
Specifying stateful asynchronous properties for

distributed programs

Tzu-Chun Chen and Kohei Honda

Queen Mary College, University of London

Abstract. Having stateful specifications to track the states of processes, such as
the balance of a customer for online shopping or the booking number of a trans-
action, is needed to verify real-life interacting systems. For safety assurance of
distributed IT infrastructures, specifications need to capture states in the pres-
ence of asynchronous interactions. We demonstrate that not all specifications are
suitable for asynchronous observations because they implicitly rely on an order-
preservation assumption. To establish a theory of asynchronous specifications,
we use the interplay between synchronous and asynchronous semantics, through
which we characterise the class of specifications suitable for verifications through
asynchronous interactions. The resulting theory offers a general semantic setting
as well as concrete methods to analyse and determine semantic well-formedness
(healthiness) of specifications with respect to asynchronous observations, for both
static and dynamic verifications. In particular, our theory offers a key criterion for
suitability of specifications for distributed dynamic verifications.

1 Introduction

The purpose of this paper is to introduce a theory of specification for communicating
processes under the condition that the observation is done asynchronously, motivated
by a semantic problem in specifications for distributed systems.

The semantic problem arose in a concrete engineering setting, through our collabo-
ration with the design and development of a large IT infrastructure for ocean sciences
[17], which is a typical large-scale distributed system. In that infrastructure, applica-
tions are predominantly built as asynchronous interactions among distributed compo-
nents. Since some of these components may be contributed by the third party so that
they may be buggy or untrusted, we cannot completely rely on static verification. To
detect undesirable behaviours during runtime is thus needed. We start from consider
having system-level observers observe the endpoint behaviours, and wish to provide a
basis for dynamically safe-behaviours enforcement. However, putting system-level ob-
server at every endpoint is expensive and they might be polluted by the malicious end-
point. To concur this problem, an ideal setting comes to have remotely located observer
(e.g., “outline monitor”[9]), who would be asynchronously inspecting behaviours of a
component against a specification. For this endeavour, we need to formulate an expres-
sive specification language usable for asynchronously monitoring components. We then
came across a basic issue in the semantics of a specification language in the presence of
asynchronous communication. The issue makes naturally written specifications seman-
tically nonsensical, thus posing a fundamental challenge to our endeavour to provide a
consistent specification-verification framework.

2

The combination of asynchrony and state is omnipresent in specifications for dis-
tributed systems capturing real-life scenarios, where e.g. the (expected) states of par-
ticipants in the applications, such as the credit of a client for online shopping, or the
purchase number for a transaction, play a critical role. When an observer (e.g. a trusted
monitor) is located at an observee, the order of the observee’s actions the observer sees
is exactly the same as the one happening at the observee. However, when she sits re-
motely outside the observee, the order of actions that she observes may not necessarily
be the same as the one happening at the observee. We call the former kind of observation
synchronous, and the latter asynchronous. Although the synchronous observation can
capture more precisely the “actual” behaviour of the observee, in distributed systems,
asynchronous observations are the norm and often a necessity.

Contributions. In the remainder, §2 illustrates the background, including the semantic
issue in asynchronous specifications, through concrete examples. Starting from these
motivating examples, the paper presents the following contributions:

1. Introduction of an intuitive, semantically well-founded protocol-centred specifica-
tion method suitable for asynchronous stateful behaviour (called SP for stateful
protocols), enriching [4] with set-based stateful operations (§2, §3).

2. Identification (first to our knowledge) of a semantic issue when specifying asyn-
chronous interaction behaviour combined with updatable states (§2).

3. Formal analysis of the issue through asynchronous trace semantics, reaching sev-
eral criteria for asynchronous verifiability of specifications (healthiness conditions
[11]) including a decidable one admitting a rich set of specifications (§4).

Finally in §5, we examine the practical implications of the theory, discuss related work
and conclude with further topics. For the space sake, the proofs of the technical results
as well as further examples are left to the full version [5].

2 Motivating Examples

2.1 Using state(s) in protocol specifications

Before formally introducing the syntax and semantics of specifications, we discuss key
ideas through simple examples. Our specification language is based on multiparty ses-
sion types [3, 13] annotated by logical formulae, extending [4] with local state(s). We
first motivate the use of state in specifications, considering the scenario below:

(step 1) Buyer sends a product name (denoted by PName) to Seller, then Seller replies
with its price, and Buyer decides to purchase (then go to step 2) or not (then termi-
nate). We assume shipping is done independently.

(step 2) Seller sends the Buyer an invoice for the purchased product.

In [4, 8, 13], this scenario can only be realised as a single protocol between Buyer and
Seller; while, by using state(s), it can be realised using two protocols, one for each step.
Separating protocols has a merit in flexibility: when Buyer and Seller finish step 1, both
can terminate, and an invoice may be issued any time later. Below we present a stateful
specification that realising using two separate protocols.

3

Example 1 (SP for a cross-session Purchase-and-Invoice scenario).

G
pcs

= B ! S : Request(PName : string).

S ! B : Confirm(PNameConf : string,Price : int)hPNameConf = PName ^ Price � 0 ; eihtruth;ei.

B ! S : {OK(UserID : int)hUserID 6= 0;eihtruth;ei.

S ! B : (PNo : int)hPNo 62 dom(PLog);PLog := PLog[{PNo 7! (UserID,PName,Price)}ihtruth;ei

end

KO().end}

G
ivc

= S ! B : (PNo : string, Invoice : int)hPNo 2 dom(PLog) ^ Invoice = PLog(PNo) ; eihtruth;ei.end

Above G
pcs

and G
ivc

denote stateful protocols, or SPs from now on for short, respec-
tively corresponding to steps 1 and 2. Each specifies the flow of interactions which the
participants, S (for seller) and B (for buyer), should realise at each session. h...; ...ih...; ...i
are the obligations for sender (the former) and receiver (the latter), where the block be-
fore “;” is the predicate and the one after is the state(s) updating rule. htruth;ei means
no obligation. The syntax is formally introduced in §3. In this example, the state of S,
represented by the field PLog (the Purchase Log, which we consider to be a key-value
store, mapping distinct keys to values), links the two protocols. Both specifications can
be read intuitively. First, in G

pcs

,
1. B first sends a request (Request is an operator name), with the message value

PName of type string, which is a product name.
2. S confirms by sending the same product name and its price, where the latter should

be a non-negative integer as annotated.
3. If B says OK and sends its identity, then (in practice, after authentication etc.) S

sends back a fresh purchase number PNo, i.e. it should not be in the domain of
PLog. As a result, this new key and the corresponding information is added to
PLog. On the other hand, if B says KO, the conversation terminates.

Note our specifications use local state to record an abstraction of preceding interactions
across sessions, used for constraining future behaviours. Our ultimate aim is to specify
visible behaviours: thus the stipulated state does not have to come from an actual state
of a process: we may call it a “ghost state” following JML [1].

2.2 Synchrony and asynchrony in specification

The next example illustrates the central topic of this paper, asynchrony in specifications,
showing how a specification can be “too synchronous” for asynchronous observations.
We focus on a part of the previous example. The purchase number allocator S will,
upon a request from a buyer B at each session, issue a purchase number incrementing
the previously issued one: so S issues e.g. 1, 2, 3, . . . in a sequence of sessions. Figure
2 (a) shows the corresponding protocol G

sync

which the participants, S and B, should
realise at each session. c is a local state of S, denoting the next purchase number.
Example 2 (SPs for purchase number allocator: synchronous v.s. asynchronous).

(a) synchronous spec

G
sync

= B ! S : req(e).
S ! B : ans(x : int)

hx = c; c := c+1ihtruth;ei.
end

(b) asynchronous spec

G
async

= B ! S : req(e).
S ! B : ans(x : int)

hx 62 c; c := c[{x}ihtruth;ei.
end

4

In the first line of G
sync

, B requests S a purchase number by sending req(e), where
e means there is no message value in this request. In the second line, an integer x is
sent from S to B, for which hx = c;c := c+ 1i specifies the obligation for S, while no
obligation i.e. htruth;ei for B. The first part “x = c” says that x should be equal to c. The
second part “c := c+1” says that, after sending, S will increase c by 1, which constrains
further behaviours of S in later sessions.

G
sync

is an example of a SP which makes sense synchronously but not asynchronously.
It seems an intuitively sensible specification: however, for a remote observer, even if S
actually sends the series of purchase numbers 1,2,3,4, . . . in this order, they may ar-
rive at the observer as e.g. 2,4,1,3, . . ., under the practical assumption that the order of
messages belonging to distinct sessions may not be preserved. In particular, this remote
observer will consider S as being ill-behaved with respect to G

sync

: the correctness for
S (which is synchronous) and the correctness for its observer (which is asynchronous)
are incongruent.

As a remedy, we present G
async

in Example 2(b), which is intended for asynchronous
observation. We now use the set of purchase numbers: c, whose type is a set of integers,
corresponds to PLog in Example 2.1. The new specification just says, in brief, that
“S always sends a fresh number”. If the behaviour of S satisfies this condition at S,
then even though messages from S may arrive out-of-order, the remote observer can
verify that they are correct w.r.t. G

async

, so that the actions of S and their asynchronous
observation by a remote observer coincide. We shall later verify this statement formally.

2.3 Capturing causality using sets

While G
async

gives a reasonable specification, it is not a strongest possible specification
if our target is a server that issues purchase numbers incrementally based on the previous
numbers. For example, if the same buyer sequentially repeats a series of request-reply
sessions, that buyer (and an observer sitting in-between) will surely observe 1,2,3,4 in
this order, but this point is not captured by G

async

.

Example 3 (A refinement of G
async

).

G
ass

= B ! S : req(e)htruth ; eihtruth ; t := t+1,c := c]{t}i.
S ! B : ans(x : int)hx 2 c; c := c\{x}ihtruth ; ei.
end

G
ass

in Example 3 is a refinement of G
async

in Example 2: while still being suitable for
asynchronous observations, it can capture a stronger causal constraint. It uses two states:
t, a counter, and c, a collection of valid numbers to be issued. t and c are incremented
when receiving a request, while the sent value is taken off from c. The basic idea is that,
if S receives n requests, then (assuming the server issues the purchase numbers starting
from 1) as a whole the numbers which can be issued are among {1,2, ..,n}. And if S
issues a number from this set, the remaining numbers are what it can issue.

To understand G
ass

as a specification, consider two sessions following the protocol,
s1 and s2. Assume the initial states are t 7! 0 and c 7! {}. Then G

ass

says the traces
in Figure 1 are valid ones (we list the traces together with step-by-step state change:
(I,II,III) are categories each stipulating how states will change).

5

cases 1st 2nd 3rd 4th

(I) actions: s1[B,S]?req(e) s2[B,S]?req(e) s1[S,B]!ans(1) s2[S,B]!ans(2)
s2[B,S]?req(e) s1[B,S]?req(e) s1[S,B]!ans(1) s2[S,B]!ans(2)
s1[B,S]?req(e) s2[B,S]?req(e) s2[S,B]!ans(1) s1[S,B]!ans(2)
s2[B,S]?req(e) s1[B,S]?req(e) s2[S,B]!ans(1) s1[S,B]!ans(2)

(I) states: t 7! 1,c 7! {1} t 7! 2,c 7! {1,2} t 7! 2,c 7! {2} t 7! 2,c 7! {}

(II) actions: s1[B,S]?req(e) s2[B,S]?req(e) s1[S,B]!ans(2) s2[S,B]!ans(1)
s2[B,S]?req(e) s1[B,S]?req(e) s1[S,B]!ans(2) s2[S,B]!ans(1)
s1[B,S]?req(e) s2[B,S]?req(e) s2[S,B]!ans(2) s1[S,B]!ans(1)
s2[B,S]?req(e) s1[B,S]?req(e) s2[S,B]!ans(2) s1[S,B]!ans(1)

(II) states: t 7! 1,c 7! {1} t 7! 2,c 7! {1,2} t 7! 2,c 7! {1} t 7! 2,c 7! {}

(III) actions: s1[B,S]?req(e) s1[S,B]!ans(1) s2[B,S]?req(e) s2[S,B]!ans(2)
s2[B,S]?req(e) s2[S,B]!ans(1) s1[B,S]?req(e) s1[S,B]!ans(2)

(III) states: t 7! 1,c 7! {1} t 7! 1,c 7! {} t 7! 2,c 7! {2} t 7! 2,c 7! {}

Fig. 1. The valid traces from G
ass

Above, s1[B,S]?req(e) denotes an input ? from B to S at session s1 carrying a req-
message without value; s1[S,B]!ans(1) is an output ! from S to B at s1 carrying a ans-
message with value 1. (I) and (II) are the traces where a remote observer observes that
two consecutive inputs have arrived first. Note that, even if S may have indeed outputted
immediately after the first input, we can have these traces, due to asynchrony. Even
then, unlike G

async

, the observer is sure that the returned values should be no more than
2, i.e. it is either 1 or 2. In (III), the observer observes the second request only after
the answer to the first request: the request-answer order in each session is preserved
because without the request, its answer cannot occur. Unlike G

async

, the observer can
expect, based on G

ass

, that the first answer is surely 1; and the second is surely 2.
This example shows how we can represent causality while (intuitively) keeping the
asynchronous nature of specifications.

3 Asynchronous Specifications

3.1 Syntax of protocols and specifications

Grammar of global and local stateful protocols. Figure 2 summarises the grammar of
global SPs (G, . . .), which specify the interaction structure of a session from a global
viewpoint; and local SPs (T, . . .) which specify protocols for endpoints, to be projected
from G. Their syntax extends [4] with local states and operations on them: by adding
simple state update, we obtain a rich class of stateful specifications.

6

S ::= nat | bool | string | . . .

| S1 ⇥S2 | set(S) | map(S1,S2)

e ::= x | v | f | op(e1,,en)

G ::= p! q : {li(xi : Si)hAi;EiihA0

i;E 0

i i.Gi}i2I G-cm
| G1 | G2, role(G1)\ role(G2) = /0 G-par
| end G-end

A ::= truth | false | e1 = e2 | e1 > e2
| e1 2 e2 | A1 ^A2 | ¬A

E ::= e | E, f := e

T ::= p!{li(xi : Si)hAi;Eii.Ti}i2I L-sel
| p?{li(xi : Si)hAi;Eii.Ti}i2I L-bra
| end L-end

Fig. 2. The grammar of stateful protocols

A SP uses a state consisting of zero or more fields. A field gets read in a predicate
A and gets read and written in an update E. We call hA;Ei obligation. We use updates
instead of post-conditions for usability in runtime verification. (S, . . .) are sorts (types of
expressions), and (e, . . .) are expressions, where op(e1, ...,en) is the operation op on pa-
rameters e1, ...,en. We use product S1⇥S2, set set(S) and (finite) function map(S1,S2).
Sets and functions play important roles in asynchronous specifications. In expressions,
x is a variable, v is a value, f is a (mutable) field. In E, f := e is assigned by e. The gram-
mar of G and T is simplified for distilled presentation. In particular we omit recursion,
which however can be added preserving all results, see §5.

In G, p! q describes the communication from sender p to receiver q, while p! and
p? are endpoint actions for output (to p) and input (from p). In li(xi : Si), li is the label
for a branch: when li is chosen, the interaction variable is xi, and Si is its type. In G-cm,
the first obligation hA;Ei is for the sender, indicating a sender should guarantee that its
message satisfies A and as a result E is done; the second obligation hA0;E 0

i is for the
receiver, indicating it can expect a message to satisfy A0 and as a result E 0 is done. In
G-par, its side condition (where role(G) denotes the set of roles in G) demands no role
is shared by G1 and G2, Rule L-sel is for sender’s behaviours, while rule L-bra is for
receiver’s behaviours. Parallel composition specifies two interactions in parallel, while
end denotes the end of interactions.

As a notational convention, if an obligation is trivial (i.e. the predicate is truth and
the update is e) then it is omitted. Further, if either the predicate or the update is trivial
in an obligation, then it is omitted.

Well-formedness and projection. Assume p! q : {li(xi : Si)hAi;EiihA0

i;E 0

i i.Gi}i2I is inside
a context, with possibly preceding interactions. The following well-formedness condi-
tions, based on [4], stipulate consistency of global protocols:

(1) (a) 8i 2 I, field(A0

i) = /0 (where field(A) denotes the sets of field names occurring in
A); and (b) 8i 2 I, Ai implies A0

i.
(2) (history sensitivity) Ai and Ei only refer to interaction variables which p, a sender,

has sent or received before, as well as xi. Similarly for A0

i and E 0

i for a receiver.
(3) (temporal satisfiability) at each step, and for any state, there is always a branch i

and a value xi that satisfy Ai (hence A0

i, i.e. at each step).

7

(1-a) says that a predicate of a receiver is stateless (generally, if a receiving-side predi-
cate relies on its own local state, then a sender may not be able to find a “proper” value
to send). (1-b) says that, in every interaction, the predicate at sender always imply the
predicate at the receiver: together with (1-a), this means that if a sender sends a message
that satisfies the sender’s predicate, then automatically the receiver’s predicate is satis-
fied (the latter however is useful for the receiver to know what it can expect). (2) and
(3) are from [4]. All examples treated in this paper are easily well-formed. Henceforth
we assume all global SPs we treat are well-formed.

A global protocol is useful to capture the overall interaction scenario, while a local
protocol specifies what the endpoint is expected to do. They are linked by endpoint
projection. Leaving its formal definition to [5], we illustrate the idea by an example.

Example 4 (endpoint projection). The local SPs projected from G
ass

are:

G
ass

� B = TB = S!req(e).S?ans(x : int).end

G
ass

� S = TS = B?req(e)htruth; t := t+1 c := c]{t}i.B!ans(x : int)hx 2 c ; c := c\{x}i.end

Specifications. A specification is a triple Q ::= hG ;D ;Di which gives a behavioural
specification of a local process (endpoint) as its interface. G , D and D, separated by “;”
in Q , are given by:

G ::= /0 | G ,a : I(G[p]) | G ,a : O(G[p]) | G , f : S D ::= /0 | D ,s[p] :T D ::= /0 | D, f 7! v

Above, I (resp. O) is a mode denoting input (resp. output) capability. G , shared environ-
ment, describes the permitted behaviour at each shared channel; and the type of each
field. When a process has a : I(G[p]), it can accept invitations via a shared channel
a to play the role p following what (the p-projection of) G specifies; while a :O(G[p])
is its dual. In D , session environment, s[p] : T describes the session behaviour (T) in
a session s as p. D is a set of (ghost) states of a local process (endpoint): the states in
D 2 Q belong to an endpoint participant in a session. Each D is a map from fields to
values. In formulae, a field f itself represents its current value.

Example 5. Based on G
ass

in Example 3 and its local SPs in Example 4, we give a
local specification Q

ass

for server, playing role S, and QB1 and QB2 for two buyers B1
and B2, each playing role B in G

ass

, assuming there are two ongoing sessions s1 and s2.

TS = B?req(e)htruth; t := t+1 c := c]{t}i.B!ans(x : int)hx 2 c ; c := c\{x}i.end

Q

ass

= hG

0

Ser,ser : I(G
ass

[S]) ; D

0

Ser,s1[S] : TS,s2[S] : TS ; D0

Ser, t 7! 0,c 7! {}i

TB = S!req(e).S?ans(x : int).end, QB1 = hG

0

B1
,b1 : O(G

ass

[B]); D

0

B1
, s1[B] : TB; DB1i

QB2 = hG

0

B2
,b2 : O(G

ass

[B]); D

0

B2
,s2[B] : TB; DB2i

The data storage in Q

ass

is D0

Ser, t,c. In this protocol, no state in D0

Ser is used. Similarly,
no state in DB1 or DB2 is used. Although we do not illustrate the whole procedures of
session establishment (by using rules [REQ-INI], [REQ] and [ACC] defined in Figure 3),
it shows that buyers B1 and B2 are the invitors requesting S to join session s1 and s2.

8

3.2 Semantics of specifications

We present the semantics of specifications as a labelled transition system (LTS). The
transition is of the form Q

`
�!Q

0, which intuitively means Q as a specification allows a
process to do an action `, and the resulting process should conform to Q

0. For actions
labels, we use a(s[p] : G) for sending an invitation when s is fresh to the sender, and
use ahs[p] : Gi for sending an invitation when s is not fresh. a(s[p] : G) for accepting
an invitation when s is fresh to the receiver (which is the only case we consider), and
s[p,q]!l(v) and s[p,q]?l(v) for sending and receiving in a session. We do not use t since
it is irrelevant in the present work (because, in brief, t is always possible and has no
effects on specifications). The LTS is defined in Figure 3 below: the induced transition
is deterministic: if Q

`
�!Q

0 and Q

`
�!Q

00, then Q

0 =Q

00.

[REQ-INI]
a : O(G[p j]) 2 G , s 62 dom(D), role(G) = {pi}i2I

hG ; D ,{s[pi] : G � pi}i2I ; Di

a(s[p j]:G)
������! hG ; D ,{s[pi] : G � pi}i2I\{ j}; Di

[REQ]
a : O(G[p j]) 2 G , role(G) = {pi}i2I

hG ; D ,s[p j] : G � p j; Di

ahs[p j]:Gi

������! hG ; D ; Di

[ACC]
s 62 dom(D), T = G � q, field(T) 2 D

hG ,a : I(G[q]); D ; Di

a(s[q]:G)
�����! hG ,a : I(G[q]); D ,s[q] : T ; Di

[SEL]
T = q!{li(xi : Si)hAi;Eii.T 0

i }i2I , G `v : S j, G |=A j{v/x j}, s 62 dom(D)

hG ; D ,s[p] : T ; Di

s[p,q]!l j(v)
������! hG ; D ,s[p] : T 0

j{v/x j}; DafterE{v/x j}i

[BRA]
T = p?{li(xi : Si)hAi;Eii.T 0

i }i2I , G ` v : S j, G |=A j{v/x j}, s 62 dom(D)

hG ; D ,s[q] :T ; Di

s[p,q]?l j(v)
������! hG ; D ,s[q] :T 0

j{v/x j}; DafterE{v/x j}i

[PAR]
Q1

`
�! Q2, bn(`)\n(Q3) = /0

Q1,Q3
`
�! Q2,Q3

Fig. 3. Labelled transition system for specifications

The first two rules are for invitations. [REQ-INI] is used when s is fresh, i.e. when the
first request happens to the sender to ask someone for playing role p j in a fresh s. The
round parenthesis in a(s[p j] : G) indicates s in this label is a binding occurrence and we
record all capabilities except the passed one in the linear typing environment; otherwise
we use [REQ]. [REQ] says that, when s is not fresh in the session environment, and if Q

has an output channel a with G, (1) the target behaviour is permitted to send a request
ahs[p j] : Gi to ask someone to play role p j in session s; and (2) after requesting, we take
off the capability at p j. Rule [ACC] says that, if s is a new session, and all states declared
in G � q, field(G � q), are in D, when Q has an input channel a with G for accepting to
play role q, it accepts this request and plays session role s[q] specified by G � q.

9

Rule [SEL] is for sending a message in a session. The premise says that, first, the
type T should be a selection type; the passed value v has type S j from the j-th branch of
T under G (note that, when v is a name, G needs to have the knowledge of its type, but
it is not needed if v is a non-channel value, like 3 or ”hello” whose type is automatically
known without G); and A j after substitution holds under G . The condition s 62 dom(D)
says that, when an agent communicates in a session, it is playing only a single role (this
restriction can be taken off but simplifies the technical development). In the conclusion,
T 0

j substitutes v for x j and prepares for the next action, and the state is updated by
DafterE j{v/x j}. To illustrate the updating of D by E j, assume E j is defined as f :=
f]{x j}, and currently f 7! {10}. After substituting 5 for x j, D is updated to f 7! {10,5}.
Rule [BRA] is a symmetric rule of [SEL]. Finally [PAR], where bn(·) is the set of bound
names and n(·) is the set of names, says if Q1 and Q3 are composable, after action
happens and Q1 becomes as Q2, they are still composable.

3.3 Processes and satisfaction

Definition 6 (trace). A trace (s,s0, . . .) is a sequence of actions where we assume a
request/accept action introducing the session channel, say s, binds the later occurrences
of s. Based on this binding, we only consider traces which satisfy the standard binding
conventions, i.e. two binding occurrences never coincide and if free s occurs then it
cannot do so before a binding occurrence (by an accept or request).

Below sbj(`) denotes the subject of `, given as, for a request/accept, the initial shared
channel (e.g. sbj(ahs[p j] : Gi) = a); and, for a session action, the session channel with
the interacting role (e.g. sbj(s[p,q]!l j(v)) = s[q], sbj(s[p,q]?l j(v)) = s[p]).

Definition 7 (legal unit permutation). Let `1 · `2 be a trace. Then a permutation from
`1 · `2 to `2 · `1 is legal if one of the following conditions holds:

1. `1 and `2 are both inputs and either both are session actions and sbj(`1) 6= sbj(`2)
to the same receiver, or one of them is an accept action and `1 does not bind `2.

2. `1 and `2 are both outputs and either both are session actions and sbj(`1) 6= sbj(`2)
to the same sender, or one of them is a request action and `1 does not bind `2.

3. `1 is an output and `2 is an input and `1 does not bind `2.

Such a permutation is called a legal unit permutation. We write sy s0 when s0 is the
result of applying zero or more legal unit permutations. In this case s0 is a permutation
variant of s and this permutation is called a legal permutation.

Example 8 (legal permutation). In Figure 1, all traces in (I) and (II) are permutation
variants to each other. The traces in (III) can legally permute to any trace in (I) and (II),
but not the converse.

The following simple definition of processes is enough for our purpose: we can readily
use the p-calculus with session primitives and its weak (t-abstracted) LTS to induce
this abstract notion of processes.

Definition 9 (process). A process (P,Q, ..) is a prefix-closed set of traces.

10

The following defines the notion of synchronous and asynchronous observables as the
sets of traces observed by a synchronous observer (i.e. as it is) and by an asynchronous
observer (i.e. up to legal permutations).

Definition 10 (synchronous and asynchronous observable). (1) Obss(P)
def
= P. (2)

Obsa(P) is the set of all legal permutation variants of the traces in P.

Definition 11 (|Q |: valid traces of Q). We define |Q |, the set of valid traces of Q , as
finite sequences from the LTS of Q defined in Figure 3.

Intuitively, a valid trace is a trace that Q approves. The following says that a process
P synchronously (resp. asynchronously) satisfies Q if, w.r.t. synchronous (resp. asyn-
chronous) observables, P always does valid outputs as far as it receives valid inputs.

Definition 12 (satisfaction up to observables). A process Obss(P) synchronously sat-
isfies Q , denoted P |=sync Q , when the following two conditions hold:

1. (output safety) Obss(P)⇢ |Q |.
2.a (input consistency) Whenever s 2 Obss(P) and s · ` 2 |Q | where ` is an input,

s · `0 2 Obss(P) and `0 is an input with the same subject as `, then s · ` 2 Obss(P).

A process P asynchronously satisfies Q , denoted P |=async Q , if, after replacing each
Obss(P) with Obsa(P), it satisfies condition 1. above, as well as:

2.b (input consistency) Whenever s 2Obsa(P) and s · ` 2 |Q | where ` is an input, then
s · ` 2 Obsa(P).

Note that a synchronous process (2.a) can accept a valid input only when it is ready to
receive it; while an asynchronous process (2.b) can, and should, accept any valid input.

Example 13 (valid/invalid traces of G
ass

). We consider Q

ass

from Example 5 which
uses the local SP from G

ass

in Example 3 for the server side. Then, for example, the
trace s2[B,S]?req(e) · s2[S,B]!ans(1) · s1[B,S]?req(e) · s1[S,B]!ans(2) is valid for Q

ass

,
but s2[B,S]?req(e) · s2[S,B]!ans(2) · s1[B,S]?req(e) · s1[B,S]!ans(1) is not its trace (vio-
lation is at the second step), i.e. it is not permitted by Q

ass

.

4 Theory of asynchronous specifications

4.1 Asynchronously verifiable specifications

We say Q is asynchronous if it is suitable for a remote observer to verify a process
behaviour. In this case, we do not want the conformance of a trace to change depending
on an accidental reordering due to asynchrony: i.e. we want its validity to be robust
w.r.t. legal permutations.

Definition 14 (asynchronously verifiable specification). We say Q is asynchronously
verifiable or simply asynchronous when s 2 |Q | and sy s0 imply s0 2 |Q |.

11

To check violation of asynchrony of a specification, we only have to find a single ac-
ceptable trace whose permutation is not acceptable.

Example 15. Let T
sync

be the local SP at server, projected from G
sync

. Then Q

sync

=
hG

0

Ser,ser : I(G
sync

[S]) ; D

0

Ser,s[S] : T
sync

; D0

Ser,ci, where I contains the sessions using
G

sync

, is not asynchronous by the traces given in §2.

On the other hand, checking asynchrony by Definition 14 means we should verify the
property for all traces, which are usually infinitely many. Later we shall find methods by
which we can validate the asynchrony of, for example, Q

ass

and all the corresponding
specifications that use G

pcs

/G
ivc

and G
async

.
The following characterisation says that, if a specification Q is asynchronous, the

anomaly we discussed in §2.2, for G
sync

in Figure 2(a), can never take place: if a
synchronous observer recognises that P conforms to Q , i.e. if P conforms to Q syn-
chronously, then an asynchronous observer will also do the same.

Proposition 16. Q is asynchronous iff, for each P, P |=sync Q implies P |=async Q .

The next result says that asynchronous verifiability is consistent with the asynchronous
trace equivalence. Below let P ⇡async Q mean Obsa(P) = Obsa(Q). In [14], we have
shown how ⇡async (but not its synchronous counterpart) can be used for non-trivial
optimising transformation.

Proposition 17. If P ⇡async Q and P |=async Q then Q |=async Q .

4.2 Asynchrony in specifications through commutativity

A basic issue in Definition 14 and its characterisation in Proposition 16 is that they
do not directly mention the (intensional) structure of specifications. Thus it does not
offer engineers insights as to how one may design her/his specifications. Extending the
usage of the term in [11], we may call a criterion for specifications which a designer
can use for ensuring robustness w.r.t. asynchrony, healthiness condition. The following
definition is a first step towards such a criterion.

Definition 18 (confluence). Q is confluent if, whenever Q

s
�! Q

0, if Q

0

`1·̀ 2
��! Q

00 and
`2 · `1 y `1 · `2, then Q

0

`2·̀ 1
��!Q

00 again.

I.e. the specification accepts the same sequence of values regardless of legal permuta-
tions and the resulting states are the same. Immediately confluence means asynchrony.

Lemma 19. Q is asynchronous iff s · `1 · `2 2 |Q | and `1 · `2 y `2 · `1 imply s · `2 · `1 2

|Q | for each s, `1 and `2.

Proposition 20. If Q is confluent then it is asynchronous.

12

Note that the other way round is not true. Given Q is asynchronous, for any s,`1, and
`2, s·`1 ·`2 2 |Q | implies s·`2 ·`1 2 |Q |. However, it is possible that Q

s
�! Q

0

`1·̀ 2
��! Q

00

while Q

s
�!Q

0

`2·̀ 1
��!Q

000, where Q

00

6=Q

000.
We can easily find a specification which is not confluent (for example, if a speci-

fication just does the same counting as G
sync

). To check confluence, we still need to
consider all possible transition derivatives of Q . However we can observe that, in such
a derivative, the obligations used to check confluence are already present in Q . This
suggests we only have to look at the obligations occurring in Q and check their com-
mutativity w.r.t. their legal unit permutations. This method demands designers to look at
only Q , so that it clearly helps her/his design process. The method treats a predicate and
an update in an obligation as functions (operations) on state, as follows. Let † 2 {?, !}.

Definition 21 (predicate/update functions). Let x

def
= r † l(x : S)hA;Ei with the as-

sociated state D whose domain is f1, ..., fn. W.l.o.g. we regard E to be a simultaneous
substitution of the form f1 := e1, ..., fn := en. Then we define:

pred(x)
def
= lx, f1, ..., fn.(A) upd(x)

def
= lx, f1, ..., fn.he1, ..,eni

We call pred(x) (resp. upd(x)) the predicate function (resp. update function) of x .

Example 22. Below we project G
sync

and G
ass

(all from §2) to the server. For simplicity
we assume its local state only consists of those fields specified in global SP.

G
sync

� S = B?req(e)htruth;ei . B!ans(x : int)hx = c ; c := c+1i

G
ass

� S = B?req(e)htruth; t := t+1 c := c]{t}i . B!ans(x : int)hx 2 c ; c := c\{x}i

Then the following table gives the functions induced by obligations in these local types.
input output

G
sync

� S x0
def
= B?req(e)htruth;ei x1

def
= B!ans(x : int)hx = c;c := c+1i

pred(x0)
def
= le,c.(truth) pred(x1)

def
= lx,c.(x = c)

upd(x0)
def
= le,c.hei upd(x1)

def
= lx,c.hc+1i

G
ass

� S x2
def
= B?req(e)htruth; t := t+1 c := c]{t}i x3

def
= B!ans(x : int)hx 2 c ; c := c\{x}i

pred(x2)
def
= le,c.(truth) pred(x3)

def
= lx,c.(x 2 c)

upd(x2)
def
= le,c.ht+1 c[{t}i upd(x3)

def
= lx,c.hc\{x}i

Once we can treat obligations as operations on state(s), we can define their commuta-
tivity. Since the commutativity we need is asymmetric (corresponding to asymmetric
permutations induced by asynchrony, cf. Definition 7), we define semi-commutativity,
which plays a key role in validating specifications later. A precursor of the following
construction in a different setting is found in [7] (see §5 for discussions).

Definition 23 (semi-commutativity). Assume w.l.o.g., xi and x j use f as the field.
Then we say xi commutes over x j if, for any message values vi and v j (for xi and x j),
and the value of initial state w (for f), the following conditions hold. If pred(xi)(vi,w)
and pred(x j)(v j,upd(xi)(vi,w)) are both true, then

13

1. pred(x j)(v j,w) and pred(xi)(vi,upd(x j)(v j,w)) are both true.
2. upd(x j)(v j,upd(xi)(vi,w)) = upd(xi)(vi,upd(x j)(v j,w)).

If xi commutes over x j and vice versa, then we say xi and x j are commutative.

Example 24. We show x1 in Example 22 does not commute over itself (i.e. x1, x1 is
not commutative). Let f = c. We know pred(x1)(1,1), pred(x1)(2,upd(x1)(1,1)) and
pred(x1)(2,2) are all truth, however pred(x1)(2,1) = false. Similarly, x0 does not
commute over x1 (however x0,x0 are commutative).

Using this notion, the healthiness condition for asynchronous specification can be con-
cisely stated as follows. Below we say an obligation is usable in Q if it occurs in a local
SP in Q or in the projection of a global SP in Q to its potentially local role, where by
“potentially local” we mean that the role has a potential to be played locally (e.g. for the
global SP carried by an input shared channel type, only the specified role is potentially
local).

Definition 25 (commutativity). Given Q , let x1, ..,xn be all the obligations usable in
Q . Then we say Q is commutative if the following conditions hold.

1. For (possibly identical) x

0

1 and x

0

2 from {x1, ..,xn}, if both are inputs or both are
outputs, then x

0

1 and x

0

2 are commutative.
2. For distinct x

0

1 and x

0

2 from {x1, ..,xn}, if x

0

1 is an output and x

0

2 is an input then x

0

1
commutes over x

0

2.

I.e. Q is action confluent when all obligations used in the specifications for the target
process commute over each other up to legal permutations. We can easily show:

Proposition 26. If Q is commutative then it is confluent (hence asynchronous).

Note that the other way round is not true: Q is confluent does not imply that it is
commutative. Since, based on Definition 18, Q is confluent, then whenever Q

s
�! Q

0,
Q

0

`1·̀ 2
��! Q

00 and `1 ·`2 y `2 ·`1 imply Q

0

`2·̀ 1
��! Q

00. Q

0 is commutative, but Q

0 cannot
imply that Q is commutative.

This method can be strengthened by adding an invariant (including correlation
among states) in state and checking that invariant continues to hold at each step. We
can now show all our example specifications except the one induced by G

sync

is asyn-
chronous. Below we let Q

async

’s shared environment contains a : I(G
async

[S]), and let
Q

async

’s data storage contains c 7! {}. By inspecting the (semi-)commutativity of in-
duced predicates and operations, we easily obtain:

Proposition 27. Q

async

and Q

ass

at server are both commutative, hence asynchronous.

We can similarly check a specification induced by G
pcs

and G
ivc

are commutative.
The valuation of commutativity is essentially satisfiability of a formula whose free

variables are universally quantified. Thus if the logic (for predicates) we use for our
specification language is decidable, commutativity is decidable. In particular, by [20]:

Proposition 28. With the SP language given in §3 restricting operations on integers to
be the addition and the subtraction, then the commutativity is decidable.

We discuss practical implications of these results in the next section.

14

5 Related Work and Further Topics

Practical implications of the Theory The characterisation results in §4 offer not only
a decision procedure for a rich subset of specifications, but also a basic insight on the
design methodology for asynchronous specifications. In particular it sheds light on the
use of operations on sets in our examples in §2. Because checking commutativity solely
relies on the obligations occurring in protocols, adding the recursion to the syntax:

G ::= ... | µX .G | X T ::= ... | µX .T | X

does not change the nature of commutativity checking nor the resulting guarantee.
If Q is asynchronous and a process behaves properly w.r.t. Q synchronously, an

asynchronous observer will also judge the induced (permuted) trace to be proper w.r.t.
Q . It is however easy to see that the converse is not true: consider a server that violates
Q

ass

by responding 2 to the first request, 1 to the second, but these are delayed by
asynchrony, leading to a valid trace when they arrive at the remote observer (for a
concrete analysis, see the Appendix in our full version [5]). A key consistency property
is that any further legal permutation of this valid trace is again valid. For example, if a
system monitor for the server is sitting between Client and Server, and if this monitor
observes a valid trace of Server against the specification she has, Client will observe
no worse behaviour. This monotonicity gives a basis for an application of the presented
framework such as runtime monitoring.

Related works and further topics The semantic differences between synchronous and
asynchronous communications have been studied for several decades: early works in-
clude [2, 6, 10, 12]. The permutations associated with asynchronous communication
used in Definition 7 are noted in these works (and implicit in such work as [15]). Their
more explicit presentation in the categorical setting is found in [19]. There is also a
study in component validation based on asynchronous histories such as [18]. In spite of
these precursors and close technical connection, the existing works (except [16] which
however focuses on synchronous specifications and proof rules for their verifications)
may not have pointed out the concrete semantic issues which stateful behavioural spec-
ifications and asynchronous observables can induce, and how this issue can be resolved
through the interplay between synchronous and asynchronous semantics.

As observed in §4.2, a close analogue of commutativity of operations used for
our characterisation result (Definition 23) appears in [7], where the authors study a
method for checking commutativity (called diamond connectivity) of operations with
pre-conditions in object-oriented programs, with a view to preventing the simultaneous
issuance of these operations when they are not commutative. They translate the origi-
nal model of methods in OCL to Alloy, which is analysed through simulation by Alloy
Analyser. They do not (aim to) determine a class of specifications suitable for asyn-
chronously communicating processes. In contrast, our aim is to stipulate a general class
of specifications for communicating processes suitable for asynchronous observations,
and identify its subclass amenable for automatic verification. Following this principle,
we use a semi-commutativity to capture asymmetry in asynchronous communications:
as seen in the Proposition 27 (the proofs are in our full version [5]), we crucially use
this semi-commutativity when verifying G

ass

is asynchronous.

15

Among further topics, we are currently exploring and analysing concrete forms of
asynchronously verifiable specifications with different structures, informed by use cases
from [17] as well as our theory, with a view to their usage in monitoring. One of the
challenges is to find a solid (asynchronous) specification framework for inherently con-
flicting operations, such as two consecutive and overwriting updates on the same datum.

Acknowledgements We thank the reviewers for their valuable comments and our col-
leagues in Mobility Reading Group for discussions. This work is supported by Ocean
Observatories Initiative [17] and EPSRC grants EP/F002114/1 and EP/G015481/1.

References

1. The Java Modeling Language (JML) homepage. http://www.jmlspecs.org/.
2. R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous p-

calculus. In Proc. CONCUR’96, 1996.
3. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,

volume 5201 of LNCS, pages 418–433. Springer, 2008.
4. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-

tributed multiparty interactions. In CONCUR, volume 6269 of LNCS, pages 162–176, 2010.
5. T.-C. Chen and K. Honda. Full Version of this paper, to appear as an EECS technical report,

Queen Mary, University of London.
6. F. S. de Boer, J. N. Kok, C. Palamidessi, and J. J. M. M. Rutten. The failure of failures in a

paradigm for asynchronous communication. In CONCUR, pages 111–126, 1991.
7. G. Dennis, R. Seater, D. Rayside, and D. Jackson. Automating commutativity analysis at the

design level. In ISSTA’04, pages 165–174, New York, NY, USA, 2004. ACM.
8. T.-C. C. et al. Asynchronous distributed monitoring for multiparty session enforcement. In

TGC’11, LNCS. Springer, 2012. To appear.
9. Y. Falcone. You should better enforce than verify. In Runtime Verification, Lecture Notes in

Computer Science, pages 89–105. Springer, 2010.
10. J. He, M. Josephs, and T. Hoare. A theory of synchrony and asynchrony. In Programming

Concepts and Methods, IFIP, pages 459–478, 1990.
11. C. Hoare and H. Jifeng. Unifying theories of programming. Prentice Hall series in computer

science. Prentice Hall, 1998.
12. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In

ECOOP’91, volume 512 of LNCS, pages 133–147, 1991.
13. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In

POPL’08, pages 273–284. ACM, 2008.
14. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful sessions in

Java. In ECOOP’10, volume 6183 of LNCS, pages 329–353. Springer-Verlag, 2010.
15. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-

tions of the ACM, 21(7):558–564, July 1978.
16. A multiparty multi-session logic. http://www.cs.le.ac.uk/people/lb148/

StatefulAssertions/main-long.pdf.
17. Ocean Observatories Initiative (OOI). http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/.
18. O. Owe, M. Steffen, and A. B. Torjusen. Model Testing Asynchronously Communicating

Objects using Modulo AC Rewriting. ENCS, 264(3):69–84, 2010.
19. P. Selinger. First-order axioms for asynchrony. In CONCUR, pages 376–390, 1997.
20. C. G. Zarba. Combining sets with integers. In FroCos, pages 103–116, 2002.

