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With distributed computing becoming ubiquitous in the modern era, safe distributed programming is an open
challenge. To address this, multiparty session types (MPST) provide a typing discipline for message-passing
concurrency, guaranteeing communication safety properties such as deadlock freedom.

While originally MPST focus on the communication aspects, and employ a simple typing system for
communication payloads, communication protocols in the real world usually contain constraints on the
payload. We introduce refined multiparty session types (RMPST), an extension of MPST, that express data
dependent protocols via refinement types on the data types.

We provide an implementation of RMPST, in a toolchain called Session★, using Scribble, a multiparty
protocol description toolchain, and targeting F★, a verification-oriented functional programming language.
Users can describe a protocol in Scribble and implement the endpoints in F★ using refinement-typed APIs
generated from the protocol. The F★ compiler can then statically verify the refinements. Moreover, we use a
novel approach of callback-styled API generation, providing static linearity guarantees with the inversion of
control. We evaluate our approach with real world examples and show that it has little overhead compared to
a naïve implementation, while guaranteeing safety properties from the underlying theory.
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1 INTRODUCTION

Distributed interactions and message passing are fundamental elements of the modern computing
landscape. Unfortunately, language features and support for high-level and safe programming
of communication-oriented and distributed programs are much lacking, in comparison to those
enjoyed for more traditional “localised” models of computation. One of the research directions
towards addressing this challenge is concurrent behavioural types [Ancona et al. 2016; Gay and
Ravara 2017], which seek to extend the benefits of conventional type systems, as the most successful
form of lightweight formal verification, to communication and concurrency.
Multiparty session types (MPST) [Honda et al. 2008, 2016], one of the most active topics in this

area, offer a theoretical framework for specifying message passing protocols between multiple
participants. MPST use a type system–based approach to statically verify whether a system of
processes implements a given protocol safely. The type system guarantees key execution properties
such as freedom from message reception errors or deadlocks. However, despite much recent
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𝐺 =A → B : 𝐶𝑜𝑢𝑛𝑡 (𝑐𝑜𝑢𝑛𝑡 : int{𝑐𝑜𝑢𝑛𝑡 ≥ 0}) .
𝜇t(𝑐𝑢𝑟𝑟 : int{𝑐𝑢𝑟𝑟 ≥ 0 ∧ 𝑐𝑢𝑟𝑟 ≤ 𝑐𝑜𝑢𝑛𝑡})⟨𝑐𝑢𝑟𝑟 := 0⟩.

B → C

{
𝐻𝑒𝑙𝑙𝑜 (𝑖𝑡 : int{𝑐𝑢𝑟𝑟 < 𝑐𝑜𝑢𝑛𝑡 ∧ 𝑖𝑡 = 𝑐𝑜𝑢𝑛𝑡}).t⟨𝑐𝑢𝑟𝑟 := 𝑐𝑢𝑟𝑟 + 1⟩
𝐹𝑖𝑛𝑖𝑠ℎ(𝑖𝑡 : int{𝑐𝑢𝑟𝑟 = 𝑐𝑜𝑢𝑛𝑡 ∧ 𝑖𝑡 = 𝑐𝑜𝑢𝑛𝑡}) .end

}
A Global Type 𝐺

Projection onto

each Participant

Local Type for A 𝐿A Local Type for B 𝐿B Local Type for C 𝐿C

Fig. 1. Top-down View of (R)MPST

progress, there remain large gaps between the current state of the art and (i) powerful and practical
languages and techniques available to programmers today, and (ii) more advanced type disciplines
needed to express a wider variety of constraints of interaction found in real-world protocols.
This paper presents and combines two main developments: a theory of MPST enriched with

refinement types [Freeman and Pfenning 1991], and a practical method, callback-based programming,
for safe session programming. The key ideas are as follows:

Refined Multiparty Session Types (RMPST). The MPST theory [Honda et al. 2008, 2016]
provides a core framework for decomposing (or projecting) a global type structure, describing the
collective behaviour of a distributed system, into a set of participant-specific local types (see Fig. 1).
The local types are then used to implement endpoints.

Our theory of RMPST follows the same top-down methodology, but enriches MPST with features
from refinement types [Freeman and Pfenning 1991], to support the elaboration of data types in
global and local types. Refinement types allow refinements in the form of logical predicates and
constraints to be attached to a base type. This allows to express various constraints in protocols.
To motivate our refinement type extension, we use a counting protocol shown in Fig. 1, and

leave the details to § 4. Participant A sends B a number with a 𝐶𝑜𝑢𝑛𝑡 message. In this message, the
refinement type 𝑐𝑜𝑢𝑛𝑡 : int{𝑐𝑜𝑢𝑛𝑡 ≥ 0} restricts the value for 𝑐𝑜𝑢𝑛𝑡 to be a natural number. Then
B sends C exactly that number of 𝐻𝑒𝑙𝑙𝑜 messages, followed by a 𝐹𝑖𝑛𝑖𝑠ℎ message.

We demonstrate how refinement types are used to better specify the protocol: The counting part
of the protocol is described using a recursive type with two branches, where we use refinement
types to restrict the protocol flow. The variable 𝑐𝑢𝑟𝑟 is a recursion variable, which remembers
the current iteration, initialised to 0, and increments on each recursion (𝑐𝑢𝑟𝑟 := 𝑐𝑢𝑟𝑟 + 1). The
refinement 𝑐𝑢𝑟𝑟 = 𝑐𝑜𝑢𝑛𝑡 in the 𝐹𝑖𝑛𝑖𝑠ℎ branch specifies that the branch may only be taken at the
last iteration; the refinement 𝑖𝑡 = 𝑐𝑜𝑢𝑛𝑡 in both𝐻𝑒𝑙𝑙𝑜 and 𝐹𝑖𝑛𝑖𝑠ℎ branches specifies a payload value
dependent on the recursion variable 𝑐𝑢𝑟𝑟 and the variable 𝑐𝑜𝑢𝑛𝑡 transmitted in the first message.

We establish the correctness of Refined MPST. In particular, we show that projection is behaviour-
preserving and that well-formed global types with refinements satisfy progress, i.e. they do not get
stuck. Therefore, if the endpoints follow the behaviour prescribed by the local types, derived (via
projection) from a well-formed global type with refinements, the system is deadlock-free.

Callback-styled, Refinement-typedAPIs for Endpoint Implementations. One of the main
challenges in applying session types in practice is dealing with session linearity: a session channel
is used once and only once. Session typing relies on a linear treatment of communication channels,
in order to track the I/O actions performed on the channel against the intended session type.
Most existing implementations adopt one of two approaches: monadic interfaces in functional lan-
guages [Imai et al. 2020, 2019; Orchard and Yoshida 2017], or “hybrid” approaches that complement
static typing with dynamic linearity checks [Hu and Yoshida 2016; Scalas et al. 2017].
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This paper proposes a fresh look to session-based programming that does not require linearity
checking for static safety. We promote a form of session programming where session I/O is implicitly

implemented by callback functions — we say “implicitly” because the user does not write any I/O
operations themself: an input callback is written to take a received message as a parameter, and an
output callback is written to simply return the label and value of the message to be sent.
The callbacks are supported by a runtime, generated along with APIs in refinement types

according to the local type. The runtime performs communication and invokes user-specified
callback functions upon corresponding communication events. We provide a code generation tool
to streamline the writing of callback functions for the projected local type.
The inversion of control allows us to dispense with linearity checking, because our approach

does not expose communication channels to the user. Our approach is a natural fit to functional
programming settings, but also directly applicable to any statically typed language. Moreover,
the linearity guarantee is achieved statically without the use of a linear type system, a feature
that is usually not supported by mainstream programming languages. We follow the principle of
event-based programming via the use of callbacks, prevalent in modern days of computing.

A Toolchain Implementation: Session
★
. To evaluate our proposal, we implement RMPST

with a toolchain — Session★, as an extension to the Scribble toolchain [Hu 2017; Scribble Authors
2015] (http://www.scribble.org/) with F★ [Swamy et al. 2016] as the target endpoint language.
Building on our callback approach, we show how to integrate RMPST with the verification-

oriented functional programming language F★, exploiting its capabilities of refinement types and
static verification to extend our fully static safety guarantees to data refinements in sessions. Our
experience of specifying and implementing protocols drawn from the literature and real-world
applications attests to the practicality of our approach and the value of statically verified refinements.
Our integration of RMPST and F★ allows developers to utilise advanced type system features to
implement safe distributed application protocols.

Paper Summary and Contributions.

§ 2 We present an overview of our toolchain: Session★, and provide background knowledge of
Scribble and MPST. We use a number guessing game, HigherLower, as our running example.

§ 3 We introduce Session★, a toolchain for RMPST. We describe in detail how our generated APIs
can be used to implement multiparty protocols with refinements.

§ 4 We establish the metatheory of RMPST, which gives semantics of global and local types with
refinements. We prove trace equivalence of global and local types w.r.t. projection (Theorem 4.10),
and show progress and type safety of well-formed global types (Theorem 4.14 and Theorem 4.15).

§ 5 We evaluate our toolchain with examples from the session type literature, and measure the
time taken for compilation and execution. We show that our toolchain does not have a long
compilation time, and our runtime does not incur a large overhead on execution time.
We submitted an artifact for evaluation [Zhou et al. 2020], containing the source code of our

toolchain Session★, with examples and benchmarks used in the evaluation. The artifact is available
as a Docker image, and can be accessed on the Docker Hub. The source files are available on
GitHub (https://github.com/sessionstar/oopsla20-artifact). We present the proof of our theorems,
and additional technical details of the toolchain, in the full version of the paper (https://arxiv.org/
abs/2009.06541).

2 OVERVIEW OF REFINED MULTIPARTY SESSION TYPES

In this section, we give an overview of our toolchain: Session★, describing its key toolchain stages.
Session★ extends the Scribble toolchain with refinement types and uses F★ as a target language.We
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1 2 3 4

5

6 7

global protocol HigherLower

(role A, role B, role C) {

start(n0:int) from A to B;

...

}

type state = ...

type callbacks = ...

type conn = ...

let run callbacks conn =

...

let callbacks = ...

let connection = ...

let () =

run callbacks connection

Extracted
OCaml Program
program.ml

Projection
via Scribble

Generates

Implements Extracts
into

Scribble Protocol (§ 2.2)
Endpoint Implementation (§ 3.2)

CFSM Representation F★ API

User Input

Internal/Generated

Fig. 2. Overview of Toolchain

begin with a short background on basic multiparty session types and Scribble, then demonstrate
the specification of distributed applications with refinements using the extended Scribble.

2.1 Toolchain Overview

We present an overview of our toolchain in Fig. 2, where we distinguish user provided input by
developers in solid boxes , from generated code or toolchain internals in dashed boxes .

Development begins with specifying a protocol using an extended Scribble protocol description
language. Scribble is closely associated with the MPST theory [Hu 2017; Neykova and Yoshida
2019], and provides a user-friendly syntax for multiparty protocols. We extend the Scribble
toolchain to support RMPST, allowing refinements to be added via annotations. The extended
Scribble toolchain (as part of Session★) validates the well-formedness of the protocol, and produces
a representation in the form of a communicating finite state machine (CFSM, [Brand and Zafiropulo
1983]) for a given participant.

We then use a code generator (also as part of Session★) to generate F★ APIs from the CFSM,
utilising a number of advanced type system features available in F★ (explained later in § 3.1). The
generated APIs, described in detail in § 3, consist of various type definitions, and an entry point
function taking callbacks and connections as arguments.
In our design methodology, we separate the concern of communication and program logic. The

callbacks, corresponding to program logic, do not involve communication primitives — they are
invoked to prompt a value to be sent, or to process a received value. Separately, developers provide a
connection that allows base types to be serialised and transmitted to other participants. Developers
implement the endpoint by providing both callbacks and connections, according to the generated
refinement typed APIs. They can run the protocol by invoking the generated entry point. Finally,
the F★ source files can be verified using the F★ compiler, and extracted to an OCaml program (or
other supported targets) for efficient execution.

2.2 Global Protocol Specification — RMPST in Extended Scribble

The workflow in the standardMPST theory [Honda et al. 2008], as is generally the case in distributed
application development, starts from identifying the intended protocol for participant interactions.
In our toolchain, a global protocol—the description of the whole protocol between all participants
from a bird eye’s view—is specified using our RMPST extension of the Scribble protocol description
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1 global protocol HigherLower(role A, role B, role C) {

2 // A tells B a secret number `n0`,

3 // and the number `t0` of attempts that C has to guess it

4 start(n0:int) from A to B; @'0≤n0<100'
5 limit(t0:int) from A to B; @'0<t0'

6 do Aux(A, B, C); @'B[n0, t0]' }

7 aux global protocol Aux(role A, role B, role C) @'B[n:int{0≤n<100}, t:int{0<t}]' {

8 guess(x:int) from C to B; @'0≤x<100' // Next guess by C

9 choice at B { higher() from B to C; @'n>x ∧ t>1' // Secret is higher

10 higher() from B to A;

11 do Aux(A, B, C); @'B[n, t-1]'

12 } or { win() from B to C; @'n=x' // C wins, A loses

13 lose() from B to A;

14 } or { lower() from B to C; @'n<x ∧ t>1' // Secret is lower

15 lower() from B to A;

16 do Aux(A, B, C); @'B[n, t-1]'

17 } or { lose() from B to C; @'n≠x ∧ t=1' // A wins, C loses

18 win() from B to A;

19 } }

Fig. 3. A Refined Scribble Global Protocol for a HigherLower Game.

language [Hu 2017; Scribble Authors 2015]. Figure 3 gives the global protocol for a three-party
game, HigherLower, which we use as a running example.

Basic Scribble/MPST. We first explain basic Scribble (corresponding to the standard MPST)
without the @-annotations (annotations are extensions to the basic Scribble).
(1) The main protocol HigherLower declares three roles A, B and C, representing the runtime

communication session participants. The protocol starts with A sending B a start message and
a limit message, each carrying an int payload.

(2) The do construct specifies all three roles to proceed according to the (recursive) Aux sub-protocol.
C sends B a guess message, also carrying an int. (The aux keyword simply tells Scribble that
a sub-protocol does not need to be verified as a top-level entry protocol.)

(3) The choice at B construct specifies at this point that B should decide (make an internal

choice) by which one of the four cases the protocol should proceed. This decision is explicitly
communicated (as an external choice) to A and C via the messages in each case. The higher

and lower cases are the recursive cases, leading to another round of Aux (i.e. another guess by
C); the other two cases, win and lose, end the protocol.

To sum up, A sends B two numbers, and C sends a number (at least one) to B for as long as B
replies with either higher or lower to C (and A). Next we demonstrate how we can express data
dependencies using refinements with our extended Scribble.

Extended Scribble/RMPST. As described above, a basic global protocol (equivalent to a stand-
ard MPST global type) specifies the structure of participant interactions, but is not very informative
about the behaviour of the application in the aspect of data transmitted. This limitation can be
contrasted against standardised (but informal) specifications of real-world application protocols,
e.g. HTTP, OAuth, where a significant part, if not the majority, of the specification is devoted to
the data side of the protocol. It goes without saying, details missing from the specification cannot
be verified on an implementation.
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We go through Fig. 3 again, this time including the practical extensions proposed by this paper to
address these limitations: RMPST enables a refinement type–based treatment of protocols, capturing
and integrating both data constraints and interactions. While refinement types by themselves can
already greatly enrich the specification of individual messages, the most valuable and interesting
aspect is the interplay between data refinements and the consequent interactions (i.e. the protocol
flow) in the distributed, multiparty setting. In our setup, we allow data-dependent refinements to
be specified in the global protocol, we explain various ways of using them in the running example:

• Message Values. A basic use of refinements is on message values, specifically their payload
contents. The annotation on the first interaction (Line 4) specifies that A and B not only com-
municate an n0:int, but that 0≤n0<100 is a postcondition for the value produced by A and a
precondition on the value received by B. Similarly, the int carried by limit must be positive.

• Local Protocol State. RMPST also supports refinements on the recursions that a protocol trans-
itions through. The B[...] annotation (Line 7) in the Aux header specifies the local state known
by B during the recursion, whenever B reaches this point in the ongoing protocol. The local
state includes an int n such that 0≤n<100 and an int t such that 0<t. These extra variables are
available for all enactments of this subprotocol. That is, on the first entry from HigherLower,
where the do annotation B[n0, t0] (Line 6) specifies the initial values; and from the recursive
entries (Line 11).
By known state, we mean thatBwill have access to the exact values at runtime, although statically
we can only be sure that they lie within the intervals specified in the refinements. Other session
participants can only use the type information, without knowing the value, e.g. C does not
know the exact value of n (which is the main point of this game), but knows the range via the
refinements, and hence the endpoint may utilise this knowledge for reasoning.

• Protocol Flow. As mentioned, RMPST combines protocol specifications with refinements in
order to direct the flow of the protocol — specifically at internal choices. The annotation on the
win interaction (Line 12) from B to C specifies that B can only send this message, and thus select
this choice case, after a correct guess by C. Similarly, B can only select the other cases after an
incorrect guess: lose (Line 17) when C is on its last attempt, or the corresponding higher (Line 9)
or lower (Line 14) cases otherwise. We exploit the fact that a refinement type can be uninhabited
due to the impossibility to satisfy the constraint on the type, to encode protocol flow conditions.

Refinements allow a basic description of an interaction structure to be elaborated into a more
expressive application specification. Note the t>1 in the higher and lower refinements are necessary
to ensure that the 0<t in the Aux refinement is satisfied, given that the do annotations specify Aux

to be recursively enacted with t-1. Albeit simple, the protocol shows how we can use refinements
in various means to express data and control flow dependencies and recursive invariants in a
multiparty setup. Once the protocol is specified, our toolchain allows the refinements in RMPST to
be directly mapped to data refinements in F* through a callback-styled API generation.

3 IMPLEMENTING REFINED PROTOCOLS IN F
★

In this section, we demonstrate our callback-styled, refinement-typed APIs for implementing
endpoints in F★ [Swamy et al. 2016]. We introduced earlier the workflow of our toolchain (§ 2.1).
In § 3.1, we summarise the key features of F★ utilised in our implementation. Using our running
example, we explain the generated APIs in F★ in § 3.2, and how to implement endpoints in § 3.3.
We outline the function we generate for executing the endpoint in § 3.4.

Developers using Session★ implement the callbacks in F★, to utilise the functionality of refine-
ment types provided by the F★ type-checker. The F★ compiler can verify statically whether the
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provided implementation by the developer satisfies the refinements as specified in the protocol.
The verified code can be extracted via the F★ compiler to OCaml and executed.

The verified implementation enjoys properties both from the MPST theory, such as session fidelity
and deadlock freedom, but also from refinement types, that the data dependencies are verified to be
correct according to the protocol. Additional details on code generation can be found in the full
version of the paper.

3.1 Targeting F
★
and Implementing Endpoints

F★ [Swamy et al. 2016] is a verification-oriented programming language, with a rich set of features.
Our method of API generation and example programs utilise the following F★ features:1

• Refinement Types. A refinement type has the form x:t{E}, where t is the base type, x is a
variable that stands for values of this type, and E is a pure2boolean expression for refinement,
possibly containing x. In short, the values of this refinement type are the subset of values of t
that make E evaluate to true, e.g. natural numbers are defined as x:int{x≥0}. We use this feature
to express data and control flow constraints in protocols.
In F★, type-checking refinement types are donewith the assistance of the Z3 SMT solver [DeMoura
and Bjørner 2008]. Refinements are encoded into SMT formulae and the solver decides the satis-
fiability of SMT formulae during type-checking. This feature enables automation in reasoning
and saves the need for manual proofs in many scenarios.

• Indexed Types. Types can take pure expressions as arguments. For example, a declaration
type t (i:t') = ... prescribes the family of types given by applying the type constructor t to
values of type t'. We use this feature to generate type definitions for payload items in an internal
choice, where the refinements in payload types refer to a state type.

• Dependent Functions with Effects. A (dependent) function in F★ has a type of the form
(x:t1) → E t2, where t1 is the argument type, E describes the effect of the function, and t2 is
the result type, which may also refer to the argument x.
The default effect is Tot, for pure total expressions (i.e. terminating and side-effect free). At the
other end of the spectrum is the arbitrary effect ML (correspondent to all possible side effects in
an ML language), which permits state mutation, non-terminating recursion, I/O, exceptions, etc.

• The Ghost Effect and the erased Type. A type can be marked erased in F★, so that values of
such types are not available for computation (after extracting into target language), but only for
proof purposes (during type-checking). The type constructor is accompanied with the Ghost
effect to mark computationally irrelevant code, where the type system prevents the use of erased
values in computationally relevant code, so that the values can really be safely erased. In the
following snippet, we quickly demonstrate this feature: GTot stands for Ghost and total, and
cannot be mixed with the default pure effect (the function not_allowed does not type-check).
We use the erased type to mark variables known to the endpoint via the protocol specification,
whose values are not known due to not being a party of the message interaction. For example, in
Fig. 3, the endpoint C does not know the value of n0, but knowns its type from the protocol.

1 type t = { x1: int;

2 x2: erased int; }

3 (* Definition in standard library *)

4 val reveal: erased a → GTot a

1 (* The following access is not allowed *)

2 let not_allowed (o: t) = reveal o.x2

3 (* Accessing at type level is allowed *)

4 val allowed: (o: t{reveal o.x2 ≥ 0}) → int

1A comprehensive F★ tutorial is available at https://www.fstar-lang.org/tutorial/.
2Pure in this context means pure terminating computation, i.e. no side-effects including global state modifcations, I/O
actions or infinite recursions, etc.
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1 2 3

𝑛{0 ≤ 𝑛 < 100},
𝑡{0< 𝑡}

5

6

4

7

8

𝐴?start(n0){0 ≤ n0 < 100}

𝐴?limit(t0){0 ≤ t0}

𝐶?guess(x){0 ≤ x< 100}

𝐶!higher{n> x ∧ t> 1}𝐴!higher

𝐶!lower{n< x ∧ t> 1}𝐴!lower

𝐶!win{n= x}
𝐴!lose

𝐶!lose{n≠ x ∧ t= 1}

𝐴!win

(a) CFSM Representation of the Projection. ! stands for sending actions, and ? for receiving actions on edges.

Generated F
★
API

State Edge Generated Callback Type
1 𝐴?start s1 → (n:int{0≤n<100}) → ML unit
2 𝐴?limit s2 → (t:int{0<t}) → ML unit
3 𝐶?guess s3 → (x:int{0≤x}) → ML unit
4 [multiple] (s:s4) → ML (s4Cases s)
5 𝐴!higher s5 → ML unit
6 𝐴!lower s6 → ML unit
7 𝐴!lose s7 → ML unit
8 𝐴!win s8 → ML unit

(b) Generated I/O Callback Types

type s4Cases (s:s4) =

| s4_lower of

unit{s.n<s.x ∧ s.t>1}

| s4_lose of

unit{s.n≠s.x ∧ s.t=1}

| s4_win of unit{s.n=s.x}

| s4_higher of

unit{s.n>s.x ∧ s.t>1}

(c) Generated Data Type for the

Output Choice

Fig. 4. Projection and F
★
API Generation for B in HigherLower

Our generated code consists of multiple type definitions and an entry point function (as shown
in Fig. 2, F★ API), including:
State Types: Allowing developers to access variables known at a given CFSM state.
Callbacks: A record of functions corresponding to CFSM transitions, used to implement program
logic of the local endpoint.
Connections: A record of functions for sending and receiving values to and from other roles in
the global protocol, used to handle the communication aspects of the local endpoint.
Entry Point: A function taking callbacks and connections to run the local endpoint.
To implement an endpoint, the developer needs to provide implementations for the generated

callback and connection types, using appropriate functions to handle the program logic and
communications. The F★ compiler checks whether the implemented functions type-check against
the prescribed types. If the endpoint implementation succeeds the type-checking, the developer
may choose to extract to a target language (e.g. OCaml, C) for execution.

3.2 Projection and F
★
API Generation – Communicating Finite State Machine–based

Callbacks for Session I/O

As in the standard MPST workflow, the next step (Fig. 2) is to project our refined global protocol
onto each role. This decomposes the global protocol into a set of local protocols, prescribing the
view of the protocol from each role. Projection is the definitive mechanism in MPST: although all
endpoints together must comply to global protocol, projection allows each endpoint to be separately
implemented and verified, a key requirement for practical distributed programming. As we shall see,
the way projection treats refinements—we must consider the local knowledge of values propagated
through the multiparty protocol—is crucial to verifying refined implementations, including our
simple running example.

Projection onto B. We first look at the projection onto B: although it is the largest of the three
projections, it is unique among them because B is involved in every interaction of the protocol, and
(consequently) B has explicit knowledge of the value of every refinement variable during execution.
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Formally, projection is defined as a syntactic function (explained in detail later in § 4.3); it is
a partial function, designed conservatively to reject protocols that are not safely realisable in
asynchronous distributed settings. However, we show in Fig. 4a the representation of projections
employed in our toolchain based on communicating finite state machines (CFSMs) [Brand and
Zafiropulo 1983], where the transitions are the localised I/O actions performed by B in this protocol.
Projected CFSM actions preserve their refinements: as before, an action refinement serves as a
precondition for an output transition to be fired, and a postcondition when an input transition
is fired. For example, 𝐴?start(𝑛0){0 ≤ 𝑛0 < 100} is an input of a start message from A, with a
refinement on the int payload value. Similarly, 𝐶!higher{𝑛 > 𝑥 ∧ 𝑡 > 1} expresses a protocol flow
refinement on an output of a higher message to C. For brevity, we omit the payload data types in
the CFSM edges, as this example features only ints; we omit empty payloads “()” likewise.

We show the local state refinements as annotations on the corresponding CFSM states (shaded
in grey, with an arrow to the state).

Refined API Generation for B. CFSMs offer an intuitive understanding of the semantics of
endpoint projections. Building on recent work [Castro et al. 2019; Hu and Yoshida 2016; Neykova
et al. 2018], we use our CFSM-based representation of refined projections to generate protocol- and
role-specific APIs for implementing each role in F★. We highlight a novel and crucial development:
we exploit the approach of type generation to produce functional-style callback-based APIs that
internalise all of the actual communication channels and I/O actions. In short, the transitions of
the CFSM are rendered as a set of transition-specific function types to be implemented by the user
— each of these functions take and return only the user-level data related to I/O actions and the
running of the protocol. The transition function of the CFSM itself is embedded into the API by
the generation, exporting a user interface to execute the protocol by calling back the appropriate
user-supplied functions according to the current CFSM state and I/O event occurrences.

We continue with our example, Fig. 4b lists the function types for B, detailed as follows. Note, a
characteristic of MPST-based CFSMs is that each non-terminal state is either input- or output-only.

• State Types. For each state, we generate a separate type (named by enumerating the states, by
default). Each is defined as a record containing previously known payload values and its local
recursion variables, or unit if none, for example:

type s3 =
{
n0: int{0≤n0<100}; t0: int{0<t0}; n: int{0≤n<100}; t: int{0<t}

}
• Basic I/O Callbacks. For each input transition we generate a function type s → 𝜎 → ML unit,
where s is the predecessor state type, and 𝜎 is the refined payload type received. The return type
is unit and the function can perform side effects, i.e. the callback is able to modify global state,
interact with the console, etc, instead of merely pure computation. If an input transition is fired
during execution, the generated runtime will invoke a user-supplied function of this type with
the appropriately populated value of s, including any payload values received in the message
that triggered this transition. Note, any data or protocol refinements are embedded into the types
of these fields.
Similarly, for each transition of an output state with a single outgoing transition, we generate a
function type s → ML 𝜏 , where 𝜏 is the refined type for the output payload.

• Internal Choices. For each output state with more than 1 outgoing transition, we generate an
additional sum type 𝜌 with the cases of the choice, e.g. Fig. 4c. This sum type (i.e. s4Cases) is
indexed by the corresponding state type (i.e. s) to make any required knowledge available for
expressing the protocol flow refinement of each case. Its constructors indicate the label of the
internal choice.
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We then generate a single function type for this state, s → ML 𝜌 : the user implementation selects
which choice case to follow by returning a corresponding 𝜌 value, under the constraints of
any refinements. For example, a s4_win value can only be constructed, thus this choice case
only be selected, when s.n=s.x for the given s. The state machine is advanced according to the
constructor of the returned value (corresponding to the label of the message), and the generated
runtime sends the payload value to the intended recipient.
An asynchronous output event, i.e. the trigger for the API to call back an output function, requires

the communication medium to be ready to accept the message (e.g. there is enough memory in
the local output buffer). For simplicity, in this work we consider the callbacks of an output state to
always be immediately fireable. Concretely, we delegate these concerns to the underlying libraries
and runtime system.

Projection and API Generation for C. The projection onto C raises an interesting question
related to the refinement of multiparty protocols: how should we treat refinements on variables
that the target role does not itself know? C does not know the value of the secret n (otherwise this
game would be quite boring), but it does know that this information exists in the protocol and is
subject to the specified refinement. In standard MPST, it is essentially the main point of projection
that interactions not involving the target role can be simply (and safely) dropped outright; e.g. the
communication of the start message would simply not appear in the projection of C. However,
naively taking the same approach in RMPST would be inadequate: although the target role may
not know some exact value, the role may still need the associated “latent information” to fulfil the
desired application behaviour.
Our framework introduces a notion of erased variables for RMPST — in short, our projection

does drop third-party interactions, but retains the latent information as refinement-typed erased

variables, as illustrated by the annotation on state 1 in Fig. 5a. Thanks to the SMT-based refinement
type system of F★, the type-checker can still take advatange of the refined types of erased variables
to prove properties of the endpoint implementation; however, these variables cannot actually be
used computationally in the implementation (since their values are not known). Conveniently, F★
supports erased types (described briefly in § 3.1), and provides ways (i.e. Ghost effects) to ensure
that such variables are not used in the computation. We demonstrate this for our example in the
next subsection. Our approach can be considered a version of irrelevant variables from [Abel and
Scherer 2012; Pfenning 2001] for the setting of typed, distributed interactions.

3.3 F
★
Implementation – Protocol Validation and Verification by Refinement Types

Finally, the generated APIs—embodying the refined projections—are used to implement the endpoint
processes. As mentioned, the user implements the program logic as callback functions of the
generated (refinement) types, supplied to the entry point along with code for establishing the
communication channels between the session peers. Assuming a record callbacks containing the
required functions (static typing ensures all are covered), Fig. 6a bootstraps a C endpoint.

The API takes care of endpoint execution by monitoring the channels, and calling the appropriate
callback based on the current protocol state and I/O event occurrences. For example, a minimal, well-
typed implementation ofB could comprise the internal choice callback above (Fig. 6b) (implementing
the type in Fig. 4c), cf. state 4, and an empty function for all others (i.e. fun _ → ()). We can
highlight how protocol violations are ruled out by static refinement typing, which is ultimately the
practical purpose of RMPST. In the above callback code, changing, say, the condition for the lose

case to s.t=0 would directly violate the refinement on the s4_lose constructor, cf. Fig. 4c. Omitting
the lose case altogether would break both the lower and higher cases, as the type checker would
not be able to prove s.t>1 as required by the subsequent constructors.
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1

𝑛 : erased int{0 ≤ 𝑛 < 100},
𝑡 : erased int{0< 𝑡}

2𝐵!guess(𝑥){0 ≤ 𝑥 < 100}

𝐵?lower{𝑛 < 𝑥 ∧ 𝑡 > 1}

𝐵?higher{𝑛 > 𝑥 ∧ 𝑡 > 1}
𝐵?win{𝑛 = 𝑥}

𝐵?lose{𝑛 ≠ 𝑥 ∧ 𝑡 = 1}

(a) CFSM Representation of the Projection

User implementation
(* Allocate a refined int reference *)

State Edge Generated type let next: ref (x:int{0≤x<100}) = alloc 50

1 𝐵!guess s1 → ML (x:int{0≤x<100}) fun _ → !next (*Deref next*)

2 𝐵?higher s2 → unit{n>x ∧ t>1} → ML unit fun s → next B s.x + 1

𝐵?lower s2 → unit{n<x ∧ t>1} → ML unit fun s → next B s.x - 1

𝐵?win s2 → unit{n=x} → ML unit fun _ → ()

𝐵?lose s2 → unit{n≠x ∧ t=1} → ML unit fun _ → ()

(b) Generated I/O Callback Types

Fig. 5. Projection and F
★
API Generation for C in HigherLower

let main () =

(* connect to B via TCP *)

let server_B = connect ip_B port_B in

(* Setup connection from TCP *)

let conn = mk_conn server_B in

(* Invoke the Entry Point `run` *)

let () = run callbacks conn in

(* Close TCP connection *)

close server_B

(a) Running the Endpoint C

(* Signature (s:s4) → ML (s4Cases s) *)

fun (s:s4) →
(* Win if guessed number is correct *)

if s.x=s.n then s4_win ()

(* Lose if running out of attempts *)

else if s.t=1 then s4_lose ()

(* Otherwise give hints accordingly *)

else if s.n>s.x then s4_higher ()

else s4_lower ()

(b) Implementing the Internal Choice for B

Fig. 6. Selected Snippets of Endpoint Implementation

Lastly, Fig. 5b implements C to guess the secret by a simple search, given we know its value is
bounded within the specified interval. We draw attention to the input callback for higher, where
we adjust the next value. Given that the value being assigned is one more than the existing value,
it might have been the case that the new value falls out of the range (in the case where next is
99), hence violating the prescribed type. However, despite that the value of n is unknown, we
have known from the refinement attached to the edge that n>x holds, hence it must have been
the case that our last guess x is strictly less than the secret n, which rules out the possibility that x
can be 99 (the maximal value of n). Had the refinement and the erased variable not been present,
the type-checker would not be able to accept this implementation, and it demonstrates that our
encoding allows such reasoning with latent information from the protocol.
Moreover, the type and effect system of F★ prevents the erased variables from being used in

the callbacks. On one hand, int and erased int types are not compatible, because they are not the
same type. This prevents an irrelevant variable from being used in place of a concrete variable. On
the other hand, the function reveal converts a value of erased 'a to a value of 'a with Ghost effect.
A function with Ghost effect cannot be mixed with a function with ML effect (as in the case of our
callbacks), so irrelevant variables cannot be used in the implementation via the reveal function.

Interested readers are invited to try the running example out with our accompanying artifact. We
propose a few modifications on the implementation code and the protocol, and invite the readers
to observe errors when implementations no longer correctly conforms to the prescribed protocol.
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3.4 Executing the Communicating Finite State Machine (Generated Code)

As mentioned earlier, our API design sepearates the concern of program logic (with callbacks) and
communication (with connections). A crucial piece of the generated code involves threading the
two parts together — the execution function performs the communications actions and invokes the
appropriate callbacks for handling. In this way, we do not expose explicit communication channels,
so linearity can be achieved with ease by construction in our generated code.
The entry point function, named run, takes callbacks and connections as arguments, and ex-

ecutes the CFSM for the specified endpoint. The signature uses the permissive ML effect, since
communicating with the external world performs side effects. We traverse the states (the set of
states is denoted Q) in the CFSM and generate appropriate code depending on the nature of the
state and its outgoing transitions.

Internally, we define mutually recursive functions for each state 𝑞 ∈ Q, named run𝑞 , taking the
state record ⟦𝑞⟧ as argument (⟦𝑞⟧ stands for the state record for a given state 𝑞), which performs
the required actions at state 𝑞. The run state function for a state 𝑞 either (1) invokes callbacks and
communication primitives, then calls the run state function for the successor state 𝑞′, or (2) returns
directly for termination if 𝑞 is a terminal state (without outgoing transitions). The main entry point
invokes the run function for the initial state 𝑞0, starting the finite state machine.
The internal run state functions are not exposed to the developer, hence it is not possible to

tamper with the internal state with usual means of programming. This allows us to guarantee
linearity of communication channels by construction. In the following text, we outline how to run
each state, depending on whether the state is a sending state or a receiving state. Note that CFSMs
constructed from local types do not have mixed states [Deniélou and Yoshida 2013, Prop. 3.1]

let rec run_𝑞 (st: state𝑞) =

let choice = callbacks.state𝑞_send st

in match choice with

| Choice𝑞𝑙𝑖 payload →
comm.send_string q "𝑙𝑖";

comm.send_𝑆 q payload;

let st = { · · · ; 𝑥𝑖=payload } in

run_𝑞′ st

Repeat
for 𝑖 ∈ 𝐼

(a) Template for Sending State 𝑞

let rec run_𝑞 (st: state𝑞) =

let label = comm.recv_string p () in

match label with

| "𝑙𝑖" →
let payload = comm.recv_𝑆 p () in

callbacks.state𝑞_receive_𝑙𝑖 st payload;

let st = { · · · ; 𝑥𝑖=payload } in

run_𝑞′ st

(b) Template for Receiving State 𝑞

Fig. 7. Template for run𝑞

Running the CFSM at a Sending State. For a sending state 𝑞 ∈ Q, the developer makes an
internal choice on how the protocol proceeds, among the possible outgoing transitions. This is done
by invoking the sending callback state𝑞_send with the current state record, to obtain a choice
with the associated payload. We pattern match on the constructor of the label 𝑙𝑖 of the message,
and find the corresponding successor state 𝑞′.

The label 𝑙𝑖 is encoded as a string and sent via the sending primitive to q. It is followed by the
payload specified in the return value of the callback, via corresponding sending primitive according
to the base type with refinement erased.
We construct a state record of ⟦𝑞′⟧ from the existing record ⟦𝑞⟧, adding the new field 𝑥𝑖 in

the action using the callback return value. In the case of recursive protocols, we also update the
recursion variable according to the definition in the protocol when constructing ⟦𝑞′⟧. Finally, we
call the run state function run𝑞′ to continue the CFSM, effectively making the transition to state 𝑞′.

Following the procedure, run𝑞 is generated as shown in Fig. 7a.
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Running the CFSM at a Receiving State. For a receiving state 𝑞 ∈ Q, how the protocol
proceeds is determined by an external choice, among the possible outgoint actions. To know what
choice is made by the other party, we first receive a string and decode it into a label 𝑙 , via the
receiving primitive for string.
Subsequently, according to the label 𝑙 , we can look up the label in the possible transitions, and

find the state successor 𝑞′. By invoking the appropriate receiving primitive, we obtain the payload
value. We note that the receiving primitive has a return type without refinements. In order to
re-attach the refinements, we use the F★ builtin assume to reinstate the refinements according to
the protocol before using the value.

According the label 𝑙 received, we can call the corresponding receiving callback with the received
value. This allows the developer to process the received value and perform any relevant program
logic. This is followed by the same procedure for constructing the state record for the next state 𝑞′
and invoking the run function for 𝑞′.
Following the procedure, run𝑞 is generated as shown in Fig. 7b.

3.5 Summary

We demonstrated with our running example, HigherLower, how to implement a refined multiparty
protocol with our toolchain Session★.
Exploiting the powerful type system of F★, our approach has several key benefits: First, it

guarantees fully static session type safety in a lightweight, practical manner — the callback-style API
is portable to any statically typed language. Existing work based on code generation has considered
only hybrid approaches that supplement static typing with dynamically checked linearity of explicit
communication channel usages. Moreover, the separation of program logic and communication
leads to a modular implementation of protocols.

Second, it is well suited to functional languages like F★; in particular, the data-oriented nature of
the user interface allows the refinements in RMPST to be directly mapped to data refinements in
F★, allowing the refinements constraints to be discharged at the user implementation level by the
F★ compiler — again, fully statically.

Furthermore, our endpoint implementation inherits core communication safety properties such
as freedom from deadlock or communication mismatches, based on the original MPST theory. We
use the F★ type-checker to validate statically that an endpoint implementation is correctly typed
with respect to the prescribed type obtained via projection of the global protocol. Therefore, the
implementation benefits from additional guarantees from the refinement types.

4 A THEORY OF REFINED MULTIPARTY SESSION TYPES (RMPST)

In this section, we introduce refined multiparty session types (RMPST for short). We give the syntax
of types in § 4.1, extending original multiparty session types (MPST) with refinement types. We
describe the refinement typing system that we use to type expressions in RMPST in § 4.2.

We follow the standard MPST methodology. Global session types describe communication struc-
tures of many participants (also known as roles). Local session types, describing communication
structures of a single participant, can be obtained via projection (explain in § 4.3). Endpoint processes
implement local types obtained from projection. We give semantics of global types and local types
in § 4.4, and show the equivalence of semantics with respect to projection. As a consequence, we
can compose all endpoint processes implementing local types for roles in a global type, obtained
via projection, to implement the global type correctly.
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4.1 Syntax of Types

We define the syntax of refined multiparty session types (refined MPST) in Fig. 8. We use different
colours for different syntactical categories to help disambiguation, but the syntax can be understood
without colours. We use pink for global types, dark blue for local types, blue for expressions,
purple for base types, indigo for labels, and Teal with bold fonts for participants.

𝑆 ::= int | bool | . . . Base Types
𝑇 ::= 𝑥 : 𝑆{𝐸} Refinement Types
𝐸 ::= 𝑥 | 𝑛 | 𝑜𝑝1 𝐸 | 𝐸 𝑜𝑝2 𝐸 . . . Expressions
𝐺 ::= Global Types

| p → q {𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐺𝑖 }𝑖∈𝐼 Message
| 𝜇t(𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐺 Recursion
| t⟨𝑥 := 𝐸⟩ | end Type Var., End

𝐿 ::= Local Types
| p&{𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿𝑖 }𝑖∈𝐼 Receiving
| p⊕{𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ) .𝐿𝑖 }𝑖∈𝐼 Sending
| 𝑙 (𝑥 :𝑇 ).𝐿 Silent Prefix
| 𝜇t (𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐿 Recursion
| t⟨𝑥 := 𝐸⟩ | end Type Var., End

Fig. 8. Syntax of Refined Multiparty Session Types

Value Types andExpressions. Weuse 𝑆 for base types of values, ranging over integers, booleans,
etc. Values of the base types must be able to be communicated.
The base type 𝑆 can be refined by a boolean expression, acting as a predicate on the members

of the base type. A refinement type is of the form (𝑥 : 𝑆{𝐸}). A value 𝑥 of the type has base type
𝑆 , and is refined by a boolean expression 𝐸. The boolean expression 𝐸 acts as a predicate on the
members 𝑥 (possibly involving the variable 𝑥). For example, we can express natural numbers as
(𝑥 : int{𝑥 ≥ 0}). We use fv(·) to denote the free variables in refinement types, expressions, etc. We
consider variable 𝑥 be bound in the refinement expression 𝐸, i.e. fv(𝑥 : 𝑆{𝐸}) = fv(𝐸) \ {𝑥}.

Where there is no ambiguity, we use the base type 𝑆 directly as an abbreviation of a refinement
type (𝑥 : 𝑆{true}), where 𝑥 is a fresh variable, and true acts as a predicate that accepts all values.

Global Session Types. Global session types (global types or protocols for short) range over
𝐺,𝐺 ′,𝐺𝑖 , . . . Global types give an overview of the overall communication structure. We extend the
standard global types [Deniélou and Yoshida 2013] with refinement types and variable bindings in
message prefixes. Extensions to the syntax are shaded in the following explanations.

p → q

{
𝑙𝑖 ( 𝑥𝑖 : 𝑇𝑖 ).𝐺𝑖

}
𝑖∈𝐼 is a message from p to q, which branches into one or more continu-

ations with label 𝑙𝑖 , carrying a payload variable 𝑥𝑖 with type𝑇𝑖 . We omit the curly braces when there
is only one branch, like p → q : 𝑙 (𝑥 :𝑇 ). We highlight the difference from the standard syntax, i.e.
the variable binding. The payload variable 𝑥𝑖 occurs bound in the continuation global type 𝐺𝑖 , for
all 𝑖 ∈ 𝐼 . We sometimes omit the variable if it is not used in the continuations. The free variables
are defined as:

fv(p → q {𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐺𝑖 }𝑖∈𝐼 ) =
⋃
𝑖∈𝐼

fv(𝑇𝑖 ) ∪
⋃
𝑖∈𝐼

(fv(𝐺𝑖 ) \ {𝑥𝑖 })

We require that the index set 𝐼 is not empty, and all labels 𝑙𝑖 are distinct. To prevent duplication, we
write 𝑙 (𝑥 : 𝑆{𝐸}) instead of 𝑙 (𝑥 : (𝑥 : 𝑆{𝐸})) (the first 𝑥 occurs as a variable binding in the message,
the second 𝑥 occurs as a variable representing member values in the refinement types).

We extend the construct of recursive protocols to include a variable carrying a value in the inner
protocol. In this way, we enhance the expressiveness of the global types by allowing a recursion
variable to be maintained across iterations of global protocols.

The recursive global type 𝜇t( 𝑥 :𝑇 )⟨ 𝑥 := 𝐸 ⟩.𝐺 specifies a variable 𝑥 carrying type 𝑇 in the
recursive type, initialised with expression 𝐸. The type variable t⟨ 𝑥 := 𝐸 ⟩ is annotated with an
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assignment of expression 𝐸 to variable 𝑥 . The assignment updates the variable 𝑥 in the current
recursive protocol to expression 𝐸. The free variables in recursive type is defined as

fv(𝜇t(𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐺) = fv(𝑇 ) ∪ fv(𝐸) ∪ (fv(𝐺) \ {𝑥})

We require that recursive types are contractive [Pierce 2002, §21], so that recursive protocols
have at least a message prefix, and protocols such as 𝜇t(𝑥 :𝑇 )⟨𝑥 := 𝐸1⟩.t⟨𝑥 := 𝐸2⟩ are not allowed.
We also require recursive types to be closed with respect to type variables, e.g. protocols such as
t⟨𝑥 := 𝐸⟩ alone are not allowed.
We write 𝐺 [𝜇t(𝑥 :𝑇 ).𝐺/t] to substitute all occurrences of type variables with expressions

t⟨𝑥 := 𝐸⟩ into 𝜇t(𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐺 . We write r ∈ 𝐺 to say r is a participating role in the global
type 𝐺 .

Example 4.1 (Global Types). We give the following examples of global types.

(1) 𝐺1 = A → B : 𝐹𝑠𝑡 (𝑥 : int).B → C : 𝑆𝑛𝑑 (𝑦 : int{𝑥 = 𝑦}) .C → D : 𝑇𝑟𝑑 (𝑧 : int{𝑥 = 𝑧}).end.

𝐺1 describes a protocol where A sends an int to B, and B relays the same int to C, similar
for C to D. Note that we can write 𝑥 = 𝑧 in the refinement of 𝑧, whilst 𝑥 is not known to C.

(2) 𝐺2 = A → B : 𝑁𝑢𝑚𝑏𝑒𝑟 (𝑥 : int).B → C


𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (unit{𝑥 > 0}).end
𝑍𝑒𝑟𝑜 (unit{𝑥 = 0}) .end
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (unit{𝑥 < 0}) .end


𝐺2 describes a protocol where A sends an int to B, and B tells C whether the int is positive,
zero, or negative. We omit the variable here since it is not used later in the continuation.

(3) 𝐺3 = 𝜇t(𝑡𝑟𝑦 : int{𝑡𝑟𝑦 ≥ 0 ∧ 𝑡𝑟𝑦 ≤ 3})⟨𝑡𝑟𝑦 := 0⟩.
A → B : 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑 (𝑝𝑤𝑑 : string).

B → A


𝐶𝑜𝑟𝑟𝑒𝑐𝑡 (unit).end
𝑅𝑒𝑡𝑟𝑦 (unit{𝑡𝑟𝑦 < 3}) .t⟨𝑡𝑟𝑦 := 𝑡𝑟𝑦 + 1⟩
𝐷𝑒𝑛𝑖𝑒𝑑 (unit{𝑡𝑟𝑦 = 3}) .end


𝐺3 describes a protocol where A authenticates with B with maximum 3 tries.

Local Session Types. Local session types (local types for short) range over 𝐿, 𝐿′, 𝐿𝑖 , . . . Local types
give a view of the communication structure of an endpoint, usually obtained from a global type. In
addition to standard syntax, the recursive types are similarly extended as those of global types.

Suppose the current role is q, the local type p⊕{𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿𝑖 }𝑖∈𝐼 describes that the role q sends a
message to the partner role p with label 𝑙𝑖 (where 𝑖 is selected from an index set 𝐼 ), carrying payload
variable 𝑥𝑖 with type𝑇𝑖 , and continues with 𝐿𝑖 . It is also said that the role q takes an internal choice.
Similarly, the local type p&{𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿𝑖 }𝑖∈𝐼 describes that the role q receives a message from the
partner role p. In this case, it is also said that the role q offers an external choice. We omit curly
braces when there is only a single branch (as is done for global messages).

We add a new syntax construct of 𝑙 (𝑥 :𝑇 ).𝐿 for silent local types. We motivate this introduction
of the new prefix to represent knowledge obtained from the global protocol, but not in the form of
a message. Silent local types are useful to model variables obtained with irrelevant quantification
[Abel and Scherer 2012; Pfenning 2001]. These variables can be used in the construction of a type,
but cannot be used in that of an expression, as we explain later in § 4.2. We show an example of a
silent local type later in Example 4.3, after we define endpoint projection, the process of obtaining
local types from a global type.
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[WF-Rty]
Σ+, 𝑥 : 𝑆 ⊢ 𝐸 : bool
Σ ⊢ (𝑥 : 𝑆{𝐸}) 𝑡𝑦

[TE-Var]

Σ1, 𝑥
𝜔 :𝑇, Σ2 ⊢ 𝑥 : 𝑇

[TE-Plus]
Σ ⊢ 𝐸1 : int Σ ⊢ 𝐸2 : int

Σ ⊢ 𝐸1 + 𝐸2 : (𝑣 : int{𝑣 = 𝐸1 + 𝐸2})
[TE-Sub]
Σ ⊢ 𝐸 : (𝑣 : 𝑆{𝐸1}) Valid(⟦Σ⟧ ∧ ⟦𝐸1⟧ =⇒ ⟦𝐸2⟧)

Σ ⊢ 𝐸 : (𝑣 : 𝑆{𝐸2})

[TE-Const]

Σ ⊢ 𝑛 : (𝑣 : int{𝑣 = 𝑛})

Fig. 9. Selected Typing Rules for Expressions in a Local Typing Context

4.2 Expressions and Typing Expressions

We use 𝐸, 𝐸 ′, 𝐸𝑖 to range over expressions. Expressions consist of variables 𝑥 , constants (e.g. integer
literals 𝑛), and unary and binary operations. We use an SMT assisted refinement type system for
typing expressions, in the style of [Rondon et al. 2008]. The simple syntax of expressions allows all
expressions to be encoded into SMT logic, for deciding a semantic subtyping relation of refinement
types [Bierman et al. 2012].

Typing Contexts. We define two categories of typing contexts, for use in handling global types
and local types respectively.

Γ ::= ∅ | Γ, 𝑥P : 𝑇 Σ ::= ∅ | Σ, 𝑥𝜃 : 𝑇 𝜃 ::= 0 | 𝜔

We annotate global and local typing contexts differently. For global contexts Γ, variables carry the
annotation of a set of roles P, to denote the set of roles that have the knowledge of its value.
For local contexts Σ, variables carry the annotation of their multiplicity 𝜃 . A variable with

multiplicity 0 is an irrelevantly quantified variable (irrelevant variable for short), which cannot
appear in the expression when typing (also denoted as 𝑥 ÷𝑇 in the literature [Abel and Scherer
2012; Pfenning 2001]). Such a variable can only appear in an expression used as a predicate, when
defining a refinement type. A variable with multiplicity 𝜔 is a variable without restriction. We
often omit the multiplicity 𝜔 .

Well-formedness. Since a refinement type can contain free variables, it is necessary to define
well-formedness judgements on refinement types, and henceforth on typing contexts.

We define Σ+ to be the local typing context where all irrelevant variables 𝑥0 become unrestricted
𝑥𝜔 , i.e. (∅)+ = ∅; (Σ, 𝑥𝜃 :𝑇 )+ = Σ+, 𝑥𝜔 :𝑇 .

We show thewell-formedness judgement of a refinement type [WF-Rty] in Fig. 9. For a refinement
type (𝑥 : 𝑆{𝐸}) to be a well-formed type, the expression 𝐸 must have a boolean type under the
context Σ+, extended with variable 𝑥 (representing the members of the type) with type 𝑆 . The
typing context Σ+ promotes the irrelevant quantified variables into unrestricted variables, so they
can be used in the expression 𝐸 inside the refinement type.

The well-formedness of a typing context is defined inductively, requiring all refinement types in
the context to be well-formed. We omit the judgements for brevity.

Typing Expressions. We type expressions in local contexts, forming judgements of form
Σ ⊢ 𝐸 : 𝑇 , and show key typing rules in Fig. 9. We modify the typing rules in a standard refinement
type system [Rondon et al. 2008; Vazou et al. 2014, 2017], adding distinction between irrelevant
and unrestricted variables.

[TE-Const] gives constant values in the expression a refinement type that only contains the con-
stant value. Similarly, [TE-Plus] gives typing derivations for the plus operator, with a corresponding
refinement type encoding the addition.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 148. Publication date: November 2020.



Statically Verified Refinements for Multiparty Protocols 148:17

Γ ∪ {𝑥P : 𝑇 } =


Γ, 𝑥P :𝑇 if 𝑥 ∉ Γ

Γ1, 𝑥
P :𝑇, Γ2 if Γ = Γ1, 𝑥

∅ :𝑇, Γ2
Γ1, 𝑥

P :𝑇, Γ2 if Γ = Γ1, 𝑥
P :𝑇, Γ2

undefined otherwise

Σ ∪ {𝑥𝜃 : 𝑇 } =


Σ, 𝑥𝜃 :𝑇 if 𝑥 ∉ Σ

Σ1, 𝑥
𝜃 :𝑇, Σ2 if Σ = Σ1, 𝑥

0 :𝑇, Σ2

Σ1, 𝑥
𝜔 :𝑇, Σ2 if Σ = Σ1, 𝑥

𝜔 :𝑇, Σ2

undefined otherwise

Fig. 10. Typing Context Extension

We draw attention to the handling of variables ([TE-Var]). An irrelevant variable in the typing
context cannot appear in an expression, i.e. there is no derivation for Σ1, 𝑥

0 :𝑇, Σ2 ⊢ 𝑥 :𝑇 . These
variables can only be used in an refinement type (see [WF-Rty]).

The key feature of the refinement type system is the semantic subtyping relation decided by
SMT [Bierman et al. 2012], we describe the feature in [TE-Sub]. We use ⟦𝐸⟧ to denote the encoding
of expresion 𝐸 into the SMT logic. We encode a type binding 𝑥𝜃 : (𝑣 : 𝑆{𝐸}) in a typing context by
encoding the term 𝐸 [𝑥/𝑣], and define the encoding of a typing context ⟦Σ⟧ inductively.
We define the extension of typing contexts (Γ ∪ {𝑥P : 𝑇 }; Σ ∪ {𝑥𝜃 : 𝑇 }) in Fig. 10, used in

definitions of semantics. We say a global type 𝐺 (resp. a local type 𝐿) is closed under a global
context Γ (resp. a local context Σ), if all free variables in the type are in the domain of the context.

Remark 4.2 (Empty Type). A refinement type may be empty, with no inhabited member.
We can construct such a type under the empty context ∅ as (𝑥 : 𝑆{false}) with any base

types 𝑆 . A more specific example is a refinement type for an integer that is both negative and
positive (𝑥 : int{𝑥 > 0 ∧ 𝑥 < 0}). Similarly, under the context 𝑥𝜔 : int{𝑥 > 0}, the refinement type
𝑦 : int{𝑦 < 0 ∧ 𝑦 > 𝑥} is empty. In these cases, the typing context with the specified type becomes
inconsistent, i.e. the encoded context gives a proof of falsity.

Moreover, an empty type can also occur without inconsistency. For instance, in a typing context
of 𝑥0 : int, the type 𝑦 : int{𝑦 > 𝑥} is empty — it is not possible to produce such a value without
referring to 𝑥 (cf. [TE-Var]).

4.3 Endpoint Projection: From Global Contexts and Types to Local Contexts and Types

In the methodology of multiparty session types, developers specify a global type, and obtain
local types for the participants via endpoint projection (projection for short). In the original theory,
projection is a partial function that takes a global type 𝐺 and a participant p, and returns a local
type 𝐿. The resulting local type 𝐿 describes a the local communication behaviour for participant p
in the global scenario. Such workflow has the advantage that each endpoint can obtain a local type
separately, and implement a process of the given type, hence providing modularity and scalability.

Projection is defined as a partial function, since only well-formed global types can be projected to
all participants. In particular, a partial merge operator ⊔ is used during the projection, for creating
a local type Σ ⊢ 𝐿1 ⊔ 𝐿2 = 𝐿merged that captures the behaviour of two local types, under context Σ.
In RMPST, we first define the projection of global typing contexts (Fig. 11), and then define

the projection of global types under a global typing context (Fig. 12). We use expression typing
judgements in the definition of projection, to type-check expressions against their prescribed types.

Projection of Global Contexts. We define the judgement Γ ↾ p = Σ for the projection of global
typing context Γ to participant p in Fig. 11. In the global context Γ, a variable 𝑥 is annotated with
the set of participants Pwho know the value. If the projected participant p is in the set P, [P-Var-𝜔]
is applied to obtain an unrestricted variable in the resulting local context; Otherwise, [P-Var-0] is
applied to obtain an irrelevant variable.

Projection of Global Types with a Global Context. When projecting a global type 𝐺 , we
include a global context Γ, forming a judgement of form ⟨Γ ≺ 𝐺⟩ ↾ p = ⟨Σ ≺ 𝐿⟩. Projection
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Γ ↾ p = Σ
[P-Empty]

∅ ↾ p = ∅

[P-Var-𝜔]
p ∈ P Γ ↾ p = Σ

Γ, 𝑥P : 𝑇 ↾ p = Σ, 𝑥𝜔 : 𝑇

[P-Var-0]
p ∉ P Γ ↾ p = Σ

Γ, 𝑥P : 𝑇 ↾ p = Σ, 𝑥0 : 𝑇
Fig. 11. Projection Rules for Global Contexts

[P-Send]
Γ ↾ p = Σ ∀𝑖 ∈ 𝐼 . Σ ⊢ 𝑇𝑖 𝑡𝑦 ⟨Γ ∪ {𝑥 {p, q}

𝑖
: 𝑇𝑖 } ≺ 𝐺𝑖⟩ ↾ p = ⟨Σ𝑖 ≺ 𝐿𝑖⟩

⟨Γ ≺ (p → q {𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐺𝑖 }𝑖∈𝐼 )⟩ ↾ p = ⟨Σ ≺ q⊕{𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿𝑖 }𝑖∈𝐼 ⟩

[P-Recv]
Γ ↾ q = Σ ∀𝑖 ∈ 𝐼 . Σ ⊢ 𝑇𝑖 𝑡𝑦 ⟨Γ ∪ {𝑥 {p, q}

𝑖
: 𝑇𝑖 } ≺ 𝐺𝑖⟩ ↾ q = ⟨Σ𝑖 ≺ 𝐿𝑖⟩

⟨Γ ≺ (p → q {𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐺𝑖 }𝑖∈𝐼 )⟩ ↾ q = ⟨Σ ≺ p&{𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿𝑖 }𝑖∈𝐼 ⟩

[P-Phi]
Γ ↾ r = Σ r ∉ {p, q} ∀𝑖 ∈ 𝐼 . Σ ⊢ 𝑇𝑖 𝑡𝑦 ⟨Γ ∪ {𝑥 {p, q}

𝑖
: 𝑇𝑖 } ≺ 𝐺𝑖⟩ ↾ r = ⟨Σ𝑖 ≺ 𝐿𝑖⟩

⟨Γ ≺ (p → q {𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐺𝑖 }𝑖∈𝐼 )⟩ ↾ r = ⟨Σ ≺ ⊔𝑖∈𝐼 𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿𝑖⟩

[P-Rec-In]
Γ ↾ r = Σ r ∈ 𝐺 ⟨Γ ∪ {𝑥 {r |r∈𝐺 } : 𝑇 } ≺ 𝐺⟩ ↾ r = ⟨Σ′ ≺ 𝐿⟩ Σ ⊢ 𝑇 𝑡𝑦 Σ ⊢ 𝐸 : 𝑇

⟨Γ ≺ 𝜇t(𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐺)⟩ ↾ r = ⟨Σ ≺ 𝜇t (𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐿⟩

[P-Rec-Out]
Γ ↾ r = Σ r ∉ 𝐺

⟨Γ ≺ 𝜇t(𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐺)⟩ ↾ r = ⟨Σ ≺ end⟩
[P-End]

Γ ↾ r = Σ

⟨Γ ≺ end⟩ ↾ r = ⟨Σ ≺ end⟩

⟨Γ ≺ 𝐺⟩ ↾ p = ⟨Σ ≺ 𝐿⟩
[P-Var]

Γ ↾ r = Σ = Σ1, 𝑥 :𝑇, Σ2 Σ1, 𝑥 :𝑇, Σ2 ⊢ 𝐸 :𝑇
⟨Γ ≺ t⟨𝑥 := 𝐸⟩⟩ ↾ r = ⟨Σ ≺ t⟨𝑥 := 𝐸⟩⟩

Fig. 12. Projection Rules for Global Types

rules are shown in Fig. 12. Including a typing context allows us to type-check expressions during
projection, hence ensuring that variables attached to recursive protocols are well-typed.
If the prefix of 𝐺 is a message from role p to role q, the projection results a local type with

a send (resp. receive) prefix into role p (resp. q) via [P-Send] (resp. [P-Recv]). For other roles
r, the projection results in a local type with a silent label via [P-Phi], with prefix 𝑙 (𝑥 :𝑇 ). This
follows the concept of a coordinated distributed system, where all the processes follow a global
protocol, and base assumptions of their local actions on actions of other roles not involving them.
The projection defined in the original MPST theory does not contain information for role r about
a message between p and q. We use the silent prefix to retain such information, especially the
refinement type𝑇 of the payload. For merging two local types (as used in [P-Phi]), we use a simple
plain merge operator defined as Σ ⊢ 𝐿 ⊔ 𝐿 = 𝐿, requiring two local types to be identical in order to
be merged.3

If the prefix of𝐺 is a recursive protocol 𝜇t(𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐺 , the projection preserves the recursion
construct if the projected role is in the inner protocol via [P-Rec-In] and that the expression 𝐸 can
be typed with type 𝑇 under the projected local context. Typing expressions under local contexts
ensures that no irrelevant variables 𝑥0 are used in the expression 𝐸, as no typing derivation exists
for irrelevant variables. Otherwise projection results in end via [P-Rec-Out]. If𝐺 is a type variable
t⟨𝑥 := 𝐸⟩, we similarly validate that the expression 𝐸 carries the specified type in the correspondent
recursion definition, and its projection also preserves the type variable construct.

3We build upon the standard MPST theory with plain merging. Full merge [Denielou et al. 2012], allowing certain different
index sets to be merged, is an alternative, more permissive merge operator. Our implementation Session★ uses the more
permissive merge operator for better expressiveness.
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Example 4.3 (Projection of Global Types of Example 4.1 (1)). We draw attention to the projection
of 𝐺1 to C, under the empty context ∅.

⟨∅ ≺ 𝐺1⟩ ↾ C = ⟨∅ ≺ 𝐹𝑠𝑡 (𝑥 : int).B&𝑆𝑛𝑑 (𝑦 : int{𝑥 = 𝑦}) .D⊕𝑇𝑟𝑑 (𝑧 : int{𝑥 = 𝑧}).end⟩
We note that the local type for C has a silent prefix 𝐹𝑠𝑡 (𝑥 : int), which binds the variable 𝑥 in the
continuation. The silent prefix adds the variable 𝑥 and its type to the “local knowledge” of the
endpoint C, yet the actual value of 𝑥 is unknown.

Remark 4.4 (Empty Session Type). Global types 𝐺 and local types 𝐿 can be empty because one
of the value types in the protocol in an empty type (cf. Remark 4.2).

For example, the local type A⊕𝐼𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 (𝑥 : int{𝑥 > 0 ∧ 𝑥 < 0}) .end cannot be implemented,
since such an 𝑥 cannot be provided.

For the same reason, the local type 𝑃𝑜𝑠 (𝑥 : int{𝑥 > 0}).A⊕𝐼𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 (𝑦 : int{𝑦 > 𝑥}).end can-
not be implemented.

Remark 4.5 (Implementable Session Types). Consider the following session type:

𝐿 = B&𝑁𝑢𝑚(𝑥 : int).B⊕
{
𝑃𝑜𝑠 (unit{𝑥 > 0}) .end
𝑁𝑒𝑔(unit{𝑥 < 0}).end

}
.

When the variable 𝑥 has the value 0, neither of the choices 𝑃𝑜𝑠 or 𝑁𝑒𝑔 could be selected, as the
refinements are not satisfied. In this case, the local type 𝐿 cannot be implemented, as the internal
choice callback may not be implemented in a total way, i.e. the callback returns a choice label for
all possible inputs of integer 𝑥 .4

4.4 Labelled Transition System (LTS) Semantics

We define the labelled transition system (LTS) semantics for global types and local types. We show
the trace equivalence of a global type and the collection of local types projected from the global
type, to demonstrate that projection preserves LTS semantics. The equivalence result allows us to
use the projected local types for the implementation of local roles separately. Therefore, we can
implement the endpoints in F★ separately, and they compose to the specified protocol.

We also prove a type safety result that well-formed global types cannot be stuck. This, combined
with the trace equivalence result, guarantees that endpoints are free from deadlocks.

Actions. We begin with defining actions in the LTS system. We define the label in the LTS as
𝛼 ::= p → q : 𝑙 (𝑥 : 𝑇 ), a message from role p to q with label 𝑙 carrying a value named 𝑥 with type
𝑇 . We define subj(𝛼) = {p, q} to be the subjects of the action 𝛼 , namely the two roles in the action.

Semantics of Global Types. We define the LTS semantics of global types in Fig. 13. Different
from the original LTS semantics in [Deniélou and Yoshida 2013], we include the context Γ in the
semantics along with the global type 𝐺 . Therefore, the judgements of global LTS reduction have
form ⟨Γ ≺ 𝐺⟩ 𝛼−→ ⟨Γ′ ≺ 𝐺 ′⟩.
[G-Pfx] allows the reduction of the prefix action in a global type. An action, matching the

definition in set defined in the prefix, allows the correspondent continuation to be selected. The
resulting global type is the matching continuation and the resulting context contains the variable
binding in the action.
[G-Cnt] allows the reduction of an action that is causally independent of the prefix action in

a global type, here, the subjects of the action are disjoint from the prefix of the global type. If all
continuations in the global types can make the reduction of that action to the same context, then
4Since we use a permissive ML effect in the callback type, allowing all side effects to be performed in the callback, the
callback may throw exceptions or diverge in case of unable to return a value.
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[G-Pfx]
𝑗 ∈ 𝐼

⟨Γ ≺ p → q {𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐺𝑖 }𝑖∈𝐼 ⟩
p→q:𝑙 𝑗 (𝑥 𝑗 :𝑇𝑗 )−−−−−−−−−−−→ ⟨Γ ∪ {𝑥 {p, q}

𝑗
: 𝑇𝑗 } ≺ 𝐺 𝑗 ⟩

[G-Cnt]
{p, q} ∩ subj(𝛼) = ∅ ∀𝑗 ∈ 𝐼 .⟨Γ ∪ {𝑥∅𝑗 : 𝑇𝑗 } ≺ 𝐺 𝑗 ⟩

𝛼−→ ⟨Γ′ ≺ 𝐺 ′
𝑗 ⟩

⟨Γ ≺ p → q {𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐺𝑖 }𝑖∈𝐼 ⟩
𝛼−→ ⟨Γ′ ≺ p → q

{
𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐺 ′

𝑖

}
𝑖∈𝐼 ⟩

⟨Γ ≺ 𝐺⟩ 𝛼−→ ⟨Γ′ ≺ 𝐺 ′⟩
[G-Rec]

⟨Γ ∪ {𝑥 {r |r∈𝐺 } : 𝑇 } ≺ 𝐺 [𝜇t(𝑥 :𝑇 ).𝐺/t]⟩ 𝛼−→ ⟨Γ′ ≺ 𝐺 ′⟩

⟨Γ ≺ 𝜇t(𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐺⟩ 𝛼−→ ⟨Γ′ ≺ 𝐺 ′⟩

Fig. 13. LTS Semantics for Global Types

the result context is that context and the result global type is one with continuations after reduction.
When reducing the continuations, we add the variable of the prefix action into the context, but
tagged with an empty set of known roles. This addition ensures that relevant information obtainable
from the prefix message is not lost when performing reduction.

[G-Rec] allows the reduction of a recursive type by unfolding the type once.

Example 4.6 (Global Type Reductions). We demonstrate two reduction paths for a global type

𝐺 = p → q : 𝐻𝑒𝑙𝑙𝑜 (𝑥 : int{𝑥 < 0}) .r → s : 𝐻𝑜𝑙𝑎(𝑦 : int{𝑦 > 𝑥}) .end.

Note that the two messages are not causally related (they have disjoint subjects). We have the
following two reduction paths of ⟨∅ ≺ 𝐺⟩ (omitting payload in LTS actions):

⟨∅ ≺ 𝐺⟩
[G-Pfx]

p→q:𝐻𝑒𝑙𝑙𝑜
−−−−−−−−→ ⟨𝑥 {p, q} : int{𝑥 < 0} ≺ r → s : 𝐻𝑜𝑙𝑎(𝑦 : int{𝑦 > 𝑥}).end⟩

[G-Pfx]
r→s:𝐻𝑜𝑙𝑎−−−−−−−→ ⟨𝑥 {p, q} : int{𝑥 < 0}, 𝑦 {r, s} : int{𝑦 > 𝑥} ≺ end⟩

⟨∅ ≺ 𝐺⟩
[G-Cnt]

r→s:𝐻𝑜𝑙𝑎−−−−−−−→ ⟨𝑥∅ : int{𝑥 < 0}, 𝑦 {r, s} : int{𝑦 > 𝑥} ≺ p → q : 𝐻𝑒𝑙𝑙𝑜 (𝑥 : int{𝑥 < 0}).end⟩
[G-Pfx]

p→q:𝐻𝑒𝑙𝑙𝑜
−−−−−−−−→ ⟨𝑥 {p, q} : int{𝑥 < 0}, 𝑦 {r, s} : int{𝑦 > 𝑥} ≺ end⟩

Semantics of Local Types. We define the LTS semantics of local types in Fig. 14. Similar to global
type LTS semantics, we include the local context Σ in the semantics. Therefore, the judgements of
local LTS reductions have form ⟨Σ ≺ 𝐿⟩ 𝛼−→ ⟨Σ′ ≺ 𝐿′⟩. When defining the LTS semantics, we also
use judgements of form ⟨Σ ≺ 𝐿⟩ 𝜖−→ ⟨Σ′ ≺ 𝐿′⟩. It represents a silent action that can occur without
an observed action. We write

𝜖−→
∗
to denote the reflexive transition closure of silent actions

𝜖−→.
We first have a look at silent transitions. [E-Phi] allows the variable in a silent type to be added

into the local context in the irrelevant form. This rule allows local roles to obtain knowledge from
the messages in the global protocol without their participation.
[E-Cnt] allows prefixed local type to make a silent transition, if all of its continuations are

allowed to make a silent transition to reach the same context. The rule allows a prefixed local
type to obtain new knowledge about irrelevant variables, if such can be obtained in all possible
continuations.

[E-Rec] unfolds recursive local types, analogous to the unfolding of global types.
For concrete transitions, we have [L-Send] (resp. [L-Recv]) to reduce a local type with a sending

(resp. receiving) prefix, if the action label is in the set of labels in the local type. The resulting
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[E-Cnt]
† ∈ {&, ⊕} ∀𝑗 ∈ 𝐼 . ⟨Σ ∪ {𝑥0𝑗 : 𝑇𝑗 } ≺ 𝐿 𝑗 ⟩

𝜖−→ ⟨Σ′ ≺ 𝐿′
𝑗 ⟩

⟨Σ ≺ q †{𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿𝑖 }𝑖∈𝐼 ⟩
𝜖−→ ⟨Σ′ ≺ q †

{
𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿′

𝑖

}
𝑖∈𝐼 ⟩

[E-Rec]
⟨Σ ≺ 𝜇t (𝑥 :𝑇 )⟨𝑥 := 𝐸⟩.𝐿⟩ 𝜖−→ ⟨Σ ∪ {𝑥𝜔 : 𝑇 } ≺ 𝐿[𝜇t (𝑥 :𝑇 ).𝐿/t]⟩

⟨Σ ≺ 𝐿⟩ 𝜖−→ ⟨Σ′ ≺ 𝐿′⟩
[E-Phi]

⟨Σ ≺ 𝑙 (𝑥 :𝑇 ).𝐿⟩ 𝜖−→ ⟨Σ ∪ {𝑥0 : 𝑇 } ≺ 𝐿⟩

[L-Send]
𝑗 ∈ 𝐼

⟨Σ ≺ q⊕{𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿𝑖 }𝑖∈𝐼 ⟩
p→q:𝑙 𝑗 (𝑥 𝑗 :𝑇𝑗 )−−−−−−−−−−−→ ⟨Σ ∪ {𝑥𝜔𝑗 : 𝑇𝑗 } ≺ 𝐿 𝑗 ⟩

[L-Recv]
𝑗 ∈ 𝐼

⟨Σ ≺ p&{𝑙𝑖 (𝑥𝑖 :𝑇𝑖 ).𝐿𝑖 }𝑖∈𝐼 ⟩
p→q:𝑙 𝑗 (𝑥 𝑗 :𝑇𝑗 )−−−−−−−−−−−→ ⟨Σ ∪ {𝑥𝜔𝑗 : 𝑇𝑗 } ≺ 𝐿 𝑗 ⟩

⟨Σ ≺ 𝐿⟩ 𝛼−→ ⟨Σ′ ≺ 𝐿′⟩
[L-Eps]

⟨Σ ≺ 𝐿⟩ 𝜖−→ ⟨Σ′′ ≺ 𝐿′′⟩ ⟨Σ′′ ≺ 𝐿′′⟩ 𝛼−→ ⟨Σ′ ≺ 𝐿′⟩

⟨Σ ≺ 𝐿⟩ 𝛼−→ ⟨Σ′ ≺ 𝐿′⟩

Fig. 14. LTS Semantics for Local Types

context contains the variable in the message as a concrete variable, since the role knows the value
via communication. The resulting local type is the continuation corresponding to the action label.

In addition, [L-Eps] permits any number of silent actions to be taken before a concrete action.

Remark 4.7 (Reductions for Empty Session Types). We consider empty session types to be
reducible, since it is not possible to distinguish which types are inhabited. However, it does not
invalidate the safety properties of endpoints, since no such endpoints can be implemented for an
empty session type.

Relating Semantics of Global and Local Types. We extend the LTS semantics to a collection
of local types in Definition 4.8, in order to prove that projection preserves semantics. We define the
semantics in a synchronous fashion.
The set of local types reduces with an action 𝛼 = p → q : 𝑙 (𝑥 : 𝑇 ), if the local type for role p

and q both reduce with that action 𝛼 . All other roles in the set of the local types are permitted to
make silent actions (𝜖 actions).
Our definition deviates from the standard definition [Deniélou and Yoshida 2013, Def. 3.3] in

two ways: One is that we use a synchronous semantics, so that one action involves two reductions,
namely at the sending and receiving sides. Second is that we use contexts and silent transitions in
the LTS semantics. The original definition requires all non-action roles to be identical, whereas we
relax the requirement to allow silent transitions.

Definition 4.8 (LTS over a collection of local types). A configuration 𝑠 = {⟨Σr ≺ 𝐿r⟩}r∈P is a
collection of local types and contexts, indexable via participants.

Let p ∈ P and q ∈ P. We say 𝑠 = {⟨Σr ≺ 𝐿r⟩}r∈P
𝛼=p→q:𝑙 (𝑥 :𝑇 )
−−−−−−−−−−−→ 𝑠 ′ = {⟨Σ′

r
≺ 𝐿′

r
⟩}r∈P if

(1) ⟨Σp ≺ 𝐿p⟩
𝛼−→ ⟨Σ′

p
≺ 𝐿′

p
⟩ and, ⟨Σq ≺ 𝐿q⟩

𝛼−→ ⟨Σ′
q
≺ 𝐿′

q
⟩ and,

(2) for all s ∈ P, s ≠ p, s ≠ q. ⟨Σs ≺ 𝐿s⟩
𝜖−→

∗
⟨Σ′

s
≺ 𝐿′

s
⟩
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For a closed global type 𝐺 under context Γ, we show that the global type makes the same trace
of reductions as the collection of local types obtained from projection. We prove it in Theorem 4.10.

Definition 4.9 (Association of Global Types and Configurations). Let ⟨Γ ≺ 𝐺⟩ be a global context.
The collection of local contexts associated to ⟨Γ ≺ 𝐺⟩, is defined as the configuration

{⟨Γ ≺ 𝐺⟩ ↾ r}r∈𝐺 . We write 𝑠 ⇔ ⟨Γ ≺ 𝐺⟩ if a configuration 𝑠 is the associated to ⟨Γ ≺ 𝐺⟩.

Theorem 4.10 (Trace Eqivalence). Let ⟨Γ ≺ 𝐺⟩ be a closed global context and 𝑠 ⇔ ⟨Γ ≺ 𝐺⟩ be
a configuration associated with the global context.

⟨Γ ≺ 𝐺⟩ 𝛼−→ ⟨Γ′ ≺ 𝐺 ′⟩ if and only if 𝑠
𝛼−→ 𝑠 ′, where 𝑠 ′ ⇔ ⟨Γ′ ≺ 𝐺 ′⟩.

The theorem states that semantics are preserved after projection. Practically, we can implement
local processes separately, and run them in parallel with preserved semantics.
We also show that a well-formed global type 𝐺 has progress. This means that a well-formed

global type does not get stuck, which implies deadlock freedom.

Definition 4.11 (Well-formed Global Types). A global type under typing context ⟨Γ ≺ 𝐺⟩ is well-
formed, if (1) 𝐺 does not contain free type variables, (2) 𝐺 is contractive [Pierce 2002, §21], and
(3) for all roles in the protocol r ∈ 𝐺 , the projection ⟨Γ ≺ 𝐺⟩ ↾ r is defined.

We also say a global type 𝐺 is well-formed, if ⟨∅ ≺ 𝐺⟩ is well-formed.

Theorem 4.12 (Preservation of Well-formedness). If ⟨Γ ≺ 𝐺⟩ is a well-formed global type

under typing context, and ⟨Γ ≺ 𝐺⟩ 𝛼−→ ⟨Γ′ ≺ 𝐺 ′⟩, then ⟨Γ′ ≺ 𝐺 ′⟩ is well-formed.

Definition 4.13 (Progress). A configuration 𝑠 satisfies progress, if either (1) For all participants
p ∈ 𝑠 , 𝐿p = end, or (2) there exists an action 𝛼 and a configuration 𝑠 ′ such that 𝑠

𝛼−→ 𝑠 ′.
A global type under typing context ⟨Γ ≺ 𝐺⟩ satisfies progress, if its associated configuration

𝑠 ⇔ ⟨Γ ≺ 𝐺⟩, exists and satisfies progress.
We also say a global type 𝐺 satisfies progress, if ⟨∅ ≺ 𝐺⟩ satisfies progress.

Theorem 4.14 (Progress). If ⟨Γ ≺ 𝐺⟩ is a well-formed global type under typing context, then

⟨Γ ≺ 𝐺⟩ satisfies progress.

Theorem 4.15 (Type Safety). If 𝐺 is a well-formed global type, then for any global type under

typing context ⟨Γ′ ≺ 𝐺 ′⟩ such that ⟨∅ ≺ 𝐺⟩ −−→ ∗⟨Γ′ ≺ 𝐺 ′⟩, ⟨Γ′ ≺ 𝐺 ′⟩ satisfies progress.

Proof. Direct consequence of Theorem 4.12 and Theorem 4.14. □

5 EVALUATION

We evaluate the expressiveness and performance of our toolchain Session★. We describe the
methodology and setup (§ 5.1), and comment on the compilation time (§ 5.2) and the execution time
(§ 5.3). We demonstrate the expressiveness of Session★ (§ 5.4) by implementing examples from the
session type literature and comparing with related work. The source files of the benchmarks used
in this section are included in our artifact, along with a script to reproduce the results.

5.1 Methodology and Setup

We measure the time to generate the CFSM representation from a Scribble protocol (CFSM), and
the time to generate F★ code from the CFSM representation (F★ APIs). Since the generated APIs in
F★ need to be type-checked before use, we also measure the type-checking time for the generated
code (Gen. Code). Finally, we provide a simple implementation of the callbacks and measure the
type-checking time for the callbacks against the generated type (Callbacks).
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global protocol PingPong𝑛(role A, role B) {

choice at A { Ping(x1:int) from A to B; Pong(y1:int) from B to A; @"y1>x1"

Ping(x2:int) from A to B; @"x2>y1" Pong(y2:int) from B to A; @"y2>x2"

· · ·
Ping(x𝑛:int) from A to B; @"x𝑛>y𝑛−1" Pong(y𝑛:int) from B to A; @"y𝑛>x𝑛"

do PingPong𝑛(A, B); }

or { Bye() from A to B; Bye() from B to A; } }

Fig. 15. Ping Pong Protocol (Parameterised by Protocol Length 𝑛)

To execute the protocols, we need a network transport to connect the participants by providing
appropriate sending and receiving primitives. In our experiment setup, we use the standard library
module FStar.Tcp to establish TCP connections between participants, and provide a simple
serialisation module for base types. Due to the small size of our payloads, we set TCP_NODELAY to
avoid the delays introduced by the congestion control algorithms. Since our entry point to execute
the protocol is parameterised by the connection/transport type, the implementation may use other
connections if developers wish, e.g. an in-memory queue for local setups. We measure the execution
time of the protocol (Execution Time).
To measure the overhead of our implementation, we compare against an implementation of

the protocol without session types or refinement types, which we call bare implementation. In
this implementation, we use the same sending and receiving primitives (i.e. connection) as in the
toolchain implementation. The bare implementation is in a series of direct calls of sending and
receiving primitives, for the same communication pattern, but without the generated APIs.
We use a Ping Pong protocol (Fig. 15), parameterised by the protocol length, i.e. the number of

Ping Pong messages 𝑛 in a protocol iteration. When the protocol length 𝑛 increases, the number
of CFSM states increases linearly, which gives rise to longer generated code and larger generated
types. In each Ping Pong message, we include payload of increasing numbers, and encode the
constraints as protocol refinements.
We study its effect on the compilation time (§ 5.2) and the execution time (§ 5.3). We run the

experiment on varying sizes of 𝑛, up to 25. Larger sizes of 𝑛 leads to unreasonably large resource
usage during type-checking in F★. Table 1 reports the results for the Ping Pong protocol in Fig. 15.

We run the experiments under a network of latency of 0.340ms (64 bytes ping), and repeat each
experiment 30 times. Measurements are taken using a machine with Intel i7-7700K CPU (4.20 GHz,
4 cores, 8 threads), 16 GiB RAM, operating system Ubuntu 18.04, OCaml compiler version 4.08.1, F★
compiler commit 8040e34a, Z3 version 4.8.5.

5.2 Compilation Time

CFSM and F
★
Generation Time. Wemeasure the time taken for Scribble to generate the CFSM

from the protocol in Fig. 15, and for the code generation tool to convert the CFSM to F★ APIs. We
observe from Table 1 that the generation time for CFSMs and F★ APIs is short. It takes less than 1
second to complete the generation phase for each case.

Type-checking Time of Generated Code and Callbacks. We measure the time taken for the
generated APIs to type-check in F★. We provide a simple F★ implementation of the callbacks
following the generated APIs, and measure the time taken to type-check the callbacks.

The increase of type-checking time is non-linear with regard to the protocol length. We encode
CFSM states as records corresponding to local typing contexts. In this case, the size of local typing
contexts and the number of type definitions grows linearly, giving rise to a non-linear increase.
Moreover, the entry point function is likely to cause non-linear increases in the type-checking time.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 148. Publication date: November 2020.

https://github.com/FStarLang/FStar/commit/8040e34a2c6031276fafd2196b412d415ad4591a


148:24 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida

Protocol Generation Time Type Checking Time Execution Time
Length (𝑛) CFSM F★ APIs Gen. Code Callbacks (100 000 ping-pongs)

bare n/a n/a n/a n/a 28.79s
1 0.38s 0.01s 1.28s 0.34s 28.75s
5 0.48s 0.01s 3.81s 1.12s 28.82s
10 0.55s 0.01s 14.83s 1.34s 28.84s
15 0.61s 0.01s 42.78s 1.78s n/a
20 0.69s 0.02s 98.35s 2.54s 28.81s
25 0.78s 0.02s 206.82s 3.87s 28.76s

Table 1. Time Measurements for Ping Pong Protocol

The long type-checking time of the generated code could be avoided if the developer chooses to
trust our toolchain to always generate well-typed F★ code for the entry point. The entry point would
be available in an interface file (cf. OCaml .mli files), with the actual implementation in OCaml
instead of F★5. There would otherwise be no changes in the development workflow. Although
neither does type-checking time of the callback implementation fit a linear pattern, it remains
within reasonable time frame.

5.3 Runtime Performance (Execution Time)

We measure the execution time taken for an exchange of 100,000 ping pongs for the toolchain and
bare implementation under the experiment network. The execution time is dominated by network
communication, since there is little computation to be performed at each endpoint.

We provide a bare implementation using a series of direct invocations of sending and receiving
primitives, in a compatible way to communicate with generated APIs. The bare implementation does
not involve a record of callbacks, which is anticipated to run faster, since the bare implementation
involves fewer function pointers when calling callbacks. Moreover, the bare implementation does
not construct state records, which record a backlog of the communication, as the protocol progresses.
To measure the performance impact of book-keeping of callback and state records, we run the Ping
Pong protocol from Fig. 15 for a protocol of increasing size (number of states and generated types),
i.e. for increasing values of 𝑛. All implementations, including bare are run until 100,000 ping pong
messages in total are exchanged6.

We summarise the results in Table 1. Despite the different protocol lengths, there are no significant
changes in execution time. Since the execution is dominated by time spent on communication, the
measurements are subject to network fluctuations, difficult to avoid during the experiments. We
conclude that our implementation does not impose a large overhead on the execution time.

5.4 Expressiveness

We implement examples from the session type literature, and add refinements to encode data
dependencies in the protocols. We measure the time taken for code generation and type-checking,
and present them in Table 2. The time taken in the toolchain for examples in the session type
literature is usually short, yet we demonstrate that we are able to implement the examples easily
with our callback style API. Moreover, the time taken is incurred at the compilation stage, hence
there is no overhead for checking refinements by our runtime.
5Defining a signature in an interface file, and providing an implementation in the target language (OCaml) allows the F★
compiler to assume the implementation is correct. This technique is used frequently in the standard library of F★. This is
not to be confused with implementing the endpoints in OCaml instead of F★, as that would bypass the F★ type-checking.
6For 𝑛 = 1, we run 100,000 iterations of recursion; for 𝑛 = 10, we run 10,000 iterations, etc. Total number of ping pong
messages exchanged by two parties remain the same.
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Example (Endpoint) Gen. / TC. Time MP RV IV STP
Two Buyer 𝑎 (A) 0.46s / 2.33s ✓ ✗ ✓ ✓†

Negotiation 𝑏 (C) 0.46s / 1.59s ✗ ✓ ✗ ✗

Fibonacci 𝑐 (A) 0.44s / 1.58s ✗ ✓ ✗ ✗

Travel Agency 𝑑 (C) 0.62s / 2.36s ✓ ✗ ✗ ✓†

Calculator 𝑐 (C) 0.51s / 2.30s ✗ ✗ ✗ ✓

SH 𝑒 (P) 1.16s / 4.31s ✓ ✗ ✓ ✓†

Online Wallet 𝑓 (C) 0.62s / 2.67s ✓ ✓ ✗ ✗

Ticket 𝑔 (C) 0.45s / 1.90s ✗ ✓ ✗ ✗

HTTP ℎ (S) 0.55s / 1.79s ✗ ✗ ✗ ✓†

MP Multiparty Protocol
RV Uses Recursion Variables
IV Irrelevant Variables

STP Implementable in STP
✓† STP requires dynamic checks

𝑎 [Honda et al. 2016]
𝑏 [Demangeon and Honda 2012]
𝑐 [Hu and Yoshida 2016]
𝑑 [Hu et al. 2008]
𝑒 [Neykova et al. 2018]
𝑓 [Neykova et al. 2013]
𝑔 [Bocchi et al. 2013]
ℎ [Fielding and Reschke 2014]

Table 2. Selected Examples from Literature

We also compare the expressiveness of our work with two most closely related works, namely
Bocchi et al. [2010] and Neykova et al. [2018], which study refinements in MPST (also see § 6).
Neykova et al. [2018] (Session Type Provider, STP) implements limited version of refinements
in the Scribble toolchain. Our version is strictly more expressive than STP for two reasons: (1)
support for recursive variables to express invariants and (2) support for irrelevant variables. Fig. 16
illustrates those features and Table 2 identifies which of the implemented examples use them.

protocol Adder(role S, role C)

@"S[acc:=0]" {

Num(x:int) from C to S; @"x≥0"
Sum(sum:int) from S to C; @"sum=acc+x"

do Adder(S, C); @"S[sum]" }

(a) Accumulator (using Recursive Invariants)

protocol Broadcast(role A, role B, role C)

{

Broadcast(x:int) from A to B; @"x≥0"
// C does not learn y≥0 in STP

Broadcast(y:int) from A to C; @"x=y" }

(b) Broadcasting (using Irrelevant Variables)

Fig. 16. Example Protocols Demonstrating Additional Expressiveness to [Neykova et al. 2018]

In STP, when recursion occurs, all information about the variables is lost at the end of an iteration,
hence their tool does not support even the simple example in Fig. 16a. In contrast, our work retains
the recursion variables, which are available throughout the recursion. Additionally, the endpoint
projection in STP is more conservative with regards to refinements. Whilst there must be no
variables unknown to a role in the refinements attached to a message for the sending role, there
may be unknown variables to the receiving role. The part unknown to the receiving role is discarded
(hence weakening the pre-condition). In our work such information can still be retained and used
for type checking, thanks to irrelevant variables.

In Bocchi et al. [2010], a global protocol with assertions must be well-asserted (§3.1). In particular,
the history sensitivity requirement states: "A predicate guaranteed by a participant p can only contain

those interaction variables that p knows." Our theory lifts this restriction by allowing variables
unknown to a sending role to be used in the global or local type, whereas such variables cannot
be used in the implementation. For example, Example 4.1 fails the well-asserted requirement in
[Bocchi et al. 2010]. In the refinement 𝑥 = 𝑧 for variable 𝑧 (for message label 𝑇𝑟𝑑), the variable 𝑥
is not known to C, hence the protocol would not be well-asserted. In our setup, such protocol is
permitted, the endpoint implementation for C can provide the value 𝑦 received from B to satisfy
the refinement type — The SMT solver can validate the refinement from the transitivity of equality.

6 RELATEDWORK

We summarise the most closely related works in the areas of refinement and session types. For a
detailed survey on theory and implementations of session types, see Gay and Ravara [2017].
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Refinement Types for Verification and Reasoning. Refinement types were introduced to
allow recursive data structures to be specified in more details using predicates [Freeman and
Pfenning 1991]. Subsequent works on the topic [Bengtson et al. 2011; Schmid and Kuncak 2016;
Vazou et al. 2014, 2017] utilise SMT solvers, such as Z3 [De Moura and Bjørner 2008], to aid the
type system to decide a semantic subtyping relation [Bierman et al. 2012] using SMT encodings.
Refinement types have been applied to numerous domains, such as resource usage analysis [Handley
et al. 2019; Knoth et al. 2020], secure implementations [Bengtson et al. 2011; Bhargavan et al. 2010],
information control flow enforcements [Polikarpova et al. 2020], and theorem proving [Vazou et al.
2017]. Our aim is to utilise refinement types for the specification and verification of distributed
protocols, by combining refinement and session types in a single practical framework.

Implementation of Session Types. Neykova et al. [2018] provides an implementation of MPST
with assertions using Scribble and F#. Their implementation, the session type provider (STP), relies
on code generation of fluent (class-based) APIs, initially described in [Hu and Yoshida 2016]. Each
protocol state is implemented as a class, with methods corresponding to the possible transitions
from that state. It forces a programming style that not only relies extensively on method chaining,
but also requires dynamic checks to ensure the linearity of channel usage. Our work differs from STP
in multiple ways. First, we extend the Scribble toolchain to support recursion variables, allowing
refinements on recursions, hence improving expressiveness. In this way, developers can specify
dependencies across recursive calls, which is not supported in STP. Second, we depart from the
class-based API generation, and generate a callback-based API. Our approach has the advantage
that the linear usage of channels is ensured by construction, saving dynamic checks for channels.
Third, we use refinement types in F★ to verify refinements statically, in contrast, STP performs
dynamic evaluations to validate assertions in protocols. Finally, the metatheory of session types
extended with refinements was not developed in their work.

Several other MPST works follow a similar technique of class-based API generation to overcome
limitations of the type system in the target language, e.g. Castro et al. [2019] for Go, Ng et al. [2015]
for C. All of the above works, suffer from the same limitations – they detect linearity violations
at runtime, and offer no static alternative. Indeed, to our knowledge, Imai et al. [2020] provide
the only MPST implementation which statically checks linearity violation. It relies on specific
type-level OCaml features, and a monadic programming style. Our work proposes generation of a
callback-styled API from MPST protocols. To our knowledge, it is the first work that ensures linear
channel usage by construction. Although our target language is F*, the callback-styled API code
generation technique is applicable to any mainstream programming language.

Dependent and Refinement Session Types. Bocchi et al. [2010] propose a multiparty session
𝜋-calculus with logical assertions. By contrast, our formulation of RMPST is based on refinement
types, projection with silent prefixes and correspondence with CFSMs, to target practical code
generation, such as for F★. They do not formulate any semantics for global types nor prove an
equivalence between refined global types and projections, as in this paper. Toninho and Yoshida
[2017] extend MPST with value dependent types. Invariants on values are witnessed by proof
objects, which then may be erased at runtime. Our work uses refinement types, which follows the
principle naturally, since refinements that appear in types are proof-irrelevant and can be erased
safely. These works are limited to theory, whereas we provide an implementation.
De Muijnck-Hughes et al. [2019] propose an Embedded Domain Specific Language (EDSL)

approach of implementing multiparty sessions (analogous to MPST) in Idris. They use value
dependent types in Idris to define combinators, with options to specify data dependencies, contrary
to our approach of code generation. However, the combinators only describe the sessions, and
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how to implement and execute the sessions remains unanswered. Our work provides a complete
toolchain from protocol description to implementation and verification.
In the setting of binary session types, Das and Pfenning [2020] extend session types with

arithmetic refinements, with application to work analysis for computing upper bounds of work
from a given session type. Thiemann and Vasconcelos [2019] extend binary session types with
label dependent types. In the setup of their work, specification of arithmetic properties involves
complicated definitions of inductive arithmetic relations and functions. In contrast, we use SMT
solvers, which have built-in functions and relations for arithmetic. Furthermore, there is no need
to construct proofs manually, since SMT solvers find the proof automatically, which enhances
usability and ergonomics. Hinrichsen et al. [2019] combine binary session types with concurrent
separation logic, allowing reasoning about mixed-paradigm concurrent programs, and planned to
extend the framework to MPST. Along similar lines, Swamy et al. [2020] provide a framework of
concurrent separation logic in F★, and demonstrate its expressiveness by showing how (dependent)
binary session types can be represented in the logic and used in reasoning. Our work is based on
the theory of MPST, subsuming the binary session types. Furthermore, we implement a toolchain
that developers can use.

Bhargavan et al. [2009] use refinement types to implement a limited form of multiparty session
types. Session types are encoded in refinement types via code generation. The specification language
they use, albeit similar to MPST, has limited expressive power. Only patterns of interactions where
participants alternate between sending and receiving are permitted. Moreover, they do not study
data dependencies in protocols, hence they can neither specify, nor verify constraints on payloads
or recursions. We use refinement types to specify constraints and dependencies in multiparty
protocols, and use the F★ compiler [Swamy et al. 2016] for verifying the endpoint implementations.
The verified endpoint program does not only comply to the multiparty protocol, enjoying the
guarantees provided by the original MPST theory (deadlock freedom, session fidelity), but also
satisfies additional guarantees provided by refinement types with respect to data constraints.

7 CONCLUSIONS AND FUTUREWORK

We present a novel toolchain for implementing refined multiparty session types (RMPST), which
enables developers to use Scribble, a protocol description language for multiparty session types,
and F★, a state-of-the-art verification-oriented programming language, to implement a multiparty
protocol and statically verify endpoint implementations. To the best of the authors’ knowledge,
this is the first work on statically verified multiparty protocols with refinement types. We extend
the theory of multiparty session types with data refinements, and present a toolchain that enables
developers to specify multiparty protocols with data dependencies, and implement the endpoints
using generated APIs in F★. We leverage the advanced typing system in F★ to encode local session
types for endpoints, and validate the data dependencies in the protocol statically.

The verified endpoint program in F★ is extracted into OCaml, where the refinements are erased
— adding no runtime overhead for refinements. The callback-styled API avoids linearity checks of
channel usage by internalising communications in generated code. We evaluate our toolchain and
demonstrate that our overhead is small compared to an implementation without session types.

Whereas refinement types express the data dependencies of multiparty protocols, the availability
of refinement types in general purpose mainstream programming languages is limited. For future
work, we wish to study how to mix participants with refined implementation and those without,
possibly using a gradual typing system [Igarashi et al. 2019; Lehmann and Tanter 2017].
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