Session Types:
Towards safe and fast reconfigurable programming

Nicholas Ng, Nobuko Yoshida, Xin Yu Niu, Kuen Hung Tsoi, Wayne Luk
Department of Computing,
Imperial College London, UK
{nickng,yoshida,nx210,khtsoi,wli@doc.ic.ac.uk

ABSTRACT

This paper introduces a new programming framework based
on the theory of session types for safe, reconfigurable paral-
lel designs. We apply the session type theory to C and Java
programming languages and demonstrate that the session-
based languages can offer a clear and tractable framework
to describe communications between parallel components
and guarantee communication-safety and deadlock-freedom
by compile-time type checking. Many representative com-
munication topologies such as a ring or scatter-gather can
be programmed and verified in session-based programming
languages. Case studies involving N-body simulation and K-
means clustering are used to illustrate the session-based pro-
gramming style and to demonstrate that the session-based
languages perform competitively against MPI counterparts
in an FPGA-based heterogeneous cluster, as well as the po-
tential of integrating them with FPGA acceleration.

1. INTRODUCTION

The two main ways to improve performance of a program are
speeding up serial or parallelising execution of a program.
As serial architectures are hitting their limits, the industry
has shifted their focus from serial architectures to parallel
and heterogeneous architectures, combining parallelism with
specialisation of heterogeneous hardware. Sequential pro-
gramming models and techniques are unsuitable for these
parallel architectures as they are, for example, not designed
to have access to resources in parallel. As a result, paral-
lel programming techniques such as those using MPI [12]
are being developed to understand and make full use of the
parallel architectures.

Utilising resources for concurrent execution is, however,
far from straightforward — blindly parallelising components
with data dependencies might leave the overall program in
an inconsistent state; arbitrary interleaving of parallel exe-
cutions combined with complex flow control can easily lead
to unexpected behaviour, such as blocked access to resources
in a circular chain (i.e. deadlock) or mismatched send-receive
pairs. These unsafe communications are a source of non-
termination or incorrect execution of a program. Thus track-
ing and avoiding communication errors of parallel programs
is as important as ensuring their functional correctness.

This paper introduces a new programming framework for
reconfigurable parallel designs which can automatically en-

This work was presented in part at the Third International Work-
shop on Highly-Efficient Accelerators and Reconfigurable Technologies
(HEART?2012), Naha, Okinawa, Japan, May 31-June 1, 2012.

sure deadlock-freedom and communication-safety, ie. match-
ing communication pairs, based on the theory of session
types [3,4]. To illustrate how session types can track com-
munication mismatches, consider the following parallel pro-
gram that exchanges two values between two processes.

Process 0 Process 1
t=0 Recv b >< Recv a
t=1 Send 42 Send 64

In this notation, the arrow points from the sender of the mes-
sage to the intended receiver. Both Process0 and Process1
start by waiting to receive a value from the other processes,
hence we have a typical deadlock situation.

A simple solution is to swap the order of the receive and

send commands for one of the processes, for example, Process0:

Process 0 Process 1
t=0 Send 42 _— Recv a
t=1 Recv b — Send 64

However, the above program still has mismatched com-
munication pairs and causes the type error. Parallel pro-
gramming usually involves debugging and resolving these
communication problems, which is often a tedious task.

Using the session type-based programming methodology,
we can not only statically check that the above programs
are incorrect, but can also encourage programmers to write
safe designs from the beginning, guided by the information
of types. Session types [3,4] have been actively studied as
a high-level abstraction of structured communication-based
programming, which are able to accurately and intelligibly
represent and capture complex interaction patterns between
communicating parties.

As a simple example of session types, recall the above
example, which has the following session types:

Process 0: Recv char; Send int
Process 1: Recv char; Send int

where Send int stands for output with type int and Recv
int stands for input with type int. The session types can be
used to check that the communications between Process 0
and Process 1 are incompatible (i.e. incorrect) because one
process must have a dual type of the other. Similarly, the
second example has the following incorrect session types:

Process 0: Send int; Recv char
Process 1: Recv char; Send int

On the other hand, the following program is correct, having
neither deadlock nor type errors.

Process 0 Process 1
t=0 Send b _ Recv b
t=1 Recv 64 — Send 64

since the above program has the following mutually dual
session types:

Process 0: Send char; Recv int
Process 1: Recv char; Send int

In session type theory, Recv type is dual to Send type, hence
the type of Process 0 is dual of the type of Process 1.

The above compatibility checking is simple and straight-
forward in the case of two parties. We can extend this idea
to multiparty processes (i.e. more than two processes) based
on multiparty session type theory [4]. Type-checking for par-
allel programs with multiparty processes is done statically
and is efficient, with a polynomial-time bound with respect
to the size of the program.

Below we list the contributions of this paper.

e Novel programming languages for communications in

reconfigurable parallel designs and their validation frame-

work with a guarantee of communication-safety and
deadlock-freedom (§ 2);

e Implementations of advanced communication topolo-
gies for computer clusters by session types for two ap-
plications (§ 3), N-body simulation and K-means clus-
tering in session-based languages on Axel, an FPGA-
based heterogeneous cluster (§ 4);

e Performance comparison of the implementations in the
session-based C (Session C) and the session-based Java
(SJ [5,6,9]) against the existingparallel programming
language, MPI (OpenMPI) [11] and its Java counter-
part (MPJ Express [8]) (§5). The benchmark results
on Axel demonstrate that implementations of typical
parallel algorithms in Session C and SJ execute com-
petitively against their implementations in OpenMPI
and MPJ Express, respectively.

2. NEW LANGUAGE DESIGN

2.1 Overview

As a language independent framework for communication-
based programming, session types can be applied to different
programming languages and environments. Previous work
on Session Java (SJ) [6,9] integrated sessions into the object-
oriented programming paradigm as an extension of the Java
language, and was applied to parallel programming [9]. Ses-
sion types have also been implemented in different languages
such as OCaml, Haskell, F#, Scala and Python. This sec-
tion explains session types and their applications, focussing
on an implementation of sessions in the C language (Ses-
sion C) as a parallel programming framework. Amongst all
these different incarnations of session types, the key idea
remains unchanged. A session-based system provides (1) a
set of predefined primitives or interfaces for session commu-
nication and (2) a session typing system which can verify,
at compile time, that each program conforms to its session
type. Once the programs are type checked, they run cor-
rectly without deadlock nor communication errors.

2.2 Multiparty session programming

Session C [10,20] implements a generalised session type the-
ory, multiparty session types (MPST) [4]. The MPST theory
extends the original binary session types [3] by describing
communications across multiple participants in the form of
global protocols. Our development uses a Java-like protocol
description language Scribble [2,13] for describing the mul-
tiparty session types. Figure 1 explains a design flow of Ses-
sion C programming. First, the programmer writes a global
protocol starting from the keyword protocol and the pro-
tocol name. In the first box of Figure 1, the protocol named
as P contains one communication with a value typed by int
from participant A to participant B. For Session C implemen-
tation, the programmer uses the endpoint protocol generated
by the projection algorithm in Scribble. For example, the
above global protocol is projected to A to obtain int to B
(as in the second box) and to B to obtain int from A. Each
endpoint protocol gives a template for developing safe code
for each participant and as a basis for static verification.
Since we started from a correct global protocol, if endpoint
programs (in the third box) conform to the induced end-
point protocols, it automatically ensures deadlock-free, well-
matched interactions. This endpoint projection approach is
particularly useful when many participants are communicat-
ing under complex communication topologies. Due to space
limitation, this paper omits the full definition of global pro-
tocols, and will explain our framework and examples using
only endpoint protocols introduced in the next subsection.

Project into
endpoint protocol
protocol P at A
{int to B}

l

Implement program

Define global protocol
protocol P —
{int from A to B}

Static type checking
Check implementation int main(){
conforms with endpoint send_int (B, 42);
protocol at compile time }

Figure 1: Session C design flow.

2.3 Protocols for session communications

The endpoint protocols include types for basic message-
passing and for capturing control flow patterns. We use the
endpoint protocol description derived from Scribble to algo-
rithmically specify high-level communication of distributed
parallel programs as a library of network communications.
A protocol abstracts away the contents but keeps the high
level structures of communications as a series of type prim-
itives. The syntax is very compact as given below:

<statement> ::= <datatype> "to"
<participant> ("," <participant>)x*
| <datatype> "from"
<participant> ("," <participant>)=*
| "choice to" <participant> "{"
(<label> ":" "{" <statements> "}")+ "}"
| "choice from" <participant> "{"
(<label> ":" "{" <statements> "}")+ "}"
| "rec" <reclabel> "{" <statements> "}"
| <reclabel>
<statements> ::= <statement> (";" <statement>)x*

The language above can be categorised to three types of op-
erations: message-passing, choice and iteration.

Message passing. It represents that messages (or data)
being communicated from one process to another; in the
language it is denoted by the statements datatype to P1 or
datatype from PO which stands for sending/receiving data
of datatype to the participant identified by PO/P1 respec-
tively. Notice that the protocol does not specify the value

being sent/received, but instead designate the datatype (which

could be primitive types such as int or composite types),
indicating its nature as a high-level abstraction of commu-
nication.

Choice. It allows a communication to exhibit different be-
havioural flows in a program. We denote a choice by a pair
of primitives, choice from and choice to, meaning a dis-
tributed choice receiver and choice maker, respectively. A
choice maker first decides a branch to take, identified by its
label, and executes its associated block of statements. The
chosen label is sent to the choice receiver, which looks up
the label in its choices and execute the its associated block
of statements. This ensures the two processes are synchro-
nised in terms of the choice taken.

Iteration. It can represent repetitive communication pat-
terns. We represent recursion by the rec primitive (short
for recursion), followed by the block of statements to be re-
peated, enclosed by braces. The operation does not require
communication as it is a local recursion. However two com-
municating processes have to ensure both of their endpoint
protocols contains recursion, otherwise their protocols will
not be compatible.

More examples of the endpoint protocols are given in § 3.

2.4 Session C

In Session C, a user implements a parallel program using the
API provided by the library, following communication proto-
cols stipulated in Scribble. Once a program is complete, the
type checker verifies that the program code matches that of
the endpoint protocol description in Scribble to ensure that
the program is safe. The core runtime API corresponds the
endpoint protocol as described below.

Message passing. Session C’s message passing primitives
are written as send_datatype (participant, data) for mes-
sage send, which is datatype to participant in the proto-
col, and recv_datatype(participant, &data) for message
receive (datatype from participant in the protocol).

Choice. Session C’s choice is a combination of ordinary
C control-flow syntax and session primitives. For a choice
maker, each if-then or if-else block in a session-typed choice
starts with outbranch(participant, branchLabel) to mark
the beginning of a choice. For a choice receiver, inbranch (
participant, &branchLabel) is used as the argument of a
switch-case statement, and each case-block is distinguished
by the branchLabel corresponding to a choice in the choice
from block in the protocol.

Iteration. Session C’s iteration corresponds to while loops
in C. As no communication is required, the implementation
simply repeats a block of code consisting of above session
primitives in a rec recursion block.

A detailed example of Session C will be given in § 4.

3. ADVANCED COMMUNICATION
TOPOLOGIES FOR CLUSTERS

This section shows how session endpoint protocols intro-

duced in § 2.3 can be used to specify advanced, complex
communications for clusters. Consider a heterogeneous clus-
ter with multiple kinds of acceleration hardware, such as
GPUs or FPGAs, as Processing Elements (PEs). To al-
low a safe and high performance collaborative computation
on the cluster, we can describe communications between
PEs by our communication primitives. The PEs can be
abstracted as small computation functions with a basic in-
terface for data input and result output, hence we can easily
describe high-level understanding of the program by the ses-
sion types.

The following paragraphs list some widely used structured
communication patterns that form the backbones of imple-
mentations of parallel algorithms. These patterns were cho-
sen because they exemplify representative communication
patterns used in clusters. Computation can interleave be-
tween statements if no conflict in the data dependencies ex-
ists. The implementation follows the theory of the optimi-
sation for session types developed in [7], maximising over-
lapped messaging. See § 5 for the performance evaluation
based on this optimisation.

Ring topology. In a ring topology, as depicted in Figure 2,
processes or PEs are arranged in a pipeline, where the end
of the node of the pipeline is connected to the initial node.
Each of the connections of the nodes is represented by an
individual endpoint session. We use N-body simulation as
an example for ring topology. Note that the communication
patterns between the middle n — 1 Nodes are identical.

Figure 2: n-node ring pipeline.

The endpoint protocol can precisely represent this ring
topology as given below:

Nodep: rec LOOP { // Repeat shifting ring
datatype to Nodel; // Nezt node
datatype from NodeN; // Last node

LOOP }

rec LOOP { // Repeat shifting ring
datatype from Nodei-1; // Prev
datatype to Nodei+l; // lNext

LOOP }

rec LOOP { // Repeat shifting ring
datatype from Noden-1; // Prev
datatype to NodeO; // Initial

LOOP }

Nodelgign,y

Node,,:

Map-reduce pattern. Map-reduce is a common scatter-
gather pattern used to parallelise tasks that can be easily
partitioned with few dependencies between the partitioned
computations. The topology is shown in Figure 3. It com-
bines the map pattern which partitions and distributes data
to parallel workers by a Master coordination node, and the
reduce pattern which collects and combines completed re-
sults from all parallel workers. At the end of a map-reduce,
the Master coordination node will have a copy of the fi-

.@%w

Figure 3: Map-reduce pattern.

nal results combined into a single datum. All Workers in
a map-reduce topology share a simple communication pat-
tern, where they only interact with the Master coordination
node. The Master node will have a communication pattern
that contains all known Workers.

The MPI operation MPI_Alltoall is a communication-
only instance of the map-reduce pattern for all of the nodes,
and only applies memory concatenation to the collected set
of data. Our endpoint types given below can represent this
topology with more fine-grained primitives so that we can

obtain performance gain by communication-computation over-

lap, see § 5.2.
Master : rec LOOP {
// Map phase
datatype to WorkerO, Workeril;
// Reduce phase
datatype from WorkerO, Workeril;
LOOP }
Workerp<i;<n : rec LOOP {

// Map phase

datatype from Master;

// Reduce phase

datatype to Master;
LOOP }

4. CASE STUDY: K-MEANS CLUSTERING

K-means clustering is an algorithm for grouping a set of ob-
jects into k clusters. Initially, k centres of clusters are chosen
randomly. Each object will be assigned to a cluster based on
their proximity to the nearest centre. After each iteration
of the assignment, the centre of the clusters will be recal-
culated by taking the mean of all objects belonging to that
cluster. The whole process will be repeated until the clus-
ters stabilise or reach a pre-determined number of iteration
steps. In our implementation, the assignment is parallelised
and computed in parallel, and the resulting clusters are dis-
tributed between all PEs, so that the centres of the cluster
can be calculated on each of the PEs for the next iteration.

Below is the protocol specification of one of our partici-
pants, WorkerO0, of our K-means clustering implementation.

protocol Kmeans at Worker0O {
rec STEP {
// Multicast to Workerl Worker2 Worker3
int_array to Workerl, Worker2, Worker3;
// Multi-receive from Workerl Worker2 Worker3
int_array from Workerl, Worker2, Worker3;
STEP }
}

Listing 1: Protocol of the K-means clustering.

The block rec STEP { } means recursion, and represents
the repeating assign-and-update in the algorithm. The line

int_array to Workerl, Worker2, Worker3 stands for send-
ing from the participant (in this case Worker0O to Workerd,
Worker2, Worker3) with a message of type int_array. The
implementation of the algorithm in Session C is listed be-
low:

for (i=0; i<STEPS; ++i) {
kmeans_compute_fpga(range_start, range_end);
// Multicast to Workerl Worker2 Worker3
msend_int_array(centres_wkrO, chunk_sz, 3,
Workerl, Worker2, Worker3);

// ... Update centres with local results

// Multi-receive from Workerl, Worker2, Worker3
mrecv_int_array(centres_wkr, &sz, 3,
Workerl, Worker2, Worker3);

// ... Update centres with remote results

}

Listing 2: Implementation of K-means clustering.

In the code above, msend_int_array and mrecv_int_array
are the variadic primitives for multicast send and multi-
receive respectively from the Session C runtime library. The
first parameter is the pointer to the data to be sent, followed
by the size of the data and the total number of PE identifiers
to be sent to or received from. Workerl, Worker2, Worker3
are the identifiers of the PEs which this PE is communi-
cating with. The variable chunk_sz holds the size of the
partition to be msend to each participants; and sz will con-
tain the total number of bytes received by mrecv.

The scatter-gather pattern utilised by the above distributes
the local results of partitioned computation to other Workers,
then receives the results from them. At the end of the loop,
all PEs in the computation will have the complete set of cen-
tres from all other PEs. In MPI, this will be a MPI_Alltoall
operation. On the other hand, the asynchronous communi-
cation primitives of Session C allows a partial overlap of
communications with the process of updating centres to re-
duce the execution time. This fine grained control is backed
by the session type checking process, ensuring the commu-
nications with a partial overlap are deadlock-free.

5. EVALUATION

We evaluate our approach by implementing parallel bench-
marks on a heterogeneous cluster, Axel, with the session-
based languages, Session C and SJ.

5.1 Hardware environment

Axel [16] is a heterogeneous cluster with 24 nodes. Each of
the nodes on the Axel cluster contains a x86 CPU, a num-
ber of GPUs and an FPGA board as accelerators. Axel is
a Non-uniform Node Uniform Systems (NNUS) cluster sys-
tem, where each node has a similar configuration consisting
of different PEs. CPU, FPGA and GPU are the PEs in each
of the nodes in the Axel cluster. Each node can be used as
independent x86 PC equipped with hardware accelerators
(FPGA board and GPUs), hence new cluster nodes can be
built or extended with commodity hardware.

The main communication interface between the nodes is
an Ethernet network connected in a star topology between
all heterogeneous computing nodes (HCN). Inter-node com-
munication is therefore via a TCP network, by network li-

braries such as MPI or Session C runtime library. Heteroge-
neous components including the CPU, system memory and
FPGA are connected by a common PCle bus. Data are
transmitted to and from the FPGA memory by Direct Mem-
ory Access (DMA), and portions of the FPGA memory were
mapped to the main memory, providing an easy interface
for controlling the FPGA within the node by driver code
that runs on the local CPU. Inter-component communica-
tion within a node can also be governed by Session C if a
separate Session C process is instantiated for FPGA, GPU
and CPU, and interact over the loopback network, this also
opens up an opportunity for FPGAs to communicate di-
rectly over the Infiniband connection.

Although the Axel cluster contains various different kinds
of accelerators, they can all be abstracted as homogeneous
PEs with a varied amount of computational capabilities,
which can all take advantage of the session-based communi-
cation provided by the session programming frameworks.

5.2 Benchmark results

We first implemented N-body simulation with Session Java
(SJ), a session-enhanced Java [6] and compared our imple-
mentation against MPJ Express [8,14] which is an MPI li-
brary in Java. All of our implementations of N-body simula-
tion in SJ/MPJ Express use a ring topology described in §3.
SJ shows competitive performance against MPJ Express.

In addition, we configured our implementation to take ad-
vantage of the FPGA hardware to accelerate the computa-
tion. The execution environment of SJ is the Java Virtual
Machine (JVM), and is unable to interface with the FPGA
directly, as there are needs to directly access system memory
in native environment. Hence Java Native Interface (JNI)
was used to bridge the two execution environments.

35

s) ———
SJ (FPGA)
30 | MPJ Express -

25

Runtime (seconds)

20 25 30 35 40 45
Number of particles (x1000)

Figure 4: SJ N-body against MPJ Express.

Figure 4 shows the results of the implementations on 11
nodes of the cluster with the same number of steps of each
simulation. In addition to the I/O overhead between the
software and FPGA, we also take into account of the JNI
bridging overhead, which translates JVM data to and from
native formats. As the input size increases, the overhead is
compensated by the performance of FPGA. The SJ (FPGA)
performance is shown on the graph to overtake the non-
accelerated SJ implementation at about 32000 particles. This
represents the input size when acceleration with FPGA be-

comes feasible with the given problem.

The results prompted us to further investigate the session-
based approach in a pure native high performance hetero-
geneous computing environment with the Session C frame-
work. Figure 5 compares performance of FPGA-accelerated
and non-accelerated Session C and MPI N-body simulation
implementations with different input sizes on 6 nodes of the
cluster. OpenMPI 1.4 [11] was used as the native MPI im-
plementation, and both Session C and MPI versions share
code for computation. We observed similar results as SJ N-
body simulation, with the FPGA versions achieving up to
8 times speedup compared to the non-accelerated version.
Session C performs almost identically as MPI, showing that
the Session C implementation does not add communication
overhead to the overall program. We also note that there is
much lower FPGA overhead, represented by the intersection
point between Session C/MPI (FPGA) and Session C/MPI
plots, and hence a significant improvement over previous SJ
and Java implementations. Our Session C implementation
also utilised less nodes (6 nodes) of the Axel cluster to ob-
tain a superior performance over the SJ implementations (11
nodes).

30 ‘ . :
MPI (FPGA) ——
Session C (FPGA)
25 | MP] - e]
Session G @
o
T 20 b
o
[&]
(0]
2 15 1
(0]
£
5 10 :
o
5 4
0 L L L L L L L

20 30 40 50 60 70 80 90
Number of particles (x1000)

Figure 5: Session C N-body against OpenMPI.

We evaluate the scalability of our implementations by the
performance of Session C and MPI parallel N-body simu-
lation and K-means clustering, and the results are shown
in Figure 6. The reported runtimes for 1 node is the serial
execution of the implementations which is identical in both
Session C and MPI version since they share the same code
for the main computation. As described in §4, the Session
C implementations can take advantage of fine grained con-
trols of communication-overlapping in the K-means cluster-
ing algorithm. With more parallel processes, there are more
opportunities to overlap computation and communication
which results in a diminishing runtime difference between
Session C and MPI implementations. It should be noted
that although similar optimisation can be applied to MPI
using asynchronous communication model, unlike Session C,
MPI provides no means to check and ensure the design and
transformation is correct in the absence of a session type
checker for MPI. Moreover, the session-based approach al-
lows users to verify their optimisations statically by type
checking without further testing.

13 ¢ "k-means MP| —— |
k-means Session C
12 1 n-body MPI - 1
11T n-body Session C - -
@ ']
©
c
Q
[$]
[0]
2
[0]
£
IS
=]
T
Number of nodes
Figure 6: Scalability comparison.
6. SUMMARY

ISP [17] and the distributed DAMPI [18] are formal dynamic
verifiers which apply model-checking techniques to standard
MPI C source code to detect deadlocks using a test harness.
The tool exploits independence between thread actions to
reduce the state space of possible thread interleavings of an
execution, and checks for potentially violating situations.
TASS [15] is another suite of tools for formal verification
of MPI-based parallel programs by model-checking. It con-
structs an abstract model of a given MPI program and uses
symbolic execution to evaluate the model, which is checked
for a number of safety properties including potential dead-
locks and functional equivalences.

Compared to the test-based and model-checking approaches
which may not be able to cover all possible states of the
model, the session type-based approach does not depend on
external testing or extraction of models from program code
for safety. It encourages designing communication-correct
programs from the start, especially given the high level com-
munication structure which session types captures.

Immediate future work includes extending our session-
based, FPGA-enabled approach for safe and collaborative
high performance computing with other kinds of accelera-
tion hardware such as GPUs.

The runtime communication library described in this work
is an early prototype, which will be further refined for lower
latency and higher performance. For example, combining

protocol specifications and customisable communication frame-

works such as [1] on accelerator equipped systems can re-
sult in more compact message formats for inter-node and
inter-accelerator communication, hence will achieve better
communication performance, especially in the presence of
inter-FPGA communication medium.

Developing an MPI-compatible runtime interface is en-
visaged as a future direction of our session-based C lan-
guage. This allows us to benefit from state-of-the-art re-
search results on applying MPI as a programming model for
high performance reconfigurable system such as [12], or as a
software-hardware co-development model such as [19], while
having the advantages of session-typed communication pro-
gramming methodologies including formal safety assurance.

This work is supported by UK EPSRC, Alpha Data, Max-
eler, and Xilinx. The research leading to these results has re-

ceived funding from EPSRC EP /F003757/01, EP/G015635/01
and the European Union Seventh Framework Programme
under grant agreements number 248976, 257906 and 287804.

7. REFERENCES

[1] S. Denholm, K. H. Tsoi, P. Pietzuch, and W. Luk.
CusComNet: A Customisable Network for
Recongurable Heterogeneous Clusters. In ASAP,
pages 9-16. IEEE, 2011.

[2] K. Honda et al. Scribbling interactions with a formal
foundation. In ICDCIT, volume 6536 of LNCS, pages
55-75. Springer, 2011.

[3] K. Honda, V. T. Vasconcelos, and M. Kubo. Language
Primitives and Type Disciplines for Structured
Communication-based Programming. In ESOP,
volume 1381 of LNCS, pages 122-138.
Springer-Verlag, 1998.

[4] K. Honda, N. Yoshida, and M. Carbone. Multiparty
asynchronous session types. In POPL’08, volume
5201, page 273, 2008.

[5] R. Hu et al. Type-Safe Eventful Sessions in Java. In
ECOOP, volume 6183 of LNCS, pages 329-353, 2010.

[6] R. Hu, N. Yoshida, and K. Honda. Session-Based
Distributed Programming in Java. In ECOOP, volume
5142 of LNCS, pages 516-541, 2008.

[7] D. Mostrous, N. Yoshida, and K. Honda. Global
principal typing in partially commutative
asynchronous sessions. In ESOP, volume 5502 of
LNCS, pages 316-332, 2009.

[8] MPJ Express homepage. http://mpj-express.org/.

[9] N. Ng et al. Safe Parallel Programming with Session
Java. In COORDINATION, volume 6721 of LNCS,
pages 110-126, 2011.

[10] N. Ng, N. Yoshida, and K. Honda. Multiparty Session
C: Safe parallel programming with message
optimisation. In TOOLS, pages 203219, 2012.

[11] OpenMPI Homepage. http://www.open-mpi.org/.

[12] M. Saldana et al. MPI as a Programming Model for
High-Performance Reconfigurable Computers.
TRETS, 3(4):1-29, Nov. 2010.

[13] Scribble homepage. http://www.jboss.org/scribble.

[14] A. Shafi, B. Carpenter, and M. Baker. Nested
parallelism for multi-core HPC systems using Java.
JPDC, 69(6):532-545, June 2009.

[15] S. F. Siegel and T. K. Zirkel. Automatic formal
verification of MPI-based parallel programs. In
PPoPP’11, page 309. ACM Press, Feb. 2011.

[16] K. H. Tsoi and W. Luk. Axel: a heterogeneeous
cluster with FPGAs and GFPUs. In FPGA ’10, pages
115-124. ACM Press, 2010.

[17] A. Vo et al. Formal verification of practical MPI
programs. In PPoPP’09, pages 261-270, 2009.

[18] A. Vo et al. A Scalable and Distributed Dynamic
Formal Verifier for MPI Programs. In SC’10, pages
1-10. IEEE, 2010.

[19] J. P. Walters et al. MPI-HMMER-Boost: Distributed
FPGA Acceleration. The Journal of Signal Processing
Systems, 48(3):223-238, Aug. 2007.

[20] Session C homepage.
http://www.doc.ic.ac.uk/~cn06/sessionc/.

