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ABSTRACT
Multiparty session types (MP) are a type discipline for enforcing

the structured, deadlock-free communication of concurrent and

message-passing programs. Traditional MP have a limited form

of choice in which alternative communication possibilities are of-

fered by a single participant and selected by another. Mixed choice
multiparty session types (MCMP) extend the choice construct to in-

clude both selections and offers in the same choice. This paper first

proposes a general typing system for a mixed choice synchronous

multiparty session calculus, and prove type soundness, communi-

cation safety, and deadlock-freedom.

Next we compare expressiveness of nine subcalcli of MCMP-

calculus by examining their encodability (there exists a good en-

coding from one to another) and separation (there exists no good
encoding from one calculus to another). We prove 8 new encod-

ablity results and 20 new separation results. In summary, MCMP

is strictly more expressive than classical multiparty sessions (MP)

in [19] and mixed choice in mixed sessions in [8]. This contrasts

to the results proven in [8, 51] where mixed sessions [8] do not

add any expressiveness to non-mixed fundamental sessions in [65],

shedding a light on expressiveness of multiparty mixed choice.

CCS CONCEPTS
• Theory of computation → Process calculi; Parallel comput-
ing models; Distributed computing models; • Software and
its engineering→ Concurrent programming languages.

KEYWORDS
Session Types, Mixed Choice, Concurrency, Pi-Calculus, Typing

System, Protocols, Expressiveness

ACM Reference Format:
Kirstin Peters and Nobuko Yoshida. 2024. Separation and Encodability in

Mixed Choice Multiparty Sessions. In 39th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS ’24), July 8–11, 2024, Tallinn, Estonia. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3661814.3662085

1 INTRODUCTION
Mixed choice, which allows non-deterministic choice between en-

abled inputs or outputs, has been used to representmutual exclusion

such as semaphores and concurrent scheduling algorithms in com-

municating systems [37]. Mixed choice offers the ability to rule out
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alternative options, i.e., discard inputs by selecting an output in the

same choice, and vice versa. In concurrent and message-passing

programming languages, there has been interest in including and

efficiently implementing mixed choice, as exemplified by Concur-

rent ML [53, 54], and more recently by Go [22] (where choice is

synchronous by default). In Esterel [3] and Facile [59], mixed choice

is used as a key construct to lump all IO-synchronisations among

parallel processes as a single choice.

This paper shows that an introduction of mixed choice in the

behavioural type theory based on protocols,multiparty session types
[29] (MP), not only offers more safe and deadlock-free processes,

but also gains expressiveness [24, 50], which was not the case in

binary (two-party) mixed sessions by Casal et al. [8].

Two Party Mixed Choice Sessions. Session types [28, 58,

68] govern communication behaviours of concurrent programs,

ensuring type error freedom and communication safety (no mismatch

between sent and expected data types). The shape of session types

originated in Linear Logic [21, 26], where choices are separated
(not mixed) and binary (between two participants). Such choices

are either a sum of inputs (external choice) or of outputs (internal
choice).

Using session process notation, we can write external choice and
internal choice processes as:

𝑃& = 𝑠?ℓ1 (𝑥1).𝑃1 + 𝑠?ℓ2 (𝑥2) .𝑃2
𝑄⊕ = if 𝑣 then 𝑠!ℓ1⟨𝑣1⟩.𝑄1 else 𝑠!ℓ2⟨𝑣2⟩.𝑄2

Here ! denotes output, ? denotes input, and ℓ is a label used for

matching. The input process 𝑠?ℓ1 (𝑥1) .𝑃1 indicates that the recipient
at channel 𝑠 expects to receive a value with label ℓ1, after which

it will continue with behaviour 𝑃1{𝑣1/𝑥1}. The output 𝑠!ℓ1⟨𝑣1⟩.𝑄1

selects label ℓ1, sending value 𝑣1 and continues as 𝑄1.

A natural next step is the extension of separate binary choice

to mixed choice (a mixture of synchronous input and outputs in a

single choice), making it non-deterministic, e.g., a process waits for
an input on label ℓ1, or can non-deterministically select to output ℓ2:

𝑃+ = 𝑠?ℓ1 (𝑥1).𝑃1 + 𝑠!ℓ2⟨𝑣2⟩.𝑃2 𝑄+ = 𝑠!ℓ1⟨𝑣1⟩.𝑄1 + 𝑠?ℓ2 (𝑥2) .𝑄2

where a parallel composition of 𝑃+ and 𝑄+ synchronises (reduces)

either to 𝑃1{𝑣1/𝑥1} | 𝑄1 or 𝑃2 | 𝑄2{𝑣2/𝑥2}. This mixed choice be-

haviour follows the standard CCS semantics [37]: an output action

always chooses a receive action at a choice in another process, and

they are synchronised together. Recently, Casal et al. [8] studied

this extension (denoted by CMV
+
), and proved its type safety.

Expressiveness. A standard method to compare the abstract

expressive power of process calculi is to analyse the existence of

encodings, i.e., translations from one calculus into another. To rule

out trivial or meaningless encodings, they are augmented with a

set of quality criteria. An encodability result, i.e., an encoding from

a source calculus into a target calculus that satisfies relevant criteria,
shows that the target can mimic or emulate the behaviours of the
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Figure 1: Hierarchy of 𝜋-like calculi [51]

source—the target is at least as expressive as the source. Conversely,

a separation result, i.e., the proof that there is no encoding satisfying
the considered criteria, shows that some behaviours of the source

cannot be emulated by the target. The combination of encodability

and separation results can build hierarchies of the analysed calculi,

if these results are based on the same set of criteria. Encodings

become stronger by using a stronger criteria, whereas separations

become stronger by using weaker criteria. Sets of criteria that are

well suited for encodability and separation were discussed e.g. in

[16, 17, 23, 24, 42–46, 48, 50, 60, 63]. By following in particular

[24, 48], we consider the criteria compositionality (the encoding is

a function on the operators of the source), name invariance (the
encoding treats all names of the source in the same way), sound

and complete operational correspondence (the encoding preserves
and reflects the behaviours of the source), divergence reflection (the

target diverges only if the source diverges), success-sensitiveness
(reachability of success is preserved and reflected), and distributabil-
ity preservation (the target has the same degree of distribution as

the source). Encodings that satisfy these criteria are denoted as

good encodings.

Unfortunately, Peters and Yoshida [51] have shown that mixed

sessions (CMV
+
) proposed by Casal et al. [8] do not add any expres-

sive power to the binary session calculus (denoted by CMV) [65]

which has the standard branching and selection constructs (i.e., sep-

arate choices). This is perhaps surprising as it is against a landmark

result on expressiveness by Palamidessi [42]—the 𝜋-calculus [39]

with mixed choice is strictly more expressive than the 𝜋-calculus

without choice. An open question is under which circumstances,

mixed choice in session types is strictly more expressive.

Expressiveness Hierarchy with Binary Mixed Sessions. To
explain the above open problem more precisely, we first present a

hierarchy of 𝜋-like calculi from [51] in Figure 1.

𝑎 𝑏 𝑐

The hierarchy orders calculi along their abil-

ity to express the synchronisation patternsM
and ★. An M (see [61, 62]), as visualised on

the right, describes a Petri net that consists

of two parallel transitions (𝑎 and 𝑐) and one

transition (𝑏) that is in conflict with both of

the former. In other words, it describes a situation where either two

parts of the net can proceed independently or they synchronise to

perform a single transition together.

As stated by Glabbeek et al. [61, 62], a Petri net specification can

be implemented in an asynchronous, fully distributed setting iff

it does not contain a fully reachable pureM. They also present a

description of a fully reachable pureM as conditions on a state in a

step transition system, which allows us to directly use this pattern

to reason about process calculi as shown in [44, 48, 49].

𝑒

𝑑

𝑐

𝑏𝑎

Further, Peters et al. [44, 48] introduce the

synchronisation pattern ★, which is a chain

of conflicting and distributable steps as they

occur in an M that build a circle of odd

length. As visualised on the right, there is

e.g. one M consisting of the transitions 𝑎, 𝑏,

and 𝑐 with their corresponding two places.

AnotherM is build by the transitions 𝑏, 𝑐 , and 𝑑 with their corre-

sponding two places and so on.

TheM captures only a small amount of synchronisation, whereas

the ★ requires considerably more synchronisation in the calculus.

Asynchronously distributed calculi that cannot express M nor ★

such as the Join-calculus from [15] are placed in the bottom layer

of Figure 1. Synchronously distributed calculi that can express ★

and thus alsoM such as the 𝜋-calculus with mixed choice (𝜋 ) are

placed in the top layer. The middle layer consists of the calculi that

can express M but not ★. The asynchronous 𝜋-calculus without

choice [4, 27] (𝜋a), the 𝜋-calculus with separate choice [41] (𝜋s),

and mobile ambients [7] (MA) are placed in the middle—unless it

is restricted to unique ambient names (MAu) [47]. That CMV and

CMV
+
are also placed in the middle layer was proven in [51]. Hence,

they are strictly less expressive than 𝜋 . This completes Figure 1.

Mixed Choice Multiparty Session Types. In the presence

of mixed choice, the extension from two parties to more than two
parties gives us strictly more expressive power to session types

and is placed in the top layer. This is because not only inputs and

outputs but also destinations of messages represented by participants
can be mixed in one single choice.

Consider three participants a, b, and c, and assume 𝑃a, 𝑃b and

𝑃c below:

𝑃a = (b!ℓ1;c!ℓ2) + b?ℓ1 + c?ℓ2 𝑃b = a?ℓ1 + (a!ℓ1;c!ℓ2) + c?ℓ2
𝑃c = a?ℓ2 + b?ℓ2 + (a!ℓ2;b!ℓ2)

where we omit the payload and nil processes. In multiparty sessions,

each process who plays role p is represented as p ⊳ 𝑃 . Assuming,

e.g., b!ℓ1 in 𝑃a matches with a?ℓ1 in 𝑃b, their parallel composition

(a⊳𝑃a | b⊳𝑃b | c⊳𝑃c) non-deterministically leads to several possible

states such as a ⊳ c!ℓ2 | c ⊳ 𝑃c or b ⊳ 𝑃b | c ⊳ b!ℓ2. We can observe

that the choice behaviours of processes are distributed to and from

two distinct participants.

Expressiveness in Mixed Choice Multiparty Sessions After
introducing the typing system of MCMP, we study the expres-

sive power introduced by multiparty mixed choice, i.e., determine

in which layer of Figure 1, MCMP is situated. A precise answer

to this question was not as simple as expected. To more clearly

understand the causes of an increase in expressiveness, we first

restrict our attention to a single multiparty sessionwhich has neither
shared names, name passings, session delegation nor interleaved

sessions, and consider subcalculi of MCMP. By limiting the form of

the choices and number of participants, MCMP includes 9 subcal-
culi (including itself). For example, we can define separated choice
from/to multiple participants (SCMP), e.g.,

𝑃SCMP = a!ℓ1;b!ℓ1; + a!ℓ2;c?ℓ2; + b!ℓ3;c?ℓ2; + b!ℓ4;a?ℓ2;
and directed mixed choice (DMP) where choice is mixed but from/to

the same participant, e.g.,

𝑃DMP = a!ℓ1;b!ℓ1; + a?ℓ2c?ℓ2; + a!ℓ3;b!ℓ3;



Separation and Encodability in Mixed Choice Multiparty Sessions LICS ’24, July 8–11, 2024, Tallinn, Estonia

p ⊳ (q?ℓ (𝑥) .𝑃 + 𝑅1) | q ⊳ (p!ℓ ⟨𝑣⟩.𝑄 + 𝑅2) | 𝑀
−→ p ⊳ 𝑃{𝑣/𝑥} | q ⊳𝑄 | 𝑀 [Σ]

p ⊳ if tt then 𝑃1 else 𝑃2 | 𝑀 −→ p ⊳ 𝑃1 | 𝑀 [If-tt]

p ⊳ if ff then 𝑃1 else 𝑃2 | 𝑀 −→ p ⊳ 𝑃2 | 𝑀 [If-ff]

𝑀 ≡ 𝑀1 −→ 𝑀2 ≡ 𝑀′ ⇒ 𝑀 −→ 𝑀′
[Cong]

𝑃 ≡𝛼 𝑄 ⇒ 𝑃 ≡ 𝑄 𝜇X.𝑃 ≡ 𝑃{𝜇X.𝑃/X} 𝑀 ≡𝛼 𝑀′ ⇒ 𝑀 ≡ 𝑀′

𝑃 ≡ 𝑄 ⇒ p ⊳ 𝑃 | 𝑀 ≡ p ⊳𝑄 | 𝑀 p ⊳ 0 | 𝑀 ≡ 𝑀

𝑀 | 𝑀′ ≡ 𝑀′ | 𝑀 (𝑀 | 𝑀′) | 𝑀′′ ≡ 𝑀 | (𝑀′ | 𝑀′′)
Figure 2: Reduction and structure congruence of MCMP

This makes the expressiveness analysis very subtle and comprehen-

sive: we prove 20 new separation results and 8 new encodability

results among 9 subcalculi of MCMP and 4 variants of CMV
+
[8].

Our observation is, by allowing a combination of different commu-
nication patterns in a single choice, we can cross the boundary of

expressiveness. For example, MCMP is strictly more expressive

than SCMP and can express the pattern ★; and SCMP is strictly

more expressive than DMP and can express pattern M; but DMP

and MP have the same expressive power and belong to the bottom.

The highlight is, in spite of the fact that CMV
+
enables creating

an infinite number of interleaved binary mixed sessions with unre-

stricted names, MCMP (a single mixed choice multiparty session)

cannot be emulated by CMV
+
. In our results, properties such as

communication safety and deadlock-freedom (if a session terminates,

then all participants terminate, completing all actions) ensured by

theMCMP typing system play the key role to prove the encodability

results.

Contributions. (1) We first introduce the calculus, types and a

typing system of mixed choice multiparty sessions (MCMP) which

subsume the types and typability of the classical synchronous mul-

tiparty sessions (MP). We follow a general MP typing system in [56]

which does not require global types. We then prove communication
safety and deadlock-freedom of typable sessions. (2) We analyse

the expressive power of mixed choice in MCMP showing that it

is strictly more expressive than choice in MP. Therefore we use 8

subcalculi of MCMP deliberately chosen to explain the features of

choice that raise expressiveness and compare to 4 variants of CMV
+
.

We prove 8 encodability and 20 separation results among the 13

calculi, introducing 8 new good encodings. The omitted proofs and

more details can be found in [52].

2 MIXED CHOICE MULTIPARTY SESSION
𝜋-CALCULUS (MCMP-CALCULUS)

This section introduces the syntax and operational semantics for

the mixed choice multiparty session calculus (MCMP-calculus), then

define its subcalculi.

2.1 Syntax of MCMP-Calculus and its Family
The syntax of theMCMP-calculus follows the simplest synchronous

multiparty session calculus [19, 66] (which consists of only a single

multiparty session without session delegations), extended with

nondeterministic mixed choices.

Definition 2.1 (syntax). Assume a set of participants P (p, q, r, . . . )
and a set of labels L (ℓ, ℓ′, . . . ). Values contain either variables

(𝑥,𝑦, 𝑧, . . .) or constants; 𝜋, 𝜋 ′, . . . denote prefixes; X, Y, . . . denote
process variables; 𝑃,𝑄, . . . denote processes and 𝑀,𝑀′, . . . denote
multiparty sessions (often called sessions).

𝑣 ::= 𝑥,𝑦, 𝑧, . . . | 1, 2, . . . | tt, ff (variables, numbers, booleans)

𝜋 ::= p!ℓ ⟨𝑣⟩ | p?ℓ (𝑥) (output prefix, input prefix)

𝑃 ::= 0 | X | 𝜇X.𝑃 (nil, proc var, recursion)

| ∑
𝑖∈𝐼 𝜋𝑖 .𝑃𝑖 (mixed choice)

| if 𝑣 then 𝑃 else 𝑃 (conditional)

𝑀 ::= p ⊳ 𝑃 | 𝑀 | 𝑀 (multiparty session, parallel)

Output prefix p!ℓ ⟨𝑣⟩which selects label ℓ at participant p by sending
value 𝑣 ; and the matching input prefix, p?ℓ (𝑥) which receives a

value with label ℓ from participant p and substitutes the value as

variable 𝑥 . We often omit values and variables (p!ℓ/p?ℓ) and labels

for a singleton prefix (p!⟨𝑣⟩/p?(𝑥)).
Process terms include a nil, 0, process variables and recursions

𝜇X.𝑃 where X is a binder. We assume 𝑃 is guarded [19, § 2], i.e.,𝜇X.X
is not allowed. The nondeterministicmixed choice

∑
𝑖∈𝐼 𝜋𝑖 .𝑃𝑖 (𝐼 ≠ ∅)

is a sum of prefixed processes. Conditional if 𝑣 then 𝑃1 else 𝑃2
is standard. We assume standard 𝛼-conversion, capture-avoiding

substitution, 𝑃{𝑣/𝑥} and 𝑃{𝑄/X}; and use function fv(𝑃) to denote

free variables in 𝑃 . We often omit 0.
A multiparty session is a parallel composition of a participant

process (denoted by p ⊳ 𝑃 ) where process 𝑃 plays the role of partici-

pant p, and can interact with other processes playing other roles in

𝑀 . We assume all participants in𝑀 are different.

We sometimeswrite 𝜋1 .𝑃1+· · ·+𝜋𝑛 .𝑃𝑛 for
∑
𝑖∈𝐼 𝜋𝑖 .𝑃𝑖 andΠ𝑖∈𝐼p𝑖 ⊳

𝑃𝑖 for p1 ⊳ 𝑃1 | · · · | p𝑛 ⊳ 𝑃𝑛 with 𝐼 = {1, .., 𝑛}. We omit Π if 𝐼 is a

singleton, i.e., we write p0 ⊳𝑃0 for Π𝑖∈{0}p𝑖 ⊳𝑃𝑖 . Similarly for Σ. We

often use 𝑃 +𝑄 to denote

∑
𝑖∈{1,..,𝑛} 𝜋𝑖 .𝑃𝑖 with 𝑃 =

∑
𝑖∈{1,..,𝑘 } 𝜋𝑖 .𝑃𝑖

and 𝑄 =
∑
𝑖∈{𝑘+1,..,𝑛} 𝜋𝑖 .𝑃𝑖 , and assume commutativity and asso-

ciativity of +. We also use the nested choices

∑
𝑗∈ 𝐽

∑
𝑖∈𝐼 𝑗 𝜋𝑖 𝑗 .𝑃𝑖 𝑗

with 𝐽 = {1..𝑛} to denote

∑
𝑖∈𝐼1 𝜋𝑖 𝑗 .𝑃𝑖 𝑗 + · · ·∑𝑖∈𝐼𝑛 𝜋𝑖 𝑗 .𝑃𝑖 𝑗 .

We next define subcalculi of MCMP which are used in the paper.

Definition 2.2 (Family of MCMP).

• MSMP: Multiparty Mixed Separate Choice per Participant, which
is defined replacing

∑
𝑖∈𝐼 𝜋𝑖 .𝑃𝑖 by

∑
𝑖∈𝐼

∑
𝑗∈ 𝐽𝑖 p𝑖 !ℓ𝑖 𝑗 ⟨𝑣𝑖 𝑗 ⟩.𝑃𝑖 𝑗 +∑

𝑘∈𝐾
∑
ℎ∈𝐻𝑘 q𝑘?ℓ𝑘ℎ (𝑣𝑘ℎ).𝑃𝑘ℎ where {p𝑖 }𝑖∈𝐼 ∩{q𝑘 }𝑘∈𝐾 = ∅ and

∪𝑖∈𝐼 𝐽𝑖 ∪ ∪𝑘∈𝐾𝐻𝑘 ≠ ∅, i.e., the choices to/from each participant

is either outputs or inputs.

• SCMP: Separate Choice Multiparty Session where we have a sum

of inputs

∑
𝑖∈𝐼 p𝑖?ℓ𝑖 (𝑥𝑖 ).𝑃𝑖 or a sum of outputs

∑
𝑖∈𝐼 p𝑖 !ℓ𝑖 ⟨𝑥𝑖 ⟩.𝑃𝑖

with 𝐼 ≠ ∅.
• DMP: Directed Mixed Choice Multiparty Session where we have

a mixed choice but from/to the same participant, i.e., a mixed

choice

∑
𝑖∈𝐼 p?ℓ𝑖 (𝑥𝑖 ) .𝑃𝑖 +

∑
𝑗∈ 𝐽 p!ℓ𝑗 ⟨𝑣 𝑗 ⟩.𝑃 𝑗 with 𝐼 ∪ 𝐽 ≠ ∅.

• SMP: Separate Choice Multiparty Session where we have a sum

of inputs

∑
𝑖∈𝐼 p?ℓ𝑖 (𝑥𝑖 ) .𝑃𝑖 or a sum of outputs

∑
𝑖∈𝐼 p!ℓ𝑖 ⟨𝑥𝑖 ⟩.𝑃𝑖

with 𝐼 ≠ ∅ from the same participant p.
• MP: Multiparty Session in [19, 66] where we only have a sum of

inputs from the same participant

∑
𝑖∈𝐼 p?ℓ𝑖 (𝑥𝑖 ) .𝑃𝑖 with 𝐼 ≠ ∅ and

a single selection p!ℓ ⟨𝑣⟩.𝑃 .
• MCBS: Mixed Choice Binary Session where MCMP is limited to

two parties only.
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• SCBS: Separate Choice Binary Session where SCMP is limited to

two parties only. The binary version of MSMP is syntactically

same as SCBS.

• BS: Binary Session where MP is limited to two parties only.

Note that MCMP ⊃ MSMP ⊃ SCMP ⊃ SMP ⊃ MP; and MSMP

⊃ DMP ⊃ SMP; MCBS ⊃ MSBS (= SCBS) ⊃ BS; and DMP ⊃ MCBS;

SCMP ⊃ SCBS; and MP ⊃ BS where ⊃ indicates a strict inclusion.

Figure 5 shows these set inclusions.

Example 2.1 (A Family of MCMP). We list examples of each calculi

from syntactically larger ones. Consider:

MCMP 𝑃1 = a!ℓ .b?ℓ + b!ℓ .c!ℓ + a?ℓ .a?ℓ
MSMP 𝑃2 = a?ℓ .b!ℓ + b!ℓ .c?ℓ + c?ℓ .a!ℓ
SCMP 𝑃3 = a?ℓ .b!ℓ + b?ℓ .c?ℓ + c?ℓ .a?ℓ
DMP 𝑃4 = a!ℓ1 .b!ℓ + a!ℓ2 .c?ℓ + a?ℓ .a?ℓ
SMP 𝑃5 = a!ℓ1 .b!ℓ + a!ℓ2 .c?ℓ + a!ℓ3 .a?ℓ
MP 𝑃6 = a?ℓ1 .b!ℓ + a?ℓ2 .c?ℓ + a?ℓ3 .a!ℓ
MP 𝑃7 = a?ℓ1 .b!ℓ1 + a?ℓ2 .b?ℓ2
MCBS 𝑃8 = a?ℓ1 .a!ℓ1 + a!ℓ2 .a?ℓ3
SCBS 𝑃9 = a!ℓ1 .a!ℓ1 + a!ℓ2 .a?ℓ2
BS 𝑃10 = 𝜇X.(a?ℓ1 .a!ℓ1 + a?ℓ1 .a!ℓ2 + a?ℓ2 .a?ℓ2 .X)
Untypable 𝑃11 = 𝜇X.(a?ℓ1 .a?ℓ1 + a?ℓ1 .a?ℓ2 + a?ℓ2 .a?ℓ2 .X)

The table is read as follows: 𝑃1 is MCMP but not MSMP; 𝑃2 is MSMP

(hence MCMP) but neither SCMP nor DMP; 𝑃3 is SCMP but neither

DMP nor SMP; 𝑃4 is DMP but neither SCMP nor SMP; 𝑃5 is SMP

but not MP; 𝑃6 and 𝑃7 are MP but not MCBS; 𝑃8 is MCBS but not

MP; 𝑃9 is SCBS but not MP; 𝑃10 is BS. All processes except 𝑃11 are

typable with appropriate types by rules defined in Definition 4.1.

Notice that 𝑃10 holds the two inputs from a with the same label ℓ1
in the choice with the different outputs (ℓ1 and ℓ2) to a, but it will
be typable using subtying and rule [TΣ] in Definition 4.1.

2.2 Reduction Semantics of MCMP-Calculus
The reduction and structural congruence rules are defined in Fig-

ure 2. Rule [Σ] represents mixed choice communication: it non-

deterministically chooses a pair of an output and an input with the

same label ℓ , and at the same time, value 𝑣 is passed from the sender

q to receiver p. Rule [Cong] closes under structural congruence.

As an example of reductions, let us define𝑀 as:

p ⊳ (q?ℓ1 (𝑥).𝑃1 + q!ℓ2⟨𝑣2⟩.𝑃2) | q ⊳ (p!ℓ1⟨𝑣1⟩.𝑄1 + p?ℓ2 (𝑦) .𝑄2)
Then by [Σ], we have:

𝑀 −→ p ⊳ 𝑃1{𝑣1/𝑥} | q ⊳𝑄1 or𝑀 −→ p ⊳ 𝑃2 | q ⊳𝑄2{𝑣2/𝑦}
We define a multistep as −→∗= (≡ ∪ −→)∗ (zero or more steps)

and −→+
(one or more steps). Let −→𝜔

denote an infinite sequence

of steps. We call a term convergent if it does not have any infinite

sequence of steps; and write 𝑀 −̸→ if there is no 𝑀′
such that

𝑀 −→ 𝑀′
.

To showcase our theory, we start with a leader election protocol
(which is used similar to [42] for a separation result in § 6).

Example 2.2 (Leader election protocol). Consider a protocol that

involves five participants (a, b, c, d, and e), interacting in two stages

to elect a leader.

a

b

cd

e

In the first stage (depicted by the blue circle)

two times a process x asks a process y to

become leader by sending y!leader that is
accepted by y via x?leader . The respective
two receivers of the first stage continue in

the same way asking each other in a second

stage (depicted as red star). The receiver in

the second stage finally announces its election as leader by sending

station!elect to external station, where Station = station ⊳ 𝑃station

with 𝑃station =
∑
i∈{a,b,c,d,e}

(
i?elect .

∑
i∈{a,b,c,d,e} i!del.0

)
.

Election = a ⊳ 𝑃a | b ⊳ 𝑃b | c ⊳ 𝑃c | d ⊳ 𝑃d | e ⊳ 𝑃e
𝑃a = (e!leader .0

+ b?leader . (c!leader .0 + d?leader .station!elect .0)
+ station?del.0)

𝜎 = [a ↦→ b, b ↦→ c, c ↦→ d, d ↦→ e, e ↦→ a]
𝑃b = 𝑃a𝜎 𝑃c = 𝑃b𝜎 𝑃d = 𝑃c𝜎 𝑃e = 𝑃d𝜎

The complete multiparty session is Election | Station. The partic-
ipants in Election are symmetric w.r.t. 𝜎 , for instance 𝑃d = 𝑃c𝜎 =

(c!leader .0 + e?leader . (a!leader .0 + b?leader .station!elect .0)
+ station?del.0). After thewinner is announced to station, it garbage
collects the process z that did not participate in the first stage by

sending z!del and then terminates itself.

3 MIXED CHOICE SYNCHRONOUS
MULTIPARTY SESSION TYPES

This section introduces the syntax of MCMP types, which describe

the interactions between participants at the end-point level. The
syntax is based on [19], extending to mixed choice.

Definition 3.1 (MCMP types and local contexts). Assume a set of

participants P (p, q, r, . . . ) and a set of labels L (ℓ, ℓ′, . . . ). The set
of local types, T with 𝑇 ∈ T, are defined as:

𝑈 ::= nat | bool (numeric, boolean)

† ::= ! | ? (message send, message receive)

𝑇 ::= end | t | 𝜇t.𝑇 (inaction, recursion variable and type)

| ∑
𝑖∈𝐼p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 (mixed choice)

Δ ::= ∅ | Δ, p:𝑇 (local contexts)

Payload type 𝑈 ranges over ground types (nat, bool). Termina-

tion is represented by end. Recursive types are 𝜇t.𝑇 , with t as the
recursive variable. We assume standard capture-avoiding substi-

tution and assume that recursive types are guarded, e.g., for type
𝜇t1 .· · · 𝜇tn .t is not allowed. We take the equirecursive view, i.e. 𝜇t.𝑇
is identified with 𝑇 {𝜇t.𝑇/t}, see [19, Notation 3.5]. ftv(𝑇 ) denotes a
set of free type variables in 𝑇 and 𝑇 is closed if ftv(𝑇 ) = ∅.

Mixed choice type
∑
𝑖∈𝐼p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 enables choice between a

non-empty collection of input or output local types, p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 .
Each type denotes sending (!) or receiving (?) a message of label

ℓ𝑖 with a payload type𝑈𝑖 from or to some different participant p𝑖
and continues as 𝑇𝑖 . We often abbreviate input and output types as

p†⟨𝑈 ⟩;𝑇 or p†ℓ ;𝑇 if a label or payload is not important; and omit

trailing end types. Similarly with processes, we omit

∑
when 𝐼

is a singleton,

∑
𝑖∈{1}p𝑖†ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 = p

1
†ℓ1⟨𝑈1⟩;𝑇1. We abbreviate

p
1
†ℓ1⟨𝑈1⟩;𝑇1+ · · · +p𝑛†ℓ𝑛 ⟨𝑈𝑛⟩;𝑇𝑛 to denote

∑
𝑖∈{1,..,𝑛}p𝑖†ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖

and write

∑
𝑗∈ 𝐽

∑
𝑖∈𝐼 𝑗 p𝑖 𝑗†ℓ𝑖 𝑗 ⟨𝑈𝑖 𝑗 ⟩;𝑇𝑖 𝑗 with 𝐽 = {1..𝑛} for
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∑
𝑖∈𝐼1p𝑖1†ℓ𝑖1⟨𝑈𝑖1⟩;𝑇𝑖1+ · · · +

∑
𝑖∈𝐼𝑛p𝑖𝑛†ℓ𝑖𝑛 ⟨𝑈𝑖𝑛⟩;𝑇𝑖𝑛 . A choice is com-

mutative and associative with +. Function pt(𝑇 ) returns a set of
participants in 𝑇 defined as: pt(end) = pt(t) = ∅; pt(𝜇t.𝑇 ) = pt(𝑇 );
and pt(∑𝑖∈𝐼p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 ) = {p𝑖 }𝑖∈𝐼 ∪

⋃
𝑖∈𝐼 pt(𝑇𝑖 ); and function

pre(𝑇 ) returns prefixes of 𝑇 defined as: pre(end) = pre(t) = ∅;
pre(𝜇t.𝑇 ) = pre(𝑇 ); and pre(∑𝑖∈𝐼p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 ) = {p𝑖†𝑖 }𝑖∈𝐼 .

We define the duality function as ! = ? and ? = !.
Type

∑
𝑖∈𝐼p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 is well-formed if:

[L-ℓ] (∀𝑖≠ 𝑗∈𝐼 . p𝑖†𝑖 = p𝑗†𝑗 =⇒ ℓ𝑖 ≠ ℓ𝑗 )
i.e., for a mixed choice, any matching choice prefixes must have dis-

tinguishable labels. We write ⊢ 𝑇 if all choices in𝑇 are well-formed.

Hereafter we assume all types are well-formed. Note that typable
mixed choice processes do not have the same well-formedness re-

quirement as local types, allowing non-deterministic process choice

using the same label (see 𝑃10 in Example 2.1 and Example 4.1).

A local context Δ abstracts the behaviour of a set of participants

where we assume for all p ∈ dom(Δ), ftv(Δ) = ∅.

3.1 Subtyping of MCMP
We define the subtyping relation for mixed choice local types, which

subsumes the standard subtyping [6, 11, 14].

Definition 3.2 (Subtyping). The subtyping relation ⩽ is coinduc-
tively defined by:

end ⩽ end [SEnd]

∀𝑖∈𝐼 ,𝑇𝑖 ⩽ 𝑇 ′
𝑖∑

𝑖∈𝐼 p!ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 ⩽
∑
𝑖∈𝐼∪𝐽 p!ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇 ′

𝑖

[SSl]

∀𝑖∈𝐼 ,𝑇𝑖 ⩽ 𝑇 ′
𝑖∑

𝑖∈𝐼∪𝐽 p?ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 ⩽
∑
𝑖∈𝐼 p?ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇 ′

𝑖

[SBr]

∀𝑘∈𝐾,𝑇𝑘 ⩽ 𝑇 ′
𝑘

∀𝑖≠𝑗∈𝐾, pre(𝑇𝑖 ) ∩ pre
(
𝑇𝑗

)
= ∅∑

𝑘∈𝐾𝑇𝑘 ⩽
∑
𝑘∈𝐾𝑇

′
𝑘

[SΣ]

𝑇1{𝜇t.𝑇1/t} ⩽ 𝑇2
𝜇t.𝑇1 ⩽ 𝑇2

[S𝜇L]
𝑇1 ⩽ 𝑇2{𝜇t.𝑇2/t}
𝑇1 ⩽ 𝜇t.𝑇2

[S𝜇R]

We write Δ1⩽Δ2 iff for all p ∈ dom(Δ1) ∩ dom(Δ2), Δ1 (p)⩽Δ2 (p)
and for all p ∈ dom(Δ1) \ dom(Δ2) and q ∈ dom(Δ2) \ dom(Δ1),
Δ1 (p) = Δ2 (q) = end.

The above subtyping rules without [SΣ] are the standard from [6, 11,

14]: a smaller type has smaller internal choices [SSl]; larger external

sums are smaller [SBr]. The subtyping of a mixed choice which

combines selection and branching (the premise is inferred by either

[SSl] or [SBr]) is invariant [SΣ]. The side condition given by pre(𝑇 ) in
[SΣ] ensures no overlap with [SSl] and [SBr].

Example 3.1 (Mixed choice subtyping). The mixed choice subtype

judgement is given by [SΣ]. This rule partitions each mixed-choice

term into a sum of non-mixed choices, i.e., (p?ℓ1+p?ℓ2) + (p!ℓ3) ⩽
(p?ℓ1) + (p!ℓ3+p!ℓ4). Standard subtyping rules ([SSl] and [SBr]) are

then applied pair-wise to each non-mixed choice.

.

.

.

p?ℓ1;𝑇1+p?ℓ2;𝑇2 ⩽ p?ℓ1;𝑇1
[SBr]

.

.

.

p!ℓ3;𝑇3 ⩽ p!ℓ3;𝑇3+p!ℓ4;𝑇4
[SSl]

p?ℓ1;𝑇1+p?ℓ2;𝑇2+p!ℓ3;𝑇3 ⩽ p?ℓ1;𝑇1+p!ℓ3;𝑇3+p!ℓ4;𝑇4
[SΣ]

We can alsomix different participants such as: (p?ℓ1+p?ℓ2) + (q!ℓ3) ⩽
(p?ℓ1) + (q!ℓ3+q!ℓ4).

∑
𝑖∈𝐼p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖

p𝑗q𝑗†𝑗 ℓ𝑗 ⟨𝑈 𝑗 ⟩−−−−−−−−−−−→𝑇𝑗 ( 𝑗 ∈ 𝐼 ) [Sum]

p : 𝑇 {𝜇t.𝑇/t} 𝜆−→p : 𝑇 ′

p : 𝜇t.𝑇
𝜆−→p : 𝑇 ′

[L𝜇]

p : 𝑇1
pq!ℓ ⟨𝑈 ⟩
−−−−−−−→p : 𝑇 ′

1
q : 𝑇2

qp?ℓ ⟨𝑈 ⟩
−−−−−−−→q : 𝑇 ′

2

Δ, p : 𝑇1, q : 𝑇2
pq:ℓ ⟨𝑈 ⟩
−−−−−−→Δ, p : 𝑇 ′

1
, q : 𝑇 ′

2

[RPass]

Figure 3: Labelled transition systems of types and contexts

Proposition 3.1 (Subtyping). Suppose ⊢ 𝑇𝑖 (𝑖 = 1, 2). (a) 𝑇1 ⩽ 𝑇2 is
a preorder; and (b) Δ1 ⩽ Δ2 is a preorder.

Proof. Induction on delivation of 𝑇1 ⩽ 𝑇2. □

Remark 3.1 (Subtyping). Our subtyping relation subsumes the

standard branching-selection subtyping relation by omitting [SΣ].

This inclusion is important for proving the expressiveness results.

If we replace [SΣ], [SBr] and [SSl] by the following simpler rule [SSet]:

∀𝑖∈𝐼 ,𝑇𝑖 ⩽ 𝑇 ′
𝑖∑

𝑖∈𝐼 p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 ⩽
∑
𝑖∈𝐼∪𝐽 p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇 ′

𝑖

[SSet]

then Lemma 3.1(2) does not hold. The lemma is crucial for prov-

ing deadlock-freedom of the typed processes (Theorem 5.2), see

Remark 3.2(2).

3.2 Labelled Transition System (LTS) of Types
and Contexts

This subsection defines the LTS of types and contexts. The be-

havioural properties (safety and deadlock-freedom) of local con-

texts defined by the LTS are used to prove the main theorems of

typed processes in § 5.

Local Types: The set of actions of local types is defined as ActL =

{pq!ℓ ⟨𝑈 ⟩, pq?ℓ ⟨𝑈 ⟩ | p, q ∈ P, ℓ ∈ L} with 𝜆 ∈ ActL; and the set
of local contexts is defined as R = {Δ}. The transition relation

𝜆−→ ⊆ R × ActL × R is defined by [Sum] and [L𝜇] in Figure 3.

Local Contexts: The set of actions of local contexts is defined

as Act = {pq:ℓ ⟨𝑈 ⟩ | p, q ∈ P, ℓ ∈ L}. The transition relation

pq:ℓ ⟨𝑈 ⟩
−−−−−−−→ ⊆ P(R) × Act × P(R) is defined by [RPass] in Figure 3.

Notice that the LTS is defined between closed types. The seman-

tics for local types and contexts follow the standard concurrency

semantics [37]. Label pq!ℓ ⟨𝑈 ⟩ denotes that participant p may send

a message with label ℓ of type 𝑈 to participant q. Dually, label
pq?ℓ ⟨𝑈 ⟩ denotes that participant p may receive a message with la-

bel ℓ of type𝑈 from participant q. Rule [Sum] chooses one of choices

and rule [L𝜇] is standard. Rule [RPass] states that if two roles exhibit

dual local labels, they can synchronise and perform action pq:ℓ ⟨𝑈 ⟩.

3.3 Properties for Mixed Choice Multiparty
Session Types

Definition 3.3 (Local context reductions). We write Δ −→ Δ′
if

Δ
pq:ℓ ⟨𝑈 ⟩
−−−−−−−→Δ′

; Δ −→+ Δ′
for its transitive closure; Δ −→∗ Δ′

for

either Δ = Δ′
or Δ −→+ Δ′

; and Δ
pq:ℓ ⟨𝑈 ⟩
−−−−−−−→ if ∃Δ′ . Δ

pq:ℓ ⟨𝑈 ⟩
−−−−−−−→Δ′

.
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To prove the subject reduction theorem, we first introduce the

safety property from [56, Definition 4.1]. It states that there is

no communication mismatch. This property is used to prove the

subject reduction theorem and communication safety.

Definition 3.4 (Safety property). Co-inductive property 𝜑 is a

safety property of local contextΔ if and only if for all {p : 𝑇1, q : 𝑇2} ⊆

Δ ∈ 𝜑 , if p : 𝑇1
pq!ℓ ⟨𝑈 ⟩
−−−−−−−→ and q : 𝑇2

qp?ℓ ′ ⟨𝑈 ′ ⟩
−−−−−−−−→, then Δ

pq:ℓ ⟨𝑈 ⟩
−−−−−−−→Δ′

and

Δ′ ∈ 𝜑 . The largest safety property is a union of all safety proper-

ties. We say Δ is safe and write safe(Δ) if Δ ∈ 𝜑 and 𝜑 is a safety

property.

The safety property says that if the output and input actions are

ready each other, they can synchronise with the label provided by

the output ℓ and they have the same payload types (𝑈 = 𝑈 ′
) (note

that the base types do not have subtyping), and it is preserved after

a step. Notice that the safety is not symmetric–the label ℓ and type

𝑈 of the selection are always taken, while some label of a branching
needs to be reducible.

Next we define deadlock-freedom following [56, Figure 5(2)]. It

states that if typing context Δ terminates, all participants typed by

Δ terminate as nil processes (typed by end).

Definition 3.5 (Deadlock-freedom). Local context Δ is deadlock-
free if Δ −→∗ Δ′ −̸→, then∀p ∈ dom(Δ′) . Δ′ (p) = end. We denote

dfree(Δ) if Δ is deadlock-free.

The following is the key lemma to ensure communication safety

and deadlock-freedom of typed sessions.

Lemma 3.1 (Subtyping and properties).
(1) If Δ ⩽ Δ′

and safe(Δ′), then (a) safe(Δ). (b) If Δ −→ Δ′′
,

then there exists Δ′′′
such that Δ′ −→ Δ′′′

and Δ′′ ⩽ Δ′′′

and safe(Δ′′′).
(2) If Δ ⩽ Δ′

, and safe(Δ′) and dfree(Δ′), then (a) dfree(Δ).
(b) If Δ −→ Δ′′

, then there exists Δ′′′
such that Δ′ −→ Δ′′′

and Δ′′ ⩽ Δ′′′
and dfree(Δ′′′).

(3) Checking safe(Δ) and dfree(Δ) is decidable.

Proof. (1,2) Induction on Δ and Δ −→ Δ′
; and (3) Similar with

[55, Appendix K]. □

Remark 3.2 (Deadlock-freedom). (1) LetΔ = p : q!ℓ1+q!ℓ2, q : p?ℓ1.
Then we can check dfree(Δ) since the only possible transition is

Δ
pq:ℓ1−−−−→Δ′

. But, for Δ′ = p : q!ℓ2, q : p?ℓ1 such that Δ′ ⩽ Δ, we
have ¬dfree(Δ′). Hence without the safe(Δ) assumption, dfree(Δ)
is not preserved by subtyping.

(2) Assume Δ2 = p : q!ℓ1+q!ℓ2, q : p?ℓ1+p?ℓ2. Then safe(Δ2) and
dfree(Δ2). Suppose we apply a wrong subtyping rule [SSet] in Re-

mark 3.1 to obtain Δ3 = p : q!ℓ1, q : p?ℓ2. Then ¬safe(Δ3) and
¬dfree(Δ3), i.e. neither safety nor deadlock-freedom is preserved.

Proposition 3.2 (Local context properties). (1) dfree(Δ) ̸=⇒
safe(Δ); and (2) safe(Δ) ̸=⇒ dfree(Δ).

Proof. (1) Let Δ3 = p : 𝜇t.q!ℓ1;t, q : 𝜇t.p?ℓ1;t, r : r′!ℓ2⟨bool⟩,
r′ : r?ℓ2⟨nat⟩. Then Δ3 is deadlock-free because Δ3

pq:ℓ1−−−−→Δ3. But

Δ3 is not safe because nat ≠ bool. (2) Let Δ2 = p : q!ℓ . Then Δ2

is vacuously safe following Definition 3.4, but not deadlock-free

because Δ2 −̸→ and Δ2 (p) ≠ end. □

Γ, 𝑥 :nat ⊢ 𝑥 ⊲ nat [Gr]

Γ ⊢ 1, 2, .. ⊲ nat [Nat] Γ ⊢ tt, ff ⊲ bool [Bool]

Γ, X : 𝑇 ⊢ X ⊲𝑇 [TVar] Γ ⊢ 0 ⊲ end [TInact]

Γ ⊢ 𝑃 ⊲𝑇 Γ ⊢ 𝑣 ⊲𝑈
Γ ⊢ p!ℓ ⟨𝑣⟩.𝑃 ⊲ p!ℓ ⟨𝑈 ⟩;𝑇 [TSnd]

Γ, 𝑥 : 𝑈 ⊢ 𝑃 ⊲𝑇

Γ ⊢ p?ℓ (𝑥) .𝑃 ⊲ p?ℓ ⟨𝑈 ⟩;𝑇 [TRcv]

Γ ⊢ 𝑣 ⊲ bool Γ ⊢ 𝑃𝑖 ⊲𝑇 𝑖 ∈ {1, 2}
Γ ⊢ if 𝑣 then 𝑃1 else 𝑃2 ⊲𝑇

[TIf]

∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽𝑖 . (Γ ⊢ 𝜋𝑖 .𝑃 𝑗 ⊲ p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 )
Γ ⊢ ∑𝑖∈𝐼 ∑𝑗∈ 𝐽𝑖 𝜋𝑖 .𝑃 𝑗 ⊲

∑
𝑖∈𝐼p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖

[TΣ]

Γ, X : 𝑇 ⊢ 𝑃 ⊲𝑇

Γ ⊢ 𝜇X.𝑃 ⊲𝑇
[TRec]

Γ ⊢ 𝑃 ⊲𝑇 𝑇 ⩽ 𝑇 ′

Γ ⊢ 𝑃 ⊲𝑇 ′ [T⩽]

∀𝑖 ∈ 𝐼 ⊢ 𝑃𝑖 ⊲𝑇𝑖 safe({p𝑖 :𝑇𝑖 }𝑖∈𝐼 )
⊢ Π𝑖∈𝐼 p𝑖 ⊳ 𝑃𝑖 ⊲ {p𝑖 :𝑇𝑖 }𝑖∈𝐼

[TSess+]

Figure 4: Typing rules for MCMP-calculus.

4 TYPING SYSTEM OF MCMP-CALCULUS
We introduce the typing system, extending the system in [19] and

highlight the three key rules which differ from [19].

Definition 4.1 (Typing system). We define a shared context as:

Γ ::= ∅ | Γ, X : 𝑇 | Γ, 𝑥 :nat | Γ, 𝑥 :bool
We write Γ, Γ′ if dom(Γ) ∩ dom(Γ′) = ∅ and use the notation Γ(𝑥)
or Γ(X) to denote a constant type of 𝑥 and local type of X. Figure 4
defines the three judgements:

Γ ⊢ 𝑣 ⊲𝑈 Γ ⊢ 𝑃 ⊲𝑇 ⊢ 𝑀 ⊲ Δ

where judgement Γ ⊢ 𝑣 ⊲𝑈 is read as ‘context Γ types value 𝑣 with

type𝑈 ’ and judgement Γ ⊢ 𝑃 ⊲𝑇 as ‘context Γ types process 𝑃 with

local type 𝑇 ’. Judgement ⊢ 𝑀 ⊲ Δ is read as ‘multiparty session𝑀

is typed with local context Δ’.

We highlight three rules in Figure 4. These rules are different from

the rules for MP in [19]. Rule [TInact] assigns a nil by end. Rules
[TSnd] and [TRcv] type the output and input with the send and input

types, respectively. Notice that we usually type the input branching

instead of a single receiver as given by [TRcv], but our choice rule

allows to type both input and output are mixed, subsuming the

standard input branching rule ([T-INPUT-CHOICE] in [19]). Typing

recursion and conditional is standard by [TVar], [TRec] and [TIf]. Rule

[T⩽] is a subsumption rule.

Typing of mixed choice is given by [TΣ]. We motivate the double

sum in the conclusion by considering Example 4.1(1) below, in

which two branches (q!ℓ1 .𝑄 and q!ℓ1 .𝑅) have a common prefix and

both 𝑄 and 𝑅 are typed by the same local type, while the other two

branches are typed independently. The outer sum, then, groups

similarly prefixed branches (𝑅𝑖 =
∑
𝑗∈ 𝐽𝑖 𝜋𝑖 .𝑃 𝑗 ); each branch in 𝑅𝑖 is

then typed by a common p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 ; finally, the full term
∑
𝑖∈𝐼 𝑅𝑖

is typed as

∑
𝑖∈𝐼p𝑖†𝑖 ℓ𝑖 ⟨𝑈𝑖 ⟩;𝑇𝑖 .

Multiparty session𝑀 is typed by rule [TSess+] which assumes a

local context which consists of types of all participants is safe [56]

to guarantee the subject reduction.
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Example 4.1 (Typed and untyped mixed choice processes).
(1) We explain how we can type a process with duplicated labels

with a single label type. Consider:

𝑃 = q!ℓ1 .𝑄 + q!ℓ1 .𝑅 + q?ℓ2 .0 + r?ℓ2 .0
Assuming 𝑄 and 𝑅 have the same type 𝑇 , we first type:

⊢ q!ℓ1 .𝑄 + q!ℓ1 .𝑅 ⊲ q!ℓ1;𝑇 ⊢ q?ℓ2 .0 ⊲ q?ℓ2 ⊢ r?ℓ2 .0 ⊲ r?ℓ2
and then use rule [TΣ] to obtain: ∅ ⊢ 𝑃 ⊲ q!ℓ1;𝑇+q?ℓ2+r?ℓ2. Note
that a single local type can type two choices where 𝑄 and 𝑅

might have different behaviours but have the same type:

𝑄 = q!ℓ′⟨5⟩.0 and 𝑅 = q!ℓ′⟨105⟩.0
with ⊢ 𝑄 ⊲ q!ℓ′⟨nat⟩ and ⊢ 𝑅 ⊲ q!ℓ′⟨nat⟩.

(2) A combination of [TΣ] and subsumption [T⩽] makes a process

with duplicated labels with different output labels typable. Con-

sider:

𝑄1 = a!ℓ1⟨5⟩.0 and 𝑄2 = a!ℓ2⟨tt⟩.0
and let𝑇 = a!ℓ1⟨nat⟩ +a!ℓ2⟨bool⟩. Then ∅ ⊢ 𝑄1 ⊲𝑇 and ∅ ⊢ 𝑄2 ⊲𝑇

by [TSnd] and [T⩽]. Let 𝑅 = a?ℓ (𝑥).𝑄1 + a?ℓ (𝑥) .𝑄2. Then by [TΣ],

𝑅 is typable. Similarly, 𝑃10 in Example 2.1 is typable, but 𝑃11 is

not typable as the input choice types are co-variant.

(3) Session𝑀1 is typable but its reduction causes a deadlock:
𝑀1 = p ⊳ (q!ℓ .0+r!ℓ .0) | q ⊳ p?ℓ .0 | r ⊳ p?ℓ .0

(4) Session𝑀2 causes a type-error when reducing and is not gen-

erated from any typable session:

𝑀2 = q⊳(p!ℓ ⟨7⟩.0+p!ℓ ⟨tt⟩.0) | p⊳q?ℓ (𝑥).if 𝑥 then 𝑃1 else 𝑃2

𝑀2 is untypable since the corresponding type q!ℓ ⟨nat⟩+q!ℓ ⟨bool⟩
is not well-formed by [L-ℓ] in § 3.

(5) For Example 2.2, we have

⊢ 𝑃station ⊲
∑
i∈{a,b,c,d,e} i?elect;

∑
i∈{a,b,c,d,e} i!del;end

and ⊢ 𝑃a ⊲𝑇a, where 𝑇a is
e!leader ;end +
b?leader ; (c!leader ;end + d?leader ;station!elect;end) +
station?del;end

and ⊢ 𝑃b ⊲𝑇b with 𝑇b = 𝑇a𝜎 , . . . , ⊢ 𝑃e ⊲𝑇e with 𝑇e = 𝑇d𝜎 .

5 PROPERTIES OF TYPED MCMP-CALCULUS
This section proves the main properties of the typed calculus, start-

ing from the subject reduction theorem.

Lemma 5.1 (Subject Congruence). (1) Assume Γ ⊢ 𝑃 ⊲𝑇 . If 𝑃 ≡ 𝑄 ,
then Γ ⊢ 𝑄 ⊲𝑇 . (2) Assume ⊢ 𝑀 ⊲ Δ. If𝑀 ≡ 𝑀′, then ⊢ 𝑀′ ⊲ Δ.

Theorem 5.1 (Subject Reduction). Assume ⊢ 𝑀 ⊲ Δ. If𝑀 −→ 𝑀′,
then there exists such that ⊢ 𝑀′ ⊲ Δ′ and Δ −→∗ Δ′.

Proof. We use the lemma that safety property of local contexts

is closed under subtyping (Lemma 3.1). We then use the closure

under the structure congruence (Lemma 5.1). □

A consequence of Theorem 5.1 is that a well-typed process never

reduces to an error state. In MCMP, the error definition needs

to consider all possible synchronisations among multiple parallel

processes (see Example 5.1).

Definition 5.1 (Session error). A session𝑀 is a label error session
if:

𝑀 ≡ p ⊳
∑
𝑖∈𝐼 𝜋𝑖 .𝑃𝑖 | q ⊳

∑
𝑗∈ 𝐽 𝜋 𝑗 .𝑄 𝑗 | 𝑀′

where if there exists 𝜋𝑖 = q!ℓ ⟨𝑣⟩ with 𝑖 ∈ 𝐼 , then ∀𝑘 ∈ 𝑗 such that

𝜋𝑘 = p?ℓ𝑘 (𝑥𝑘 ), we have ℓ𝑘 ≠ ℓ (i.e., all input labelled processes are

unmatched). A session𝑀 is a value error process if:
𝑀 ≡ p ⊳ if 𝑣 then 𝑃1 else 𝑃2 | 𝑀′

with 𝑣 ∉ {tt, ff}
We call𝑀 is a session error if it is either label or value error session.

Example 5.1 (Label error session). A label error session is a session
that contains a pair of input and output with dual participants, but

does not have a correct labelled redex. For example, session

𝑀 = p ⊳ (q!ℓ1 .0 + r?ℓ2 .0) | q ⊳ p?ℓ2 .0 | r ⊳ p!ℓ2 .0
is a session error because it has an active redex (q!ℓ1 and p?ℓ2) that
is mismatched.𝑀 has a type context: Δ = p : (q!ℓ1+r?ℓ2), q : p!ℓ2, r :
p!ℓ2 and Δ is not safe. Note that session𝑀′

defined below is not a
session error.

𝑀′ = p ⊳ (q?ℓ1 .0 + q?ℓ2 .0) | q ⊳ p!ℓ2 .0

as in the standard (multiparty) session types [11, 56].

From Theorem 5.1 and the fact that error sessions are untypable

by a safe context, we have:

Corollary 5.1 (Communication Safety). Assume ⊢ 𝑀 ⊲ Δ. For all
𝑀′

, such that𝑀 −→∗ 𝑀′
,𝑀′

is not a session error.

Deadlock-freedom (from [56, Definition 5.1]) states that a process

either terminates, completing all actions, or makes progress.

Definition 5.2 (Deadlock-freedom). Session𝑀 is deadlock-free iff
for all 𝑀′

such that 𝑀 −→∗ 𝑀′
either (1) 𝑀′ −̸→ and 𝑀′ ≡ p ⊳ 0

for some p, or (2) there exists𝑀′′
such that𝑀′ −→ 𝑀′′

.

Theorem 5.2 (Deadlock-freedom). Assume ⊢ 𝑀 ⊲ Δ and dfree(Δ).
Then𝑀 is deadlock-free.

Proof. Assume 𝑀 −→∗ 𝑀′ −̸→ and ⊢ 𝑀′ ⊲ Δ′
. Then by The-

orem 5.1, there exists Δ′
such that Δ −→∗ Δ′ −̸→ and ⊢ 𝑀′ ⊲ Δ′

.

By the definition of dfree(Δ), Δ′ = {p𝑖 : end}𝑖∈𝐼 . Hence 𝑀′ =

Π𝑖∈𝐼 p𝑖 ⊳ 0 and𝑀′ ≡ p𝑘 ⊳ 0 for some 𝑘 ∈ 𝐼 by definition of ≡. □

Remark 5.1 (Properties). In this paper, we follow a general typing
system in [56] where a property 𝜑 of a session𝑀 is guranteed by

checking the same propery 𝜑 of its typing context Δ [56, Definition

5.1, Theorem 5.15]. Hence if we replace dfree(Δ) in Theorem 5.2 to

a liveness property in [20], then a typed session𝑀 can gurantee a

liveness property. We selected deadlock-freedom since it is used to

prove all the encodability results (see § 6). This methodology from

[56] is often called bottom-up. The classical MP [12, 30, 66] takes

the top-down approach where the user first writes a global type as
a protocol specification. See § 7 for further discussions.

6 HIERARCHY OF EXPRESSIVENESS OF
SESSION CALCULI

We analyse the expressive power of the mixed choice construct in

the MCMP-calculus by several separation and encodability results.

In all subcalculi of MCMP, we assume that they are typed and

deadlock-free. The hierarchy of expressiveness of the 9 subcalculi

and 4 variants of CMV
+
[8] is given in Figure 5. We label arrows

with a reference to the respective result. More precisely:
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Figure 5: Hierarchy of Session Calculi

• 𝐿1 𝐿2: There is no good encoding from 𝐿1 into 𝐿2.

• 𝐿1 𝐿2: There is a good encoding from 𝐿1 into 𝐿2 and the

arrow presents a new encodability result.

• 𝐿1 𝐿2: There is a good encoding from 𝐿1 into 𝐿2 that has

been proven in the literature.

If 𝐿1 ⊂ 𝐿2, then identity is a good encoding from 𝐿1 into 𝐿2. If 𝐿1
is placed straight below 𝐿2 then 𝐿1 ⊂ 𝐿2. Additional inclusions are

depicted by (e.g. SMP SCMP since SMP ⊂ SCMP).

A grey shape captures calculi of the same expressive power,

i.e., there is a good encoding between any pair of calculi in the

same shape (e.g., MCMP and MSMP). Similarly, arrows from (or

into) a shape are understood as an arrow from (or into) each cal-

culus of the shape (e.g. from 𝐿1 ∈ {MCBS, SCBS, BS} into 𝐿2 ∈
{DMP, SMP,MP}).

Encodability Criteria. We combine the encodability criteria

from [24] and [48]. Two steps are in conflict, if performing one

step disables the other step, i.e., if both reduce the same choice.

Otherwise they are distributable.𝑀 is distributable into𝑀1, . . . , 𝑀𝑛
if and only if we have𝑀 ≡ 𝑀1 | . . . | 𝑀𝑛 , where ≡ does not unfold

any recursions. We add ✓ (successful termination) to all calculi in

addition to 0 and type it in the same way as 0.𝑀 ⇓⋄✓ if𝑀 −→∗ 𝑀′

and𝑀′
has an unguarded occurrence of ✓. Moreover, let the equiv-

alence ≍ be a success respecting (weak) reduction bisimulation, i.e.,

if𝑀1 ≍ 𝑀2 then (1)𝑀1 −→ 𝑀′
1
implies𝑀2 −→∗ 𝑀′

2
and𝑀′

1
≍ 𝑀′

2
,

(2)𝑀2 −→ 𝑀′
2
implies𝑀1 −→∗ 𝑀′

1
and𝑀′

1
≍ 𝑀′

2
, and (3)𝑀1 ⇓⋄✓

iff𝑀2 ⇓⋄✓ .
We consider an encoding J·K to be good if it is

compositional: The translation of an operator op is a function

CPop on the translations of the subterms of the operator, i.e.,

Jop (𝑀1, . . . , 𝑀𝑛)K = CPop (J𝑀1K , . . . , J𝑀𝑛K) for all 𝑀1, . . . , 𝑀𝑛

with P = pt(𝑀1) ∪ . . . ∪ pt(𝑀𝑛).
name invariant: For every𝑀 and every substitution 𝜎 , it holds

that J𝑀𝜎K ≍ J𝑀K𝜎 .
operationally complete: For all𝑀 −→ 𝑀′

, J𝑀K −→≍ J𝑀′K.

operationally sound: For all J𝑀K −→ 𝑁 , there is an 𝑀′
such

that𝑀 −→ 𝑀′
and 𝑁 −→≍ J𝑀′K.

divergence reflecting: For every𝑀 , J𝑀K −→𝜔
implies𝑀 −→𝜔

.

success sensitive: For every𝑀 ,𝑀 ⇓⋄✓ iff J𝑀K ⇓⋄✓ .
distributability preserving: For every𝑀 and for all𝑀1, . . . , 𝑀𝑛

that are distributable within𝑀 there are some 𝑁1, . . . , 𝑁𝑛 that

are distributable within J𝑀K s.t. 𝑁𝑖 ≍ J𝑀𝑖K for all 1 ≤ 𝑖 ≤ 𝑛.

Operational correspondence is the combination of operational com-
pleteness and soundness.

Hierarchy. We summarise the keys to the presented separation

and encodability results, i.e., the counterexample for separation

and the interesting parts of the encoding functions, in Figure 6

and explain them below. The parts of encodings given in Figure 6

always present the encoding of a participant p.
The encodings in Figure 6 use a total order < on participants.

To ensure compositionality and name invariance, < is not assumed

but constructed by the encoding functions from the tree-structure

of parallel composition in source terms.

We start with the subcalculi of MCMP and go from bottom to

top. The counter in the following subsection headings refers to the

number of encodability or separation results, but we are not count-

ing results obtained from calculus inclusion. Figure 6(𝑛) denotes

the 𝑛th row in the figure.

6.1 Encodability (1–3): Binary Sessions
In binary sessions, there is no difference in the expressive power

between separate or mixed choice.

Theorem 6.1 (Binary Sessions). Let L = {BS, SCBS,MCBS}. There
is a good encoding from any 𝐿1 ∈ L into any 𝐿2 ∈ L.

From SCBS to BS. In contrast to SCBS with separate choice,

there are only single outputs in BS and no choices on outputs. There-

fore the encoding SCBS BS translates an output-guarded choice

to an input-guarded choice with the same input-prefix q?enco and

the respective outputs as continuations (see Figure 6(1)). As ex-

plained in Example 4.1(1,2), such choices are typable in BS because

of subtyping. The encoding of input-guarded choice starts with

the matching output q!enco followed by the original choice. Ac-

cordingly, a single interaction in the source term between some

output-guarded and some input-guarded choice is translated into

two steps on the target side.

Deadlock-freedom ensures the existence of the respective com-

munication partner for the first step (with the fresh label enco )

and safety ensures that for every output that was picked in the first

step there will be a matching input in the second step. The rest of

the encoding SCBS BS is homomorphic.

From MCBS to SCBS. The encoding MCBS SCBS has to

translate mixed into separate choices (see Figure 6(2)). Therefore, it

translates a choice from p to q with p < q into an output-guarded

choice and with p > q into an input-guarded choice, where q!enci
(or q?enci ) are used to guard the outputs in the input-guarded

choice (the inputs in the output-guarded choice).

Accordingly, an interaction of an output in p and an input in

q with p < q can be emulated by a single step, whereas the case

p > q requires two steps: one interaction with the fresh label enci
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1

SCBS BS

SMP MP

J
∑
𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩.𝑃𝑖K =

∑
𝑖∈𝐼 q?enco .q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖Kq∑

𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ).𝑃 𝑗
y
= q!enco .

∑
𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ) .

q
𝑃 𝑗

y

2

MCBS SCBS

DMP SMP

r
(∑𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩.𝑃𝑖 ) + (∑

𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ).𝑃 𝑗
)z

=



(∑𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K) +
q!enci .

((∑
𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ) .

q
𝑃 𝑗

y)
+ q?reset .

∑
𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K

)
if 𝐼 ≠ ∅ ≠ 𝐽 ∧ p < q(∑

𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ).
q
𝑃 𝑗

y)
+ q?enci .

∑
𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K if 𝐼 ≠ ∅ ≠ 𝐽 ∧ p > q∑

𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K if 𝐽 = ∅ ∧ p < q

q?enci .
∑
𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K if 𝐽 = ∅ ∧ p > q

q!enci .
∑
𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ) .

q
𝑃 𝑗

y
if 𝐼 = ∅ ∧ p < q(∑

𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ).
q
𝑃 𝑗

y)
+ q?enci . q!reset .

∑
𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ).

q
𝑃 𝑗

y
if 𝐼 = ∅ ∧ p > q

3

MCBS BS

DMP MP

r
(∑𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩.𝑃𝑖 ) + (∑

𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ) .𝑃 𝑗
)z

=



(∑
𝑖∈𝐼 q?enco .q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K

)
+

q?enco . q!enci .
((∑

𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ) .
q
𝑃 𝑗

y)
+ q?reset .

∑
𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K

) if 𝐼 ≠ ∅ ≠ 𝐽 ∧ p < q

q!enco .

((∑
𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ) .

q
𝑃 𝑗

y)
+ q?enci .

∑
𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K

)
if 𝐼 ≠ ∅ ≠ 𝐽 ∧ p > q∑

𝑖∈𝐼 q?enco .q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K if 𝐽 = ∅ ∧ p < q

q!enco . q?enci .
∑
𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩. J𝑃𝑖K if 𝐽 = ∅ ∧ p > q

q?enco . q!enci .
∑
𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ).

q
𝑃 𝑗

y
if 𝐼 = ∅ ∧ p < q

q!enco .

((∑
𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ) .

q
𝑃 𝑗

y)
+ q?enci . q!reset .

∑
𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ).

q
𝑃 𝑗

y)
if 𝐼 = ∅ ∧ p > q

4 MP MCBS

three distributable steps in

𝑀MP = a ⊳ (b!𝑙 .✓ + b!𝑙 .0) | b ⊳ a?𝑙 .0 | c ⊳ (d!𝑙 .✓ + d!𝑙 .0) | d ⊳ c?𝑙 .0 | e ⊳ (f!𝑙 .✓ + f!𝑙 .0) | f ⊳ e?𝑙 .0

5

SCMP the synchronisation patternM in

Bottom Layer 𝑀M
SCMP

= a ⊳ (b!𝑙 .d!𝑙 .0 + d!𝑙 ′ .0) | b ⊳ (a?𝑙 .0 + c?𝑙 .0) | c ⊳ (b!𝑙 .0 + d!𝑙 .0) | d ⊳ (c?𝑙 .a?𝑙 .✓ + a?𝑙 ′ .0)

6

CMV the synchronisation patternM in

Bottom Layer 𝑀M
CMV

= (𝜈𝑥𝑦) (𝑥 !tt.0 | lin𝑦?𝑧.if 𝑧 then 0 else 0 | 𝑥 !ff.0 | lin𝑦?𝑧.if 𝑧 then 0 else✓)

7

CMV
+

the synchronisation patternM in

Bottom Layer 𝑀M
CMV

+ = (𝜈𝑥𝑦) (lin𝑥 𝑙 !tt.0 | lin𝑦 𝑙?𝑧.if 𝑧 then 0 else 0 | lin𝑥 𝑙 !ff.0 | lin𝑦 𝑙?𝑧.if 𝑧 then 0 else✓)

8

the synchronisation pattern ★ in

MSMP 𝑀★
MSMP

= 𝑀a | 𝑀b | 𝑀c | 𝑀d | 𝑀e | 𝑀gc 𝑀a = a ⊳ (e!𝑙 .0 + b?𝑙 .𝑃a + gc?del.0)
Lower Layers 𝑀gc =

∑
i∈{a,b,c,d,e} i!del.0 𝜎 = [a ↦→ b, b ↦→ c, c ↦→ d, d ↦→ e, e ↦→ a]

𝑀b = 𝑀a𝜎 𝑀c = 𝑀b𝜎 𝑀d = 𝑀c𝜎 𝑀e = 𝑀d𝜎 𝑃a, . . . , 𝑃e ∈ {✓, 0}

9 MCMP MSMP

r∑
q

(
(∑𝑖∈𝐼 q!ℓ𝑖 ⟨𝑣𝑖 ⟩.𝑃𝑖 ) + (∑

𝑗∈ 𝐽 q?ℓ𝑗 (𝑥 𝑗 ).𝑃 𝑗
))z

=
∑
q

{
case distinction of MCBS SCBS

10 MCBS LCMV
+ 𝑀MCBS = p ⊳

(
q!𝑙1 .0 + q?𝑙2 .✓

)
| q ⊳

(
p?𝑙1 .0 + p?𝑙3 .✓

)

11 LCMV
+

MCBS

JΓ ⊢ (𝜈𝑥𝑦)𝑃K = JΓ′ ⊢ 𝑃K𝑥,𝑦r
Γ ⊢ lin k

(
𝑃 = (∑𝑖∈𝐼 ℓ𝑖 !𝑣𝑖 .𝑃𝑖 ) + (∑

𝑗∈ 𝐽 ℓ𝑗 ?𝑧 𝑗 .𝑃 𝑗
))z

𝑥,𝑦

=



k ⊳ 0 if fv(𝑃) = {𝑥,𝑦} ∪ {k}
k ⊳

(∑
𝑖∈𝐼 k!ℓ𝑖 · o ⟨𝑣𝑖 ⟩. JΓ𝑖 ⊢ 𝑃𝑖Kk

)
if fv(𝑃) ≠ {𝑥,𝑦}, k ∈ {𝑥,𝑦} \ {k},

+
(∑

𝑗∈ 𝐽 k!ℓ𝑖 · i .k?ℓ𝑖 (𝑧).
q
Γ𝑗 ⊢ 𝑃 𝑗

y
k

)
and 𝑃 is typed as internal in Γ

k ⊳
(∑

𝑖∈𝐼 k?ℓ𝑖 · i .k!ℓ𝑖 ⟨𝑣𝑖 ⟩. JΓ𝑖 ⊢ 𝑃𝑖Kk
)

if fv(𝑃) ≠ {𝑥,𝑦}, k ∈ {𝑥,𝑦} \ {k},

+
(∑

𝑗∈ 𝐽 k?ℓ𝑖 · o (𝑧) .
q
Γ𝑗 ⊢ 𝑃 𝑗

y
k

)
and 𝑃 is typed as external in Γ

Figure 6: Keys to Separation and Encodability Results
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and the interaction of the respective out- and input. In the case of

p > q, deadlock-freedom guarantees the existence of the respective

communication partner for the first step, and safety the existence

of a matching input for every output in the second step.

In the case p < q, additional inputs in p without matching

outputs in q require a special attention. The type system of the

target calculus SCBS forces us to ensure that the output q!enci ,
that guards the inputs in the translation of p, is matched by an

input p?enci in the translation of q (see Corollary 5.1). We add

p?enci . p!reset .
∑
𝑗∈ 𝐽 p?ℓ𝑗 (𝑥 𝑗 ).

q
𝑃 𝑗

y
to the translation of q (the

last summand in the last line of Figure 6(2) with p and q swapped).

If p has outputs and inputs but no input has a match in q, then the

emulation of a single source term step takes either one or three

steps.

The rest of MCBS SCBS is homomorphic (except for the

construction of <).

From MCBS to BS. The encoding MCBS BS combines the

ideas of SCBS BS and MCBS SCBS (see Figure 6(3)).

Inclusion. In the remaining cases of 𝐿1, 𝐿2 ∈ {BS, SCBS,MCBS}
identity is a good encoding, because 𝐿1 = 𝐿2 or 𝐿1 ⊂ 𝐿2 since

BS ⊂ SCBS ⊂ MCBS.

6.2 Encodability (4–6): Multiparty Sessions with
Choices on a Single Participant

In multiparty sessions, in that choice is limited to one participant,

mixed choice does not increase the expressive power.

Theorem 6.2 (Multiparty Sessions with Choices on a Single Par-

ticipant). Let L = {MP, SMP,DMP}. There is a good encoding from
any 𝐿1 ∈ L into any 𝐿2 ∈ L.

The encoding SMP MP translates choice in the same way

as SCBS BS. Encoding DMP SMP inherits the encod-

ing of mixed to separate choices from MCBS SCBS. DMP

MP combines SMP MP and DMP SMP. In all three

encodings, all remaining operators are translated homomorphi-

cally (except for the construction of <). In the remaining cases

of 𝐿1, 𝐿2 ∈ {MP, SMP,DMP}, identity is a good encoding because

𝐿1 = 𝐿2 or 𝐿1 ⊂ 𝐿2 since MP ⊂ SMP ⊂ DMP.

6.3 Encodability: Binary into Multiparty with
Choice on a Single Participant

We now consider the blue arrow between the grey squares in the

bottom layer. It tells us, that binary sessions with mixed choice

can be simulated by the classical multiparty sessions (MP), since in

both cases mixed choice does not add expressive power.

Corollary 6.1 (Binary into Multiparty with Choice on

a Single Participant). There is a good encoding from any 𝐿1 ∈
{BS, SCBS,MCBS} into any 𝐿2 ∈ {MP, SMP,DMP}.

Corollary 6.1 follows from Theorem 6.1 and calculus inclusion.

The encoding MCBS BS is also a good encoding from MCBS

intoMP, since BS ⊂ MP.WithMP ⊂ SMP then this encoding is also

a good encoding from MCBS into SMP. Identity is a good encoding

fromMCBS into DMP, because MCBS ⊂ DMP. Similarly, we obtain

good encodings for 𝐿1 = SCBS and 𝐿1 = BS from the encoding

SCBS BS and the calculus inclusions BS ⊂ MP ⊂ SMP ⊂ DMP

and SCBS ⊂ SMP.

6.4 Separate (1) Multiparty Sessions with Choice
on a Single Participant from Binary Sessions

We now show the first separation result: there exists no good en-

coding from MP into MCBS.

Theorem 6.3 (Separate Multiparty with Choice on a Single Partic-

ipant from Binary Sessions). There is no good encoding from any
𝐿1 ∈ {MP, SMP,DMP} into any 𝐿2 ∈ {BS, SCBS,MCBS}.

Note that the binary versions BS, SCBS, and MCBS include only

a single binary session (hence 2 parties). Such a system cannot

perform three distributable steps, nor can it emulate such behaviour

while respecting the criterion on the preservation of distributability.

We use𝑀MP from Figure 6(4) as counterexample.

By MP ⊂ SMP ⊂ DMP, 𝑀MP is also contained in SMP and

DMP. If there would be a good encoding from MP into SCBS, then

this encoding would also be a good encoding from MP into MCBS,

because SCBS ⊂ MCBS; i.e., such an encoding contradicts MP

MCBS. Hence, the remaining separation results in Theorem 6.3

follow from MP MCBS and calculus inclusion.

6.5 Separate (2–13) the Middle from the Bottom
Going further upwards in Figure 5, we observe two dashed lines

above DMP (see also Figure 1). These two dashed lines divide Fig-

ure 5 into three layers along the ability to express the synchronisa-

tion patterns★ andM from [48, 62] and thus the different amounts

of synchronisation they capture. Calculi in the bottom layer can

express neither M nor ★ and are considered as asynchronously

distributed calculi.

The pattern M. A system is an M if it is distributable into two

parts that can act independently by performing the distributable

steps 𝑎 and 𝑐 ; but that may also interact in a step 𝑏 that is in conflict

to both 𝑎 and 𝑐 .

Definition 6.2 (Synchronisation Pattern M). Let𝑀M
be a process

such that:

• 𝑀M
can perform at least three alternative steps 𝑎: 𝑀M −→ 𝑀𝑎 ,

𝑏: 𝑀M −→ 𝑀𝑏 , and 𝑐: 𝑀M −→ 𝑀𝑐 such that 𝑀𝑎 , 𝑀𝑏 , and 𝑀𝑐
are pairwise different.

• The steps 𝑎 and 𝑐 are distributable in𝑀M
.

• But 𝑏 is in conflict with both 𝑎 and 𝑐 .

In this case, we denote the process𝑀M
as M.

In an M, the two parts of the system decide whether they inter-

act or proceed independently, but are able to make this decision

consistently without any form of interaction. This is a minimal

form of synchronisation. The system 𝑀M
SCMP

in Figure 6(5) is an

example of anM in SCMP, where step 𝑎 is an interaction of a and
b, step 𝑏 is an interaction of b and c, and step 𝑐 is an interaction of

c and d.
Mixed Sessions. In the bottom layer we find LCMV and LCMV

+

that we introduce as subcalculi of CMV and the mixed sessions
CMV

+
introduced in [8]. We briefly recap their main concepts (see

[52] for more). The syntax of CMV
+
is given as

𝑃 ::= 𝑞 𝑥
∑
𝑖∈𝐼 𝑀𝑖 | 𝑃 | 𝑃 | (𝜈𝑥𝑦)𝑃 | if 𝑣 then 𝑃 else 𝑃 | 0
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where𝑀 ::= ℓ∗𝑣 .𝑃 , ∗ ::= ! | ?, and 𝑞 ::= lin | un denote linear and
unrestricted choices. The double restriction (𝜈𝑥𝑦)𝑃 introduces two

matching session endpoints 𝑥 and 𝑦. Interaction is limited to two

matching endpoints

(𝜈𝑦𝑧) (lin𝑦 (ℓ!𝑣 .𝑃 +𝑀) | lin 𝑧 (ℓ?𝑥 .𝑄 + 𝑁 ) | 𝑅)
−→ (𝜈𝑦𝑧) (𝑃 | 𝑄{𝑣/𝑥} | 𝑅)

where linear choices are consumed, whereas unrestricted choices

are persistent. In CMV, choice is replaced by output 𝑦!𝑣 .𝑃 , input

𝑞𝑦?𝑥 .𝑃 , selection 𝑥 ⊳ ℓ .𝑃 , and branching 𝑥 ⊲ {ℓ𝑖 : 𝑃𝑖 }𝑖∈𝐼 .
LCMV

+
and LCMV result from restricting CMV

+
and CMV to a

single sessions, i.e., at most one restriction, forbidding delegation,

i.e., only values can be transmitted, allowing only linear choices

that are typed as linear.

The Bottom Layer. LCMV, LCMV
+
, BS, SCBS, MCBS, MP,

SMP, and DMP are placed in the bottom, because they do not con-

tain the synchronisation patternM.

Lemma 6.1 (NoM). There are noM in LCMV, LCMV
+
, BS, SCBS,

MCBS, MP, SMP, and DMP.

We show that these languages have no distributable steps 𝑎 and

𝑐 that are both in conflict to a step 𝑏.

Separation. Accordingly, the ability to combine different com-

munication partners in choice is the key to theM in𝑀M
SCMP

, because

the typing discipline of MCMP and its variants forbids different

participants with the same name.

Theorem 6.4 (Separate Middle from Bottom). There is no good
encoding from any 𝐿1 ∈

{
CMV,CMV+, SCMP

}
into any calculus

𝐿2 ∈
{
LCMV, LCMV+, BS, SCBS,MCBS,MP, SMP,DMP

}
.

In the proof we show that the M is preserved by the criteria

of a good encoding, i.e., to emulate the behaviour of an M the

target calculus needs anM. Then𝑀M
SCMP

in Figure 6(5) is used as

counterexample if 𝐿1 = SCMP, 𝑀M
CMV

in Figure 6(6) if 𝐿1 = CMV,

and𝑀M
CMV

+ in Figure 6(7) if 𝐿1 = CMV
+
.

6.6 Separate (14–18) the Top Layer from the Rest
The ★ can only be expressed by synchronously distributed calculi

in the top layer. It describes the amount of synchronisation that is

e.g. necessary to solve leader election in symmetric networks and

captures the power of synchronisation of 𝜋 with mixed choice.

Definition 6.3 (Synchronisation Pattern ★). Let𝑀★
be a process

such that:

• 𝑀★
can perform at least five alternative steps 𝑖 : 𝑀★ −→ 𝑀𝑖 for

𝑖 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} such that the𝑀𝑖 are pairwise different;

• the steps 𝑎, 𝑏, 𝑐 , 𝑑 , and 𝑒 form a circle such that 𝑎 is in conflict

with 𝑏, 𝑏 is in conflict with 𝑐 , 𝑐 is in conflict with 𝑑 , 𝑑 is in conflict

with 𝑒 , and 𝑒 is in conflict with 𝑎; and

• every pair of steps in {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} that is not in conflict due to

the previous condition is distributable in𝑀★
.

In this case, we denote the process𝑀★
as ★.

An example of a ★ in MSMP is 𝑀★
MSMP

in Figure 6(8). Since

MSMP ⊂ MCMP,𝑀★
MSMP

is also a ★ in MCMP. All other calculi in

Figure 5 do not contain ★s.

Lemma 6.2 (No★). There are no★ in CMV, CMV
+
, SCMP, LCMV,

LCMV
+
, BS, SCBS, MCBS, MP, SMP, and DMP.

𝐶5

𝑏

𝐶4

𝑎

𝐶3

𝑒 𝐶2

𝑑

𝐶1

𝑐

Assume by contradiction, that SCMP

contains a ★. Since a step reducing a condi-

tional cannot be in conflict with any other

step, the five steps of the ★ in SCMP are

interactions that reduce an output-guarded

and an input-guarded choice, respectively.

Then in the steps 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 five choices

𝐶1, . . . ,𝐶5 are reduced as depicted on the

right, where e.g. the step 𝑎 reduces the choices 𝐶1 and 𝐶2.

Since SCMP does not allow for mixed choices, each of the five

choices𝐶1, . . . ,𝐶5 contains either only outputs or only inputs.W.o.g.

assume that 𝐶1 contains only outputs and 𝐶2 only inputs. Then

the choice 𝐶3 needs to be on outputs again, because step 𝑏 reduces

𝐶2 (with only inputs) and 𝐶3. Then 𝐶4 is on inputs and 𝐶5 is on

outputs. But then step 𝑒 reduces two choices 𝐶1 and 𝐶5 that are

both on outputs. Since the reduction semantics of SCMP does not

allow such a step, this is a contradiction.

The proofs for the absence of ★s in CMV and CMV
+
are sim-

ilar and were already discussed in [51]. For the remaining cases,

Lemma 6.2 follows from calculus inclusion.

Separation. We observe, that is indeedmixed choice (in contrast

to only separate choice) that is the key to the ★𝑀★
MSMP

in MSMP.

Theorem 6.5 (Separate the Top Layer). There is no good encoding
from any 𝐿1 ∈ {MSMP,MCMP} into any 𝐿2 ∈

{
CMV,CMV+

}
∪{

SCMP, LCMV, LCMV+, BS, SCBS,MCBS,MP, SMP,DMP
}
.

In the proof we show again that the ★ is preserved by the cri-

teria of a good encoding, i.e., to emulate the behaviour of a ★ the

target calculus needs a ★. Then 𝑀★
MSMP

in Figure 6(8) is used as

counterexample if 𝐿1 = MSMP. The other case, i.e., 𝐿1 = MCMP,

follows then from MSMP ⊂ MCMP.

6.7 Encodability (7): Mixed Choice into Separate
Choice per Participant

The smallest calculus in Figure 5 that contains a ★ is MSMP, i.e.,

multiparty sessions with mixed choice that allow only separate

choice per participant. In § 6.5 we learnt that the key to the syn-

chronisation patternM is the ability to combine different commu-

nication partners in choice. Here, we learn that also further up in

the hierarchy, the important feature is the combination of different

communication partners in a choice. Whether or not the choice

limits the summands of the same participant in a mixed choice to

either outputs or inputs does not change the expressive power.

Theorem 6.6 (Mixed Choice into Separate Choice per Participant).
There is a good encoding from MCMP into MSMP and vice versa.

The encoding MCMP MSMP translates mixed choices into

choices that are separate per participant. Therefore, we apply for

each participant the idea of MCBS SCBS and then combine the

resulting choices for each participant in a choice (see Figure 6(9)).

6.8 Separate (19) MCBS from LCMV+

Since all variants of MCMP describe only a single session without

any form of shared names, comparing directly with CMV
+
would

cause negative results that are completely independent of the re-

spective choice constructs. Because of that, we introduced LCMV
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and LCMV
+
with LCMV ⊂ CMV and LCMV

+ ⊂ CMV
+
in Figure 5.

We observe, that LCMV
+
cannot emulate all behaviours of MCBS.

Theorem 6.7 (Separate MCBS from LCMV
+
). There is no good

encoding from MCBS into LCMV+.

The counterexample used for this separation result, namely

𝑀MCBS in Figure 6(10), utilises the different typing mechanisms.

The type system of CMV
+
requires duality of the types of the in-

teracting choices, where subtyping increases flexibility but allows

only choices typed as external to have additional summands, i.e.,

summands that are not matched by the communication partner

such as p?𝑙2 .✓ and p?𝑙3 .✓ in 𝑀MCBS. In MCBS, on the other

hand side, additional inputs are allowed in both choices.

A translation of 𝑀MCBS would need to turn one of the two

choices into choice that is typed as external without additional sum-

mands. This prevents a good encoding from MCBS into LCMV
+
.

6.9 Encodability (8): From LCMV+ into MCBS
In the opposite direction there is an encoding from LCMV

+
into

MCBS.

Theorem 6.8 (From LCMV
+
into MCBS). There is a good encoding

from LCMV+ into MCBS.

The subtyping in LCMV
+
—in contrast to MCBS—does not only

allow for additional inputs but also additional outputs. Hence, we

use the type information in Γ, whether the choice we are translating
is typed as internal or external. We translate all summands of a

choice typed as external to outputs and all summands of a choice

typed as internal to inputs. As done in [8], we extend the labels by

o or i to ensure that the original matches are respected.

LCMV
+
does not guarantee deadlock-freedom. Fortunately, the

limitation to a single session ensures that the only typed and dead-

locked cases are systems in LCMV
+
which compose both commu-

nication partners sequentially. Accordingly, we translate choices

that have both session endpoints as free variables to 0 in the first

case of the translation of choice in Figure 6(11). The translations of

the continuations J𝑃𝑖Kk and
q
𝑃 𝑗

y
k are similar to the encoding of

choice J. . .K𝑥,𝑦 but without the first case and without k⊳ .

6.10 Separation (20) via Leader Election
The synchronisation patterns distribute the hierarchy in Figure 1

and 5 into asynchronously and synchronously distributed calculi.

To further support the practical implications of our analysis, we

are studying the problem of leader election in symmetric networks.

Also the landmark result in [42] to separate 𝜋 from 𝜋a uses this

problem as distinguishing feature.

A network𝑀 = 𝑀1 | . . . | 𝑀𝑛 is symmetric iff𝑀𝜎 (𝑖 ) = 𝑀𝑖𝜎 for

each 𝑖 ∈ {1, . . . , 𝑛} and for all permutations 𝜎 on participants.𝑀 is

an electoral system if in every maximal execution exactly one leader

is announced. The system Election in Example 2.2 presents a leader

election protocol in a symmetric network with five participants in

MSMP. Since calculi in the middle or bottom layer do not contain

symmetric electoral systems, we can use this problem to separate

MSMP from SCMP.

Theorem 6.9 (Separation via Leader Election). There is no good
and barb sensitive encoding from MSMP into SCMP.

We prove first that SCMP cannot solve leader election in sym-

metric networks. To elect a leader, the initially symmetric network

has to break its symmetry such that only one leader is elected.

Without mixed choice, any attempt to do so can be counteracted

by steps of the symmetric parts of the network that restore the

original symmetry. This leads to an infinite sequence of steps in

that no unique leader is elected. Then, we use Election as coun-

terexample to show that there is no good and barb sensitiveness

encoding. Therefore, we show that the combination of operational

correspondence, divergence reflection, and barb sensitiveness en-

sures that the translation of a symmetric electoral system is again

a symmetric electoral system.

Note that we use here barb sensitiveness, i.e., a source network

and its translation may reach the same barbs, as additional encod-

ability criterion, where barbs [40] are the standard observables

used in 𝜋 . Barb sensitiveness ensures that the announcement of the

leader is respected by the encoding function, i.e., that the translation

of an electoral system again announces exactly one leader.

6.11 Summary
The considered binary variants of MCMP have the same expressive

power. The encodings introduce additional steps on the fresh labels

enco , enci , and reset . Therefore, safety and deadlock-freedom

of the source help us to ensure operational correspondence, i.e.,

that the target does not introduce new behaviours by introducing

reductions that are stuck. Similarly, the variants of MP with choice

on a single participant can be encoded into each other.

There is an increase in the expressive power for separate and

mixed choice but only if we combine different communication part-
ners in a choice, i.e., with SCMP for separate choice and MCMP for

mixed choice; however, no difference between MSMP and MCMP.

Notice that each calculus plays a distinct role, i.e. it is novel from

the viewpoint of types and/or expressiveness.

(1) MCMP,MSMP and SCMP are the first calculi ensuring safety

and deadlock-freedom for which an increasing expressive

power of choice was shown;

(2) MSMP is a realistic subform of general mixed choice in

MCMP. A server may wait to receive requests from clients

but also may send status information e.g. for load balancing;

(3) SCMP is the only calculus in themiddle layer, that guarantees

deadlock-freedom; and

(4) DMP has never appeared in the literature, but it can be

viewed one step extension from MP with mixed choice con-

struct, and MCBS is a binary version of DMP;

(5) SCBS and BS are a binary version of SMP and MP respec-

tively, and BS can express MCBS.

Finally, we observe thatMCBS is strictlymore expressive than LCMV
+
.

The way to type choices in LCMV
+
is strictly less expressive than

typing for choice in MCBS (see § 6.8 and § 6.9).

7 RELATED AND FUTUREWORK
Mixed Choice in the 𝜋-Calculus. Mixed choice has been pro-

posed as a fundamental process calculi construct and extensively

studied in the context of the 𝜋-calculi. Choice 𝑃 +𝑄 first appeared

in the original 𝜋-calculus syntax [39] where 𝑃 and 𝑄 can contain
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any form of processes (such as parallel compositions). Later Mil-

ner proposed guarded mixed choice [38] where each process in the

choice branch is either an input or an output. Palamidessi [42] has

shown that mixed guarded choice cannot be encoded into separate

guarded choice through a symmetric and divergence preserving

encoding. Example 2.2 is motivated by leader election used to show

this separation result in [42]. See Figure 1 in § 1 for a relationship

with other calculi. Our guarded mixed choice differs from those in

the standard 𝜋-calculus, where it can freely use distinct channels

(like 𝑃 = 𝑎!𝑣 .𝑄1 + 𝑏?(𝑥).𝑄2 + 𝑐!𝑤.𝑄3); in MCMP, we use distinct
participants to express mixed choice. For instance, we can mimic

above 𝑃 as q!𝑣 .𝑄1 + r?(𝑥).𝑄2 +p!𝑤.𝑄3 (with q, r, s pairwise distinct).
In [64], Glabbeek encodes a variant of the 𝜋-calculus with im-

plicit matching into a variant of CCS, where the result of a synchro-

nisation of two actions is itself an action subject to relabelling or

restriction. A comparison between this variant of CCS and MCMP

based on the results in [64] is an interesting future study; maybe

using a syntactic similarity between CCS and local types.

Binary Mixed Sessions. Casal et al. [8] have proposed binary

mixed sessions and provided an encoding from CMV
+
into a tra-

ditional variant of binary sessions with selection and branching

(CMV) [65], and proved the encoding criteria except for operational

soundness, which was left open. This problem was solved by Peters

and Yoshida [51]. Further Casal et al. [8] provided a good encoding

from CMV into CMV
+
. Hence, CMV

+
and CMV have the same ex-

pressive power, i.e., mixed choice does not increase the expressive

power in binary sessions in [65]. Additionally, Peters and Yoshida

[51] have proved that CMV
+
cannot emulate the calculi in the top

layer of Figure 1 (hence staying in the middle), proving leader elec-

tion in symmetric networks cannot be solved in CMV
+
. Here we

prove that MCMP and its weaker form (MSMP) belong to the top.

Scalas and Yoshida [56] present a multiparty session type sys-

tem which does not require global type correspondence; rather it

identifies and computes the desired properties against a set of local
types. We apply this general approach to build a typing system

of mixed choice, but limit our attention to a single multiparty ses-

sion, extending from MP in [19]. This allowed us to focus on which

mixed choice construct can strictly raise the expressive power. Our

future work is to analyse how much expressive power is added to

multiparty session types by inclusions of session delegation from

[56] and shared names from [12, 29, 30]. A related research ques-

tion is a more detailed comparisons of SCMP with 𝜋𝑠 and of MCMP

with 𝜋 in Figure 1. Remember that SCMP and MCMP are typed

calculi that ensure e.g. deadlock-freedom, but the 𝜋-calculus does

not. Since there are deadlock-free processes in 𝜋 which are unty-

pable by MCMP, considering of the minimal set of operators that,

if added to MCMP, close a gap to 𝜋 is an interesting question.

Global Types with Flexible Choices. In the context of mul-

tiparty session types, the research so far focuses to explore the

top-down approach extend global types to more flexible choice. In

the top-down approach [12, 30, 66, 67], a global type is projected

into a set of local types; and if each participant typed by each local

type, participants in a session automatically satisfies safety and

deadlock-freedom (correctness by construction).
Castagna et al. [9] present a semantic procedure to check well-

formedness of global types with parallel composition and mixed

choice, which is undecidable due to infinite FIFO buffered semantics.

They also propose a decidable algorithm for projecting a limited

class of global types with their extension. Jongmans and Yoshida

[32] extend global types with a mixed choice operator, an existential

quantification over roles, and unbounded interleaving of subpro-

tocols. It presents a bisimulation technique for developing a cor-

respondence between global types and local interactions. Hamers

and Jongmans [25] propose a runtime verification framework based

on the domain-specific language (Disclojure) to verify programs

against multiparty session types with mixed choice. The work con-

centrates on tool implementation, hence no theorem for correctness

is provided. Majumdar et al. [36] present a generalised decidable

projection procedure for multiparty session types with infinite FIFO

buffered semantics, which extends the original syntax of global

types to one sender with multiple receivers. They use a message

causality analysis based on message sequence chart techniques to

check the projectability of global types. This approach is further

extended in [35] to enable a sound and complete projection from

a global type to deadlock-free communicating automata [5]. Jong-

mans and Ferreira [31] propose a synthetic typing system which

directly uses an operational semantics of implicit local types in a

typing judgement of synchronous multiparty processes. An implicit

local type has no explicit syntax but represents abstract behaviour

of a global type wrt each participant. Their approach allows flexible

type syntax including mixed choice in global types, but requires

stronger conditions for realisable global types which are similar

with those in [9]. Flexible choice for choreographies is studied in

[13]. In [13] selection/branching (separate choice) is combined with

multicoms/multisels. Multicoms/multisels group multiple actions,

but as concurrent and not as choice actions (all actions can happen,

not just one).

None of the above work with flexible choice [9, 31, 35, 36] has

studied expressiveness of processes typed by their systems. It is

an interesting future work to compare their expressive powers

extending the work by Beauxis et al. [2] which studies encodability

and separation results for the (untyped) 𝜋-calculi with mixed choice,

stack, bags and FIFO queues.

Applications. The integration of model checking in a type

system of the 𝜋-calculus is piloted by Chaki et al. [10], where the

tool checks LTL formulae against behavioural types. Those ideas

are applied to MPST in [56], which is extended to a crash-stop

failure model in [1]. As programming language applications, Lange

et al. [33, 34] and Gabet and Yoshida [18] extract behavioural types

from Go source code, and Scalas et al. [57] design Scala library

for communication programs with behavioural dependent types.

These works use the mCLR2 to validate safety and deadlock-free

properties through type-level behaviours. Notably, [18, 33, 34] use

internal and external choices which consist of input, output and

𝜏-prefixes to model select construct in Go. Extension of the model-

checking tool in [56] to mixed choice and studying expressiveness

of choice with 𝜏-action are interesting topics for future research.
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