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Abstract. This paper introduces a programming framework based on
the theory of session types for safe and scalable parallel designs. Session-
based languages can offer a clear and tractable framework to describe
communications between parallel components and guarantee communication-
safety and deadlock-freedom by compile-time type checking and paral-
lel MPI code generation. Many representative communication topolo-
gies such as ring or scatter-gather can be programmed and verified in
session-based programming languages. We use a case study involving
N-body simulation, dense and sparse matrix multiplication to illustrate
the session-based programming style. Finally, we outline a proposal to
integrate session programming with heterogeneous systems for efficient
and communication-safe parallel applications by a combination of code
generation and type checking.

1 Introduction

Software programs that utilises parallelism to increase performance is no longer
an exclusive feature of high performance applications. Modern day hardware,
from multicore processor in smartphones to multicore multi-graphics card gam-
ing systems, all take advantage of parallelism to improve performance. Message-
passing is a scalable programming model for parallel programming, where the
user has to make communication between components explicit using the basic
primitives of message send and receive.

However, writing correct parallel programs is far from straightforward –
blindly parallelising components with data dependencies might leave the overall
program in an inconsistent state; arbitrary interleaving of parallel executions
combined with complex flow control can easily lead to unexpected behaviour,
such as blocked access to resources in a circular chain (i.e. deadlock) or mis-
matched send-receive pairs. These unsafe communications are a source of non-
termination or incorrect execution of a program. Thus tracking and avoiding
communication errors of parallel programs is as important as ensuring their
functional correctness.

This work focuses on a programming framework which can automatically
ensure deadlock-freedom and communication-safety i.e. matching communica-
tion pairs, for message-passing parallel programs based on the theory of session
types [6, 7]. Towards the end of this paper, we discuss how this session-based
programming framework can fit in heterogeneous computing environments with



reconfigurable acceleration hardware such as Field Programmable Gate Arrays
(FPGAs).

To illustrate how session types can track communication mismatches, con-
sider the parallel program in Fig. 1 that exchanges two values between two
processes.

Process 0 Process 1

Recv char

Send 42

Recv char

Send 42

t=0

t=1

Fig. 1. Mismatched communication.

In this notation, the arrow points from the sender of the message to the intended
receiver. Both Process0 and Process1 start by waiting to receive a value from
the other processes, hence we have a typical deadlock situation.

Process 0 Process 1

Send 42

Recv char

Recv char

Send 42

t=0

t=1

Fig. 2. Communication order swapped.

A simple solution is to swap the order of the receive and send commands for
one of the processes, for example, Process 0, shown in Fig. 2.

However, the above program still has mismatched communication pairs and
causing type error. Parallel programming usually involves debugging and resolv-
ing these communication problems, which is often a tedious task.

Using the session programming methodology, we can not only statically check
that the above programs are incorrect, but can also encourage programmers to
write safe designs from the beginning, guided by the information of types. Session
types [6, 7] have been actively studied as a high-level abstraction of structured
communication-based programming, which are able to accurately and intelligi-
bly represent and capture complex interaction patterns between communicating
parties.

The two examples above have session types shown in Fig. 3 and Fig. 4 re-
spectively.

Process 0: Recv char; Send int

Process 1: Recv char; Send int

Fig. 3. Session types for original example.

Process 0: Send int; Recv char

Process 1: Recv char; Send int

Fig. 4. Session types for swapped example.

In the session types above, Send int stands for output with type int and
Recv int stands for input with type int. The session types are used to check



that the communications between Process 0 and Process 1 are incompatible
(i.e. incorrect) because one process must have a dual type of the other.

On the other hand, the following program is correct, having neither deadlock
nor type errors, since it has a mutually dual session types shown on the right
hand side:

Process 0 Process 1

Send ’a’

Recv int

Recv char

Send 42

t=0

t=1

Process 0: Send char; Recv int

Process 1: Recv char; Send int

In the session types theory, Recv type is dual to Send type, hence the type
of Process 0 is dual of the type of Process 1.

The above compatibility checking is simple and straightforward in the case
of two parties. We can extend this idea to multiparty processes (i.e. more than
two processes) based on multiparty session type theory [7]. Type-checking for
parallel programs with multiparty processes is done statically and is efficient,
with a polynomial-time bound with respect to the size of the program.

Below we list the contributions of this paper.

– Novel programming languages for communications in parallel designs and
two session-based approaches to guarantee communication-safety and dead-
lock freedom (§ 2)

– Implementations of advanced communication topologies for parallel com-
puter clusters by session types (§ 3)

– Case studies including N-body simulation, dense and sparse matrix multi-
plication to illustrate session programming for parallel computers (§ 4)

2 Session-based language design

2.1 Overview

As a language independent framework for communication-based programming,
session types can be applied to different programming languages and environ-
ments. Previous work on Session Java (SJ) [8, 14] integrated sessions into the
object-oriented programming paradigm as an extension of the Java language,
and was applied to parallel programming [14]. Session types have also been im-
plemented in different languages such as OCaml, Haskell, F#, Scala and Python.
This section explains session types and their applications, focussing on an imple-
mentation of sessions in the C language (Session C) as a parallel programming
framework. Amongst all these different incarnations of session types, the key
idea remains unchanged. A session-based system provides (1) a set of predefined
primitives or interfaces for session communication and (2) a session typing sys-
tem which can verify, at compile time, that each program conforms to its session
type. Once the programs are type checked, they run correctly without deadlock
nor communication errors.



2.2 Multiparty session programming

Session C [12, 21] implements a generalised session type theory, multiparty ses-
sion types (MPST) [7]. The MPST theory extends the original binary session
types [6] by describing communications across multiple participants in the form
of global protocols. Our development uses a Java-like protocol description lan-
guage Scribble [5,16] for describing the multiparty session types. Fig. 5 explains
two design flows of Session C programming. In the type checking approach, the
programmer writes a global protocol starting from the keyword protocol and the
protocol name. In the first box of Fig. 5, the protocol named as P contains one
communication with a value typed by int from participant A to participant B.
For Session C implementation, the programmer uses the endpoint protocol gen-
erated by the projection algorithm in Scribble. For example, the above global
protocol is projected to A to obtain int to B (as in the second box) and to B to
obtain int from A. Each endpoint protocol gives a template for developing safe
code for each participant and as a basis for static verification. Since we started
from a correct global protocol, if endpoint programs (in the third box) con-
form to the induced endpoint protocols, it automatically ensures deadlock-free,
well-matched interactions. This endpoint projection approach is particularly use-
ful when many participants are communicating under complex communication
topologies. Due to space limitation, this paper omits the full definition of global
protocols, and will explain our framework and examples using only endpoint
protocols introduced in the next subsection.

Define global protocol in Scribble
1 global protocol P
2 { int from A to B; }

Project into endpoint protocol
1 local protocol P at A
2 { int to B; }

Generate MPI code
1 int main()
2 { /*insert computation code here*/
3 MPI_Send(buf, cnt, RANK_B, MPI_INT, ...);

}

Implement program
1 int main()
2 { calc(buf, cnt);
3 MPI_Send(buf, cnt, RANK_B, MPI_INT, ...);

}

Implement program in Session C
1 int main()
2 { calc(buf, cnt);
3 send_int(B, buf); }

Static type checking
Check implementation conforms with
endpoint protocol at compile time

Code generation approach
Type checking approach

Fig. 5. Session C design flows.



2.3 Protocols for session communications

The endpoint protocols include types for basic message-passing and for cap-
turing control flow patterns. We use the endpoint protocol description derived
from Scribble to algorithmically specify high-level communication of distributed
parallel programs as a library of network communications. A protocol abstracts
away the contents but keeps the high level structures of communications as a
series of type primitives.

The syntax of Scribble is described in details in [5,16], and can be categorised
to three types of operations: message-passing, choice and iteration.

Message passing. It represents that messages (or data) being communicated
from one process to another; in the language it is denoted by the statements
datatype to P1 or datatype from P0 which stands for sending/receiving data of
datatype to the participant identified by P0/P1 respectively. Notice that the pro-
tocol does not specify the value being sent/received, but instead designate the
datatype (which could be primitive types such as int or composite types), indi-
cating its nature as a high-level abstraction of communication.

Choice. It allows a communication to exhibit different behavioural flows in a
program. We denote a choice by a pair of primitives, choice from and choice to,
meaning a distributed choice receiver and choice maker, respectively. A choice
maker first decides a branch to take, identified by its label, and executes its
associated block of statements. The chosen label is sent to the choice receiver,
which looks up the label in its choices and execute the its associated block of
statements. This ensures the two processes are synchronised in terms of the
choice taken.

Iteration. It can represent repetitive communication patterns. We represent
recursion by the rec primitive (short for recursion), followed by the block of
statements to be repeated, enclosed by braces. The operation does not require
communication as it is a local recursion. However two communicating processes
have to ensure both of their endpoint protocols contains recursion, otherwise
their protocols will not be compatible.

2.4 Session C

We present two approaches to session programming in C, using the Session C
framework. The first approach is by type checking of user written code, using a
simple session programming API we provided. The second approach is by MPI
code generation from protocols.

Type checking approach In the type checking approach, a user implements a
parallel program using the simple API provided by the library, following commu-
nication protocols stipulated in Scribble. Once a program is complete, the type
checker verifies that the program code matches that of the endpoint protocol



description in Scribble to ensure that the program is safe. The core runtime API
corresponds the endpoint protocol as described below.

Message passing primitives in Session C are written as send_datatype(

participant, data) for message send, which is datatype to participant in the
protocol, and recv_datatype (participant, &data) for message receive (datatype
from participant in the protocol).

Choice in Session C is a combination of ordinary C control-flow syntax and ses-
sion primitives. For a choice maker, each if-then or if-else block in a session-typed
choice starts with outbranch(participant, branchLabel) to mark the beginning
of a choice. inbranch(participant, &branchLabel) is a choice receiver, used as
the argument of a switch-case statement, and each case-block is distinguished
by the branchLabel corresponding to a choice in the choice from block in the
protocol.

Iteration in Session C corresponds to while loops in C. As no communication is
required, the implementation simply repeats a block of code consisting of above
session primitives in a rec recursion block.

Code generation approach In the code generation approach, given a Scribble
protocol, we generate an MPI parallel program skeleton. The program skeleton
contains all the MPI code needed, the user inserts code that performs computa-
tion on the input data (e.g. for scientific calculation) between the MPI primitives,
completing the program.

This approach is part of a larger extension of the Scribble language to sup-
port parameterised session types [2]. The extension, Parameterised Scribble, or
Pabble [11], uses indices to parameterise participants. Participants can be de-
fined and accessed in an array-like notation, in order to denote logical groupings
of related participants. For example, a parallel algorithm that uses many parallel
workers, can define a group of participants using role participant[1..N], and a
pipeline of message passing is written in Pabble as datatype from participant

[i:1..N-1] to participant[i+1]. Pabble protocols can be written once, and a
protocol with different number of participants can be instantiated by changing
the value of N. MPI code generated from Pabble protocols can also take advan-
tage of this feature and will be scalable over different number of processes.

These two approaches to session programming complement each other and
cover different use cases: critical applications can use the type checking approach
to ensure that the written program is communication and type safe; whereas
scalable and parametric applications can use the MPI code generation capability
to create communication safe and type safe parallel programs.

3 Advanced communication topologies for clusters

This section shows how session endpoint protocols introduced in § 2.3 can be
used to specify advanced, complex communications for clusters. Consider a het-



erogeneous cluster with multiple kinds of acceleration hardware, such as GPUs
or FPGAs, as Processing Elements (PEs). To allow a safe and high performance
collaborative computation on the cluster, we can describe communications be-
tween PEs by our communication primitives. The PEs can be abstracted as small
computation functions with a basic interface for data input and result output,
hence we can easily describe high-level understanding of the program by the
session types.

We list some widely used structured communication patterns that form the
backbones of implementations of parallel algorithms. These patterns were chosen
because they exemplify representative communication patterns used in clusters.
Computation can interleave between statements if no conflict in the data de-
pendencies exists. The implementation follows the theory of the optimisation for
session types developed in [10], maximising overlapped messaging.

Node0≤i≤n−1: rec LOOP { // Repeat shifting ring
datatype to Node[i+1]; // Next
datatype from Node[i-1]; // Prev

LOOP }

Noden: rec LOOP { // Repeat shifting ring
datatype from Node[N-1]; // Prev
datatype to Node[0]; // Initial

LOOP }

Fig. 6. Endpoint protocols of Ring.

Node2

Noden−1

3
Node1

2

Node0

1

Noden
5

4

Fig. 7. n-node ring pipeline.

Ring topology. In a ring topology, as depicted in Fig. 7, processes or PEs are
arranged in a pipeline, where the end of the node of the pipeline is connected
to the initial node. Each of the connections of the nodes is represented by an
individual endpoint session. We use N-body simulation as an example for ring
topology. Note that the communication patterns between the middle n−1 Nodes
are identical. The endpoint protocol is shown in Listing 6.

Map-reduce pattern. Map-reduce is a common scatter-gather pattern used to
parallelise tasks that can be easily partitioned with few dependencies between
the partitioned computations. The topology is shown in Fig. 9. It combines
the map pattern which partitions and distributes data to parallel workers by a
Master coordination node, and the reduce pattern which collects and combines
completed results from all parallel workers. At the end of a map-reduce, the
Master coordination node will have a copy of the final results combined into a
single datum. All Workers in a map-reduce topology share a simple communica-
tion pattern, where they only interact with the Master coordination node. The
Master node will have a communication pattern containing all known Workers.

The MPI operation MPI_Alltoall is a communication-only instance of the map-
reduce pattern for all of the nodes, and only applies memory concatenation



to the collected set of data. Our endpoint types can represent this topology
with more fine-grained primitives so that we can obtain performance gain by
communication-computation overlap. Although collective operations are more
efficient in cases where the implementations take advantage of the underlying ar-
chitectures, fine-grained primitives can more readily allow partial data-structures
to be distributed, without the need to create new copies of data or calculating
offsets (as in MPI_Alltoallv) for transmission.

Master : rec LOOP {
// Map phase
datatype to Worker[0], Worker[1];
// Reduce phase
datatype from Worker[0], Worker[1];

LOOP }

Worker0≤i≤n : rec LOOP {
datatype from Master; // Map phase
datatype to Master; // Reduce phase

LOOP }

Fig. 8. Endpoint protocols of Map-reduce.
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Fig. 9. Map-reduce pattern.

4 Case Studies

This section presents case studies of using Scribble protocols in parallel program-
ming. All of these examples are representative patterns from common parallel
patterns known as Dwarfs [1]. The Dwarf evaluation metric was proposed as
a collection of high-level, core parallel communication patterns from important
scientific and engineering methods. Each of these patterns is called a Dwarf,
which represents one category of patterns and covers a broad range of concrete
algorithm implementations. Dwarfs are used to evaluate our session-based proto-
col language and our programming methodology because they are not language
or optimisation specific, being able to express the Dwarfs confirms that our ap-
proach is general enough to be extended to more practical use cases.

We have chosen N-body simulation, an example of particle methods dwarf,
dense matrix-vector multiplication, a dense linear algebra dwarf, and sparse
matrix-vector multiplication, a sparse linear algebra dwarf, to show how Scribble
and MPI can be used together for parallel programming from either of our two
session-based approaches.

4.1 N-body simulation

We implemented a 2-dimension N-body simulation using a ring topology. Each
Worker is initially assigned to a partition of the input data. In every round of
the ring propagation, each Worker receives a set of partitioned input from a
neighbour, and pipelines the input data received from the previous round to the



other neighbour. This propagation continues until the set of particles have been
received by all Workers once. The algorithm will then perform one step of global
update to calculate the new positions of the particles after one time step of the
simulation.

Listing 1 is the protocol specification of the Worker participant of our N-
body simulation implementation, and Listing 2 is the automatically generated
endpoint version, both written in the syntax of parameterised Scribble.

1 global protocol Nbody(role Worker[0..N] {
2 rec RING {
3 // Workers 0 to N: Worker[i] -> [i+1]
4 int from Worker[i:1..N-1] to Worker[i+1];
5
6 // Data from Worker[N] -> [0]
7 int from Worker[N] to Worker[0];
8
9 continue RING;

10 }
11 }

Listing 1. Protocol of N-body simulation.

1 local protocol Nbody at Worker[0..N] {
2 rec RING {
3 // Workers 0 to N: Worker[i] -> [i+1]
4 if Worker[i:1..N] int from Worker[i-1];
5 if Worker[i:0..N-1] int to Worker[i+1];
6 // Data from Worker[N] -> r[0]
7 if Worker[0] int from Worker[N];
8 if Worker[N] int to Worker[0];
9 continue RING;

10 }
11 }

Listing 2. Worker endpoint of N-body
protocol.

The block rec RING { } means recursion, and represents the repeating ring
propagation in the algorithm. The line if Worker[i:1..N] int from Worker[i-1]

stands for receiving a message from my previous neighbour Worker[i-1] with a
message of type int, given that the current participant is one of Worker[1], ...,
or Worker[N]. The protocol generates MPI code equivalent to Listing 3.

1 while (i++<N) {
2 if (1<=rank && rank<=N) MPI_Recv(rbuf, count, rank-1, MPI_INT, ..);
3 // (Sub-compute) Send received data to FPGA to process ..
4 if (0<=rank && rank<=N-1) MPI_Send(sbuf, count, rank+1, MPI_INT, ..);
5 if (rank==0) MPI_Recv(rbuf, count, N, MPI_INT, ..);
6 // (Sub-compute) Send received data to FPGA to process ..
7 if (rank==N) MPI_Send(sbuf, count, 0, MPI_INT, ..); }
8 // Perform global update after round

Listing 3. MPI implementation of Worker endpoint.

In MPI, all processes share the same source code and compiled program
file, and they are only distinguished at runtime by their assigned process id.
The process id is stored in the rank variable, and is available throughout the
program to calculate participants addresses. In the above MPI code, MPI_Send

and MPI_Recv are the primitives in the MPI library to send and receive data, and
all the lines are guarded by a rank check. The variables sbuf and rbuf stand for
send buffer and receive buffer respectively, and count is the number of elements
to send/receive (i.e. array size); MPI_INT is an MPI defined macro to indicate the
data being sent/received is of type int.

The ring topology above is a simple yet powerful topology to distribute data
between multiple participants in small chunks. This allows more sub-computation
and will potentially allow more overlapping between communication and com-
putation.



A Scribble protocol contains the interaction patterns (i.e. the session typing)
for a set of participants. It contains sufficient information to generate the MPI
code shown above.

4.2 Dense matrix-vector multiplication

Dense matrix-vector multiplication takes a M ×N matrix and multiply it by a
N dimensional vector to get a N dimensional vector result. The multiplication
can be parallelised by partitioning the input matrix to N segments by row-wise
block striping shown in Fig. 10 and distributed to N processes. Each process
gets a copy of the vector, and each elements in the vector can be calculated by
the processes in parallel.

Listing 4 shows a protocol for our dense matrix-vector multiplication. The
Worker[0] is the coordinator which distributes the partitions to each Workers.
The primitive foreach (i:1..N){ } is a foreach-loop, which iterates from 1 to
N using the index variable i. Inside the foreach, Worker[0] sends the offset and
length of the partitions to each Worker (Line 4 and 5) respectively, followed by
the actual matrix elements (Line 6). Vector B, which is of size N , is broadcasted
to all processes by the coordinator on Line 9. Finally, the results of each Workers
are gathered by the coordinator and combined to get the result of the matrix
multiplication (Line 14).

1 global protocol DenseMatVec(role Worker[0..N]){
2 // Scatter Matrix A
3 foreach (i:1..N) {
4 LBound(int) from Worker[0] to Worker[i];
5 UBound(int) from Worker[0] to Worker[i];
6 Data(double) from Worker[0] to Worker[i];
7 }
8 // Scatter Vector B
9 (double) from Worker[0] to Worker[1..N];

10
11 // --- Perform calculation ---
12
13 // Gather data
14 (double) from Worker[1..N] to Worker[0];
15 }

Listing 4. Global protocol of dense matrix-
vector multiplication.

A1 Worker[1]

A2 Worker[2]

...

AN−1 Worker[N-1]

AN Worker[N]

× B =

C1

C2

...

CN−1

CN

Fig. 10. Partitioning of input matrix.

An MPI implementation following above protocol has the code structure
shown below. In the initial phase of the calculation, the coordinator, the process
of rank 0 (Line 5–17), uses a for loop to iterate through the worker process ids
(processes with ranks above 0, up to the total number of processes size) and
calculates the lbound and ubound for each of the participants, where lbound is
the first row of the partition, and ubound is the last. The partition is then sent
to the corresponding Worker[i]. Other Worker processes receive the values and
store locally.



This is followed by a broadcast on Line 25 using an MPI_Bcast with root
Worker[0] for the workers to receive the input vector. A partial result, C, is then
calculated on each worker, and the result collected by the coordinator using
MPI_Gather. MPI_Gather collects the partial results, then combines them in the
Result N dimensional array.

The implementation show how our session protocol descriptions can also
correspond to collective operations, such as (double) from Worker[0] to Worker

[1..N] and MPI_Bcast, or (double) from Worker[1..N] to Worker[0] and MPI_Gather

.

1 double A[A_ROWS][A_COLS]; // Matrix A
2 double B[B_COLS]; // Vector B
3 double C[B_COLS]; // Partial result
4 ...
5 if (rank == 0) {
6 for (i = 1; i < size; i++) { // Calculate then send to each Worker
7 // Calculate LowerBound and UpperBound for each Worker
8 lbound = (i - 1) * partition_size;
9 ubound = lbound + partion_size;

10
11 MPI_Send(&lbound, 1, MPI_INT, Worker[i], LBound, ...);
12 MPI_Send(&ubound, 1, MPI_INT, Worker[i], UBound, ...);
13
14 // Send partition of matrix A
15 MPI_Send(&A[lbound][0], (ubound-lbound) * A_COLS, MPI_DOUBLE, Worker[i], Data, ...);
16 }
17 } else if (rank > 0) { // Workers, receiving work
18 MPI_Recv(&lbound, 1, MPI_INT, Worker[0], LBound, ...);
19 MPI_Recv(&ubound, 1, MPI_INT, Worker[0], UBound, ...);
20
21 MPI_Recv(&A[lbound][0], (ubound-lbound) * A_COLS, MPI_DOUBLE, Worker[0], Data, ...);
22 }
23
24 // All Workers receive the vector B
25 MPI_Bcast(&B, B_ROWS, MPI_DOUBLE, Worker[0], ...);
26 ...
27 // Calculate matrix multiplication
28 mat_vec_mul(A, B, lbound, ubound, C);
29 ...
30 // ... Gather results to Worker[0] ...
31 MPI_Gather(C, 1, MPI_DOUBLE, Result, 1, MPI_DOUBLE, Worker[0], ...);

Listing 5. MPI implementation of dense matrix-vector multiplication.

4.3 Sparse matrix-vector multiplication

Finally we show an implementation of a direct sparse matrix-vector multiplica-
tion. Sparse matrices are often used for data representation that are too large to
fit in memory as an array, but the content is sparse and can be efficiently com-
pressed to a more compact format. Our implementation uses a M × N sparse
matrix input stored in a compressed sparse row (CSR) format, where the data
are represented by three arrays.

– vals: a contiguous array containing all values of the sparse matrix in a left-
to-right, top-to-bottom order. This compact storage of the matrix skips all
empty (or zero) cells in the matrix and only contains cells with a value.



– row ptr: an array containing indices for the vals array, each element con-
tains the accumulated total of elements in each row. For example, [1, 3,

4, 8] means that row 0 has 1 element, row 1 has 2 elements, row 2 has 1
element and row 3 has 4 elements. This array has the same size as the total
number of rows.

– col ind: the column indices for each of the values in vals. This array has
the same size of vals.

The three arrays combined is sufficient to represent a sparse matrix, or a
partition of the sparse matrix.

The protocol to perform a sparse matrix-vector multiplication is shown in
Listing 6. In the protocol, the partitioned matrix rows in CSR format are sent
to each worker as separate row, col and values arrays (Line 3, 4 and 5). The N
dimensional vector is then sent to all workers. The results of the calculation by
each Workers are sent back to Worker[0] (Line 8).

1 global protocol SparseMatVec(role PE[0..N]) {
2 /* Distribute data */
3 (int) from W[0] to W[1..N]; // row_ptr
4 (int) from W[0] to W[1..N]; // col_ind
5 (double) from W[0] to W[1..N]; // vals
6 (double) from W[0] to W[1..N]; // vector
7 /* Output vector */
8 (double) from W[1..N] to W[0];
9 }

Listing 6. Global protocol of sparse matrix-vector multiplication.

A corresponding implementation for the above protocol may look like the
MPI code below:

1 MPI_Comm_size(MPI_COMM_WORLD, &size);
2 int nr_of_rows = MATRIX_ROWS/size;
3 ...
4 MPI_Scatter(row_ptr, nr_of_rows, MPI_INT, ..);
5 ...
6 // calculate number of indices for each process
7 ...
8 MPI_Scatterv(col_ind, nr_of_elems, MPI_INT, ...);
9 MPI_Scatterv(vals, nr_of_elems, MPI_DOUBLE, ...);

10 ...
11 MPI_Bcast(vector, MATRIX_ROWS, MPI_DOUBLE, Worker[0], ...); // Distribute vector
12 ...
13 // Calculate matrix multiplication
14 mat_vec_mul(row_ptr, col_ind, vals, vector, C);
15 ...
16 MPI_Gather(C, 1, MPI_DOUBLE, Result, 1, MPI_DOUBLE, Worker[0], ...);

Listing 7. MPI implementation of sparse matrix-vector multiplication.

Each process starts by calculating the expected number of rows it will be
owner of, and we assume that the number of rows for each process is the same
and the total number of rows can divide exactly by the total number of processes.
Next we use MPI_Scatter to distribute segments of the row_ptr array to each
worker process, which sends segments of a given input memory to other processes
based on their rank and the segment position in the memory (Line 4).

nr_of_elems is an array containing the number of elements to be sent to each
worker. Since in a sparse matrix the number of elements in each row is not fixed,



the nr_of_elements array contains the number of matrix elements each worker
receives. The indices of the array correspond to the rank of the workers and
the column index col_ind is distributed to each worker process by MPI_Scatterv

(Line 8), a variant of the MPI_Scatter, where the v stands for variable size as
opposed to fixed size in MPI_Scatter. Similarly, the actual matrix element values
are distributed to all workers by a call to MPI_Scatterv on Line 9, using the same
nr_of_elems to specify the number of elements for each worker.

Once the workers have received the matrix partitions, the coordinator dis-
tributes the N dimension vector by MPI_Bcast to all workers to perform the
matrix-vector calculation for the rows of the sparse matrix each processor has.

Finally, as in the dense matrix-vector multiplication example, the results are
collected by the root worker Worker[0] using a MPI_Gather. In this implementa-
tion, we use exclusively collective operations to distribute and collect results as
it is more efficient with the CSR data format. Notice that the protocol does not
distinguish between different modes of MPI_Scatter, in particular, the Scribble
statement (int) Worker[0] to Worker[1..N]; corresponds to both MPI_Scatter

and MPI_Scatterv. Hence a single protocol statement can map to multiple im-
plementations, and without external information about the implementation, a
code generation tool cannot choose a suitable implementation, and this use case
is more suitable for our type checking approach.

5 Related work and conclusion

ISP [3, 20] and the distributed DAMPI [19] are formal dynamic verifiers which
apply model-checking techniques to standard MPI C source code to detect dead-
locks using a test harness. The tool exploits independence between thread actions
to reduce the state space of possible thread interleavings of an execution, and
checks for potentially violating situations. TASS [3, 17] is another suite of tools
for formal verification of MPI-based parallel programs by model-checking. It
constructs an abstract model of a given MPI program and uses symbolic execu-
tion to evaluate the model, which is checked for a number of safety properties
including potential deadlocks and functional equivalences.

Compared to the test-based and model-checking approaches which may not
be able to cover all possible states of the model, the session type-based approach
does not depend on external testing or extraction of models from program code
for safety. It encourages designing communication-correct programs from the
start, especially given the high level communication structure which session types
captures.

Recent works [4,9] used annotated MPI code and a software verifier to check
the annotated MPI code for compliance against session types. Their bottom-
up approach focusses on accurately representing MPI primitives and datatypes,
whereas Session C treats them as high level abstractions, ignoring details such
as send/receive data payload size.

There are a lot of challenges of verifying real-world MPI source code. MPI
is a standardised and platform independent message-passing API, the ubiqui-



tous nature in supercomputing makes it a convenient abstraction layer between
software and underlying hardware. In cases such as [15], it was used as a program-
ming model for FPGAs. Hence its specification is intentionally vague, in order
to allow different implementations to take advantage of any platform-specific op-
timisations. For example, there are a number of message transport modes such
as the more commonly used MPI_Send/MPI_Recv (standard mode) or MPI_Isend

/MPI_Irecv (immediate/non-blocking). The modes do not correspond directly
to standard synchronous or asynchronous communication modes as one would
expect. The different communication modes in MPI have subtle differences in
their semantics. Care must be taken when making assumptions and correspon-
dences with high-level Scribble protocols. In addition to standard point-to-point
communication primitives, MPI also includes a huge number of primitives such
as collective operators, topology construction and process management. A com-
plete session type checking framework will be able to consider these additional
information to extract the session types from the source code. Combining the
flexibility of the host language (C) and the large number of MPI primitives makes
our approach more challenging compared to model checking based approaches.
This is because MPI model checkers work by observing the behaviours of the
programs, which the same behaviour can be implemented in many different ways;
whereas our type based approach requires us to understand the consequences of
each primitive because we construct a type model without executing the pro-
gram.

Furthermore, to apply our approach on low-level host languages, it is impor-
tant to define a concise and simple correspondence between a Scribble and Pabble
protocol to practical implementation, but offer enough flexibility to cope with
conventional programs. This correspondence is important to both type checking
and code generation: for type checking, the ability to support different program-
ming styles would enable the type checker to check more existing code, and for
code generation, the generated code will have a more natural style. For example,
MPI uses process IDs (or ranks) to identify processes, and it is valid to perform
numeric operations on the ranks to efficiently calculate target processes. A more
concrete example is instead of conventional conditional statements, MPI_Send(buf
, cnt, MPI_INT, rank%2 ? rank+1: rank-1, ...); may be used and the process
ID, rank, is being used as a boolean to perform a choice, thus a straightforward
analysis of rank usages would not be sufficient. These are valid programs that
exploit the C language features and will require much more extensive analysis.

This paper is an extension of our previous works on Session C [12,13]. In both
of the works, parametric protocols and MPI code generation were not explored,
this work is a short insight into the benefits of using parametric protocols and
potentials of integrating with specialised accelerators, as the framework was
evaluated on [18], a heterogeneous cluster with FPGAs.



6 Future work

Integration with heterogeneous workflow. Immediate future works in-
cludes refining our MPI code generation tool to better integrate with APIs of spe-
cialised hardware. This includes streamlining the data received/sent from MPI
directly into input/output buffers of acceleration hardware.Tighter integration
between MPI and acceleration hardware will achieve better overall performance
of the heterogeneous system.

Type-directed optimisations. Extending our type checker to support infer-
ring parameterised MPST from MPI code is a prerequisite for type-directed
optimisations. Once parameterised MPST can be extract from MPI code, Ses-
sion C framework can then extend the support of asynchronous message opti-
misation [10] described in Session C framework [12] to expressive parameterised
protocols. The theoretical and engineering challenges of this future work will be
keeping type checking process decidable and representing most, if not all, of the
common MPI primitives in Scribble.

Assertion and error recovery. We propose the use of runtime assertions for
session-based programming in the Session C framework. Assertions are proper-
ties that are expected to hold during runtime, and they can complement static
type checking. Error recovery is also a topic of interest, as large scale high per-
formance parallel applications often need to gracefully handle unexpected errors
such as hardware failures. Type-based approach to error handling and recovery
will be explored as part of ongoing research on Scribble.

Adapting to other programming models. Our session-based approach is
based on the message passing communication model, which can be used for co-
ordination between heterogeneous nodes. Heterogeneous accelerators all use dif-
ferent programming and communication models, for example, General Purpose
computing on GPU (GPGPU) uses a streaming model, and some reconfigurable
hardware uses data-flow programming model. Adapting the high-level Scribble
and Pabble language to these models will enable session types to be a common
language to describe communication behaviour for parallel applications. We are
aiming to achieve this by generalising our code generation to generate different
target code.
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