 is less than or equal to n, then (H2) if τ ′
1 is well-predicated with respect to M ′

and ends up with M ′
τ ′

1
w.r.t. to M ′, and (H3) if τ ′

2 is well-predicated with respect to M ′
τ ′

1
,

then τ ′
1 · τ ′

2 is well-predicated with respect to M ′".
Let τ1 = α0 · α1 · . . . · αn, with α0 = p†q⟨l, (x, c)⟩ : r.
Given that τ1 is well-predicated with respect to M , then (i) r holds under M [x 7→c] ; and
(ii) α1 · . . . · αn is well-predicated with respect to M [x 7→c].
Let Mα1·...·αn

be the map α1 · . . . · αn ends up to with respect to M [x 7→c].

ECOOP 2024

35:34 Refinements for Multiparty Message-Passing Protocols

A1 A2
A!B⟨secret, ⟨n, cn⟩⟩ : ⊤

(a) RCFSM of A in the G± protocol.

B1 B2 B3 B4
A?B⟨secret, ⟨n, cn⟩⟩ : ⊤ C?B⟨guess, ⟨x, cx⟩⟩ : ⊤

B!C⟨more, ⟨_, _⟩⟩ : x < n

B!C⟨less, ⟨_, _⟩⟩ : x > n

B!C⟨correct, ⟨_, _⟩⟩ : x = n

(b) RCFSM of B in the G± protocol.

C1 C2 C3
C!B⟨guess, ⟨x, cx⟩⟩ : ⊤

B?C⟨more, ⟨_, _⟩⟩ : ⊤

B?C⟨less, ⟨_, _⟩⟩ : ⊤

B?C⟨correct, ⟨_, _⟩⟩ : ⊤

(c) RCFSM of C in the G± protocol.

Figure 9 RCFSM of the participants of the G± protocol.

From the induction hypothesis (with M ′ being M [x 7→c], τ ′
1 being α1 · . . . · αn, τ ′

2 being
τ2), and given that (i) (H1) holds trivially; (ii) (H2) holds from Item (ii); and (iii) (H3)
holds from Item 2 in Definition 43 (which directly shows that Mτ1 = Mα1·...·αn

) then
α1 · . . . · αn · τ2 is well-predicated under M [x 7→c].
From Item (i) above and Item (ii) in Definition 5, we have that α0 · α1 · . . . · αn · τ2 = τ1 · τ2
is well-predicated under M , which concludes the inductive step. ◀

D Refined Automata

▶ Lemma 55. For all runs σ0; . . . ; σi−1; σi; . . . , if σi−1
t=⇒ σi with t = si

j?i⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i , then

exist j ≤ i− 1 and r′ such that σj−1
t′

=⇒ σj with t′ = si
j!i⟨ℓ,⟨x,c⟩⟩:r′

−−−−−−−−→ s′
i . ◁

Proof. Let w′ be the queues of σ′. From the premises of GRRec, m = ⟨ℓ, ⟨x, c⟩⟩ ∈ w(j,i).

The only rule that enqueues m in w(j,i) is GRSnd, with si
j!i⟨ℓ,⟨x,c⟩⟩:r′

−−−−−−−−→ s′
i (for some r′) ◀

▶ Theorem 18 (Traces of Refined Communicating Systems are Valid Refined Traces). For all
RCS R, for all initial and final traces τ of R, τ is a valid refined trace. ◁

Proof. From Definition 7, we have to show that (i) τ is well-queued with regards to the
empty queue w∅; and (ii) τ is well-predicated by the empty variable context V∅. We show
the two points separately.

Well-Queued

By case analysis on the length of τ .

M. Vassor and N. Yoshida 35:35

Case length of τ is 0 (τ = ϵ): since the trace is empty, initial and final, the corresponding
run of the automaton is composed of a single state σ = ⟨⟨si⟩i∈I , w, m⟩, which is therefore
both initial and final.
From Definition 12 (Initial Refined Global State), the queues w of the state are empty
(w = w∅).
Therefore, from Definition 3, τ is well-queued with regards to w∅.

Case length of τ is 1 (τ = α): We prove this case leads to a contradiction, and therefore
cannot happen.
From the definition of δ, the label of the transition is either p?q⟨ℓ, ⟨x, c⟩⟩ : r or p!q⟨ℓ, ⟨x, c⟩⟩ : r.
Therefore, for any σ1, σ2 such that trace(σ1; σ2) = α, we show that it is not simulatenously
possible for σ1 to be initial and for σ2 to be final. Let wσ1 (resp. wσ2) be the queue of σ1
(resp. σ2).
If the label is p?q⟨ℓ, ⟨x, c⟩⟩ : r, then from Definitions 46 and 47, σ1 =⇒ σ2 with a GRRec
transition. From the premise of GRRec, next(p,q)(wσ1) = ⟨ℓ, ⟨x, c⟩⟩, i.e. wσ1 (p,q) is not
ε, i.e. wσ1 ̸= w∅, therefore σ1 is not initial.
Similarly, if the label is p!q⟨ℓ, ⟨x, c⟩⟩ : r, then from Definitions 46 and 47, σ1 =⇒ σ2 with
a GRSnd transition. From the conclusion of GRSnd, wσ2 = enq(p,q)(wσ1 , ⟨ℓ, ⟨x, c⟩⟩).
Therefore, from Definition 42, wσ2 ̸= w∅, therefore σ2 is not final.
Therefore, if τ contains a single element, then τ is not initial and final, which contradicts
the hypothesis.

Case length of τ is greater than 1 (τ = τ1 · τ2 for non-empty τ1 and τ2): first, let’s no-
tice that τ is initial and final; therefore the initial state σi and the final state σf of τ

both have w∅ as their queues (from Definition 12). Therefore, we only have to show that
τ ends up with wf (the queue of σf) with respect to wi (the queue of σi).
By contradiction, suppose τ does not end up in wf w.r.t wi.
Let σt be the final state of τ1, starting from σi. Let wt be the queue of σt.
From the contraposition of Lemma 53, either (i) τ1 does not end up with queue wt w.r.t.
wi; or (ii) τ2 does not end up with queue wf w.r.t. wt.
In either case, we can recursively apply the contraposition of Lemma 53 until we have a
trace composed of a single transition which trace is αc that does not end up in wc

′ w.r.t.
wc.
By case analysis of αc:

Case αc = p!q⟨m⟩ : r : From Remark 48, we deduce that αc is a GRSnd transition
sp

p!q⟨m⟩:r−−−−−→ sp
′.

From the definition of GRSnd, we have that wc
′ = enq(p,q)(wc, m).

Case αc = p?q⟨m⟩ : r : From Remark 48, we deduce that αc is a GRRec transition
with sq

p?q⟨m⟩:r−−−−−→ sq
′.

From the definition of GRSnd, we have that wc
′ = deq(p,q)(wc) and next(p,q)(wc) = m.

In both cases, αc ends up in wc
′ w.r.t. wc. Contradiction.

Well-Predicated

By induction on the length of τ .

Case τ is ϵ: the result trivially hold from Item (i) in Definition 5.
Case τ is τ ′ · αn: the induction hypothesis is that τ ′ is well-predicated by the empty map

M∅.
Suppose that τ ′ ends up with map Mτ ′ . By case analysis of the action αn:

ECOOP 2024

35:36 Refinements for Multiparty Message-Passing Protocols

Case αn is p?q⟨ℓ, ⟨x, c⟩⟩ : r : from Remark 48, this corresponds to a GRRec trans-
ition, which corresponds to a reduction:

⟨⟨s1, . . . , sp, . . . , sn⟩, w, Mτ ′⟩ =⇒ ⟨⟨s1, . . . , sp
′, . . . , sn⟩,deq(q,p)(w), Mτ ′ [x 7→c]⟩

with sp
p?q⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ sp

′ and Mτ ′ [x 7→c] |= r (from the premises of GRRec).
Since τ ′ is a well-predicated trace, that ends up with Mτ ′ , from Lemma 54 and the
induction hypothesis, we simply have to show that αn is well-predicated under Mτ ′ .
This holds directly from that Mτ ′ [x 7→c] |= r (from above) and Item (ii) in Definition 5.

Case αn is p!q⟨ℓ, ⟨x, c⟩⟩ : r : from Remark 48, this corresponds to a GRSnd transition,
which corresponds to a reduction:

⟨⟨s1, . . . , sp, . . . , sn⟩, w, Mτ ′⟩ =⇒ ⟨⟨s1, . . . , sp
′, . . . , sn⟩, enq(p,q)(w, ⟨ℓ, ⟨x, c⟩⟩), Mτ ′ [x 7→c]⟩

with sp
p!q⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ sp

′ and Mτ ′ [x 7→c] |= r (from the premises of GRSnd).
Since τ ′ is a well-predicated trace, that ends up with Mτ ′ , from Lemma 54 and the
induction hypothesis, we simply have to show that αn is well-predicated under Mτ ′ .
This holds directly from that Mτ ′ [x 7→c] |= r (from above) and Item (ii) in Definition 5.

◀

E Decentralised Verification

E.1 Decentralised run of an RCS
▶ Example 56 (Run of a Decentralised Configuration). We present a run of a decentralised
configuration, which corresponds the run of the (centralised) configuration in Example 49.
Compared to that example, notice that there is no single global map, but instead each local
state is associated with a local map (with w1, w2, w3 and M as in Example 49).
⟨⟨A1, M∅⟩, ⟨B1, M∅⟩, ⟨C1, M∅⟩, w∅⟩; ⟨⟨A2, M∅⟩, ⟨B1, M∅⟩, ⟨C1, M∅⟩, w1⟩;
⟨⟨A2, M∅⟩, ⟨B2, {⟨n, 5⟩}⟩, ⟨C1, M∅⟩, w∅⟩; ⟨⟨A2, M∅⟩, ⟨B2, {⟨n, 5⟩}⟩, ⟨C2, M∅⟩, w2⟩;
⟨⟨A2, M∅⟩, ⟨B3, M⟩, ⟨C2, M∅⟩, w∅⟩; ⟨⟨A2, M∅⟩, ⟨B4, M⟩, ⟨C2, M∅⟩, w3⟩;
⟨⟨A2, M∅⟩, ⟨B4, M⟩, ⟨C3, M∅⟩, w∅⟩;

E.2 Simulation
▶ Definition 57 (Simulation [30]). Given two labelled transition systems with states taken
from S1 and S2, a relation R ⊆ S1 × S2 is a simulation if: ∀s1, s′

1 ∈ S1, if s1 → s′
1, then

∀s2 ∈ S2 such that ⟨s1, s2⟩ ∈ R, there exists s′
2 such that s2 → s′

2 and ⟨s′
1, s′

2⟩ ∈ R. ◁

▶ Remark 58 (Bisimulation). A relation R is a bisimulation if R and R−1 are simulations. ◁

E.3 Main theorem
▶ Theorem 59 (Centralised simulates Decentralised). For all decentralisable RMPST G

(Definition 30), C(G) simulates D(G). ◁

Proof. The proof is quite straightforward, we match each DRec by GRRec and each DSnd
by GRSnd. We can trivially note that the queue of messages is the same in both D(G) and
C(G). Similarly, each si match in both systems, and remain matched after taking transitions.

Finally, the map of C(G) is always a superset of the union of all M i in D(G).
We show the proof for DSnd and GRSnd. The proof for DRec and GRRec is similar.

M. Vassor and N. Yoshida 35:37

Suppose that we have D = ⟨⟨. . . , ⟨si, M i⟩ . . .⟩, w⟩ reducing to D′ = ⟨⟨. . . , ⟨si
′, Mi

′⟩ . . .⟩, w′⟩
with DSnd and let j be the destination of the message. Suppose S = ⟨⟨. . . , si, . . .⟩, w, M⟩,
such that M ⊆

⊎
i∈parts(G) Mi.

Notice that the premises of DSnd entails the premises of GRSnd. Therefore, GRSnd
can be triggered: let S′ = ⟨⟨. . . , si

′, . . .⟩, w′, M ′⟩ be the resulting configuration. To prove the
simulation, we just have to show that the resulting si

′ of both configurations are the same,
which is direct from the rule; that the queues w′ of both configurations are the same, which
is also direct from the rule; and that M ′ is indeed a subset of

⊎
i∈parts(G) Mi

′.
Let x be the variable sent and c its associated value. By definition Mi

′ = Mi\x, and all
other local maps are unchanged. Also, by hypothesis (no duplication hypothesis), no other
map contains x. Therefore, M ′ = M [x 7→c] ⊋ M\x ⊇ (

⊎
i∈parts(G) Mi)\x =

⊎
i∈parts(G) Mi

′.
Therefore, C(G) simulates D(G). ◀

E.4 Static Verification of the Two Conditions
In the previous section, we introduced two conditions for the refined configurations to simulate
decentralised configurations (Definition 29). We now aim to statically verify whether those
two conditions hold for a given type. The algorithm we present keeps track of variable moves
and tries to find which participant has a copy of which variable at any point in the execution
of the protocol, which we call variable localisation.

Intuitively, from a global type G, it is possible to infer constraints on variable localisation:
for instance, given the global type G = A→ B {ℓ(x : int |= x ≥ 0).end}, we can infer that
participant A has x before the communication, and that x is transfered to B during the
communication, therefore x is at B after the communication. The algorithm we propose
generates such constraints to find variables localisations at any time. We represent RMPST
as graphs (Appendix E.4.1), and the algorithm finds an assignation of variables that is
consistent with the actions of the type. Finding such an assignation is trivially solved with
logic programming (Appendix E.4.2). The only non-trivial part is to carefully pinpoint where
variables are first used in loops. We illustrate this problem and solve it by unrolling loops in
the graph of the type, which we present in Appendix E.4.3.

E.4.1 Type Graphs
First, we need to create the graph of a global type. This is analogous to the CFSM of a local
type, but for global types instead.

▶ Definition 60 (Graph of a Global Type). Given a global type T0, the graph GG(T0) of
that type is the labeled graph ⟨V, E⟩, where V = {T ′|T ′ ∈ T0 ∧ T ′ ̸= t ∧ T ′ ̸= µt.Tµ},
E = δg, and where δg is defined as the smallest relation such that9, for all T ∈ V , with
T = p→ q{ℓi(xi : Si |= ri).Ti}i∈I : (i) if strip(Ti) is a communication or a termination,
then, for all i ∈ I, ⟨T , ⟨p, q, xi, fv(ri)⟩, strip(Ti⟩) ∈ δg; and (ii) if strip(Ti) = t with
µt.T ′ ∈ T0, then ⟨T , ⟨p, q, xi, fv(ri)⟩, strip(T ′)⟩ ∈ δg ◁

Where strip is defined on global types as on local types.

▶ Example 61 (Graph of a global type). The type graph of G± is shown below. Notice that
the two transitions with more and less result in a single edge in the graph, as we erase the
label, and both lead to the same state.

9 Notice that δg is almost like δ, but we erase the value in the messages’ payloads

ECOOP 2024

35:38 Refinements for Multiparty Message-Passing Protocols

⟨A, B, n,∅⟩ ⟨C, B, x,∅⟩

⟨B, C, _, {x, n}⟩

⟨B, C, _, {x, n}⟩

Among the vertices of the graph type GG(T0) of a global type T0, we distinguish the
initial node, which is the vertice labeled T0. In the graphical representation, this state is
shown with an arrow.

E.4.2 Localising Algorithm
We now present the localisation algorithm. The goal of this algorithm is to find whether
there exists a state, in the execution of the protocol specified by a type G, where a variable
is duplicated, and whether there exists an action which refinement requires a variable that is
not locally available.

Our algorithm infers the location of each variable (i.e. which participant has access to
which variables), at each step of the protocol. We infer such location information from the
actions of the protocol. This algorithm is expressed as a set of inference rules, which can be
directly encoded in a logic programming language as DataLog.

The input of our algorithm is given by two provided atoms that are extracted from the
global type graph (we show provided atoms in green and computed atoms in orange):

Send(s1, p, x, q, s2) holds when the graph contains an edge from s1 to s2 with label
⟨p, q, x, _⟩;
FVRefinement(s1, x, s2) holds when there is an edge from s1 to s2 with a label ⟨_, _, _, fv(r)⟩
and fv(r) contains x.

The core part of our algorithm is the atom In(s, p, x), which holds if p has access to
variable x in state s (or, equivalently, if x is at p in s).

The first rule simply capture the fact that, if a participant p sends a variable x to q, then
x is located at q after the exchange (notice that x is not necessarily available at p before the
exchange, as it might be the first time it appears): In(s2, q, x) → Send(_, _, x, q, s2).

We then define two rules that infer which variables are available at which location after a
communication. When p sends x, all y ̸= x are kept at p. For the other participants r ̸= p,
all variables are preserved.

In(s2, p, x) ← In(s1, p, x),
Send(s1, p, y, _, s2),
(x ̸= y);

In(s2, r, x) ← In(s1, r, x),
Send(s1, p, _, _, s2),
(p ̸= r);

Once variables are localised, we can check whether the two conditions hold. First, the
atom NotVerifFV checks whether there is a state s in which p sends a message with a
refinement that contains a free variable x which p cannot access (that is a variable x that is
neither located at p nor in the message sent). If that happens, the system is not verifiable,
as p will not be able to check its refinement when taking the transition. Second, the atom
NotVerifDupl checks whether a variable is duplicated. It simply records whether there is a
state s in which two distinct participants p and q can access the same variable x.

NotVerifFV (s, s2, x, p) ← FVRefinement(s, x, s2),
Send(s, p, y, _, _),
!In(s, p, x),
(x ̸= y);

NotVerifDupl(s, x, p, q) ← In(s, p, x),
In(s, q, x),
(p ̸= q);

Finally, the two conditions hold if there is no NotVerifFV nor NotVerifDupl.

M. Vassor and N. Yoshida 35:39

ℓ1 ℓ2

(a) The initial graph

ℓ1

ℓ2ℓ1 ℓ2

(b) After expanding action ℓ1

ℓ1
ℓ2ℓ1

ℓ2

ℓ1 ℓ2

(c) After expanding the lower ℓ2 action

ℓ1 ℓ2
ℓ1

ℓ2

ℓ1 ℓ2

ℓ1

ℓ2

ℓ1

ℓ2

ℓ1 ℓ2

(d) The graph type fully unrolled

Figure 10 The graph of G′, with unvisited edges in red. For the sake of simplicity, we only use
ℓ1 and ℓ2 as the two communication labels. Notice that the unrolled graph is not the smallest (in
that some loops might be unrolled more than needed), but still unrolls every loop.

E.4.3 Recursion Unrolling
The localisation algorithm does not consider the case where a variable is first sent in a loop.
Consider the type:

µT.A→ B
{

ℓ1 (x : int |= x = y).B→ A {ℓ3 (x : int).T}
ℓ2 (y : int |= x ̸= y).B→ A {ℓ4 (y : int).T}

}

This type cannot be verified, as if A chooses the branch ℓ1 on the first iteration of the loop,
then y is not defined, and similarly for the branch ℓ2 . However, our localisation algorithm
first computes the location of variables (In), which results in the following graph and variable
locations:

x@A, y@A x@B, y@Ax@A, y@B

⟨A, B, x, {x, y}⟩

⟨B, A, _,∅⟩

⟨A, B, y, {x, y}⟩

⟨B, A, _,∅⟩

Therefore, we have to distinguish the first time a branch is taken from the following iterations.
We therefore introduce our unrolling algorithm, which unrolls each loop once to distinguish
the first iteration from the following ones. This task is non trivial, as it is not a simple
syntactical replacement of a recursion variable by its definition since we have to take into
account all branches. Specifically, in the example above, A can possibly take the branch ℓ1
multiple times before choosing ℓ2 : we have to take all declarations orders into account.

For the sake of simplicity, consider the type G′ (which is not localisable, but greatly reduces
the size of the graph and is sufficient to explain our algorithm): µT.A→ B {ℓ1 (x : int).T; ℓ2 (y : int).T}.
The different steps of the execution of our algorithm are shown in Figure 10.

We first distinguish forward and backward edges in the type graph: a backward arrow is
an arrow that contains a recursion, i.e. it ends in a previous state or in the same state. We
initially mark all those backward edges as unvisited. In Figure 10, those unvisited backward
arrows are shown in red. We then unroll those unvisited backward edges one at a time. For
each unvisited backward edge E from N to N ′, we copy the graph, we mark E as visited in
the copied graph and we replace E by a forward visited edge from N in the original graph to
N ′ in the copied graph.

ECOOP 2024

35:40 Refinements for Multiparty Message-Passing Protocols

Data: G – A type graph
while ∃e = ⟨v1, v2⟩ ∈ BG ∩ UG do

Mark e as visited in G;
Let G′ be a copy of the
continuation of v1 using e in
G;

Let v′
2 be the copy of v2 in G′;

Remove e from G;
Let G be the union of G and
G′;

Add an edge from v1 to v′
2 in

G;
end
Remove unreachable vertices;

Depth of a node: The depth of a node N is the
length of the shortest path from the initial node
to N .

Backward edge: An edge from N1 to N2 is said
backward if the depth of N1 is greater than or
equal to the depth of N2. We note BG the set
of backward edges of graph G.

State of an edge: We assign each edge a state
taken from {visited, unvisited}. We note UG

the set of unvisited edges of graph G.
Continuation: The continuation of a node N fol-

lowing an edge E is the (sub)graph reachable
from the destination of E, provided that the
origin of E is N .

F Static Elision of Redundant Refinements

F.1 Static Elision of Refinements in RCS
F.1.1 Definitions.
▶ Definition 62 (Independent transitions). A transition t = σ

p†q⟨ℓ,⟨x,_⟩⟩:r−−−−−−−−−→ σ′ depends on
fv(r), the free variables of its refinement.

We say that t depends on another transition t′ = ρ
r†s⟨ℓ′,⟨y,_⟩⟩:r′

−−−−−−−−−→ ρ′ if t depends on y,
the payload of t′. Otherwise, we say t is independent of t′. When t depends (resp. does not
depend) on itself, we say it is self-dependent (resp. self-independent). ◁

▶ Definition 63 (Well-defined transitions). Given a RCS with a CFSM containing a trans-
ition t = si

†⟨_,_⟩:r−−−−−−−−→ si
′, we say t is well-defined if and only if, in all reachable states

⟨⟨. . . , si, . . .⟩, _, M⟩, fv(r) ⊆ dom(M). ◁

F.1.2 Lemmas and proofs.

▶ Lemma 64. Let t1 = σ
p†q⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ σ′ and t2 = ρ

r†s⟨ℓ′,⟨y,c′⟩⟩:r′

−−−−−−−−−→ ρ′ such that t1 is
independent from t2.

For all M , M2 such that ⟨_, _, M⟩ =⇒ ⟨_, _, M2⟩ with t2; M |= r if and only if M2 |=
r. ◁

Proof of Lemma 64. First, t1 is independent of t2, i.e. (Definition 62), t1 does not depend
on y; that is y ̸∈ fv(r). Also, since ⟨_, _, M⟩ =⇒ ⟨_, _, M2⟩, then M2 = M [y 7→c′].

In addition, by definition (Section 2.1), M |= r if and only if: (i) fv(r) ⊆ dom(M); and
(ii) eval(r{M(fv(r))/fv(r)}) = ⊤.

Therefore, r{M(fv(r))/fv(r)} = r{M2(fv(r))/fv(r)} and fv(r) ⊆ dom(M) if and only if
fv(r) ⊆ dom(M) ∪ {y} = dom(M2).

Therefore, M |= r if and only if M2 |= r. ◀

▶ Lemma 65. Given an RCS R containing an RCFSM with a transition si
†⟨_⟩:r−−−−−−→ si

′,
and such that for each transition _ _!_⟨_⟩:rw−−−−−−−→ _ ∈

⋃
x∈fv(r) Tx, for all map M , M |= rw

entails M |= r.
For all reachable states σ = ⟨⟨s⃗i⟩, w, M⟩ of R, if fv(r) ⊆ dom(M), then M |= r. ◁

M. Vassor and N. Yoshida 35:41

Proof. Since σ is reachable, there is a run σ0; . . . ; σ; . . . that contains σ. By induction on
the run.

Base case (σ is initial): Since σ is an initial state, then M = M∅, our claim vacuously
holds.

Inductive case (σ′ t=⇒ σ with t = _ _†_⟨_,⟨x,cx⟩⟩:r′

−−−−−−−−−−→ _) Let σ′ = ⟨⟨s⃗i′⟩, w′, M ′⟩. The
induction hypothesis is that if fv(r) ⊆ M ′, then M ′ |= r. Also, M |= r′, from the
premises of GRRec or GRSnd. By case analysis on the transition t:

If x ̸∈ fv(r): In that case, fv(r) ⊆ M if and only if fv(r) ⊆ M ′. The conclusion holds
directly from the induction hypothesis.

If x ∈ fv(r): In that case, t ∈
⋃

x∈fv(r) Tx. We distinguish the case of send and receive:
Case receive In that case, from Lemma 55, there are σj−1; σj in σ0; . . . ; σi−1 such that

σj−1
_

!⟨_,⟨x,cx⟩⟩:r′
−−−−−−−−−−→_==============⇒ σj , therefore x ∈ dom(M ′), therefore fv(r) ⊆ dom(M)

if and only if fv(r) ⊆ dom(M ′). Let Mj be the map of σj . From the induction
hypothesis, if fv(r) ⊆ dom(M ′), then M ′ |= r, therefore if fv(r) ⊆ dom(M), then
M ′ |= r.
If ∀y ∈ fv(r) · M(y) = M ′(y): From the rule GRRec, we therefore have that

M = M ′, therefore fv(r) ⊆ dom(M) implies M |= r.
If ∃y ∈ fv(r) · M(y) ̸= M ′(y): Without loss of generality, suppose there is a

single such y. In that case, there is at least one σk (k > j, k < i) such that

σk−1
_

†⟨_,⟨y,cy⟩⟩:ry−−−−−−−−−−−→_==============⇒ σk. Without loss of generality, consider there is a single
such σk. Let Mk and Mk−1 be the map of σk and σk−1 respectively.
If x = y: in that case: (i) M(x) = Mj(x) = cx; (ii) for all v ∈ fv(r) such that

v ≠ x, M(v) = M ′(v) = Mk(v) = Mk−1(v) = Mj(v); and (iii) fv(r) ⊆ M

if and only if fv(r) ⊆ Mj . Therefore, M |= r′ if and only if Mj |= r′.
Therefore, if fv(r) ⊆M , then M |= r′, which itself entails M |= r.

If x ̸= y: in that case, M = M ′[x 7→cx] = M ′. The conclusion holds directly
from the induction hypothesis.

Case send In that case, M |= r′ entails M |= r.

◀

▶ Theorem 35 (Correctness of refinement elision). Given an RCS R containing an RCFSM
M = ⟨Q, C, q0,A, δ⟩, and t = si

p†q⟨m⟩:r−−−−−→ si
′ ∈ δ, a well-defined self-independent transition.

Let t′ = si
p†q⟨m⟩:⊤−−−−−−→ si

′; δ′ = δ \ {t} ∪ t′; M ′ = ⟨Q, C, q0,A, δ′⟩; and R′ be R where M is
replaced with M ′. If, for each transition tw = _ _!_⟨_⟩:rw−−−−−−−→ _ in

⋃
x∈fv(r) Tx, for all map M ,

M |= rw entails M |= r, then there exists a bisimulation relating the states of R′ and R. ◁

Proof. Let R being the identity of reachable states of R and R′. We show that R is a
bisimulation.

R′ simulating R is trivial, since the only difference is the lack of one refinement, on
transition t′ w.r.t. t.

We now show that R can simulate R′. Since our candidate simulation relation R is the
reachable state identity, we have to prove that for each R′ transition σ

t′′

=⇒ σ′, there exists a
transition from σ to σ′ in R. We distinguish two cases:

ECOOP 2024

35:42 Refinements for Multiparty Message-Passing Protocols

If t′′ is t′: In that case, we have to prove that R can take the transition σ
t=⇒ σ′, i.e. we have

to show that Mσ′ |= r.
First, since σ

t′

=⇒ σ′, from the definition of GRRec or GRSnd: σ′ = ⟨⟨. . . , si
′, . . .⟩, _, Mσ′⟩.

Since σ′ is reachable, from Lemma 65, if fv(r) ⊆ dom(Mσ′), then Mσ′ |= r. Since t is
well-defined, from Definition 63, fv(r) ⊆ dom(Mσ′). Therefore Mσ′ |= r, i.e. R can take
the transition σ

t=⇒ σ′.
If t′′ is not t′: In that case, t′′ ∈ δ, so R can also take the transition σ

t′′

=⇒ σ′.

◀

F.2 Application to RMPST Protocols

F.2.1 Definitions
▶ Definition 66 (Step of a communication). A type p→ q{ℓi(xi : Si |= ri).Gi}i∈I has step z

(noted p→ q⟨ℓ, x⟩ |= r) if there is an i ∈ I such that x = xi, ℓ = ℓi and r = ri. ◁

▶ Definition 67 (Step in a Type). A step z occurs in a type G if:

if G = r→ s{ℓi(xi : Si |= ri).Gi}i∈I , either:

z is a step of G; or
there exists i ∈ I such that z occurs in Gi;

if G = µt.G′, z occurs in G′.

◁

▶ Definition 68 (Happens-before in type). Given a global type G = p→ q{ℓi(xi : Si |= ri).Gi}i∈I ,
G happens-before all G′ = r→ s{ℓj(xj : Sj |= rj).Gj}j∈J ∈ Gi where r = p or r = q, noted
G <′ G′.

The happens-before relation (noted <) is the transitive closure of <′. ◁

▶ Remark 69. The happens-before characterises the order of the first occurrence of each step,
in particular in recursive types, where a step can occur multiple times. ◁

▶ Example 70 (Happens-before in a type). Considering the same Gs and Gy than in Ex-
ample 37, since they both have the same sender A, Gs happens-before Gy.

▶ Definition 71 (Well-defined step in a type). Given two global types G and Gs such that
Gs ∈ G, and z = p→ q⟨ℓ, x⟩ |= r a step of Gs, we say z is well-defined if for all x ∈ fv(r),
there exists Gx = r→ s{_(xi : _ |= _).Gi}i∈I such that, Gx < Gs and for one i ∈ I, Gs ∈ Gi

and x = xi. ◁

F.2.2 Lemmata
▶ Lemma 72. Given a projectable type G, if a step z = p→ q⟨ℓ, x⟩ |= r occurs in G, then
there exists a transition s

p!q⟨ℓ,⟨x,_⟩⟩:r−−−−−−−−→ s′ in A(G↾p), and s
p?q⟨ℓ,⟨x,_⟩⟩:⊤−−−−−−−−−→ s′ in A(G↾q). ◁

Proof. We prove the case for s
p!q⟨ℓ,⟨x,_⟩⟩:r−−−−−−−−→ s′. The case for s

p?q⟨ℓ,⟨x,_⟩⟩:⊤−−−−−−−−−→ s′ is similar.
By structural induction on G:

if G = r→ s{ℓi(xi : Si |= ri).Gi}i∈I

M. Vassor and N. Yoshida 35:43

r = p, s = q, and there exist i ∈ I such that ℓ = ℓi , x = xi, and r = ri: then,
by definition of projection (Definition 20), G↾p = q&{ℓi(xi : Si |= ri).Gi}i∈I . From

Definition 22, we have that G↾p
p!q⟨ℓ,⟨x,_⟩⟩:r−−−−−−−−→ _. (Notice that the final state is not

necessarily Gi↾p, as there are possibly recursions.)
if there exist i ∈ I such that z occurs in Gi: direct, from the induction hypothesis.

if G = µt.G′ and s occurs in G′: direct, from the induction hypothesis.

◀

▶ Lemma 73 (Converse of Lemma 72). For all types G and all participants p of G, if there
exists a transition s

p!q⟨ℓ,⟨x,_⟩⟩:r−−−−−−−−→ s′ in A(G↾p), then a step p→ q⟨ℓ, x⟩ |= r occurs in G. ◁

Proof. From Definition 22, if s
p!q⟨ℓ,⟨x,_⟩⟩:r−−−−−−−−→ s′ is in the set of transitions ofA(G↾p), there exist

some T1 and T2 in A(G↾p) such that T1 = q⊕{ℓi(xi : Si |= ri).Ti}i∈I and T2 = Ti for some
i ∈ I. From Definition 20, T1 ∈ G↾p only if there exist G1 = p→ q{ℓi(xi : Si |= ri).Gi}i∈I in
G, where there is one i ∈ I such that ℓ = ℓi , x = xi, and r = ri. Therefore, from Definition 67,
p→ q⟨ℓ, x⟩ |= r occurs in G. ◀

▶ Lemma 74. Let G1 = p→ q{ℓi(xi : Si |= ri).Gi}i∈I . For any global type G2 ∈ Gi, such
that G1 < G2 and such that r is the sender of G2. All paths p to a state ⟨⟨. . . , sr, . . .⟩, w, M⟩,

where sr = G2↾r contain a transition t = σ
_

p!q⟨ℓi ,⟨xi,_⟩⟩:ri−−−−−−−−−−→_=============⇒ σ′. ◁

Proof. Since < is the transitive closure of <′, we prove the result for <′, the general case is
then direct by induction.

In that case, G1 = p→ q{ℓi(xi : Si |= ri).Gi}i∈I and G2 = r→ s{ℓj(xj : Sj |= rj).Gj}j∈J

(r = p or r = q) and G2 ∈ Gi for some i.

Case r = p: G1↾p = q⊕{ℓi(xi : Si |= ri).Li}i∈I , where each Li = Gi↾p. Since G2↾p only
appears in one of Li, then all paths to G2↾p in A(G↾p) contain a transition to the state
Li↾p, which is only reachable with a transition G1↾p

p?q⟨ℓi ,⟨xi,_⟩⟩:⊤−−−−−−−−−−→ Li. The result then
follows directly from the global reduction rules.

Case r = q: Therefore, G1↾q = p&{ℓi(xi : Si |= ri).Li}i∈I (with Li = Gi↾q), and G2↾q ∈ Li.
Since labels are uniquely used, G2↾q only appears in Li. Therefore, all paths to G2↾q

in A(G↾q) contain a transition G1↾q
p?q⟨ℓi ,⟨xi,_⟩⟩:⊤−−−−−−−−−−→ Li. The result then follows directly

from the global reduction rules.

◀

▶ Lemma 75 (Well-defined steps imply well-defined transitions). For all projectable types G, for
all well-defined steps z = p→ q⟨ℓ, x⟩ |= r that occur in G, the transition sp

p!q⟨ℓ,⟨x,_⟩⟩:r−−−−−−−−→ sp
′

in A(G↾p) is well-defined in S(G). ◁

Proof. Given a well-defined step z = p→ q⟨ℓ, x⟩ |= r, without loss of generality, consider r

has a single free variable y.
Since z is a well-defined step occurring in G, let Gs ∈ G the type z is the step of. From

Lemma 72, there exist t = sp
p!q⟨ℓ,⟨x,_⟩⟩:r−−−−−−−−→ sp

′ in A(G↾p). From Definition 71, there exists
Gy = r→ s{_(yi : _ |= _).Gi}i∈I ∈ G such that, Gy < Gs and, for one i ∈ I, Gs ∈ Gi and
y = yi.

By contradiction, suppose transition t is not well-defined in S(G), i.e. there is a reachable
state σp = ⟨⟨. . . , sp, . . .⟩, _, Mp⟩ such that y is not in the map Mp.

ECOOP 2024

35:44 Refinements for Multiparty Message-Passing Protocols

Consider a path p to sp. From Lemma 74, there is a transition σ
_

r!s⟨_,⟨y,_⟩⟩:_−−−−−−−−−→_============⇒ σ′

with σ′ = ⟨_, _, Mσ′⟩ in the path p. From the premises of rule GRSnd, y ∈ dom(Mσ′).
Since variables cannot be removed from the map, Mp contains y. Contradiction. ◀

▶ Theorem 39 (Static elision of redundant refinements in types). Given two a global types
G and Gs = p→ q{ℓi(xi : Si |= ri).Gi}i∈I ∈ G, such that, for one t ∈ I, p→ q⟨ℓt , xt⟩ |= rt

is a well-defined step with xt ̸∈ fv(rt). Let ℓt′ = ℓt, xt′ = xt, St′ = St, r′
t = ⊤, Gt′ = Gt,

Gs′ = p→ q{ℓi(xi : Si |= ri).Gi}i∈I\{t}∪{t′}; and G′ be G where Gs is replaced with Gs′ . If,
for all steps, r→ s⟨_, xw⟩ |= rw occurring in G (for each x ∈ fv(r)), M |= rw entails M |= r

(for all M), there exists a bisimulation between the states of S(G) and those of S(G′). ◁

Proof. We prove this by showing that Theorem 35 applies to S(G) and S(G′).
First, since G′ is G where Gs is replaced with Gs′ , i.e. the only difference is that ri is

replaced with ⊤, then the RCFSM of p in S(G) contains sp
p†q⟨m⟩:r−−−−−→ sp

′, and S(G′) contains
sp

p†q⟨m⟩:⊤−−−−−−→ sp
′. Also, from Lemma 75, sp

p†q⟨m⟩:r−−−−−→ sp
′ is well-defined in S(G), and since

xi ̸∈ fv(ri), it is also self-independent. This is the only change and the RCFSM of all others
participants are unchanged.

Second, we have to show that for each transition tw = r
!⟨_,xw⟩:rw−−−−−−−−−→ s in

⋃
x∈fv(r) Tx,

for all map M , M |= rw entails M |= r. By contradiction, suppose there exists such a
transition such that for all map M , M |= rw does not entails M |= r. From Lemma 73, if
such transition exists, a step r→ s⟨_, xw⟩ |= rw occurs in G. By hypothesis, M |= rw entails
M |= r. Contradiction.

Therefore, from Theorem 35, there is a bisimulation between the states of S(G) and those
of S(G′). ◀

G RCS from Choreography Automata

Despite those differences, with our framework, we can adapt CA to accommodate refinements,
which we call Refined Choreography Automata (RCA). In this paragraph, in order to show
the versatility of our framework and to show that the source formalism is not bound to
RMPST only, we informally present how to obtain RCS from a refined variant of asyn-
chronous choreography automata [1], obtaining correctness result w.r.t. valid refined traces
(Definition 7).

In order to introduce refinements into CA, we can simply adapt the transition labels
in the CA, to add payloads and predicates. Adapting RCA projection would then return
RCFSMs, and we would obtain RCS with our framework, as with RMPST. To illustrate this,
we expand on (1) p. 87 in [1]. In this example, a client C requests an entry from a server S.
A logger L is used to log the information. After receiving the result, C can ask S to refine
the result (ref), to restart the protocol (ok), or to quit (bye). In the original protocol, C
performs the choice. Our goal is to let S decide whether C is allowed to continue, or if C
must terminate the protocol (in state 3). For that, S can embed a boolean variable q in its
communications, which is then tested in the outgoing transitions of state 3 (notice that C
can always decide to quit, independently of q, so we only test it for the transitions ok and
ref). For the sake of clarity, we only show attached variables and predicates when they are
needed.

M. Vassor and N. Yoshida 35:45

0 1 2 3 4

5 6

C→ S : req
S→ C : ⟨res, ⟨q, _⟩⟩ S→ L : cnt

C→ S : ref if ¬q

S→ C : noRef

S→ C⟨res, ⟨q, _⟩⟩

C→ S : ok if ¬q C→ S : bye
S→ L : bye

By preserving predicates, the projection onto CFSM is adapted to accommodate newly
added refinements. We therefore obtain RCFSMs, which we compose into RCS. As an
illustration, the RCFSM of participant C would be the following:

{0} {1} {2,3} {4}

{5,6}

C!S⟨req, _⟩ : ⊤ S?C⟨res, ⟨q, _⟩⟩ : ⊤

C!S⟨ok, _⟩ : ¬q
C!S⟨bye, _⟩ : ⊤

C!S⟨ref , _⟩ : ¬q

S?C⟨noRef , _⟩ : ⊤

S?C⟨res, ⟨q, _⟩⟩ : ⊤

Similarly, we can obtain the RCFSM of S and L. Thanks to Theorem 18, we know that
traces produced are valid refined traces.

H Artifact

The submitted artifact contains scripts to reproduce the benchmark results. In order to run
the benchmarks, the following is required (version numbers indicate the version we tested
our artifact on, we expect it to work on newer version, although not tested):

a linux system (tested on Debian)
an internet connection
an Ocaml compiler (4.11.2) release with Dune (3.6.1) and Opam (2.0.8).
Regarding Opam, one needs to install:

the ocamlgraph (2.0.0) library:
opam install ocamlgraph
a specific branch of νScr:
git clone -b https://github.com/Bromind/nuscr/tree/develop-refinements
cd nuscr
opam pin add nuscr.dev-refinements-local .

a Rust compiler (rustc 1.67.0-nightly (e9493d63c 2022-11-16)) with Cargo (rustc 1.67.0-
nightly (e9493d63c 2022-11-16)).
Python3 (3.9.2) with the libraries: argparse, json, unittest, numpy, statistics, matplotlib,
and scipy.

The artifact is composed of 2 parts: one for Table 2 and one for Table 3. Each part is
covered by a shell script, which manages the download, the preparation and the cleanup of
the system.

ECOOP 2024

35:46 Refinements for Multiparty Message-Passing Protocols

H.1 Refined Rumpsteak v. Vanilla Rumpsteak
The script compare.sh performs the comparision between Rumpsteak with refinements and
without refinements. The scripts prints detailled results on stdout. Each microbenchmark
begins with:

********* Analysis NAME_OF_BENCHMARK **********

In Table 3, we report the p-value printed on the line MannwhitneyuResult(statistic=...,
pvalue=...) In addition, the scripts produces a folder in /tmp/Rumpsteak_benchmarks.XXX
(where XXX is a random sequence of three characters) which contains records of each run of
each microbenchmark. The runtimes reported in Table 3 are the median runtime for both
the vanilla and refinements measurements, which are shown, for each benchmark after
the lines:

***** 1st quartile, median, 3rd quartile (vanilla) *******

and

***** 1st quartile, median, 3rd quartile (refinements) *******

H.2 Evaluation of the localisation algorithm
The script dynamic_verify.sh measures the runtime of the localisation tools. After set-
ting up the tools, the scripts runs the benchmarks and prints results on stdout. Each
microbenchmark begins with:

********** NAME_OF_BENCHMARK ***********

For each benchmark, we output a result in the form:

Time (mean ± σ): 22.4 ms ± 0.8 ms [User: 10.5 ms, System: 11.4 ms]

Results reported in Table 2 are the printed mean and standard deviation as output by the
script.

	1 Introduction
	2 Refined Traces and their Validity
	2.1 Preliminaries: Predicates Language and Semantics
	2.2 Traces
	2.3 Properties of Refined Traces

	3 Refined Communicating Automata
	4 Refined Multiparty Session Types (RMPST)
	4.1 Syntax of RMPST
	4.2 From Refined MPST to Refined Communicating System

	5 Decentralised Refined Multiparty Session Types
	6 Static Elision of Redundant Refinements
	6.1 Static Elision of Refinements in RCS
	6.2 Application to RMPST Protocols

	7 Implementation
	7.1 Refinement Implementation
	7.2 Runtime and Localisation Benchmarks

	8 Related Work and Conclusion
	A Extra examples illustrating interesting aspects of RMPST.
	A.1 Usefulness of multiparty
	A.2 List Adder
	A.3 Diffie-Hellman protocol

	B Refined MPST
	B.1 Preliminary definitions
	B.2 Run and trace of an RCS
	B.3 Syntax
	B.3.1 Roles in a global type
	B.3.2 Type occurring in a type

	C Section 2
	C.1 Proofs of Lemmas

	D Refined Automata
	E Decentralised Verification
	E.1 Decentralised run of an RCS
	E.2 Simulation
	E.3 Main theorem
	E.4 Static Verification of the Two Conditions
	E.4.1 Type Graphs
	E.4.2 Localising Algorithm
	E.4.3 Recursion Unrolling

	F Static Elision of Redundant Refinements
	F.1 Static Elision of Refinements in RCS
	F.1.1 Definitions.
	F.1.2 Lemmas and proofs.

	F.2 Application to RMPST Protocols
	F.2.1 Definitions
	F.2.2 Lemmata

	G RCS from Choreography Automata
	H Artifact
	H.1 Refined Rumpsteak v. Vanilla Rumpsteak
	H.2 Evaluation of the localisation algorithm

